
Chapter 3
Optical Three-Wave Coupling Processes

This chapter uses a reformed first-order frequency-domain wave equation for the
isotopic medium to approximately describe the second-order nonlinear optics
effects in the anisotropic medium. At first, the three-wave coupling equations are
deduced, then based on these equations, several typical second-order nonlinear
optics effects are studied: optical frequency doubling, sum frequency, difference
frequency, and optical parameter amplification and parameter oscillation. The
power conversion efficiency formulas for these effects are given. Finally, the basic
concepts of phase matching are introduced based on the frequency doubling effect.

3.1 Three-Wave Coupled Equations

3.1.1 Review of Second-Order Nonlinear Optics Effects
in Isotopic Medium

Firstly we discuss the second-order nonlinear optics effect in general, it contains
what specific effects, and we will give the polarizations of these effects in the
isotopic material.

Assuming that the incident light electrical fields consisted by two monochro-
matic light fields at the different frequencies and with same propagation direction,
the total electrical field strength can be expressed as

EðtÞ ¼
X
n¼1;:2

Ene
�ixnt þ c:c: ¼ E1e

�ix1t þE2e
�ix2t þ c:c: ð3:1:1Þ

In the isotopic medium without center symmetry, the second-order nonlinear
polarization is
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Pð2ÞðtÞ ¼ e0v
ð2ÞE2ðtÞ: ð3:1:2Þ

Substituting Eq. (3.1.1) into Eq. (3.1.2), after combination of the items with
same frequency component, we obtain:

Pð2ÞðtÞ ¼ e0v
ð2Þ½ðE2

1e
�i2x1t þE2

2e
�i2x2t þ 2E1E2e�iðx1 þx2Þt þ 2E1E�

2e
�iðx1�x2ÞtÞ

þ 2ðE1E�
1 þE2E�

2Þ� þ c:c:

ð3:1:3Þ

The Eq. (3.1.3) can be summarized by a simple formula, that is

Pð2ÞðtÞ ¼
X
i

Pð2ÞðxiÞe�ixit þ c:c; ð3:1:4Þ

where i takes the positive integer. The polarization Pð2ÞðxiÞ corresponds to the
different second-order nonlinear optics effect with different susceptibility vð2ÞðxiÞ;
which is

Pð2ÞðxiÞ ¼ De0v
ð2ÞðxiÞEðx1ÞEðx2Þ; ð3:1:5Þ

where xi is the frequency of polarization field composed by two original mono-
chromic fields at frequencies of x1 and x2 in different modes. Form Eq. (3.1.3) we
can see that xi has five modes: 2x1, 2x2, x1 þx2, x1�x2 and 0. For second-order
nonlinearity, n ¼ 2; the degeneration factor is D ¼ n!=m! ¼ 2=m!: When m ¼ 1;
D = 2; when m = 2; D = 1. Therefore, corresponding to the different xi, the
second-order nonlinear optics effects and corresponding polarizations are
respectively:

Optical frequency doubling

Pð2x1Þ ¼ e0v
ð2Þð2x1ÞE2

1; ð3:1:6Þ

Optical frequency doubling

Pð2x2Þ ¼ e0v
ð2Þð2x2ÞE2

2; ð3:1:7Þ

Optical sum frequency

Pðx1 þx2Þ ¼ 2e0vð2Þðx1 þx2ÞE1E2; ð3:1:8Þ

Optical difference frequency

Pðx1 � x2Þ ¼ 2e0vð2Þðx1 � x2ÞE1E�
2; ð3:1:9Þ
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Optical rectification

Pð0Þ ¼ 2e0vð2Þð0ÞðE1E�
1 þE2E�

2Þ: ð3:1:10Þ

3.1.2 Approximate Description of Second-Order Nonlinear
Optics Effect in Anisotropic Medium

In general, the medium with the second-order nonlinear optical effect is not iso-
topic, it is anisotropic, such as the crystal medium. However, for describing the
second-order nonlinear effect in the crystal medium should using tensor calculation
method, it is complicated, and needs take up a larger space. This chapter we present
a method that using the slowly-varying-amplitude approximated frequency-domain
first-order wave equation for the isotropic medium to approximately describe the
second-order nonlinear optical effects in the anisotropic medium. For simplicity, we
suppose that the medium is far from the resonance area, and the absorption loss can
be neglected.

The characteristic of light propagation in the anisotropic medium is: the prop-
agation direction of light wave (k) is different with the direction of energy flow
(I ¼ E�HÞ, there is an included angle a between both. Because the electric
induction strength D in the medium is perpendicular to the propagation direction of
the light; and the electrical field strength E is perpendicular the direction of energy
flow, so there is an included angle a between D and E. Actually a is small, a < 3°
for the most of crystals.

Considering a monochromic plane wave propagates along z direction in an ani-
sotropic medium, Suppose its wave vector k is along z direction; and there is an
included angle a between k and the energy flow I ¼ E�H: The electric induction
strength D is along x direction; the magnetic field strength H is along y direction,
which is perpendicular to the plane consisted byD, E and k, as shown in Fig. 3.1 [1].

Fig. 3.1 Relationship among
electromagnetic wave vectors
E, D, H, k, and I ¼ E � H,
when the monochromic plane
light wave propagates in an
anisotropic medium

3.1 Three-Wave Coupled Equations 53



Suppose the frequency of above monochromic plane wave is x, the light
electrical field strength is expressed as a product of amplitude and phase:

Eðz;xÞ ¼ EðzÞeiðkz�xtÞ ¼ êEðzÞeiðkz�xtÞ; ð3:1:6Þ

where ê is the unit vector along the electrical field direction. The polarization
corresponding to the light electrical field strength is

PNLðz;xÞ ¼ PNLðzÞeiðk0z�xtÞ: ð3:1:7Þ

The each of Eðz;xÞ and PNLðz;xÞ can be written to the vector sum of two
orthogonal components, i.e., the horizontal component perpendicular to k (noted by
T) and the longitudinal component parallel to k (noted by S):

Eðz;xÞ ¼ ETðz;xÞþESðz;xÞ; ð3:1:8Þ

PNLðz;xÞ ¼ PT
NLðz;xÞþPS

NLðz;xÞ: ð3:1:9Þ

The horizontal component of field amplitude abides by following
frequency-domain wave equation for isotropic medium in the condition of
slowly-varying-amplitude approximation:

@ETðzÞ
@z

¼ ix
2e0cn

PT
NLðzÞeiDkz: ð3:1:10Þ

To make the dot product of the unit vector ê in the two sides of Eq. (3.1.10)
respectively, and using

ê � ET ¼ ET cos a ¼ E cos2 a

and

PT
NL � PNL;

then we obtain

@EðzÞ
@z

¼ ix
2e0cn cos2 a

ê � PNLðzÞeiDkz: ð3:1:11Þ

If take cos2 a � 1 approximately, Eq. (3.1.11) becomes

@EðzÞ
@z

¼ ix
2e0cn

ê � PNLðzÞeiDkz; ð3:1:12Þ

where Dk ¼ k0 � k; k is the wave vector of original light field, k0 is the wave vector
of polarization field. This is the slowly-varying-amplitude-approximation
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frequency-domain wave equation for propagation of the light field amplitude of the
monochromic plane wave in the anisotropic medium. The difference between this
equation and the slowly-varying-amplitude- approximation frequency-domain wave
equation in isotropic medium is replaced PNLðzÞ by ê � PNLðzÞ:

3.1.3 Three-Wave Coupled Equations in Anisotropic
Medium

In general case, two light wave fields Eðx1; k1Þ and Eðx2; k2Þ with different
incident directions interact with a nonlinear crystal medium, to induce a new light
wave field Eðx3; k3Þ: The three-wave coupling process is shown in Fig. 3.2.

This three-waves coupling process can use the photon concept to describe. The
three photons at different frequency x1, x2 and x3 should meet the following
energy conservation law:

�hx3 ¼ �hx1 þ �hx2: ð3:1:13Þ

If we want to realize the optimum coupling of three photons, the three photons
also need satisfy the momentum conservation law as follows

�hk3 ¼ �hk1 þ �hk2: ð3:1:14Þ

To describe this process by using optical wave concept, the frequencies of three
waves should satisfy the relationship: x3 ¼ x1 þx2 . Here we just talk about sum
frequency process. Actually there are difference processes, which satisfy the rela-
tionship x1 ¼ x3 � x2 and x2 ¼ x3 � x1 .

