
Chapter 9
Propagation of Light Pulse in Fiber
and Optical Soliton

This chapter studies the phenomenon of nonlinear interaction between the laser
pulse and the propagation fiber. At first, we will deduce the nonlinear Schrodinger
equation for describing the propagation of light pulse in the fiber. Under this
foundation, we will analyze the two effects of dispersion and self-phase modulation
how to affect the propagation of light pulse in the fiber and how to form the time
optical soliton in both combined action. And we will give the time optical soliton
equation, the fundamental wave solution and the characteristic of the time optical
soliton. Finally, we will briefly introduce the basic conception and characteristic of
the space optical soliton.

9.1 Nonlinear Schrodinger Equation [1]

Most nonlinear effects in fiber are related with that the light pulses with pulsewidth
in the range of 10 ns� 10 fs propagate in the fiber. In the propagation process, both
the dispersion and the nonlinearity all affect the shape and spectrum of light pulse.
For describing the propagation of light pulses in the nonlinear fiber we need use the
time-domain nonlinear Schrodinger equation. We will deduce this equation taking
following four steps:

① Reforming the general nonlinear time-domain wave equation to be the
time-domain wave equation in the isotopic medium;

② Through Fourier transform to deduce the frequency-domain wave equation for
describing the propagation of monochromic light in isotopic medium, namely
Helmholtz equation;

③ In the single mode fiber condition solving Helmholtz equation, to deduce the
frequency-domain wave equation for describing the propagation of mono-
chromic light in single mode fiber;
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④ Through revers Fourier transform to deduce the time-domain nonlinear
Schrodinger equation, which describes that when the light pulse propagate in
the fiber to generate the dispersion, absorption, and Kerr effect.

9.1.1 Helmholtz Equation

If the medium is without absorption loss ðr ¼ 0Þ, according to Eq. (2.1.17), the
general wave equation can be written to

r�r� Eþ l0
@2e � E
@t2

¼ �l0
@2PNL

@t2
: ð9:1:1Þ

Assuming the fiber medium is isotopic, we have r � E ¼ 0, so that
r�r� E ¼ rðr � EÞ � r2E ¼�r2E. Because dielectric coefficient is

e ¼ e0ð1þ vð1ÞÞ, where vð1Þ linear susceptibility, and linear polarization is

PL ¼ e0vð1Þ � E, using c ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0e0

p
, Eq. (9.1.1) can be rewritten to

r2E� 1
c2

@2E
@t2

¼ 1
e0c2

@2PL

@t2
þ 1

e0c2
@2PNL

@t2
: ð9:1:2Þ

The total polarization of medium is

Pðr; tÞ ¼ PLðr; tÞþPNLðr; tÞ: ð9:1:3Þ

In the following discussion we assume: ① the medium is isotopic,
non-absorption, far from resonance; ② PNL can be regarded as the perturbation of
P, because in general the nonlinear variation of refractive index \10�6; ③ when
the light propagates along the fiber length direction, its polarization keeps no
change, so we can treatment by using scalar method; ④ the light wave is
quasi-monochromic, namely Dx=x0\\1 is satisfied, because the center fre-
quency of light wave is about x0 � 1015 Hz, and spectrum wide of light pulse is
Dx\0:1ps ¼ 1013Hz.

We suppose the light wave propagates in fiber along z-direction, the polarization
is along x-direction, so we have

Eðr; tÞ ¼ x̂½Eðr; tÞ expð�ix0tÞþ c:c:�; ð9:1:4Þ

PLðr; tÞ ¼ x̂½PLðr; tÞ expð�ix0tÞþ c:c:�; ð9:1:5Þ
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PNLðr; tÞ ¼ x̂½PNLðr; tÞ expð�ix0tÞþ c:c:�; ð9:1:6Þ

where x̂ is the unit vector for polarization along x-direction. Substituting
Eqs. (9.1.4)–(9.1.6) into Eq. (9.1.2), in the same time using the Fourier transform to
Eðr; tÞ, the electrical field intensity is denoted as the frequency-domain form:

~Eðr;x� x0Þ ¼
Z1

�1
Eðr; tÞ exp½iðx� x0Þt�dt: ð9:1:7Þ

Therefore we deduce out the Helmholtz equation, which is satisfied by the
monochromic wave in the isotopic medium:

r2~Eþ eðxÞk20 ~E ¼ 0; ð9:1:8Þ

where k0 ¼ x=c is the wave vector in vacuum; eðxÞ is the complex dielectric
coefficient. Now we investigate the physical mining of eðxÞ.

If we only consider the linear effect and the three-order nonlinear effect, the
polarization can be written as

P ¼ Pð1Þ þPð3Þ ¼ e0v
ð1ÞEþ 3e0vð3Þ Ej j2E: ð9:1:9Þ

According to the definition of electric induction intensity and using Eq. (9.1.9),
we have

D ¼ e0EþP ¼ e0Eþ e0v
ð1ÞEþ 3e0vð3Þ Ej j2E ¼ eðxÞE: ð9:1:10Þ

So the dielectric coefficient eðxÞ is given by

eðxÞ ¼ e0 1þ vð1ÞðxÞþ 3vð3Þ EðxÞj j2
� �

: ð9:1:11Þ

In general eðxÞ is a complex umber, the real part is corresponding to the
refractive index ~n, and the imaginary part is corresponding to the absorption
coefficient ~a, so eðxÞ can be defined as

eðxÞ ¼ ð~nþ i~a=2k0Þ2: ð9:1:12Þ

And the refractive index and the absorption coefficient can be divided into linear
and nonlinear two parts:

~n ¼ nþDn; ð9:1:13Þ

~a ¼ aþDa: ð9:1:14Þ
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where n and α are linear refractive index and linear absorption (as same as n0 and a0
in previous chapter); the relations of Dn and Da with the light intensity I have been
given in second chapter:

Dn ¼ 3
e0cn2

vð3Þ0ðxÞI;

Da ¼ 6x
e0c2n2

vð3Þ00ðxÞI;

Using formula I ¼ 1
2 e0cn Ej j2, Eqs. (9.1.13) and (9.1.14) become:

~n ¼ nþ �n2 Ej j2; ð9:1:15Þ

~a ¼ aþ �a2 Ej j2; ð9:1:16Þ

where

�n2 ¼ 3
2n

vð3Þ0; ð9:1:17Þ

�a2 ¼ 3x
cn

vð3Þ00: ð9:1:18Þ

�n2 is nonlinear refraction coefficient; �a2 can be called two-photon absorption
coefficient (or write as β), for silica fiber the absorption coefficient ~a is very small, it
can be neglected, so the dielectric coefficient can be approximately written as
e � ~n2.

