Chapter 3
Optical Three-Wave Coupling Processes

This chapter uses a reformed first-order frequency-domain wave equation for the
isotopic medium to approximately describe the second-order nonlinear optics
effects in the anisotropic medium. At first, the three-wave coupling equations are
deduced, then based on these equations, several typical second-order nonlinear
optics effects are studied: optical frequency doubling, sum frequency, difference
frequency, and optical parameter amplification and parameter oscillation. The
power conversion efficiency formulas for these effects are given. Finally, the basic
concepts of phase matching are introduced based on the frequency doubling effect.

3.1 Three-Wave Coupled Equations

3.1.1 Review of Second-Order Nonlinear Optics Effects
in Isotopic Medium

Firstly we discuss the second-order nonlinear optics effect in general, it contains
what specific effects, and we will give the polarizations of these effects in the
isotopic material.

Assuming that the incident light electrical fields consisted by two monochro-
matic light fields at the different frequencies and with same propagation direction,
the total electrical field strength can be expressed as

E(t) = Z E,e "' 4 c.c. = Eye”" " + Eye ™' +c.c. (3.1.1)
n=1,2

In the isotopic medium without center symmetry, the second-order nonlinear
polarization is
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PO(1) = goy P EX(1). (3.1.2)

Substituting Eq. (3.1.1) into Eq. (3.1.2), after combination of the items with
same frequency component, we obtain:

P(Z) (t) — SOX(2> [(E%e—izwll +E§e—i2(z)2t + zElEze_i(wl + )t + ZEIE;e—i(ml—(uz)t)
+ 2(E'1E1F + E2E;)] +c.c.
(3.1.3)

The Eq. (3.1.3) can be summarized by a simple formula, that is

PP (1) =Y PP (w)e ™ +cuc, (3.1.4)

where i takes the positive integer. The polarization P(z)(wi) corresponds to the
different second-order nonlinear optics effect with different susceptibility X(2>(wi),
which is

P (w;) = Degy® (w;)E(w))E(w,), (3.1.5)

where w; is the frequency of polarization field composed by two original mono-
chromic fields at frequencies of w; and @, in different modes. Form Eq. (3.1.3) we
can see that w; has five modes: 2w, 2w,, w + w2, w;—w, and 0. For second-order
nonlinearity, n = 2, the degeneration factor is D = n!/m! = 2/m!. When m = 1,
D =2; when m =2, D = 1. Therefore, corresponding to the different w;, the
second-order nonlinear optics effects and corresponding polarizations are
respectively:
Optical frequency doubling

PRw) = &3P (2w, )E?, (3.1.6)
Optical frequency doubling
PRw,) = e1? (20, E2, (3.1.7)
Optical sum frequency
P(w1 + ) = 2607 (0 4+ 02)ELE, (3.1.8)
Optical difference frequency

P(w) — ) = 2605 (01 — 0,)E,E3, (3.1.9)
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Optical rectification

P(0) = 2¢01*) (0)(E\E} + EE3). (3.1.10)

3.1.2 Approximate Description of Second-Order Nonlinear
Optics Effect in Anisotropic Medium

In general, the medium with the second-order nonlinear optical effect is not iso-
topic, it is anisotropic, such as the crystal medium. However, for describing the
second-order nonlinear effect in the crystal medium should using tensor calculation
method, it is complicated, and needs take up a larger space. This chapter we present
a method that using the slowly-varying-amplitude approximated frequency-domain
first-order wave equation for the isotropic medium to approximately describe the
second-order nonlinear optical effects in the anisotropic medium. For simplicity, we
suppose that the medium is far from the resonance area, and the absorption loss can
be neglected.

The characteristic of light propagation in the anisotropic medium is: the prop-
agation direction of light wave (k) is different with the direction of energy flow
(I =E x H), there is an included angle o between both. Because the electric
induction strength D in the medium is perpendicular to the propagation direction of
the light; and the electrical field strength E is perpendicular the direction of energy
flow, so there is an included angle « between D and E. Actually « is small, « < 3°
for the most of crystals.