Assuming that three monochromic plane waves at frequencies x1, x2, x3

propagate in the anisotropic medium, they all along z direction, to generate a sum
frequency or two difference frequency nonlinear effects, their second-order non-
linear polarizations can be expressed as respectively:

Pð2Þðz;x1Þ ¼ De0v
ð2Þðx1;�x2; x3Þ : E�ðz;x2ÞEðz;x3Þ; ð3:1:15Þ

Pð2Þðz;x2Þ ¼ De0v
ð2Þðx2; x3;�x1Þ : Eðz;x3ÞE�ðz;x1Þ; ð3:1:16Þ

Pð2Þðz;x3Þ ¼ De0v
ð2Þðx3; x1; x2Þ : Eðz;x1ÞEðz;x2Þ; ð3:1:17Þ

Fig. 3.2 Schematic diagram
of the three-wave coupling
process
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where D is the degeneration factor, if two original lights are at different frequencies,
D ¼ 2; if two original lights are at same frequency, D ¼ 1:

If denoting the three light fields respectively to be Eðz;x1Þ ¼ ê1E1,
Eðz;x2Þ ¼ ê2E2, and Eðz;x3Þ ¼ ê3E3, then we have

Pð2Þ
1 ðzÞ ¼ De0v

ð2Þðx1;�x2; x3Þ : ê2ê3E�
2E3; ð3:1:18Þ

Pð2Þ
2 ðzÞ ¼ De0v

ð2Þðx2; x3;�x1Þ : ê3ê1E3E
�
1 ; ð3:1:19Þ

Pð2Þ
3 ðzÞ ¼ De0v

ð2Þðx3; x1; x2Þ : ê1ê2E1E2: ð3:1:20Þ

In the frequency-domain wave Eq. (3.1.12), if setting PNL ¼ Pð2Þ, then substi-
tuting Eqs. (3.1.18)–(3.1.20) into Eq. (3.1.12), then we obtain following equations:

@E1ðzÞ
@z

¼ ix1

2cn1
Dê1 � vð2Þðx1;�x2; x3Þ : ê2ê3E�

2E3eiDkz; ð3:1:21Þ

@E2ðzÞ
@z

¼ ix2

2cn2
Dê2 � vð2Þðx2; x3;�x1Þ : ê3ê1E3E

�
1e

iDkz; ð3:1:22Þ

@E3ðzÞ
@z

¼ ix3

2cn3
Dê3�vð2Þðx3; x1; x2Þ : ê1ê2E1E2e

�iDkz: ð3:1:23Þ

According to the frequency substitution symmetry of susceptibility, three non-
linear susceptibilities are equal, namely

ê1 � vð2Þðx1;�x2; x3Þ : ê2ê3 ¼ ê2� vð2Þðx2; x3;�x1Þ : ê3ê1
¼ ê3� vð2Þðx3; x1; x2Þ : ê1ê2 ¼ v

ð2Þ
eff ;

ð3:1:24Þ

here vð2Þeff is a real number, it is called the efficient nonlinear susceptibility, which is
used for measurement of the coupling strength among three waves. To omit the

corner mark eff, i.e., vð2Þeff ¼ vð2Þ, the three components of susceptibility can be
written to the following scalar forms:

vð2Þðx1;�x2; x3Þ ¼ ê1� vð2Þðx1;�x2; x3Þ : ê2ê3; ð3:1:25Þ

vð2Þðx2; x3;�x1Þ ¼ ê2� vð2Þðx2; x3;�x1Þ : ê3ê1; ð3:1:26Þ

vð2Þðx; x1; x2Þ ¼ ê3� vð2Þðx3; x1; x2Þ : ê1ê2: ð3:1:27Þ
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Therefore, the wave Eqs. (3.1.21)–(3.1.23) can be written to

@E1ðzÞ
@z

¼ i
Dx1

2cn1
vð2Þðx1;�x2; x3ÞE�

2ðzÞE3ðzÞeiDkz; ð3:1:28Þ

@E2ðzÞ
@z

¼ i
Dx2

2cn2
vð2Þðx2; x3;�x1ÞE3ðzÞE�

1ðzÞeiDkz; ð3:1:29Þ

@E3ðzÞ
@z

¼ i
Dx3

2cn3
vð2Þðx3; x1; x2ÞE1ðzÞE2ðzÞe�iDkz; ð3:1:30Þ

where Dk is phase mismatch factor, which can be expressed as

Dk ¼ k1 þ k2 � k3: ð3:1:31Þ

The meaning of D k for different processes are different: for difference frequency
process described by Eq. (3.1.28) is D k ¼ k1 � ðk3 � k2Þ; for difference frequency
process described by Eq. (3.1.29) is D k ¼ k2 � ðk3 � k1Þ; for sum frequency
process described by Eq. (3.1.30) is �Dk ¼ k3 � ðk1 þ k2Þ: If the three wave is
phase matched, then D k ¼ 0; it is equivalent to that the three photons satisfy the
momentum conservation law.

3.2 Optical Second-Harmonic Generation

Optical second harmonic generation, i.e., optical frequency doubling, is a special case
of three wave mixing processes. That is one of nonlinear optical phenomena, which
found at the earliest. The experimental setup for studying the frequency doubling in
1961 by Franken et al. is shown in Fig. 3.3 [2]. The ruby laser (at the wavelength
λ1 = 694.3 nm) passed through a quartz crystal to produce the frequency doubling
light (at the wavelength λ2 = 347.15 nm). Two light beams are separated by a prism.

Now the application of optical frequency doubling has been mature. For example,
it is used to transform from infrared laser at the wavelength of 1.06 lm generated by
a Nd:YAG laser to the green laser at the wavelength of 532 nm.

Considering a monochromic plane light wave at frequency x passes through a
nonlinear crystal with length of L to produce a frequency doubling light at fre-
quency 2x, as shown in Fig. 3.4.

Fig. 3.3 Experimental facility of frequency doubling by Franken et al.
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Suppose the crystal does no absorption for these two lights, now we are going to
calculate the intensity of the frequency doubling light transmitted from crystal and
the efficiency of frequency doubling conversion, i.e., the ratio between the power of
frequency doubling light and the power of fundamental frequency light.

We can use three wave coupled Eqs. (3.1.28)–(3.1.30) to deal with second
harmonic generation problems. We suppose the fundamental frequency is
x1 ¼ x2 ¼ x, and the second harmonic frequency is x3 ¼ 2x . When establishing
the wave equation of fundamental frequency light filed, we should set the degen-
eration factor to be D ¼ 2; and when establishing the wave equation of frequency
doubling optical field, setting the degeneration factor to be D ¼ 1:

We will study following two kinds of optical frequency doubling effects: one is
the case of low conversion efficiency without the fundamental frequency light loss
(the small signal approximation); another one is the case of high conversion effi-
ciency having the fundamental frequency light loss.

3.2.1 Small Signal Approximation

If the fundamental frequency light is very weak, only a small part of incident
fundamental frequency light energy convert to the frequency doubling light energy,
i.e., the frequency doubling conversion efficiency is very low. In this case the
outputted frequency doubling light power is much smaller than the incident fun-
damental frequency light power, it can be regard that the amplitude of fundamental
frequency light is a constant approximately:

E2ðzÞ ¼ E1ðzÞ � E1ð0Þ: ð3:2:1Þ

So when applying Eqs. (3.1.28)–(3.1.30), we can write that

@E1ðzÞ
@z

¼ 0; ð3:2:2Þ

@E2ðzÞ
@z

¼ 0; ð3:2:3Þ

@E3ðzÞ
@z

¼ i(2xÞ
2cn3

vð2Þð2x; x; xÞE2
1ð0Þe�iDkz; ð3:2:4Þ

Fig. 3.4 Schematic diagram
of the frequency doubling
process
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where

Dk ¼ 2k1 � k3: ð3:2:5Þ

We assume that the length of crystal is L, and use boundary condition: E1ð0Þ
= constant, E3ð0Þ ¼ 0; directly taking integral of Eq. (3.2.4), and usingR L
0 e�iDkzdz ¼ i

Dk ðe�iDkL � 1Þ to obtain the frequency doubling optical field ampli-
tude outputted from the crystal:

E3ðLÞ ¼ � xvð2Þ

cn3D k
E2
1ð0Þðe�iDkL � 1Þ: ð3:2:6Þ

According to usual practice, we introduce the frequency doubling coefficient d to
replace the second-order nonlinear susceptibility vð2Þ [3]:

d ¼ vð2Þ

2
; ð3:2:7Þ

and set n1 ¼ nx, n3 ¼ n2x, then Eq. (3.2.6) becomes

E3ðLÞ ¼ � 2xd
cn2xD k

E2
1ð0Þðe�iD kL � 1Þ: ð3:2:8Þ

Using frequency multiplication formula of trigonometric function, from
Eq. (3.2.8) we can obtain

E3ðLÞj j2 ¼ E3ðLÞ � E3ðLÞ� ¼ 2xd
cn2xD k

� �2

E1ð0Þj j4�4 sin2ðD kL=2Þ

¼ 4x2d2L2

c2n22x
E1ð0Þj j4� sin

2ðD kL=2Þ
ðD kL=2Þ2 ¼ 4x2d2L2

c2n22x
E1ð0Þj j4sinc2 D kL

2

� �
:

Using the relation between the intensity and the amplitude for the fundamental
frequency light and the frequency doubling light:

I1ð0Þ ¼ 1
2
e0cnx E1ð0Þj j2; ð3:2:9Þ

I3ðLÞ ¼ 1
2
e0cn2x E3ðLÞj j2; ð3:2:10Þ

we can obtain the relationship between the intensity of outputted frequency dou-
bling light and the intensity of incident fundamental light:
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I3ðLÞ ¼ 8x2d2L2

e0n2xn2xc
3 I

2
1ð0Þsinc2

D kL
2

� �
; ð3:2:11Þ

where the relationship between the function sinc2 D kL=2ð Þ and D kL=2 is shown in
Fig. 3.5.