Using Eqs. (9.1.12) and (9.1.13), omitting the items containing ðDnÞ2; i~a=2k0ð Þ2,
and Dn i~a=2k0ð Þ, and using Eq. (9.1.15), the dielectric coefficient eðxÞ can be
approximately written as

eðxÞ ¼ ~nþ i~a
2k0

� �2

� n2 þ 2n �n2 Ej j2 þ i~a
2k0

� �� �
: ð9:1:19Þ

To define the complex number nonlinear refractive index Dn as

Dn ¼ �n2 Ej j2 þ i~a
2k0

: ð9:1:20Þ

Then Eq. (9.1.19) can be approximately expressed as

eðxÞ � n2 þ 2nDn. ð9:1:21Þ

Visible, Dn can be regarded the first perturbation of the dielectric coefficient
eðxÞ, which includes the nonlinearity and the absorption loss of fiber
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If in Eq. (9.1.20) we replace �n2 by n2, replace Ej j2 by I ¼ P=Seff , and
approximately replace ~a by α, Eq. (9.1.20) can be written as

Dn � n2
P
Seff

þ ia
2k0

; ð9:1:22Þ

where the unit of nonlinear refraction coefficient n2 is m2=W ; the unit of power P is
W, the unit of efficient cross-section of fiber core Seff is m2.

9.1.2 Derivation of Frequency-Domain Wave Equation
in Fiber

Helmholtz Eq. (9.1.8) can be solved by using method of separation of variables.
Assuming that the solution form is

~Eðr;x� x0Þ ¼ Fðx; yÞ~Aðz;x� x0Þ expðib0zÞ; ð9:1:23Þ

where Fðx; yÞ is transverse-mode distribution function of light pulse in the fiber;
~Aðz;xÞ is light electrical filed amplitude; expðib0zÞ is the phase factor, in which
b0 ¼ bðx0Þ is the wave number for central wavelength.

Substituting the trying solution (9.1.23) into Eq. (9.1.8), which can be divided
into two equations related to Fðx; yÞ and ~Aðz;xÞ respectively:

@2F
@x2

þ @2F
@y2

þ ½eðxÞk20 � ~b2�F ¼ 0; ð9:1:24Þ

2ib0
@~A
@z

þð~b2 � b20Þ~A ¼ 0: ð9:1:25Þ

In the process of deduction of Eq. (9.1.25), because ~Aðz;xÞ is a slow-variation
function of z, we have neglected the item containing @2~A=@z2.

~b in Eqs. (9.1.24) and (9.1.25) can be expressed to be linear and nonlinear two
parts:

~b ¼ bðxÞþDbðxÞ: ð9:1:26Þ

~b2 in Eq. (9.1.24) can be written to ~b2 � bðxÞ2 þ 2bðxÞDbðxÞ, using
Eq. (9.1.21), then Eq. (9.1.24) can be rewritten to

@2F
@x2

þ @2F
@y2

þ 2½nðxÞDn(x/c)2 � bðxÞDbðxÞ�F ¼ 0: ð9:1:27Þ
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Taking double integral of x and y to function Fðx; yÞ;DbðxÞ can be regard a
constant, moving it to outside of the integral sign, from Eq. (9.1.27) we obtain

DbðxÞ ¼ x2nðxÞ
c2bðxÞ

R R1
�1 DnðxÞ Fðx; yÞj j2dxdyR R1

�1 Fðx; yÞj j2dxdy : ð9:1:28Þ

The physical meaning of this formula is: in the envelop of the light pulse
propagated in the fiber, the wave number change of a monochromatic light DbðxÞ
comes from light induced complex number refractive-index change Dn, which is
the first perturbation of eðxÞ; and DbðxÞ can be regarded as the first perturbation
of ~b.

Using Eq. (9.1.26) and approximate relation ~b2 � b20 � 2b0ð~b� b0Þ, the
Eq. (9.1.25) becomes

@~A
@z

¼ i½bðxÞþDbðxÞ � b0�~A: ð9:1:29Þ

In order to obtain the exact expression and meaning of bðxÞ in above equation,
we expend bðxÞ to be Taylor series nearby the central frequency x0:

bðxÞ ¼ b0 þðx� x0Þb1 þ
1
2
ðx� x0Þ2b2 þ

1
6
ðx� x0Þ3b3 þ . . .: ð9:1:30Þ

In which bn is

bn ¼
dnb
dxn

� �
x¼x0

ðn ¼ 0; 1; 2; . . .Þ: ð9:1:31Þ

b0 is the wave number of central frequency; b1 is the wave number of wave
packet, which is related with the group velocity vg and the refractive index of group
velocity ng; b2; denotes the dispersion of group velocity (GVD), which is related
with frequency broaden of light pulse. b1 and b2 are respectively defined as

b1 ¼
db
dx

¼ 1
vg

¼ ng
c
¼ 1

c
nþx

dn
dx

� �
; ð9:1:32Þ

b2 ¼
d2b
dx2 ¼

db1
dx

¼ 1
c

2
dn
dx

þx
d2n
dx2

� �
: ð9:1:33Þ

We have assumed spectrum width Dx\\x0, so in expansion Eq. (9.1.30), the
high-order (higher than three-order) items can be neglected (only for the specific
frequency, such as near zero dispersion waveguide of fiber, b2 � 0, than we con-
sider b3 in the three-order item), therefore we only take preceding three items in
Eq. (9.1.30), i.e.,
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DbðxÞ ¼ b0 þðx� x0ÞDb1 þ
1
2
ðx� x0Þ2Db2: ð9:1:34Þ

Substituting Eq. (9.1.34) into Eq. (9.1.29), we obtain

@~A
@z

¼ i½ðx� x0ÞDb1 þ
1
2
ðx� x0Þ2Db2 þDbðxÞ�~A: ð9:1:35Þ

9.1.3 Derivation of Nonlinear Schrodinger Equation

At first, using Eqs. (9.1.4) and (9.1.23), the time-domain light electrical filed
intensity expression can be written as:

Eðr; tÞ ¼ x̂½Eðx; yÞAðz; tÞ exp iðb0z� x0tÞþ c:c:�; ð9:1:36Þ

where Aðz; tÞ is time-domain slow-variation electrical filed amplitude, which can be
obtained from the reverse Fourier transform of frequency electrical filed amplitude
~Aðz;x� x0Þ:

Aðz; tÞ ¼ 1
2p

Z1

�1

~Aðz;x� x0Þ exp½iðx� x0Þt�dx: ð9:1:37Þ

After than through reverse Fourier transform, we transfer the frequency-domain
amplitude Eq. (9.1.35) to be time-domain amplitude equation. In the reverse
Fourier transform, we can use the operator ið@=@tÞ to instead of x� x0 in
Eq. (9.1.35), the time-domain form of that equation is given by

@A
@z

þ b1
@A
@t

þ ib2
2

@2A
@t2

¼ iDbðxÞA: ð9:1:38Þ

DbðxÞ in the right side of Eq. (9.1.38) includes the fiber loss (α) and the non-
linearity ðDn).