Considering a monochromic plane wave propagates along z direction in an ani-
sotropic medium, Suppose its wave vector k is along z direction; and there is an
included angle o between k and the energy flow I = E x H. The electric induction
strength D is along x direction; the magnetic field strength H is along y direction,
which is perpendicular to the plane consisted by D, E and k, as shown in Fig. 3.1 [1].

Fig. 3.1 Relationship among
electromagnetic wave vectors
E,D,H, k,andI =E x H,
when the monochromic plane
light wave propagates in an
anisotropic medium

T~
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Suppose the frequency of above monochromic plane wave is w, the light
electrical field strength is expressed as a product of amplitude and phase:

E(Z, w) _ E(Z)ei(kz—wt) _ éE(Z)ei(kz—wz)7 (316)

where e is the unit vector along the electrical field direction. The polarization
corresponding to the light electrical field strength is

Pyi(z, 0) = Py (2)e K0, (3.1.7)

The each of E(z,w) and Py (z, ) can be written to the vector sum of two
orthogonal components, i.e., the horizontal component perpendicular to k (noted by
T) and the longitudinal component parallel to k (noted by S):

E(z, 0) = Er(z,0) + Es(z, ), (3.1.8)
PNL(Z7 w) :P;/L(Z7 w)+P%L(Zv w) (3'1'9)

The horizontal component of field amplitude abides by following
frequency-domain wave equation for isotropic medium in the condition of
slowly-varying-amplitude approximation:

0Er(z) o :
i 2EOCHPZ,L(z)e Akz (3.1.10)

To make the dot product of the unit vector e in the two sides of Eq. (3.1.10)
respectively, and using

é-Er = Ercoso = Ecos® o

and
P]Y\;L ~ PNL;
then we obtain
9E(z) i P iAk
= -P R 3.1.11
0z 2¢9cn cos? o ¢ P(2)e ( )
If take cos” « ~ 1 approximately, Eq. (3.1.11) becomes
OE(z)  iw :
= ¢ P iAkz 3.1.12
0z 2¢egcn ¢ P(2)e ( )

where Ak = k' — k, k is the wave vector of original light field, X’ is the wave vector
of polarization field. This is the slowly-varying-amplitude-approximation
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frequency-domain wave equation for propagation of the light field amplitude of the
monochromic plane wave in the anisotropic medium. The difference between this
equation and the slowly-varying-amplitude- approximation frequency-domain wave
equation in isotropic medium is replaced Py (z) by € - Pyi(2).

3.1.3 Three-Wave Coupled Equations in Anisotropic
Medium

In general case, two light wave fields E(wy, ki) and E(w,, k,) with different
incident directions interact with a nonlinear crystal medium, to induce a new light
wave field E(ws, k3). The three-wave coupling process is shown in Fig. 3.2.

This three-waves coupling process can use the photon concept to describe. The
three photons at different frequency w;, w, and w3 should meet the following
energy conservation law:

ha)3 = hw1 +h(1)2. (3113)

If we want to realize the optimum coupling of three photons, the three photons
also need satisfy the momentum conservation law as follows

hksy = hk,| + hk,. (3114)

To describe this process by using optical wave concept, the frequencies of three
waves should satisfy the relationship: w3 = w; 4+ @, . Here we just talk about sum
frequency process. Actually there are difference processes, which satisfy the rela-
tionship w; = w3 — wy and wy = w3 — Wy .

Assuming that three monochromic plane waves at frequencies w;, w;, w3
propagate in the anisotropic medium, they all along z direction, to generate a sum
frequency or two difference frequency nonlinear effects, their second-order non-
linear polarizations can be expressed as respectively:

P (z,0) = Degy'® (w1; —wa, 03) : E*(z,02)E(z, 03), (3.1.15)
P(2>(z7 wy) = Da();g(Z)(a)z; w3, —oy) : E(z, 03)E*(z, 1), (3.1.16)
P(2>(z7 w3) = Deox(z)(w3; w1, @) : E(z,w)E(z, ), (3.1.17)

Fig. 3.2 Schematic diagram E(o,. k)

of the three-wave coupling

process E(@3=k3)
Nonlinear crystal ————®»—

E(@g.kg)
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where D is the degeneration factor, if two original lights are at different frequencies,
D = 2; if two original lights are at same frequency, D = 1.