The optical frequency doubling efficiency is defined as the ratio of the outputted
frequency doubling light power P3ðLÞ with the inputted fundamental frequency
light power P1ð0Þ :

g ¼ P3ðLÞ
P1ð0Þ ¼

I3ðLÞ
I1ð0Þ ¼

8x2d2L2

e0n2xn2xc
3

P1ð0Þ
S

sinc2
D kL
2

� �
: ð3:2:12Þ

The above equation has been used I1 ¼ P1=S; were S is the cross sectional area
of incident fundamental frequency light beam.

From Eq. (3.2.12) we can see that, under small signal condition (the loss of
fundamental wave is omitted), the frequency doubling process has following
properties:

1. When D k ¼ 0; sin c2 D kL=2ð Þ ¼ 1; n2x = nx = n; the frequency doubling
conversion efficiency g takes the maximum:

g ¼ 8x2d2L2

e0n3c3
� P1ð0Þ

S
: ð3:2:13Þ

Fig. 3.5 Relationship between function sinc2 D kL=2ð Þ and D kL=2
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As you see that the frequency doubling conversion efficiency is proportional to
the power of incident fundamental frequency light; is proportional to the frequency
doubling coefficient of crystal d and the length of crystal L, and is reverse pro-
portional to the cross sectional area of incident fundamental frequency light
S. Therefore, we can used following measures to enhance the frequency doubling
efficiency: to select the nonlinear crystal with high frequency doubling coefficient
and a longer size; to use the high power fundamental frequency light and the
focused fundamental frequency light beam.

2. When D k 6¼ 0; for a certain wave vector mismatch factor D k; the length of
crystal L is equal to so called the coherence length:

Lc ¼ p
D k

; ð3:2:14Þ

we have D kLc
2 ¼ p

2 at the location of imaginary line in Fig. 3.5. If L\Lc, there is
higher frequency doubling conversion efficiency; if L[ Lc, the frequency doubling
conversion efficiency goes down quickly, after that making a periodic variation with
a small amplitude.

3.2.2 High Fundamental Wave Consumption

In high conversion efficiency case, the foundational frequency wave amplitude
cannot regard as a constant, the small signal approximation is not applicable. Below
we consider the case that the phase matching condition is satisfied (D k ¼ 0Þ, i.e.,
n1 ¼ n2 ¼ n3 ¼ n: For the foundational frequency light at x1 ¼ x2 ¼ x, and
E1 ¼ E2, the degeneration factor is D ¼ 2; for the frequency doubling light at
x3 ¼ 2x, the degeneration factor is D ¼ 1; replacing the frequency doubling
coefficient d to the susceptibility vð2Þ ¼ 2d; in this case the three coupling
Eqs. (3.1.28)–(3.1.30) becomes the two coupling equations:

@E1ðzÞ
@z

¼ i2xd
cn

E�
1ðzÞE3ðzÞ; ð3:2:15Þ

@E3ðzÞ
@z

¼ i2xd
cn

E2
1ðzÞ: ð3:2:16Þ

Taking conjugate complex number and multiplying by E1ðzÞ on the two sides of
Eq. (3.2.15), and then multiplying by E�

3ðzÞ on the two sides of Eq. (3.2.16), finally
adding the two equations, then we obtain:
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@

@z
ð E1ðzÞj j2 þ E3ðzÞj j2Þ ¼ 0: ð3:2:17Þ

Namely E1ðzÞj j2 þ E3ðzÞj j2¼ E1ð0Þj j2 þ E3ð0Þj j2. Because when z ¼ 0; E3ð0Þ ¼
0 and E1ð0Þ 6¼ 0; then we have

E1ðzÞj j2 þ E3ðzÞj j2¼ E1ð0Þj j2¼ constant: ð3:2:18Þ

Visible, at any z-coordinate point in the crystal, the sum of the intensity of
foundational frequency light and the intensity of frequency doubling light is equal
to the intensity of foundational frequency light at the start point, that is to say, the
production of frequency doubling light comes at the expense of the consumption of
fundamental frequency light.

Taking module on the both sides of Eq. (3.2.16), then substituting the E1ðzÞj j2
obtained from Eq. (3.2.18) into it, and giving a definition of

j ¼ 2xd
cn

; ð3:2:19Þ

then we obtain

d E3ðzÞ=E1ð0Þj jð Þ
dz

¼ j E1ð0Þj j 1� E3ðzÞ=E1ð0Þj jð Þ2
h i

: ð3:2:20Þ

Setting E3ðzÞ=E1ð0Þj j ¼ m, making the separation of variables to Eq. (3.2.20),
integral on both sides of it, and using integral formula

Z
dv

1� v2
¼ tanh�1 v; ð3:2:21Þ

then we obtain the formula for the frequency doubling light field amplitude:

E3ðzÞj j ¼ E1ð0Þj j tanhðj E1ð0Þj jzÞ: ð3:2:22Þ

Now we set the hyperbolic tangent function tanhðj E1ð0Þj jzÞ ¼ tanh x ¼ a;
substitute Eq. (3.2.22) into Eq. (3.2.18), and use the relation between the hyper-
bolic secant function and the hyperbolic tangent function sechx ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2

p
, then

obtain the formula for the fundamental frequency light field amplitude:

E1ðzÞj j ¼ E1ð0Þj jsechðj E1ð0Þj jzÞ: ð3:2:23Þ
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Making a definition of the efficient frequency doubling length:

LSHG ¼ j E1ð0Þj j½ ��1¼ 2xd
cn

E1ð0Þj j
� ��1

; ð3:2:24Þ

then Eqs. (3.2.22) and (3.2.23) can be written as

E3ðzÞj j ¼ E1ð0Þj j tanhðz=LSHGÞ; ð3:2:25Þ

E1ðzÞj j ¼ E1ð0Þj jsechðz=LSHGÞ: ð3:2:26Þ

Figure 3.6 shows the curves of E3ðzÞj j= E1ð0Þj j and E1ðzÞj j= E1ð0Þj j as the
function of z=LSHG.

We can see that, under the phase matching condition, the foundational frequency
light continually transforms to the frequency doubling light with the increase of the
crystal length coordinate. In the theory, when the frequency doubling crystal length
achieves to the two times of efficient frequency doubling length, E3ðzÞ will tend to
E1ð0Þ; namely near the frequency doubling conversion efficiency of 100 %.
However, in practice, there are many restrictions, such as the absorption and the
diffraction of the materials, the reflection from crystal end face, and the laser beam
is not monochromic plane wave, etc. For the KDP crystal with length of L ¼
2LSHG ¼ 2 cm; the frequency doubling conversion efficiency is less than 60 %.

Utilizing the amplitude-intensity relation of Eqs. (3.2.9) and (3.2.10), from
Eq. (3.2.25) we can obtain the frequency doubling conversion efficiency formula
under the condition of high fundamental wave consumption:

g ¼ P3ðLÞ
P1ð0Þ ¼

n2x
nx

E3ðLÞj j2
E1ð0Þj j2 ¼

n2x
nx

tanh2
L

LSHG
: ð3:2:27Þ

Fig. 3.6 Under the phase
matched condition, the curves
of the frequency doubling
light relative amplitude
E3ðzÞj j= E1ð0Þj j and the
foundational frequency light
relative amplitude
E1ðzÞj j= E1ð0Þj j versus the
relative coordinate z=LSHG
along the length direction of
crystal
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According to Eq. (3.2.24), ðL=LSHGÞ2 / I1ð0Þ; in the case of small signal
approximation, there is the approximate relation:

tanh2 L=LSHGð Þ � L=LSHGð Þ2: ð3:2:28Þ

For D k ¼ 0; n2x ¼ nx ¼ n is required, then Eq. (3.2.27) changes to
Eq. (3.2.13), which is the frequency doubling conversion efficiency formula for the
small signal approximation.

3.2.3 Phase Matching Technology

When the frequency doubling light and the fundamental frequency light are collinear,
the phase matching condition is D k ¼ k3 � 2k1 ¼ 0; or 2k1 ¼ k3, i.e., 2kx ¼ k2x.
From wave vector formulas kx¼(x=cÞnx and k2x ¼ ð2x=cÞn2x we obtain

nx ¼ n2x: ð3:2:29Þ

Namely, the phase matching condition requires that the refractive index for the
frequency doubling light is equal to the refractive index for the fundamental fre-
quency light in the crystal.