Now we use Eq. (9.1.28) to find DbðxÞ. Under first-class perturbation, we sup-
pose Dn does not affect the model-filed distribution Fðx; yÞ in the pulsewidth range,
so we can pull out Dn to outside the integral, further use expression (9.1.22) of Dn,
and setting bðxÞ � nðxÞ xc , under condition of Dx\\x0, we can approximately
use Db0 instead of DbðxÞ, therefore the DbðxÞ in Eq. (9.1.38) can be written as

DbðxÞ ¼ Db0 �
n2ðx0Þx0

cSeff
Aj j2 þ ia

2
; ð9:1:39Þ
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here we used P ¼ Aj j2, because the amplitude A is normalized. Aj j2 represents
power (the unit is W). Substituting the Eq. (9.1.39) into Eq. (9.1.38), the
time-domain amplitude Eq. (9.1.38) becomes the following form:

@A
@z

þ b1
@A
@t

þ ib2
2

@2A
@t2

þ a
2
A ¼ icðx0Þ Aj j2A; ð9:1:40Þ

where γ is the nonlinear coefficient, its definition is

cðx0Þ ¼ n2ðx0Þx0

cSeff
: ð9:1:41Þ

The unit of c Aj j2 is m�1. Seff is the effective cross-section of fiber core, which is
defined as

Seff ¼
R R1

�1 Fðx; yÞj j2dxdy
� �2

R R1
�1 Fðx; yÞj j4dxdy ; ð9:1:42Þ

where Fðx; yÞ is distribution function of fundamental mode light filed of fiber. For
single-mode fiber, its fundamental mode can expressed as a Gaussian distribution,
i.e.,

Fðx; yÞ ¼ exp½�ðx2 þ y2Þ=w2�: ð9:1:43Þ

The effective cross-section of fiber core is

Seff ¼ pw2: ð9:1:44Þ

For the fiber at near the normalized cut-off frequency V ¼ 2, the parameter w is
equal to the radius of fiber core, i.e., w � a, and Seff ¼ pa2. When wavelength at
vicinity of 1:5 lm, the general cross-section of fiber core is Seff ¼ 20� 100 lm2. If
taking n2 � 2:6� 10�20m2=W, the range of nonlinear coefficient is
c ¼ 1� 10W�1=km.

Equation (9.1.40) describes the propagation law of picosecond light pulse in
single-mode fiber. The equation is called Nonlinear Schrödinger (NLS) Equation.
In which α denotes absorption loss, γ denotes nonlinearity effect, the moving group
velocity of pulse waveform is vg � 1=b1, the group velocity dispersion
(GVD) effect is depended on the parameter b2. The plus or minus of b2 is depended
on whether greater or smaller than zero-dispersion wavelength 1:31 lm, please see
following appendix.
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Appendix: Dispersion of Fiber
Dispersion of single-mode fiber is usually used the dispersion coefficient Dm to
describe, the relationship between Dm and b2 is

Dm ¼ db1
dk

¼ � 2pc

k2
b2 � � k

c
d2n

dk2
: ð9:1:45Þ

This is the material dispersion. The wave number of wave packet b1 ¼ 1=vg is
the time delay due to that the wave packet propagated with group velocity passes
through a unit distance, its unit is ps=km; the dispersion coefficient Dm is the time
delay induced by unit spectrum width, its unit is ps=ðkm � nmÞ; and the unit of
group-velocity dispersion parameter b2 is ps2=km.

Figure 9.1 gives the relation of variation of group-velocity dispersion parameter
of single-mode silica fiber b2 with the wavelength. We can see that b2 tends to zero
in the vicinity of wavelength 1.31 μm, for even longer wavelength it becomes
negative value, for example, when k � 1:55 lm; b2 � �25ps2=km. The wave-
length at b2 ¼ 0 is called zero-dispersion wavelength kD.

The material dispersion Dm is related with the fiber doping situation, for different
doping, the law of refractive-index variation with the wavelength is different, i.e.,
the characteristic of dispersion is different. There is also a dispersion, which relies
on the waveguide structure of fiber, it is called waveguide dispersion Dw. For
different fiber waveguide structure, in which the refractive index of efficient mode is
different with the material refractive index, therefore dispersion characteristic is
different. The main action is change the location of zero-dispersion wavelength kD,
to lead it shifts along long wavelength direction.

The total dispersion of single mode fiber D is a sum of material dispersion and
waveguide dispersion: D ¼ Dm þDw.

Fig. 9.1 Relation between
the group velocity dispersion
b2 and the wavelength for
single mode silica fiber
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There are common three kinds of single-mode fibers: the regular fiber (kD = 1.31
μm),the dispersion shift fiber (kD = 1.55 μm) and the dispersion flat fiber
(kD = 1.31 μm and 1.55 μm), their dispersion-wavelength characteristic curves are
shown in Fig. 9.2.

9.2 Group Velocity Dispersion and Self-phase
Modulation [1]

In two sides of Eq. (9.1.40) multiply by i, then we obtain

i
@A
@z

þ ib1
@A
@t

¼ � ia
2
Aþ b2

2
@2A
@t2

� c Aj j2A: ð9:2:1Þ

If we use the time coordinate of motion reference system with group velocity vg
(the space coordinate is no change),

T ¼ t � z=vg ¼ t � b1z; ð9:2:2Þ

and using the derivation formula for the function of functions, we obtain

@Aðz; TÞ
@z

¼ @

@z
Aðz; t ¼ T þ z

vg
Þ ¼ @Aðz; tÞ

@z
þ @Aðz; tÞ

@t
� @t
@z

¼ @Aðz; tÞ
@z

þ @Aðz; tÞ
@t

� 1
vg

¼ @Aðz; tÞ
@z

þ b1
@Aðz; tÞ

@t
:

Fig. 9.2 Dispersion–wavelength curves for three kinds of single-mode fibers: the regular fiber, the
dispersion shift fiber and the dispersion flat fiber
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Equation (9.2.1) becomes

i
@A
@z

¼ � ia
2
Aþ b2

2
@2A
@T2 � c Aj j2A: ð9:2:3Þ

This is NLS equation for describing the propagation of light pulse in the fiber.
Aðz; TÞ is the amplitude of pulse envelop. The first item of right side describes the
absorption of light pulse in the fiber, the second item describes the group velocity
dispersion (GVD) of light pulse, the third item describes self-phase modulation
(SPM) of light pulse (the nonlinear optics effect). Actually, this equation is neglected
the high-order nonlinear effects. This equation is suitable to use for describing the
propagation of light pulse with initial pulsewidth T0 [ 5ps in the fiber.

When the light pulse propagates in the fiber for a certain length L, in order to
estimate which effect: the dispersion effect or the self-phase modulation, plays main
role, we respectively introduce two physical quantities: the dispersion length LD and
the nonlinear length LNL, according to the comparison of the length of LD or LNL
relative to fiber length L, to determine which effect has more important contribution.