If denoting the three light fields respectively to be E(z,w;)= e E|,
E(z,,) = &;E,, and E(z, w3) = e3E;3, then we have

P(12> (Z) = DSol(z)(wl; —», 0)3) : é2é3E;E3, (3118)
P(2) — Deny? . _ - e1e 1 EAEY 3.1.19
2 (2) eox (w23 w3, —wy) : €3e1E;3 15 (3.1.19)
PP (2) = Deoy® (ws; . 616:E\E 3.1.20
3 (2) o~ (w35 w1, 02) : €16, Es. (3.1.20)

In the frequency-domain wave Eq. (3.1.12), if setting Py, = P2 then substi-
tuting Eqgs. (3.1.18)—(3.1.20) into Eq. (3.1.12), then we obtain following equations:

6E1 (Z) iy

9. 2em Dey - 1 (w15 —wa, w3) : e283E3 E3e™, (3.1.21)
OE 1 . . i
2() =2 Déy - 1 (w5 w3, —) : 381 E3Efe ™R, (3.1.22)
0z 2cny
OE j . . i
3(Z) = 103 De3-x(2)(co3; w1, (,l)z) :elezElEge_lAkz. (3123)
0z 2cns

According to the frequency substitution symmetry of susceptibility, three non-
linear susceptibilities are equal, namely

1 1P~ 03) 1 é2es = & 1P (023 w3, — 1) : €36 (3.1.24)
— é3~x<2)(w3; w1, 7)1 €18y = ng)’ N

here ,((%2 is a real number, it is called the efficient nonlinear susceptibility, which is
used for measurement of the coupling strength among three waves. To omit the
corner mark eff, i.e., Xi? = 4@, the three components of susceptibility can be

written to the following scalar forms:
x<2)(w1; —, (1)3) = é1~ 1(2)(601; —, (A)3) : é2é3, (3125)
13 (025 03, —1) = &2 P (w25 w3, — 1) = E381, (3.1.26)

X(2>(w; i, (1)2) = é3~x(2)(w3; i, (1)2) Zé]éz. (3127)
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Therefore, the wave Egs. (3.1.21)—(3.1.23) can be written to

8E1( ) D(Ul

_ (2) . EXE iAkz 1.2
0z chl ~ X1 (601, 3, 0)3) Z(Z) 3(2)6‘ ’ (3 8)
aEz(Z) Dw2 @) iAk:
= ; Es(2)E} 1K 3.1.2
2 D0 5, 2B () 3.129)
0FEx(z Dw i
832( = lchz 1P (03; 01, 02)E1(2) Ex(2)e ™, (3.1.30)

where Ak is phase mismatch factor, which can be expressed as
Ak = k) +ky — ks. (3.1.31)

The meaning of Ak for different processes are different: for difference frequency
process described by Eq. (3.1.28) is Ak = k| — (ks — ky); for difference frequency
process described by Eq. (3.1.29) is Ak =k, — (k3 — k;); for sum frequency
process described by Eq. (3.1.30) is —Ak = k3 — (k; + k). If the three wave is
phase matched, then Ak = 0, it is equivalent to that the three photons satisfy the
momentum conservation law.

3.2 Optical Second-Harmonic Generation

Optical second harmonic generation, i.e., optical frequency doubling, is a special case
of three wave mixing processes. That is one of nonlinear optical phenomena, which
found at the earliest. The experimental setup for studying the frequency doubling in
1961 by Franken et al. is shown in Fig. 3.3 [2]. The ruby laser (at the wavelength
A1 = 694.3 nm) passed through a quartz crystal to produce the frequency doubling
light (at the wavelength 1, = 347.15 nm). Two light beams are separated by a prism.

Now the application of optical frequency doubling has been mature. For example,
it is used to transform from infrared laser at the wavelength of 1.06 pm generated by
a Nd:YAG laser to the green laser at the wavelength of 532 nm.

Considering a monochromic plane light wave at frequency w passes through a
nonlinear crystal with length of L to produce a frequency doubling light at fre-
quency 2w, as shown in Fig. 3.4.