How to realize that the fundamental frequency light and the frequency doubling
light induce the same refractive index in an identical crystal? In general, we can use
the birefringence characteristic of the anisotropic crystal to realize it.

The light at any frequency x propagates in the anisotropic crystal, besides the
direction of optical axis, generally there exists two orthogonal polarization direc-
tions with different refractive index, namely n⊥(ω) ≠ n‖(ω), such as the situation of
o light and e light. However, for two light beams at different frequency (such as the
fundamental frequency light at x and the frequency doubling light at 2x ), it is
possible to find a propagation direction that its two orthogonal polarization direc-
tions have same refractive index, i.e., n⊥(ω) = n‖(ω′), in this way the phase
matching condition can be satisfied.

Previous we have talk about that there are 7 crystal systems in the nature, in
which 6 crystal systems are belong to anisotropic crystal; only one - cubic crystal
system is belong to isotropic crystal. The 6 anisotropic crystals can be divided into
two kinds: the uniaxial crystal and the biaxial crystal. The trigonal crystal system,
the tetragonal crystal system, and the hexagonal crystal system are belong to the
uniaxial crystal; the triclinic crystal system, the monoclinic crystal system and the
orthorhombic crystal system are belong to the biaxial crystal. The classification of
crystal is shown in Table 3.1.
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In order to describe the law of light wave propagation in the anisotropic medium,
one can use the refractive-index ellipsoid method. We can establish an equation in
the principal axis coordinate system Oxyz:

x2

n2x
þ y2

n2y
þ z2

n2z
¼ 1: ð3:2:30Þ

The index ellipsoid described by this equation is shown in Fig. 3.7. In which nx,
ny, nz are the half axis length of rectangular coordinates axis x, y, z, respectively,
which are called the principal refractive index.

For the isotropic cubic crystal, nx¼ ny¼ nz¼ n0, Eq. (3.2.30) becomes

x2 þ y2 þ z2 ¼ n20: ð3:2:31Þ

This is a ball with radius of n0, so no matter the light propagation along any
direction, the refractive index always is same.

For anisotropic crystal, in general there exists one or two special optical axis
directions, the light wave propagates along the optical axis direction without
birefringence. The crystal only has one optical axis, which is called the uniaxial
crystal. If selecting z-axis as the optical axis c, then nx¼ ny¼ no , nz¼ ne 6¼ no, the
refractive index ellipsoid equation is

x2

n2o
þ y2

n2o
þ z2

n2e
¼ 1; ð3:2:32Þ

where no is the refractive index of ordinary light (o light); ne is the refractive index
of extraordinary light (e light). This is an index ellipsoid, its rotation axis is z-axis.

Table 3.1 Classification of crystal

Classification of crystal Crystal system

Anisotropic crystal Uniaxial crystal Trigonal, tetragonal, hexagonal

Biaxial crystal Triclinic, monoclinic, orthorhombic

Isotropic crystal Cubic

Fig. 3.7 Refractive index
ellipsoid of the positive
uniaxial crystal
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There are two kinds of uniaxial crystals: if no [ ne, it is a negative uniaxial
crystal; if ne [ no, it is a positive uniaxial crystal. Figure 3.7 shows a refractive
index ellipsoid of positive uniaxial crystal.

In Fig. 3.7, wave vector k denotes the propagation direction of light wave, the
intersection angle between k and optical axis c is h. A cross section passing through
the original point and perpendicular to k intersects with the ellipsoid to form a
ellipse-shape intersecting line. The length of two half axis of the ellipsoid are just
refractive indexes no and ne corresponding to two orthogonal polarization states.
Visible, the polarization direction of the ordinary light (0 light) is perpendicular to
the plane consisted with the optical axis c and wave vector k; and the polarization
direction of the extraordinary light (e light) is just in that plane.

The refractive index of extraordinary light ne is a function of intersection angle h
of the optical axis c and the wave vector k, It is not difficult to prove that the
following formula is satisfied:

1
n2eðhÞ

¼ sin2 h
n2e

þ cos2 h
n2o

: ð3:2:33Þ

When k is along the optical axis direction, h ¼ 0 , neð00Þ ¼ no; when k is
perpendicular to the optical axis direction, h ¼ 900, neð900Þ ¼ ne .

We can through adjusting the interaction angle h between the crystal optical axis
c and the incident light wave vector k to change the refractive index of crystal
neðhÞ; to lead the frequency doubling effect satisfying the phase matching condition
D k ¼ 0: This is called as angle phase matching method [3, 4]. Meanwhile, we also
can through varying the temperature of crystal to change refractive index of crystal
neðhÞ; to realize D k ¼ 0; this is called the temperature phase matching method.

Now we discuss the so called first phase matching condition, in this condition,
two fundamental frequency lights take the same polarization direction. In general,
the polarization state of fundamental frequency light is selected with higher
refractive index. Namely for negative uniaxial crystal (no [ ne), taking the fun-
damental frequency light as o polarization state, the frequency doubling light as e
polarization state; for positive uniaxial crystal (ne [ no), taking the fundamental
frequency light as e polarization state, the frequency doubling light as o polarization
state.

The phase matching condition for the negative uniaxial crystal is

nxo ¼ nxe ðhmÞ: ð3:2:34Þ

Figure 3.8 draws a refractive index surface diagram in the negative uniaxial
crystal when the phase matching between the fundamental frequency light and the
frequency doubling light are sufficed. The solid line are the o light index ball and
the e light index ellipsoid for the fundamental frequency light at frequency of x; the
imaginary line are o light index ball and the e light index ellipsoid for the frequency
doubling light at frequency of 2 x. We can see that there is a point of intersection
between the o light index surface of fundamental wave and the e light index surface

66 3 Optical Three-Wave Coupling Processes



of frequency doubling wave, the intersection point corresponded the intersection
angle between the wave vector and optical axis hm satisfies Eq. (3.2.34), hm is just
phase matching angle. In the figure, nxo , n

x
e and n2xo , n2xe are two principal refractive

indexes of the fundamental frequency light and the frequency doubling light,
respectively.

Substituting Eq. (3.2.34) into Eq. (3.2.33), we can obtain the formula of the
phase matching angle of negative uniaxial crystal hm:

sin2 hm¼
nxo
� ��2� n2xo

� ��2

n2xe
� ��2� n2xo

� ��2 : ð3:2:35Þ

For example, in negative uniaxial crystal KDP, using the ordinary light of ruby
laser at frequency of 0:6943 lm as the fundamental frequency, under the phase
matching condition, the matching angle is hm ¼ 50:4�, the extraordinary light of
frequency doubling wave at frequency of 0:3471 lm can be obtained.

The phase matching condition of the positive uniaxial crystal is

n2xo ¼ nxe ðhmÞ: ð3:2:36Þ

Figure 3.9 draws a refractive index surface diagram in positive uniaxial crystal
when the phase matching between the fundamental frequency light and the fre-
quency doubling light are sufficed. Visible, there is an intersection point between
the fundamental wave e light refractive-index surface and the frequency doubling
wave o light refractive-index surface. The intersection point corresponded inter-
section angle between the wave vector and the optical axis hm satisfies Eq. (3.2.34),
hm is just the phase matching angle.

Fig. 3.8 In negative uniaxial
axis crystal, the fundamental
frequency light and the
frequency doubling light
matched refractive-index
surface diagram. The solid
line are the o light index ball
and the e light index ellipsoid
for the fundamental frequency
light at frequency ω; the
imaginary line are the o light
index ball and the e light
index ellipsoid for the
frequency doubling light at
frequency 2ω
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Substituting Eq. (3.2.36) into Eq. (3.2.33), in same way the possible uniaxial
crystal phase matching angle hm formula can be obtain:

sin2 hm ¼ n2xo
� ��2� nxo

� ��2

nxe
� ��2� nxo

� ��2 : ð3:2:37Þ

In above phase matching condition, two fundamental frequency lights take same
polarization direction, we call the first class phase match. In which, the polarization
characteristic of negative uniaxial crustal is denoted by symbol o + o → e; the
polarization characteristic of positive uniaxial crustal is denoted by symbol e +
e → o. their phase matching condition are list in the Table 3.2.

Actually, the phase matching condition also exists second class phase matching
scheme, that is taking perpendicular propagation directions of two foundational
frequency lights: one is o light, another one is e light. Its polarization characteristics
for negative uniaxial crystal is o + e → e; for positive uniaxial crystal is o +
e → o. Their phase matching condition is also listed Table 3.2. About the

Fig. 3.9 In positive uniaxial crystal, the fundamental frequency light and the frequency doubling
light matched refractive-index surface diagram. The solid line are the o light index ball and the e
light index ellipsoid for the fundamental frequency light at frequency ω; the imaginary line are the
o light index ball and the e light index ellipsoid for the frequency doubling light at frequency 2ω

Table 3.2 Phase matching condition of uniaxial crystal

Crystal type First class phase match Second class phase match

Polarization
characteristic

Phase matching
condition

Polarization
characteristic

Phase matching condition

Negative
uniaxial crystal

o + e → e nxo ¼ n2xe ðhmÞ o + o → e 1
2 ½nxo ðhmÞþ nxe � ¼ n2xo ðhmÞ

Positive
uniaxial crystal

o + e → o n2xo ¼ nxe ðhmÞ e + e → o 1
2 ½nxo þ nxe ðhmÞ� ¼ n2xo
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deduction of second class phase matching condition, reader can refer to the related
reference material, here we do not give unnecessary details.