For realizing the normalization of the equation, we introduce a normalized time
τ, which is relative to the initial pulsewidth T0:

s ¼ T
T0

¼ t � z=vg
T0

: ð9:2:4Þ

In the same time, we introduce a normalized light filed amplitude Uðz; sÞ, which
is proportional to the amplitude Aðz; sÞ, the proportionality coefficient includes the
input light power and the absorption loss related with propagation distance:

Aðz; sÞ ¼ ffiffiffiffiffi
P0

p
expð�az=2ÞUðz; sÞ; ð9:2:5Þ

where P0 is the peak power of input light pulse; the exponent factor is for mea-
suring the fiber loss. So the Eq. (9.2.3) is rewritten to

i
@U
@z

¼ sgnðb2Þ
2LD

@2U
@s2

� expð�azÞ
LNL

Uj j2U; ð9:2:6Þ

where sgnðb2Þ ¼ 	1 is determined by the symbol of GVD parameter b2; LD is
dispersion length, which is defined as

LD ¼ T2
0

b2j j ; ð9:2:7Þ

LNL is nonlinear length, which is defined as

LNL ¼ 1
cP0

: ð9:2:8Þ
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We can see that LD is related with the fiber group velocity dispersion parameter
b2 and the initial width of input light pulse T0; and LNL is related with the nonlinear
parameter of fiber γ and the peak power of input light pulse P0. Namely b2 and T0
determine the group velocity dispersion GVD. And γ and P0 determine the
self-phase modulation SPM. According to comparison of LD and LNL with the
actual length of fiber L in numerical relative size, we can put the light pulse
propagation in optical fiber into four cases. Below we start from Eq. (9.2.6) to study
these four cases respectively.

9.2.1 Pulse Propagation Excluding Dispersion
and Nonlinearity

When the length of fiber is very short, i.e., L\\LD and L\\LNL, whether
dispersion or nonlinearity both not play important role. In Eq. (9.2.6), two items of

right side are all equal to zero, i.e., @Uðz;sÞ
@z ¼ 0, then Uðz; sÞ ¼ Uð0; sÞ, namely in

propagation process the shape of light pulse keeps no change (except the absorption
induces slightly decrease of power). This case is favorable to the optical
communication.

For example, for the standard fiber at wavelength k ¼ 1:55 lm; b2j j � 20 ps2=km,
and c � 2W�1km�1, if the light pulse with T0 
 100 ps and P0 � 1mW, in this case
LD and LNL 
 500 km, for the fiber with length of L� 50 km, the dispersion and the
nonlinearity all can be neglected. But when the pulsewidth of incident pulse is narrow
down, and the power of incident pulse increase, LD and LNL become smaller, such as
T0 � 1 ps and P0 � 1W, then LD and LNL � 100m, for this fiber, when its length
exceeds 10 m, we should consider the influences of the dispersion effect and the
nonlinearity effect in the same time.

9.2.2 Influence of Dispersion to Pulse Propagation

If L\\LNL, but L � LD, the second item of right side of Eq. (9.2.6) can be
neglected, the pulse variation mainly depends on the group velocity dispersion
(GVD). In this case LD is much smaller than LNL:

LD
LNL

¼ cP0T2
0

b2j j \\1: ð9:2:9Þ

Roughly estimating, for the standard fiber at k ¼ 1:55 lm, taking the typical
values of γ and b2j j, this case is suitable to the light pulse with power of P0\\1W
and pulsewidth of 1 ps.
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Below we will discuss the influence of group velocity dispersion to the light
pulse. Assuming in Eq. (9.2.3), c ¼ 0, using the normalized amplitude defined by
Eq. (9.2.5) Uðz; TÞ, then Uðz; TÞ is satisfied the following linear partial differential
equation:

i
@U
@z

¼ b2
2
@2U
@T2 : ð9:2:10Þ

This equation is easy to solve by using Fourier transformation method. Suppose
~Uðz;xÞ is the Fourier transformation of Uðz; TÞ, namely

Uðz; TÞ ¼ 1
2p

Z1

�1

~Uðz;xÞ expð�ixTÞdx; ð9:2:11Þ

Then it satisfies the ordinary differential equation

i
@ ~U
@z

¼ � 1
2
b2x

2 ~U: ð9:2:12Þ

The solution is

~Uðz;xÞ ¼ ~Uð0;xÞ expð i
2
b2x

2zÞ: ð9:2:13Þ

Equation (9.2.13) shows that GVD changes the phase of each frequency spec-
trum component in the pulse, the size of change is different according to the
different frequency ω and the transmission distance z. Substituting Eq. (9.2.13) into
Eq. (9.2.11), we can obtain the general solution of Eq. (9.2.10):

Uðz; TÞ ¼ 1
2p

Z1

�1

~Uð0;xÞ expð i
2
b2x

2z� ixTÞdT ; ð9:2:14Þ

where ~Uð0;xÞ is the Fourier transformation of incident light filed at z ¼ 0, namely

~Uð0;xÞ ¼
Z1

�1
Uð0;TÞ expðixTÞdT : ð9:2:15Þ

Equations (9.2.14) and (9.2.15) are suitable to the arbitrary shape incident pulse.
If the incident pulse is a Gaussian pulse (as shown in Fig. 9.3):
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Uð0; TÞ ¼ exp � T2

2T2
0

� �
; ð9:2:16Þ

where T0 is the same as the pulsewidth of light pulse introduced by Eq. (9.2.4), its
strict definition is the half width of the light pulse at 1=e of peek value. Actually in
common use, T0 is replaced by full width at half maximum TFWHM. For Gaussian
light pulse, the relationship between TFWHM and T0 is

TFWHM ¼ 2ðln 2Þ1=2T0 � 1:665T0: ð9:2:17Þ

Using Eqs. (9.2.14)–(9.2.16), and to integral, we obtain the amplitude at any
point z along the fiber:

Uðz; TÞ ¼ T0

ðT2
0 � ib2zÞ1=2

exp � T2

2ðT2
0 � ib2zÞ

� �
: ð9:2:18Þ

So the light pulse in the propagation keeps its Gaussian shape, but its pulsewidth
T1 is increased with increasing of z as follows:

T1ðzÞ ¼ T0½1þðz=LDÞ2�1=2: ð9:2:19Þ

Equation (9.2.19) shows that except the broaden factor T1=T0 is related with z, it
also depends on the dispersion length LD ¼ T2

0= b2j j. For a certain fiber length, if the
pulsewidth T0 is shorter and dispersion b2j j is lager, the dispersion length LD is
shorter, than the pulse broaden is larger at z ¼ LD, the broaden of Gaussian pulse isffiffiffi
2

p
times of that of the incident pulse. Figure 9.4 shows the broaden situations of

Gaussian pulse Uðz; TÞj j2�T=T0 curves at z=LD ¼ 0; 2, and 4 induced by disper-
sion. It is clear that propagation distance is longer, the pulse broaden is larger.