A1=694.3nm

ruby laser  filter  quartz  prizm

negative film
A3=347.15nm

Fig. 3.3 Experimental facility of frequency doubling by Franken et al.
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Fig. 3.4 Schematic diagram p——z

of the frequency doubling E(®) Nonlinear E(20)

process - crystal —
p—r—

Suppose the crystal does no absorption for these two lights, now we are going to
calculate the intensity of the frequency doubling light transmitted from crystal and
the efficiency of frequency doubling conversion, i.e., the ratio between the power of
frequency doubling light and the power of fundamental frequency light.

We can use three wave coupled Egs. (3.1.28)—(3.1.30) to deal with second
harmonic generation problems. We suppose the fundamental frequency is
w] = ®y = o, and the second harmonic frequency is w3 = 2o . When establishing
the wave equation of fundamental frequency light filed, we should set the degen-
eration factor to be D = 2; and when establishing the wave equation of frequency
doubling optical field, setting the degeneration factor to be D = 1.

We will study following two kinds of optical frequency doubling effects: one is
the case of low conversion efficiency without the fundamental frequency light loss
(the small signal approximation); another one is the case of high conversion effi-
ciency having the fundamental frequency light loss.

3.2.1 Small Signal Approximation

If the fundamental frequency light is very weak, only a small part of incident
fundamental frequency light energy convert to the frequency doubling light energy,
i.e., the frequency doubling conversion efficiency is very low. In this case the
outputted frequency doubling light power is much smaller than the incident fun-
damental frequency light power, it can be regard that the amplitude of fundamental
frequency light is a constant approximately:

Ex(z) = Ei(z) = E1(0). (3.2.1)
So when applying Egs. (3.1.28)—(3.1.30), we can write that

8E1 (Z)

1), (32.2)
O0Ey(z)

2 o, (3.2.3)

0E3(z) _ iQw) 12 20; o, 0)E2(0)e 2%, (3.2.4)

9z 2cm
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where
Ak = 2k — k3. (3.2.5)

We assume that the length of crystal is L, and use boundary condition: E;(0)
= constant, E3(0) =0, directly taking integral of Eq.(3.2.4), and using
fOL e Medz = I (e — 1) to obtain the frequency doubling optical field ampli-
tude outputted from the crystal:

wX<2> 2

E3(L) = — — Bl (0)(e ™A —1). (3.2.6)

According to usual practice, we introduce the frequency doubling coefficient d to
replace the second-order nonlinear susceptibility % [3]:

%@

and set n| = n,,, n3 = ny, then Eq. (3.2.6) becomes

2wd Ez(o)(efiAkL —1). (3.2.8)

Es(L) = _cnz Akt

Using frequency multiplication formula of trigonometric function, from
Eq. (3.2.8) we can obtain

N 20d \? .
|Es(L)|* = E3(L) - E3(L)" = |E,(0)[*-4 sin®(AkL/2)
cno Ak
4aor*d? L sin*(AkL/2)  4a?d*L? . 2 (AKL
=% -|E1 (0)[*- = 5.3 |E1(0)]*sinc? (—)
¢ n2w (A kL/z) ¢ n2w

Using the relation between the intensity and the amplitude for the fundamental
frequency light and the frequency doubling light:

1

1(0) = 5 eocny|Ey Ol (3.2.9)
1 2

Ig(L) = 58()Cn2(0|E3(L)| y (3210)

we can obtain the relationship between the intensity of outputted frequency dou-
bling light and the intensity of incident fundamental light:
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0N ng) c?