Except for the uniaxial crystal phase matching condition, there is the biaxial
crystal phase matching condition, if you want to know the knowledge in this aspect,
please also refer to the related reference material.

3.2.4 Experimental Facilities for Second Harmonic
Generation

Figure 3.10 gives several schematic diagrams of typical experimental facilities,
these facilities are composed by three parts: the nonlinear optical crystal, the fun-
damental wave source, and the phase matching system.

Fig. 3.10 Typical experimental facilities for the optical second harmonic generation a single-pass
mode; b external cavity mode; c intracavity mode
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1. Nonlinear Optical Crystal

Generally people use the artificial growth bulk or flake-like high quality crystal, the
optical axis of crystal relative to the incident fundamental wave has a certain
matching angle. To reduce the reflection loss, it can plate the antireflection coating
on crystal two parallel end surface. According to the different methods of phase
matching, the nonlinear crystal is divided into the following three categories:

(1) Angle tuning phase matching crystal: KDP, ADP, KTP, LiIO3, BBO, LBO
etc. Frequency doubling of the incidence laser at the near infrared or visible
wavelength, to produce the visible light or near ultraviolet light, the efficiency
can reach 30 and 50 %.

(2) Temperature tuning phase matching crystal: LiNbO3, KNbO3, Ba2NaNbO15

etc. They have better optical transmission property in the spectrum region
0.4-5μm, it can be used to produce near-infrared frequency doubling light, the
efficiency is higher than 50 %.

(3) Semiconductor crystal for producing infrared second harmonic wave, such as
Ag3AsS3, AgGaSe2, CdGeAs2, CdSe, GaSe, etc. These crystals have high
second-order nonlinear susceptibility, in the wide infrared spectrum region
have better transmittance.

2. Fundamental Wave Optical Source

Mostly people adopt the solid pulse lasers as the optical sources, such as Nd-glass
laser, Nd-doped Gamet laser, Ruby laser, etc. The CW solid and liquid laser can
also be used for continuous frequency doubling light output. In order to enhance the
frequency doubling conversion efficiency, the focusing light passing through the
crystal also can be used.

3. Phase Matching System

According to the different nonlinear crystals and experimental conditions, the dif-
ferent phase matching, exciting and coupling methods can be used. Figure 3.10a
shows a usually used the mode that the light beam single-pass through the crystal, it
is suitable to the angle phase matching method. Figure 3.10b showed equipment is
suitable to temperature phase matching frequency doubling crystal, the crystal
inserts into the resonance cavity, let’s lower power fundamental light multiple-pass
through the crystal, to enhance the convention efficiency. It also can insert the
frequency doubling crystal into the fundamental wave laser cavity, as shown in
Fig. 3.10c, because the light intensity inside laser cavity is much stronger than
outputted light intensity outside the cavity, in benefit of enhancement of conversion
efficiency.
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3.3 Optical Sum Frequency, Difference Frequency
and Parameter Amplification

3.3.1 Optical Sum Frequency and Frequency
Up-Conversion

Now we discuss the coupled Eqs. (3.1.28)–(3.1.30), which will be used for the sum
frequency and difference frequency processes. In order to simplify the equations,
we define a set of new light electric field amplitudes Ai and nonlinear coefficient j,
which are

AiðzÞ ¼
ffiffiffiffiffi
ni
xi

r
EiðzÞ ði ¼ 1; 2; 3Þ; ð3:3:1Þ

j ¼ vð2Þ

2c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

n1n2n3

r
¼ d

c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x1x2x3

n1n2n3

r
; ð3:3:2Þ

where d is the frequency doubling coefficient. So the coupled Eqs. (3.1.28)–
(3.1.30) are simplified as

@A1ðzÞ
@z

¼ iDjA�
2ðzÞA3ðzÞeiDkz; ð3:3:3Þ

@A2ðzÞ
@z

¼ iDjA3ðzÞA�
1ðzÞeiDkz; ð3:3:4Þ

@A3ðzÞ
@z

¼ iDjA1ðzÞA2ðzÞe�iDkz; ð3:3:5Þ

where D k ¼ k1 þ k2 � k3 ¼ 0:
Now we discuss the sum frequency process. There are three photons at different

frequency joining this process. According to Eqs. (3.1.13) and (3.1.14), they satisfy
following the energy and momentum conservation relations, respectively:

x3 ¼ x1 þx2; ð3:3:6Þ

k3 ¼ k1 þ k2: ð3:3:7Þ

The optical sum frequency can be used for the frequency upconversion [5, 6],
that is an effective means to produce shorter wavelength coherent radiation. For
example, using crystal Ag3AsS3 as a sum frequency crystal, a 1.06-wavelength
YAG laser as the pumping light (x2), to convert the 10.6 lm-wavelength CO2

infrared light (x1) into the 96 lm-wavelength visible light (x3). That is because the
detection of middle and far infrared light must use the refrigerant detector, the
detection of visible light can use the room temperature fast detector.
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Assuming that the three waves at x1, x2 and x3 participated in sum frequency
process collinearly propagate in the nonlinear crystal, all along z-direction, as
shown in Fig. 3.11, we will used coupled Eqs. (3.3.3)–(3.3.5) to calculate the
variation of field amplitudes of the sum frequency light (x3) and the signal light
(x1) with the coordinate axis z.

We suppose that the intensity of pump light x2 is strong enough, so that its
amplitude does not change in the sum frequency process, i.e., it is a constant:

A2ðzÞ � A2ð0Þ ¼ constant: ð3:3:8Þ

Thus the three coupled Eqs. (3.3.3)–(3.3.5) becomes two. Considering the fre-
quency without degeneration, taking D = 2; and to defied a sum-frequency non-
linear coefficient jSF , it is two times of the original nonlinear coefficient j, i.e.,

jSF¼2j; ð3:3:9Þ

Therefore the two coupled equations for sum frequency process are given by

@A1ðzÞ
@z

¼ ijSFA2ð0ÞA3ðzÞeiDkz; ð3:3:10Þ

@A3ðzÞ
@z

¼ ijSFA1ðzÞA2ð0Þe�iDkz: ð3:3:11Þ

We further define gSF is the sum frequency gain factor (suppose it is a real
number):

gSF ¼ jSFA2ð0Þ ¼ 2d
c

ffiffiffiffiffiffiffiffiffiffiffi
x1x3

n1n3

r
E2ð0Þ; ð3:3:12Þ

Under phase matching condition, i.e., D k ¼ 0; Eqs. (3.3.10) and (3.3.11) are
simplified to

@A1ðzÞ
@z

¼ igSFA3ðzÞ; ð3:3:13Þ

@A3ðzÞ
@z

¼ igSFA1ðzÞ: ð3:3:14Þ

Fig. 3.11 Schematic diagram
of the collinear optical sum
frequency process
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Then making derivation of two side of Eq. (3.3.14), and substituting
Eq. (3.3.13) into it, we obtain

d2A3ðzÞ
dz2

þ g2SFA3ðzÞ ¼ 0: ð3:3:15Þ

The general solution of Eq. (3.3.15) is

A3ðzÞ ¼ C1 cosðgSFzÞþC2 sinðgSFzÞ: ð3:3:16Þ

To take z ¼ 0 in Eq. (3.3.16), and use boundary condition A3ð0Þ ¼ 0; obtain
C1 ¼ 0: Equation (3.3.16) becomes

A3ðzÞ ¼ C2 sinðgSFzÞ: ð3:3:17Þ

Then we substitute Eq. (3.3.17) into (3.3.14), after derivation, set z ¼ 0 to get
C2 ¼ iA1ð0Þ: So from Eq. (3.3.16) to obtain

A3ðzÞ ¼ iA1ð0Þ sinðgSFzÞ: ð3:3:18Þ

Further substituting Eq. (3.3.18) into (3.3.14), after derivation to obtain

A1ðzÞ ¼ A1ð0Þ cosðgSFzÞ; ð3:3:19Þ

To take mode square of above two amplitudes A3ðzÞ and A1ðzÞ respectively, then
add together, we obtain

A1ðzÞj j2 þ A3ðzÞj j2¼ A1ð0Þj j2: ð3:3:20Þ

Using relations

I1 ¼ 1
2
e0cn1 E1j j2¼ 1

2
e0cx1 A1j j2; ð3:3:21Þ

I3 ¼ 1
2
e0cn3 E3j j2¼ 1

2
e0cx3 A3j j2; ð3:3:22Þ

we obtain

x1

x3

� �
I3ðzÞþ I1ðzÞ ¼ I1ð0Þ: ð3:3:23Þ

We can see that because the intensity of incident signal I1ð0Þ is a constant, the
increase of light intensity I3ðzÞ is the price of the decrease of light intensity I1ðzÞ:
From Eq. (3.3.19) to obtain A1j j2, then use Eqs. (3.3.21) and (3.3.23), we obtain
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I3ðzÞ ¼ x3

x1
I1ð0Þ sin2ðgSFzÞ: ð3:3:24Þ

If the length of crystal is L, the conversion efficiency of sum frequency is

g ¼ I3ðLÞ
I1ð0Þ ¼

x3

x1
sin2ðgSFLÞ: ð3:3:25Þ

Figure 3.12 shows that in sum frequency process, under phase matching con-
dition, the curves of variation of light intensities of two beams at frequency x1 and
x3 with distance z.