To comparison Eqs. (9.2.16) and (9.2.18) we can see, although incident pulse is
not chirped (the frequency is not modulated), the transmitted pulse becomes chirped
(the frequency is modulated). For clear, we rewrite the Eq. (9.2.18) to be following
form:

Fig. 9.3 Gaussian pulse
waveform and the relation of
T0 and TFWHM
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Uðz; TÞ ¼ Uðz; TÞj j exp½i/ðz; TÞ�; ð9:2:20Þ

where

/ðz; TÞ ¼ � sgnðb2Þðz=LDÞ
1þðz=LDÞ2

T2

T2
0
þ 1

2
tan�1 z

LD

� �
: ð9:2:21Þ

It is dispersion induced phase variation (phase shift) of light pulse with time. It
means that in the two sides of center frequency x0, there are different frequency
difference between the frequency at each moment ω and the center frequency x0,
namely dx ¼ x� x0, this frequency difference is equal to a negative number of
the time derivative of phase shift, i.e., dxðTÞ ¼ �@/=@T [the negative sign is due
to selection of factor expð�ix0tÞ in the light-filed expression (9.1.4)]:

dxðTÞ ¼ � @/
@T

¼ sgnðb2Þð2z=LDÞ
1þðz=LDÞ2

T
T2
0
: ð9:2:22Þ

It means that the fiber dispersion applies a time-dependent frequency to the light
pulse, that frequency variation with time is frequency chirp. Because the relation
between the chirp and the time is a linear relation, it is called linear frequency
chirp. The plus or minus of chirp dx depends on the sign of b2, in the normal
dispersion region ðb2 [ 0Þ, in the pulse leading edge ðT\0Þ, dx is minus (red
shift), but in the pulse tailing edge ðT [ 0Þ; dx is plus (blue shift), i.e., red head and
violet tail; in the anomalous dispersion region ðb2\0Þ, the contrary is the case, dx
of the pulse leading edge is plus (blue shift), and dx of the pulse tailing edge is

Fig. 9.4 Broadening of Gaussian pulse due to dispersion effect at z ¼ 2LD; 4LD. The vertical
coordinate is the normalized light intensity, the transverse coordinate is the normalized time, and
the imaginary line denotes the incident pulse waveform at z ¼ 0
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minus (red shift), i.e., violet head and red tail. The curves of dxT0 � ðT=T0Þ is
shown in Fig. 9.5. Form the figure we can see, when z ¼ 0, the Gaussian light pulse
has no chirp dx; the chirp becomes larger with increase of propagation distance of
light pulse; when z ¼ LD, the chirp is maximum, after that the chirp gradually
becomes smaller, until disappears.

We can understand the dispersion induced light-pulse broadening in this way:
because of GVD effect, the different frequency component has different propagation
velocity in the fiber. In the normal dispersion region ðb2 [ 0Þ, the red light com-
ponent is going faster than the blue light component, but in the anomalous dis-
persion region ðb2\0Þ, the blue light component is going faster than red light
component. Any relative decay of different frequency component all leads the pulse
broadening. Only when all frequency components arrive at the same time, the
pulsewidth is possible to keep no change.

9.2.3 Influence of Self-phase Modulation to Pulse
Propagation

If L\\LD, but L � LNL, The first item of left of Eq. (9.2.6) can be neglected, the
pulse change mainly depends on the self-phase modulation (SPM). In this case LNL
is much smaller than LD:

LD
LNL

¼ cP0T2
0

b2j j � 1: ð9:2:23Þ

Fig. 9.5 Normalized
frequency chirp of Gaussian
light pulse dxT0 as a function
of T=T0 (straight line
relation) at z ¼ 2LD; 4LD, the
imaginary line denotes that
the incident pulse at z ¼ 0 is
no chirp
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This condition is suitable the light pulse with more wide pulsewidth T0 [ 100 ps
and power P0 � 1W propagates in the regular fiber at k ¼ 1:55 lm. Omitting the
dispersion item, Eq. (9.2.6) becomes

@U
@z

¼ ie�az

LNL
Uj j2U; ð9:2:24Þ

where α is the loss of fiber; LNL ¼ ðcP0Þ�1; c ¼ n2x0=cSeff .
Setting the trying solution of Eq. (9.2.24) is

U ¼ V expði/NLÞ; ð9:2:25Þ

Substituting Eq. (9.2.25) into Eq. (9.2.24), than divided it into the real part
(amplitude) and imaginary part (nonlinear phase shift) two equations:

@V
@z

¼ 0; ð9:2:26Þ

@/NL

@z
¼ e�az

LNL
V2: ð9:2:27Þ

Because from Eq. (9.2.26) we can know that the amplitude V is without change
with z, we can directly integral to Eq. (9.2.27), than obtain the general solution:

UðL; TÞ ¼ Uð0; TÞ exp½i/NLðL; TÞ�; ð9:2:28Þ

where Uð0; TÞ is the light filed amplitude at z ¼ 0, the nonlinear phase shift
/NLðL; TÞ is:

/NLðL; TÞ ¼ Uð0; TÞj j2ðLeff =LNLÞ; ð9:2:29Þ

where Leff is the effective length related with the absorption loss:

Leff ¼ ½1� expð�aLÞ�=a: ð9:2:30Þ

From Eq. (9.2.29) one can see, SPM induced nonlinear phase shift is propor-
tional to the intensity of incident light in every moment, so the law of the
phase-shift variation with time is the same as the law of the incident-light-pulse
intensity variation with time, from Eq. (9.2.30) one can see, the increase of phase
shift with increasing of fiber length. Due to the absorption loss of fiber, the efficient
length Leff is smaller than the length of fiber L. But when without loss, i.e., a ¼ 0,
than Leff ¼ L. Because U is normalized, Uð0; 0Þ ¼ 1 is maximum value, therefore
the maximum phase shift /max appears at T ¼ 0 of the center of pulse. From
Eq. (9.2.29), we obtain
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/max ¼ Leff =LNL ¼ cP0Leff : ð9:2:31Þ

Equation (9.2.31) shows the physical meaning of nonlinear length is the efficient
propagation length under /max ¼ 1. If taking the typical nonlinear parameter c ¼
2W�1km�1 for fiber at k ¼ 1:55 lm, when P0 ¼ 10mW, we have LNL ¼ 50 km.
LNL will shorten with increase of P0.

SPM induced frequency-spectrum broadening is coming from the variation of
/NLðL; TÞ with time, it means that there are different frequency difference between
the instantaneous frequency at two sides of center frequency in every moment and
the center frequency. Using Eq. (9.2.29), we can calculate to get the frequency
difference:

dxðTÞ ¼ � @/NL

@T
¼ � Leff

LNL

� �
@

@T
Uð0; TÞj j2: ð9:2:32Þ

The variation of dx with time is called the frequency chirp. This SPM induced
chirp is increased with increasing of the propagation distance. In other word, as the
light pulse propagation in optical fiber, the new frequency components produced
continuously, cause frequency spectrum broadening continuously.