Figure 3.12 can be explained as follows:in the beginning the intensity of light
wave at x1 drop off gradually, its energy transfers to the light wave at x3 . When the
propagation distance increases to gSFz ¼ p=2; the conversion efficiency reaches to
maximum. In this case, g[ 1; that is due to except all I1ð0Þ converts to I3ðzÞ at this
point, actually there is a small part light coming from pump light I2ðzÞ atx2 . It can be
proved that the sum of three light intensities remains unchanged, i.e., I1 þ I2 þ I3 ¼
constant:After the intensity of light wave atx3 reaches the peak, it will pass through
the difference frequency with the pump light atx2 to send its energy back to the light
at x1 ¼ x3 � x2 . Therefore, the periodic oscillation situation will appear.

If the intensity of pump light I2ðzÞ at frequency x2 is very small, from gain
factor definition Eq. (3.3.12) we can know that gSF is also very small, so in the
efficiency Eq. (3.3.25) we have

sin2ðgSFLÞ � ðgSFLÞ2; ð3:3:26Þ

This is the case of small signal approximation. Therefore we obtain the fre-
quency conversion efficiency formula in the case of the small signal approximation
and D k ¼ 0 :

Fig. 3.12 In the phase match
sum frequency process the
curves of variation of
intensities of two light beams
at x1 and x3 with the distance
gSFz
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g � x3

x1
g2SFL

2 ¼ 8x2
3d

2L2I2ð0Þ
e0n1n2n3c3

: ð3:3:27Þ

It can be proved, in the case of the small signal approximation and D k 6¼ 0; the
frequency conversion efficiency formula becomes

g � x3

x1
g2SFL

2 ¼ 8x2
3d

2L2I2ð0Þ
e0n1n2n3c3

sinc2ðD kL=2Þ: ð3:3:28Þ

We can see that Eq. (3.3.28) is only an oscillation factor more than Eq. (3.3.27).

3.3.2 Optical Difference Frequency and Frequency
Down-Conversion

In the optical difference frequency process, according to the energy and momentum
conservation laws, the frequencies and wave vectors are required to satisfy the
following relations:

x2 ¼ x3 � x1; ð3:3:29Þ

k2 ¼ k3 � k1: ð3:3:30Þ

Figure 3.13 is a schematic diagram of the optical difference frequency process in
the z-direction collinear propagation case. To utilize this process can realize fre-
quency down-conversion: using the difference frequency of two visible laser (x3

and x1) to obtain an infrared laser (x2 ¼ x3 � x1) output. For example using
LiNbO3 as a difference frequency crystal, and a 532 nm-wavelength YAG fre-
quency doubled laser (x3) as a pump laser, it makes difference frequency with a
tunable dye laser (x1) with the wavelength range of 575–650 nm, the result of
difference frequency can obtain a tunable infrared laser (x2) output with the
wavelength range of 3.40–5.65 μm [7].

Assuming that the intensity of the pump light at frequency x3 is strong enough,
so that its intensity can be regarded do not change in the difference frequency
process, we have

A3ðzÞ � A3ð0Þ; ð3:3:31Þ

Fig. 3.13 Schematic diagram
of optical difference
frequency or frequency
down-conversion process
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Suppose A3ð0Þ is a real number, and taking D = 2 for the difference frequency
process, then three coupled Eqs. (3.3.3)–(3.3.5) become two equations:

@A1ðzÞ
@z

¼ ijDFA
�
2ðzÞA3ð0ÞeiDkz; ð3:3:32Þ

@A2ðzÞ
@z

¼ ijDFA�
1ðzÞA3ð0ÞeiDkz; ð3:3:33Þ

where jDF is the nonlinear coupling coefficient of difference frequency, the rela-
tionship between jDF and j is

jDF ¼ 2j: ð3:3:34Þ

Under the case of D k ¼ 0; Eqs. (3.3.32) and (3.3.33) are simplified as

@A1ðzÞ
@z

¼ igDFA
�
2ðzÞ; ð3:3:35Þ

@A2ðzÞ
@z

¼ igDFA
�
1ðzÞ; ð3:3:36Þ

where gDF is defined as the gain coefficient of difference frequency:

gDF ¼ jDFA3ð0Þ ¼ 2d
c

ffiffiffiffiffiffiffiffiffiffiffi
x1x2

n1n2

r
E3ð0Þ: ð3:3:37Þ

Making derivation of two side of Eq. (3.3.35), and substituting the conjugate
Eq. (3.3.36) into it, then we obtain

d2A1ðzÞ
dz2

� g2DFA1ðzÞ ¼ 0: ð3:3:38Þ

The general solution of Eq. (3.3.38) is

A1ðzÞ ¼ D1 sinhðgDFzÞþD2 coshðgDFzÞ: ð3:3:39Þ

To utilize the bounder condition at z ¼ 0 : A2ð0Þ ¼ 0 and A1ð0Þ 6¼ 0; from
Eqs. (3.3.39) to (3.3.36), we obtain the following field amplitudes:

A1ðzÞ ¼ A1ð0Þ coshðgDFzÞ; ð3:3:40Þ

A�
2ðzÞ ¼ �iA1ð0Þ sinhðgDFzÞ: ð3:3:41Þ

Figure 3.14 draws the variation of two field amplitudes with z. from the figure
we can see that the difference frequency generation field at frequency x2 and the
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signal field at x1 monotonously increase at the same time in the nonlinear inter-
action, it is total different with the sum frequency appeared oscillation.

Following figure of the energy level transition is used for explaining the reason
of the difference frequency generation field and the signal filed monotonously
increase at the same time.

Figure 3.15a shows the signal field x1 excites to generate the difference fre-
quency field x2 ¼ x3�x1, Fig. 3.15b shows the difference frequency field x2

excites to generate the signal field x1, the new signal field x1 again enhances the
generation of the new difference frequency field x2, such repetition, to lead the two
fields exponentially growth.

From Eqs. (3.3.40) to (3.3.41) we obtain the amplitude square formulas:

A1ðzÞj j2¼ A1ð0Þj j2cosh2ðgzÞ; ð3:3:42Þ

A2ðzÞj j2¼ A1ð0Þj j2sinh2ðgzÞ: ð3:3:43Þ

If the length of crystal is L, from Eq. (3.3.43) and relationships

I1 ¼ 1
2
e0cn1 E1j j2¼ 1

2
e0cx1 A1j j2; ð3:3:44Þ

I2 ¼ 1
2
e0cn2 E2j j2¼ 1

2
e0cx2 A2j j2; ð3:3:45Þ

Fig. 3.15 Explanation of
difference frequency
characteristics: a the signal
filed x1 excites to generate
the difference frequency filed
x2 ¼ x3 � x1; b the
difference frequency filed x2

excites to generation the new
signal field x1

Fig. 3.14 Characteristics of
the variation of field
amplitude A1ðzÞj j and A2ðzÞj j
with z
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we obtain the difference frequency conversion efficiency formula under D k ¼ 0 :

g ¼ I2ðLÞ
I1ð0Þ ¼

x2

x1
sinh2ðgDFLÞ: ð3:3:46Þ

In small signal case, the pump light E3ð0Þ is small, from Eq. (3.3.37) gDF is also
small, so that in Eq. (3.3.46) we have

sinh2ðgDFLÞ � ðgDFLÞ2; ð3:3:47Þ

Therefore, under the small signal and D k ¼ 0 case the difference frequency
conversion efficiency is

g � x2

x1
ðgDFLÞ2 ¼ 8x2

2d
2L2I3ð0Þ

e0n1n2n3c3
: ð3:3:48Þ

3.3.3 Optical Parametric Amplification

In the process similar to the difference frequency, the pump light energy gradually
transfers to the signal light with the increase of propagation distance, leads the
signal light to amplify, and in the same time generates the idler frequency light, this
process is similar to the parametric amplification in microwave waveband, so it is
called the optical parametric amplification (OPA) [8]. Suppose that the pump light
at the frequency of x3 ¼ xp with the amplitude E3 ¼ Ep; the signal light at the
frequency of x1 ¼ xs with the amplitude E1 ¼ Es; the idler light at the frequency
of x2 ¼ xi with the amplitude E2 ¼ Ei, the optical parametric amplification pro-
cess is shown in Fig. 3.16.