From Eq. (9.2.32) one can see, the frequency chirp is related with the pulse
waveform. If the light pulse is Gaussian type, than SPM induced chirp is

dxðTÞ ¼ 2
Leff
LNL

T
T2
0
exp � T2

T0

� �
: ð9:2:33Þ

Figure 9.6 shows when Leff ¼ LNL, the action of self-phase modulation to the
Gaussian-pulse propagation produced characteristic curves: the nonlinear phase
shift /NL change with time (above) and the frequency chirp dx change with time
(below). According to Eq. (9.2.29), the curve of /NL change with time in the figure
above is the same as the curve of pulse-intensity change with time. From the figure
below we can see, the curve of frequency chirp dx change with time has following
characteristic: at the pulse leading edge, dx is negative (red shift); to reach the pulse
tailing edge, dx becomes positive (blue shift), i.e., it appears red head and violet tail
phenomenon; in the wide range of the pulse center region the chirp is linear and
upward (up chirp); at the steepest inflection point of pulse leading edge and pulse
tailing edge, there is maximum chirp value.

9.2.4 Combined Action of Dispersion and Self-phase
Modulation

When L
 LD and L
 LNL, GVD and SPM combined action to the light pulse. The
interaction between both generates entirely different influence to the behavior of
light pulse. In the fiber anomalous dispersion region ðb2\0Þ, the actions of GVD
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and SPM are opposite: GVD generates violet head and red trail chirp; but SPM
generates red head and violet trail chirp. When both reach the balance, it can
eliminate the chirp in the optical fiber, the pulse shape will remain unchanged, thus
the optical soliton will be produced.

Now we rewrite the nonlinear Schrodinger Eq. (9.2.6) into following normalized
form:

i
@U
@n

¼ sgnðb2Þ
1
2
@2U
@s2

� N2e�az Uj j2U; ð9:2:34Þ

where ξ and τ denote the normalized variables distance and time respectively, which
are defined as

n ¼ z=LD; s ¼ T=T0: ð9:2:35Þ

The definition of parameter N is

N2 ¼ LD
LNL

� cP0T2
0

b2j j : ð9:2:36Þ

Fig. 9.6 Curves of phase
shift /NL (power) and
frequency chirp dx as a
function of time for Gaussian
pulse propagation
characteristic produced by
self-phase modulation
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In Eq. (9.2.34), sgnðb2Þ ¼ 	 depend on that the GVD is in normal dispersion
region ðb2 [ 0Þ or in anomalous dispersion region ðb2 [ 0Þ. The integer value
N depends on the relative strength of SPM and GVD in the evolution process of
light pulse in the fiber. When N  1, the action of GVD is dominating; and when
N � 1, the action of SPM is dominating, but when N � 1, the two actions of SPM
and GVD are equal.

For a specific N, there are many practical groups of pulsewidth and power
suitable Eq. (9.2.36), for example, if N ¼ 1, one can select: T0 ¼ 1 ps and
P0 ¼ 1W; T0 ¼ 10 ps and P0 ¼ 10mW; T0 ¼ 0:1 ps and P0 ¼ 100W, etc.

NLS Eq. (9.2.34) is a nonlinear partial differential equation. In general it cannot
obtain the analytical solution. In order to obtain the numerical solution of the NLS
equation, one can employ the split-step Fourier method, namely use of different
differential operator to denote the linear and nonlinear effects of dispersion and
absorption respectively, applied to the different segment of fiber, replacing the
differential operator by the Fourier frequency, using finite Fourier transform
(FFT) algorithm to numerical calculation.

Figure 9.7 draws the evolution process of pulsewidth and frequency spectrum
for an non-initial chirp Gaussian pulse propagating in the fiber with length of
z ¼ 5LD in fiber normal dispersion region ðb2 [ 0Þ, and in the condition of N ¼ 1
and a ¼ 0. Because in the normal dispersion region SPM makes the pulse leading

Fig. 9.7 When a Gaussian pulse without initial chirp propagates in a fiber with length of z ¼ 5LD,
in the fiber normal dispersion region ðb2 [ 0Þ and condition of N ¼ 1 and a ¼ 0, the curves of
a pulse shape versus distance; b frequency spectrum versus distance
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edge to red shift and pulse trailing edge to blue shift, its action is the same as the
GVD, therefore SPM induced pulse broadening speed is faster than the case only
has the action of GVD.

In the anomalous dispersion region ðb2 [ 0Þ, the evolution process of pulse-
width and frequency spectrum of Gaussian pulse under other same condition
(N ¼ 1 and a ¼ 0) is shown in Fig. 9.8. In the beginning, the speed of pulse
broadening is slower than the speed in the case without SPM (it only has GVD),
until when z[ 4LD, than basically achieve the unchanged state. But the frequency
spectrum width is much narrower than the width in the case without SPM (it only
has GVD). It is not hard to understand, according to Eq. (9.2.32), SPM generated
chirp is possible; but according to Eq. (9.2.22), GVD generated chirp in b2\0
region is negative. When N ¼ 1, the actions of two chirps in the nearby the center
of Gaussian pulse cancel each other out. In the pulse propagation process, though
the combined action of GVD and SPM, self-regulation of the pulse shape, as far as
possible entirely offset these two inverse chirps, to maintain non-chirped pulse
propagation. The generation process of optical soliton is similar to this situation: in
the beginning the Gaussian pulse inputs, it is not fundamental-state soliton, so it has
a certain broadening. However the combined action of GVD and SPM leads the
pulse shaping, finally the pulse evolves into a hyperbolic secant type
fundamental-state optical soliton, as shown in Fig. 9.8.

Fig. 9.8 Non-chirp Gaussian pulse propagation curves: a pulse shape and b frequency spectrum
in anomalous dispersion region ðb2 [ 0Þ, and in condition of N ¼ 1 and a ¼ 0
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Actually, although many lasers launched laser pulses are all Gaussian type, only
some specially-made mode-locked laser generates the hyperbolic secant type
optical soliton, namely

Uð0; TÞ ¼ sec h
T
T0

� �
exp � iCT2

2T2
0

� �
; ð9:2:37Þ

where C is the chirp parameter, it depends on the initial chirp of pulse. T0 is the half
width at 1/e of peak intensity, for hyperbolic secant type optical pulse, the relation
between T0 and the full width at half maximum intensity TFWHM is

TFWHM ¼ 2 lnð1þ
ffiffiffi
2

p
ÞT0 � 1:763T0: ð9:2:38Þ

In comparison with Eq. (9.2.17), we can see that the difference of TFWHM

between the hyperbolic secant type light pulse and the Gaussian type light pulse is
not too big, but the hyperbolic secant type light pulsewidth is narrower than the
Gaussian type light pulsewidth.

If light pulse is non-chirp pulse, C = 0, i.e., it is the fundamental wave optical
soliton. In the propagation process, its waveform and optical spectrum all keep no
change. If the incident light pulse deviate the hyperbolic secant pulse waveform, the
combined action of GVD and SPM can make the light pulse to evolve to be
hyperbolic secant pulse.

9.3 Time Soliton and Space Soliton

Optical soliton can be interpreted as a matter state when both of linear effect and
nonlinear effect achieve a balance in the propagation of light wave. Optical soliton
in general is classified into the time optical soliton and the space optical soliton. The
time soliton is a balance state of light pulse when two opposite chirp effects induced
by the dispersion and the nonlinear self-phase modulation achieve a balance. The
space soliton is a balance state of light pulse when the diffraction and the nonlinear
self-focusing achieve a balance.

9.3.1 Time Soliton

In 1834 S. Russell, a shipbuilder of the United Kingdom observed a circular smooth
wave peak of water wave in a narrow river channel, this phenomenon is called
solitary wave or soliton by later generations. In 1895, Korteweg and De Vries
proposed KDV equation to explain it. Until the 70s of 20th century the develop-
ment of fiber communication, the optical soliton study brought to attention.
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In 1971 Zeldovich and Sobelman at the first time proposed the theory of com-
pressing light pulse with SPM by using GVD effect [2]; in 1972 Zakharov and
Shabat based on analysis of nonlinear wave equation, obtained the conclusion of
existence of time soliton wave solution with hyperbolic secant form [3]. In 1973,
Bell Labs A. Hasegawa and F. Tappert firstly propose the idea for application of
optical soliton in the optical fiber communication [4]. Because the formation of
stable optical soliton requires very high technology, until to1980, Mollenauer et al.
firstly observed optical soliton in Bell laboratory [5]. In 1984 Mollenauer et al.
successfully developed the color center soliton laser [6], in 1991, Smith et al.
successfully developed all-fiber integrated erbium-doped fiber soliton laser [7], in
1999, P. Andrekson et al. completed several field investigations of soliton propa-
gation in fiber [8].

Time soliton can be described by nonlinear Schrodinger Eq. (9.2.3). If
neglecting the absorption loss, the nonlinear Schrodinger Equation can be simpli-
fied as

i
@A
@z

¼ b2
2
@2A
@T2 � c Aj j2A; ð9:3:1Þ

where A ¼ Aðz; TÞ is amplitude of pulse envelop (wave packet); b2 is GVD
parameter; γ is SPM nonlinear parameter.

In order to normalize Eq. (9.3.1), we introduce three dimensionless variables:

U ¼ Affiffiffiffiffi
P0

p ; n ¼ z
LD

; s ¼ T
T0

: ð9:3:2Þ

Then the equation becomes

i
@U
@n

¼ sgnðb2Þ
1
2
@2U
@s2

� N2 Uj j2U; ð9:3:3Þ

where P0 is the pulse peak power; T0 is the incident pulsewidth; Parameter N is
defined as

N2 ¼ LD
LNL

¼ cP0T2
0

b2j j : ð9:3:4Þ

Through the definition of

u ¼ NU ¼
ffiffiffiffiffiffiffiffi
cLD

p
A; ð9:3:5Þ

The parameter N can be eliminated from Eq. (9.3.3). Considering in anomalous
dispersion GVD case, we take sgnðb2Þ ¼ �1, the equation becomes following
standard form of nonlinear Schrodinger (NLS) Equation:
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i
@u
@n

þ 1
2
@2u
@s2

þ uj j2u ¼ 0: ð9:3:6Þ

Equation (9.3.6) can be solved by using inverse scattering method. Actually, it is
a method similar to Fourier transform. This method is using the incident filed at
z ¼ 0 to obtain the initial scattering data, than through solving lineal scattering
problem to obtain the change of propagation field along z, than from the changed
scattering data to rebuild the new propagation field. The process of this method is
too complicate; here we just introduce a simpler method to solve the fundamental
state soliton.

Suppose NLS Equation has a solution maintaining a no-changed shape, namely

uðn; sÞ ¼ VðsÞ exp½i/ðn; sÞ�; ð9:3:7Þ

where V is independent with n, Eq. (9.3.7) denotes the fundamental state soliton
with no-changed shape in propagation process. The phase ϕ is a function of n and τ.

Substituting Eq. (9.3.7) into Eq. (9.3.6), and then separating into real part and
imaginary part, one can obtained the two equations related with amplitude V and
phase ϕ, respectively. The phase equation shows that ϕ should adopt the form of
/ðn; sÞ ¼ Kn� ds, in which K and δ are constant. If taking d ¼ 0 (without fre-
quency shift), then V should satisfy

d2V
ds2

¼ 2VðK � V2Þ: ð9:3:8Þ

In the two sides of Eq. (9.3.8) multiply by 2ðdV=dsÞ, and integral to τ, we can
obtain

ðdV=dsÞ2 ¼ 2KV2 � V4 þC; ð9:3:9Þ

where C is integration constant. Using boundary condition, namely when sj j ! 1,
V and dV=ds are equal to zero, so C ¼ 0. Constant K is depended on the condition
that at soliton peak value, V ¼ 1 and dV=ds ¼ 0. And assuming the peak value
appears at s ¼ 0, thus we can get K ¼ 1=2, then / ¼ n=2. Simple integral to the
equation, to obtain VðsÞ ¼ sec h s, from this we can obtain the following soliton
solution:

uðn; sÞ ¼ sec hðsÞ expðin=2Þ: ð9:3:10Þ

This is a standard form of fundamental state soliton. Equation (9.3.10) indicates
that if light pulse is a hyperbolic secant pulse with pulsewidth T0, peak power P0

satisfied Eq. (9.3.4) with N ¼ 1. If this pulse inputs into a lossless idea fiber, the
pulse will be non-distortion propagation, never change its shape in any distance.
Setting N ¼ 1 in Eq. (9.3.4), we can obtain the peak power required for propa-
gating fundamental state soliton, i.e.,
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P0 ¼ b2j j
cT2

0
� 3:11 b2j j

cT2
FWHM

; ð9:3:11Þ

where the relation of TFWHM � 1:76T0 is used.
For the dispersion shift fiber at 1:55 lm, the typical values are b2 ¼ �1 ps2=km

and c ¼ 3W�1=km. When T0 ¼ 1 ps, P0 is about 1 W; when T0 ¼ 10 ps, P0 is
reduced to 10 mW. Therefore even for 20Gb=s high bit rate transmission system, it
can be reached by semiconductor laser at this power level, also can form the
fundamental state soliton in the fiber.