We can regard the gain coefficient of difference frequency gDF as the gain
coefficient of parametric amplification g, which is described by Eq. (3.3.37).

In the beginning, I1ð0Þ 6¼ 0 and I2ð0Þ ¼ 0: If the pump light filed E3ð0Þ is very
strong, we have gz[ [ 1; so that

sinh gz ¼ egz � e�gz

2
� 1

2
egz; and cosh gz ¼ egz þ e�gz

2
� 1

2
egz;

then Eqs. (3.3.42) and (3.3.43) becomes

Fig. 3.16 Schematic diagram
of optical parametric
amplification process
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A1ðzÞj j2� 1
4
A1ð0Þj j2e2gz; ð3:3:50Þ

A2ðzÞj j2� 1
4
A1ð0Þj j2e2gz: ð3:3:51Þ

That means that in this case, the intensity of idler light is equal to the intensity of
signal light.

According to Eq. (3.3.50), the magnification of parametric amplification M for
signal light is defined as

M ¼ I1ðzÞ
I1ð0Þ¼

A1ðzÞj j2
A1ð0Þj j2 �

1
4
e2gz: ð3:3:45Þ

Because the gain coefficient of parametric amplification g is proportional to the
pump light filed amplitude E3ð0Þ; form Eq. (3.3.45) we can see that the magnifi-
cation of parametric amplifier exponentially enhances with increase of E3ð0Þ: Due
to g is proportional to d / vð2Þ, so that the second-order nonlinear susceptibility
decides the ability of parametric amplification.

3.3.4 Comparison of Four Kinds of Three-Wave Mixing
Processes and Experimental Facilities

1. Comparison of Characteristics of Four Kinds of Three-Wave Mixing
Processes

Previous we introduced 4 kinds of three-wave mixing processes: the second har-
monic generation (SHG), the sum frequency generation (SFG), the difference fre-
quency generation (DFG) and the optical parametric amplification (OPA), as shown
in Fig. 3.17.

Fig. 3.17 Three-wave mixing processes: a second harmonic generation; b sum frequency
generation; c difference frequency generation; d optical parametric amplification
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The second harmonic is a particular case of the sum frequency x3 ¼ x1 þx2,
both are belong to the case that the energy of two low-frequency light fields transfer
to that of a high-frequency light field, i.e., the frequency up-conversion; the optical
parametric amplification is particular case of the difference frequency, both are
belong to the case that the energy of two high-frequency light fields transfer to that
of a low-frequency light field, i.e., the frequency down-conversion. The difference
of both is that the difference frequency pays attention to the generation of the
difference frequency light at x2 ¼ x3 � x1, however the optical parametric
amplification pays attention to the amplification of the signal light at x1 (the light at
x2 regards as the idler-frequency light). For the three processes: the frequency
doubling, the sum frequency and the difference frequency, the power conversion
efficiency g needs to be studied. For the parametric amplification, the magnification
M is instead of g. The pump light is different in above 4 different processes: in
second harmonic process, it is the fundamental frequency light at x1; in sum
frequency process, it is the light at x2; in difference frequency process and para-
metric amplification process, it is the light at x3.

2. Experimental Facilities of Three-Wave Mixing Process

Above four kinds of optical three-wave mixing processes have similar generation
mechanism, the requirements of the nonlinear crystal materials and the phase
matching condition are the same.

The common requirements of nonlinear crystals are (1) piezo-electric crystal
without center symmetry; (2) the phase match in certain way is satisfied, for
example the angle match or the temperature match. The propagation directions of
three waves can be different, but should satisfy the momentum conservation con-
dition; (3) the crystal materials have good optical transparency for the two incident
lights and one generated light.

To three-wave mixing experimental systems we have following same require-
ments: (1) two incident light sources at different frequencies; (2) the facilities to
realize angle match or temperature match; (3) the dispersion element and absorption
element (prism, grating and filter, etc.) used for separating the transmitted lights at
different frequencies.

As an example, Fig. 3.18 gives a typical three-wave mixing (such as sum fre-
quency) experimental setup.

Fig. 3.18 Typical experimental setup for three-wave mixing (sum frequency)
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3.4 Optical Parametric Oscillator

Because the amplification factor of the single pass through the nonlinear crystal in
the optical parametric amplification is small, in order to enhance the energy con-
version efficiency, we can place the parametric amplifier into a resonant cavity, the
lights at frequency xs (and xi) oscillates in the cavity to be enhanced, when
the energy of pump light at frequency xp over a certain threshold value, the gain
of the nonlinear interaction overcomes the intracavity loss, then a stable light beam
at frequency of xs (and xi) can be outputted from the cavity, this device is called
the optical parametric oscillator (OPO) [9, 10].

In comparison of the parametric oscillator with the laser oscillator, the similar-
ities is that both can generate the coherent light output; the difference is that the gain
in the cavity of optical parametric oscillator is generated by the nonlinear effect, not
by the population inversion; and the gain is in one way, the returning light cannot
be enhanced, only be wastage.

3.4.1 Threshold Value Equations of Optical Parametric
Oscillation

In order to deduce the optical parametric oscillation threshold value equation,
suppose the length of crystal is L, two ends of crystal is fabricated to be spherical
mirrors with the equal radius of curvature, their amplitude reflectivity are r1 and r2
for the signal light at frequency x1 and the idler light at frequency x2, respectively;
the intensity reflectivity are R1 ¼ r1j j2 and R2 ¼ r2j j2, respectively; and the pump
light at frequency x3 is transparent, as shown in Fig. 3.19.

Suppose the pump light intensity in the cavity is independent of propagation
distance, the signal light electrical field and the idler light electrical field on the
plane at any position z in the cavity can be expressed by a matrix ~AðzÞ :

~AðzÞ ¼ A1ðzÞeik1z
A�
2ðzÞe�ik2z

				
				: ð3:4:1Þ

Fig. 3.19 Schematic diagram of the parametric oscillator with crystal structure
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Considering that under the excitation of pump light x3, at z ¼ 0 the spontaneous
radiation of the signal light at x1 and the idler light at x2 are produced in the
meantime, namely A1ð0Þ 6¼ 0 and A2ð0Þ 6¼ 0; the solutions of coupled Eqs. (3.3.32)
and (3.3.33) in difference frequency process are

A1ðzÞ ¼ A1ð0Þ coshðgzÞþ iA�
2ð0Þ sinhðgzÞ; ð3:4:2Þ

A�
2ðzÞ ¼ A�

2ð0Þ coshðgzÞ � iA1ð0Þ sinhðgzÞ: ð3:4:3Þ

The optical field amplitude at z ¼ L is

~AðLÞ ¼ eik1L coshðgLÞ ieik1L sinhðgLÞ
- ie�k2L sinhðgLÞ e�k2L coshðgLÞ

				
				~Að0Þ: ð3:4:4Þ

The stable oscillation requires satisfying the self-consistent condition that after
the light propagation for a round trip in the cavity ~AðzÞ is invariable, as shown in
Fig. 3.20.

At the reference plane e, it should have

~AeðzÞ ¼ ~AaðzÞ; ð3:4:5Þ

~AeðzÞ is obtained from ~AaðzÞ multiplies the following 4 matrixes: the parametric
amplification matrix for the light propagation from left to right, the reflection matrix
at the end of right, the propagation matrix from right to left without gain, and the
reflection matrix at the end of left, namely

~Ae ¼ r1 0
0 r�2

				
				 eik1L 0

0 e�ik2L

				
				 r1 0
0 r�2

				
				 eik1L coshðgLÞ ieik1L sinhðgLÞ
�ie�ik2L sinhðgLÞ e�ik2L coshðgLÞ
				

				~Aa:

ð3:4:6Þ

That is

~Ae ¼ r21 coshðgLÞei2k1L ir21 sinhðgLÞei2k1L
�iðr�2Þ2 sinhðgLÞe�i2k2L ðr�2Þ2 coshðgLÞe�i2k2L

				
				~Aa ¼ M~Aa ð3:4:7Þ

Fig. 3.20 The signal light
and the idler light satisfy the
self-consistent condition
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The following self-consistent condition should be satisfied:

~Ae ¼ ~Aa ¼ I~Aa ¼ M~Aa

or

ðM � IÞ~Aa ¼ 0; ð3:4:8Þ

where I is an unit matrix. If ~Aa has nonzero solution, it requires the determinant
M � Ij j ¼ 0; so we obtain

½r21 coshðgLÞei2k1L � 1�½ðr�2Þ2 coshðgLÞe�i2k2L � 1� ¼ r21ðr�2Þ2 sinh2ðgLÞe�i2ðk2�k1ÞL:

ð3:4:9Þ

Equation (3.4.9) is called the parametric oscillation threshold equation, i.e. the
starting oscillation condition of the parametric oscillator.