The solution satisfied NLS Eq. (9.3.10) is not only above described so called
“bright soliton” solution, but also having many other solutions. For example the
“dark soliton” is also a solution. Its intensity profile is a caving on the uniform
background. We only change the symbol of time-differential item in Eq. (9.3.6), the
NLS equation for describing the dark soliton can be obtained:

i
@u
@n

� 1
2
@2u
@s2

þ uj j2u ¼ 0: ð9:3:12Þ

We can assume the form of solution is

uðn; sÞ ¼ VðsÞ exp½i/ðn; sÞ�: ð9:3:13Þ

Then substrate it into V and ϕ satisfied differential equations, thus we can obtain
the solution of dark soliton. The difference compared with the bright soliton is:
when sj j ! 1, VðsÞ becomes a non-zero constant, its general solution can be
written as

Vðn; sÞj j ¼ VðsÞ ¼ gf1� B2 sec h2½gBðs� ssÞ�g1=2: ð9:3:14Þ

The phase is

/ðn; sÞ ¼ 1
2
g2ð3� B2Þnþ g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
sþ arctan

B tanhðgBsÞffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� B2

p
� �

; ð9:3:15Þ

where parameters g and ss are denoted the amplitude of soliton and the location of
caving, respectively. B is denoted the deep of caving ð Bj j � 1Þ. For Bj j ¼ 1, the
intensity of caving center drops to zero; for other value of B, caving not tends to zero.
So the dark soliton for Bj j\1 is called gray soliton. The parameter B determines the
dark degree of gray soliton. The gray soliton for Bj j ¼ 1 is called dark soliton. In
Eq. (9.3.14), to set g ¼ 1 and B ¼ 1, we can obtain the standard form of dark
soliton:

uðn; sÞ ¼ tanhðsÞ expðinÞ: ð9:3:16Þ
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Therefore the dark soliton has the hyperbolic tangent type amplitude. The dark
soliton is a hyperbolic tangent pulse with a sunk at the center, it keeps no change
when propagation in normal dispersion region.

Figure 9.9 gives the intensity-time curve and the phase-time curve for dark
soliton when Btakes different values. At s ¼ 0, the dark soliton is a hyperbolic
tangent pulse with a center sink, the sink of black soliton is maximum, Bj j is
smaller, the sink is smaller; at s ¼ 0, also has a phase break, the phase break of
black soliton is π. Bj j is smaller, the phase break is smaller, and change slower.

9.3.2 Space Soliton

In comparison with time soliton, the conception of space soliton is proposed later.
So called space soliton is that the light pulse propagates in nonlinear medium, when
the linear diffraction and the nonlinear self-focusing effect both reach a balance, the
pulse propagation forwards ahead with a stable space form. The study related to
space soliton should date back to 1964, Chiao et al. [9] started to study the
self-focusing, they proposed the description of light beam “self-trapping” effect.
But until 1972 Zakharov and Shabat [10] given the soliton theory by using classical
nonlinear Schrodinger equation, after that people gradually aware the self-focusing
filament is just a kind of space bright optical soliton.

In the situation of neglecting the medium loss, the propagation of space soliton
can be described by using following NLS equation:

i
@q
@n

þ @2q

@f2
� 2 qj j2q ¼ 0: ð9:3:17Þ

Fig. 9.9 Characteristic curves of dark soliton for different parameter B: a the intensity versus the
time; b the phase versus the time
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where q ¼ E=E0 is normalized filed amplitude; n ¼ z=z0 is the normalized vertical
coordinate; f ¼ x=x0 is the normalized transverse coordinate. Here E0 is maximum
amplitude of filed, z0 ¼ 2n0=ðbn2 E0j j2Þ is the characteristic scale of space soliton
propagation, x0 ¼ ffiffiffiffiffi

n0
p

=ðb ffiffiffiffiffi
n2

p
E0j j2Þ is the characteristic scale of space soliton

width. Here n0 is linear refractive index, β is light propagation constant in the
medium.

The space optical soliton also can be divided into two kinds of the bright soliton
and the dark soliton. In 1985 A. Barthelemy et al. in the first experimentally proved
that in the Kerr medium, the diffraction effect and the nonlinear self-focusing effect
reach a balance to form a space bright soliton. Actually, any medium with
self-focusing effect all can observe the space bright soliton, the materials including
various three-order nonlinear optical medium, two-order nonlinear crystal, liquid
crystal composed with anisotropic molecules, and photorefractive materials.

In 1987, P.A. Belanger and P. Mathieu, at the first time, started from NLS
equation to prove that the existence of the space dark soliton in self-focusing Kerr
medium is possible. In 1988, Maneuf et al. [11] observed the change from fun-
damental soliton to three–order soliton in KDP crystal. After that people observed
space dark optical soliton in different mediums, and tried to apply the space dark
soliton in design of controllable flexibility optical waveguide, X and Y-type
directional couplers, and all-optical switches, etc. in 1996, Li’s [12] research group
experimentally proved the existence of space dark soliton in C60 solution and
demonstrated the space dark soliton induced flexibility optical waveguide. In 1997
they also experimentally demonstrated the thermal induced space dark soliton in
chlorophyll-acetone solution [13].

In general, the experimental studies of space dark soliton are used the material
with minus nonlinear refractive index ðDn\0Þ, including various isotopic
three-order nonlinear medium, and the wavelength of incident laser are selected
nearby the single photon and two-photon resonant frequency; in addition the ani-
sotropic two-order nonlinear crystal and photorefractive materials, etc. can also
produce the refractive index change Dn\0, to demonstrate the space dark soliton.

Review Questions of Chapter 9

1. There are which steps to deduce the Nonlinear Schrodinger Eq. (9.1.38) for
describing the propagation of picosecond light pulse in the single mode fiber;
what physical meaning in that equation?

2. Illustrate the source, meaning, significance and application of following forms of
NLS equations: (1) Eq. (9.2.3) using group-velocity motion time coordinate;
(2) Eq. (9.2.6) containing normalized time, dispersion length and nonlinear
length; (3) Eq. (9.2.34) containing normalized time, normalized distance and
parameter N; (4) Standard Eq. (9.3.6) using normalized time, distance, and
amplitude.

3. Please deduce the material dispersion formula (9.1.43). What are regular fiber,
dispersion shift fiber and dispersion flat fiber? Draw the dispersion-wavelength
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characteristic curves. What is normal dispersion and anomalous dispersion? In
which kind fiber for generation of optical soliton?

4. Discuss the propagation of light pulse in following four cases: (1) excluding
dispersion and nonlinearity; (2) consider the influence of dispersion; (3) con-
sider the influence of self-phase modulation; (4) consider the combined action of
dispersion and self-phase modulation. Explain the formation of time optical
soliton.

5. From NLS Eq. (9.3.6) to find the solution of fundamental wave time optical
soliton. Write down dark soliton equation and its fundamental state solution.
What is the characteristic of dark soliton, what is difference between bright
soliton and dark soliton?

6. What is space optical soliton? Illustrate its generation mechanism. What is
nonlinear Schrodinger equation for describing space optical soliton?
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