There are two kinds of optical parameter oscillators: one parameter oscillator
allows signal light (xs) and idler light (xi) together oscillation and output, which is
called the Double Resonant Oscillator (DRO); another one only allows the signal
light (xs) oscillation and output, which is called the Singly Resonant Oscillator
(SRO). Below we will introduce their working principles respectively.

3.4.2 Double Resonant Parametric Oscillator

Figure 3.21 shows the schematic diagram of the double resonant oscillator, in
which the three light beams are collinear. The nonlinear crystal is inserted into the
optical cavity consisted of two spherical reflectors. The signal light and the idler
light are two longitudinal modes of resonant cavity, and the resonant cavity for the

Fig. 3.21 Schematic diagram of collinear double resonant oscillator
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pump light is transparent. So that the reflectivity of two spherical reflectors at front
and back of the cavity for the signal light, the idler light and the pump light are
R1s � 1; R1i � 1; R1p ¼ 0 and R2s\1; R2i\1; R2p ¼ 0; respectively.

Considering two cavity mirrors have the reflection loss and phase shift at the
same time for the two lights at x1¼xs and x2¼xi, we set

r21 ¼ R1e
�i/1 ; ð3:4:10Þ

ðr�2Þ2 ¼ R2e
i/2 ; ð3:4:11Þ

where /1 and /2 are two cavity mirrors induced phase shifts. Substituting
Eqs. (3.4.10) and (3.4.11) into Eq. (3.4.9), we obtain the threshold equation:

½R1 coshðgLÞeið2k1L�/1Þ � 1�½R2 coshðgLÞe�ið2k2L�/2Þ � 1�
¼ R1R2 sinh2ðgLÞe�i½2ðk2�k1ÞL�ð/2�/1Þ�:

ð3:4:12Þ

When satisfying the phase condition:

2k1L� /1 ¼ 2mp
2k2L� /2 ¼ 2np

ðm; n is the integerÞ; ð3:4:13Þ

the exponents in two factors on left side of Eq. (3.4.12) are positive real numbers,
in this case the corresponding gain is minimum, i.e., the threshold gain is g ¼ gt.
The Eq. (3.4.13) denoted two light beams at frequency of x1 and x2 are laser
longitudinal modes of the resonant cavity.

Using cosh2 x� sinh2 x ¼ 1 and phase condition Eq. (3.4.13), the threshold
Eq. (3.4.12) becomes

ðR1 þR2Þ coshðgtLÞ � R1R2 ¼ 1: ð3:4:14Þ

When gtL is smaller, After series expansion of coshðgtLÞ and approximately
taking the front two items, we obtain

coshðgtLÞ � 1þ ðgtLÞ2
2

; ð3:4:15Þ

Substituting Eq. (3.4.15) into Eq. (3.4.14), we obtain

ðgtLÞ2 ¼ 2ð1� R1Þð1� R2Þ
R1 þR2

: ð3:4:16Þ
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Assuming R1 � R2 � 1; R1 þR2 � 2; then

ðgtLÞ2 ¼ ð1� R1Þð1� R2Þ: ð3:4:17Þ

Therefore, the threshold condition of double resonant parametric oscillator is

ðgtLÞDRO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� R1Þð1� R2Þ

p
: ð3:4:18Þ

Substituting Eq. (3.4.18) into Eq. (3.3.48) for the difference frequency conver-
sion efficiency, then we obtain the pump light intensity threshold of double resonant
parametric oscillator:

ðI3tÞDRO ¼ e0n1n2n3c3

8x1x2d2L2
ð1� R1Þð1� R2Þ: ð3:4:19Þ

As an example, the LiNbO3 crystal based double resonant parametric oscillator,
to take the single pass loss of cavity is 2%, k1 ¼ k2 ¼ 1 lm;

ð1� R1Þ ¼ ð1� R2Þ ¼ 2� 10�2, d ¼ 5� 10�12 m=V; n1 � n2 � n3 � 2; the
estimated oscillation threshold intensity is I3t ¼ 1:2� 103 W=cm2. It is equiva-
lently the output intensity of a common CW laser.

Although the pump light intensity threshold of the double resonant parametric
oscillator is lower, its requirement for the stability of the resonant cavity is very high,
and the length of cavity is easy effected by temperature variation and vibratory.

3.4.3 Singly Resonant Parametric Oscillator

The use of non-collinear phase matching technology to separate the directions of
three light beams is shown in Fig. 3.22. It only allows the wave vector ks of signal
light at xs along the cavity axis direction, and making the signal light resonance
with the resonant cavity. But the kp of pump light and ki of idler light are not along
the cavity axis direction. The wave vectors of three light beams must satisfy fol-
lowing phase matching condition:

kp ¼ ks þ ki: ð3:4:20Þ

Now we start from the threshold Eq. (3.4.9) to deduce the threshold condition of
the singly resonant parametric oscillator. For the singly resonant parametric oscil-
lator, r�2 ¼ 0; Eq. (3.4.9) is simplified as

r21 coshðgLÞei2k1L ¼ 1: ð3:4:21Þ
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Setting r21 ¼ R1e�i/1 , and substituting it into Eq. (3.4.21), then we obtain the
phase condition:

2k1L� /1 ¼ 2mp; ð3:4:22Þ

Equation (3.4.21) then is

R1 coshðgtLÞ ¼ 1: ð3:4:23Þ

Because gtL is very small, Eq. (3.4.23) can approximately simplify to

R1 1þ g2t L
2

2

� �
¼ 1: ð3:4:24Þ

Taking R1 � 1; then

ðgtLÞSRO ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� R1Þ

p
: ð3:4:25Þ

We substitute Eq. (3.4.24) into Eq. (3.3.48) for the difference frequency con-
version efficiency, then obtain the pump light intensity threshold of singly resonant
parametric oscillator:

ðI3tÞSRO ¼ e0n1n2n3c3

8x1x2d2L2
2ð1� R1Þ: ð3:4:26Þ

Fig. 3.22 Schematic diagram of non-collinear phase match in the singly resonant parametric
oscillator
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To compare the pump light threshold intensity formula (3.4.26) for the singly
resonant parametric oscillator and the formula (3.4.19) for the double resonant
parametric oscillator, we obtain

ðI3tÞSRO
ðI3tÞDRO

¼ ½ðgtLÞSRO�2
½ðgtLÞDRO�2

¼ 2
1� R2

: ð3:4:27Þ

where 1� R2 can be regard as the cavity mirror loss of idler light at frequency x2.
If the loss is 2 %, then the threshold of singly resonant parametric oscillator is
higher than the threshold of double resonant parametric oscillator about 100 times.
Even though the starting threshold of singly resonant parametric oscillator is higher,
however its requirement in respect of resonant cavity stability is much lower.

Optical parametric oscillation (OPO) can be used to obtain wavelength tunable
laser in a wide wavelength region. It not only can obtain the visible and infrared
steady-state continuous wave, but also can obtain the picosecond or femtosecond
ultrashort pulse laser, it has extensive application in the optical spectrum technol-
ogy. There are many kinds of nonlinear crystal used for OPO, more good crystals
mainly include KTP, BBO and LBO, they have not only larger second-order
nonlinear coefficient and much higher optical damage threshold, but also wide
transparent wavelength range, for example, BBO can reach 2500–190 nm; LBO
can reach 3000–160 nm.

Review Questions of Chapter 3

1. Please deduce slowly-varying-amplitude approximation wave equation for
describing the propagation of the monochromic plane wave in anisotropic
medium and the three-wave mixing equations for describing the second-order
nonlinear optics processes.

2. In fundamental wave small signal approximation condition, from three-wave
mixing equations, please find out the frequency doubling wave intensity con-
version efficiency formula. In order to enhance the frequency doubling effi-
ciency, what measures you can adopt?

3. In high fundamental wave consumption condition, from three-wave mixing
equations, please find out the law of variation of the frequency doubling field
amplitude and fundamental frequency field amplitude with the propagation
distance, and find out frequency doubling wave intensity conversion efficiency
formula.

4. When the frequency doubling light and fundamental frequency light collinearly
propagate, what is the refractive-index phase matching condition of frequency
doubling crystal? Please discuss the phase matching conditions of negative
uniaxial crystal and positive uniaxial crystal in the first- class phase matching
condition and the second-class phase matching condition.

5. From three-wave mixing equations to deduce the coupling equations between
the sum frequency light field and the signal light field, and the intensity con-
version efficiency formula.
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6. From three-wave mixing equations to deduce the coupling equations between
the difference frequency light field and the signal light field, and the intensity
conversion efficiency formula.

7. What is optical parameter amplification? Please deduce the magnification for-
mula of parameter amplification. The parameter amplification process has what
different physical meaning in comparison with the sum frequency and difference
frequency processes?

8. What is optical parametric oscillator? Please discuss the working principles of
the double resonant parametric oscillator and the singly resonant parametric
oscillator, please deduce the pump light intensity threshold formula of these two
parameter oscillators, and point out the advantages and disadvantages of both
parameter oscillators.
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