2272
(L) = 22 9E 2 g)gine? (%) , (3.2.11)
where the relationship between the function sinc?(A kL/2) and AkL/2 is shown in
Fig. 3.5.
The optical frequency doubling efficiency is defined as the ratio of the outputted
frequency doubling light power P5(L) with the inputted fundamental frequency
light power P;(0) :

_Ps(L) _B(L) _ 8w’d’L? PA(0) . (AKL
T=P0) T 1(0) ~ eomaodd S 2 )

(3.2.12)
The above equation has been used I} = P; /S, were S is the cross sectional area
of incident fundamental frequency light beam.
From Eq. (3.2.12) we can see that, under small signal condition (the loss of
fundamental wave is omitted), the frequency doubling process has following
properties:

1. When Ak =0, sin c>(AkL/2) =1, ny, =n, =n, the frequency doubling
conversion efficiency 7 takes the maximum:

 802d’L> Py(0)

= 3.2.13
g gon3c? S ( )
sinc2(AKL/2)

TK}

06—

04—

02— I
[
|

-3n —27 - 0 w2 = 2n In
AKL/2

Fig. 3.5 Relationship between function sinc?(AkL,/2) and AkL/2
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As you see that the frequency doubling conversion efficiency is proportional to
the power of incident fundamental frequency light; is proportional to the frequency
doubling coefficient of crystal d and the length of crystal L, and is reverse pro-
portional to the cross sectional area of incident fundamental frequency light
S. Therefore, we can used following measures to enhance the frequency doubling
efficiency: to select the nonlinear crystal with high frequency doubling coefficient
and a longer size; to use the high power fundamental frequency light and the
focused fundamental frequency light beam.

2. When Ak # 0, for a certain wave vector mismatch factor Ak, the length of
crystal L is equal to so called the coherence length:

L. = (3.2.14)

T
A_k )
we have % =7 at the location of imaginary line in Fig. 3.5. If L<L,, there is
higher frequency doubling conversion efficiency; if L > L., the frequency doubling
conversion efficiency goes down quickly, after that making a periodic variation with
a small amplitude.

3.2.2 High Fundamental Wave Consumption

In high conversion efficiency case, the foundational frequency wave amplitude
cannot regard as a constant, the small signal approximation is not applicable. Below
we consider the case that the phase matching condition is satisfied (Ak = 0), i.e.,
n; = ny = n3 = n. For the foundational frequency light at w; = w, = w, and
E| = E;, the degeneration factor is D = 2; for the frequency doubling light at
w3 = 2w, the degeneration factor is D = 1; replacing the frequency doubling
coefficient d to the susceptibility y®) =24, in this case the three coupling
Egs. (3.1.28)—(3.1.30) becomes the two coupling equations:

OE\(z) i2od

7 - E}(z)E3(z), (3.2.15)
OE;(z)  20d ,
5% = on E;(z). (3.2.16)

Taking conjugate complex number and multiplying by E;(z) on the two sides of
Eq. (3.2.15), and then multiplying by E%(z) on the two sides of Eq. (3.2.16), finally
adding the two equations, then we obtain:
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9

S UE QP+ E@) = 0. (3217)

Namely |E; (z)|* + |E3(z)[*= |E1 (0)* + |E3(0)[*. Because when z = 0, E3(0) =
0 and E;(0) # 0, then we have

|E1(2)* + |E3(z) = |E1 (0)]*= constant. (3.2.18)

Visible, at any z-coordinate point in the crystal, the sum of the intensity of
foundational frequency light and the intensity of frequency doubling light is equal
to the intensity of foundational frequency light at the start point, that is to say, the
production of frequency doubling light comes at the expense of the consumption of
fundamental frequency light.

Taking module on the both sides of Eq. (3.2.16), then substituting the |E; (z)|*
obtained from Eq. (3.2.18) into it, and giving a definition of

K= M, (3.2.19)

cn

then we obtain

d(|E3(2)/E1(0)])

= KEO)][1 - (B Q)/E 0. (3.220)

Setting |E5(z)/E1(0)] = v, making the separation of variables to Eq. (3.2.20),
integral on both sides of it, and using integral formula

d
/1—v2 = tanh v, (3.2.21)
—V

then we obtain the formula for the frequency doubling light field amplitude:
|E5(z)| = |E1(0)] tanh(x|E; (0)]z2). (3.2.22)

Now we set the hyperbolic tangent function tanh(x|E;(0)|z) = tanhx = a,
substitute Eq. (3.2.22) into Eq. (3.2.18), and use the relation between the hyper-

bolic secant function and the hyperbolic tangent function sechx = v/1 — a2, then
obtain the formula for the fundamental frequency light field amplitude:

|E1(z)| = |E1(0)|sech(x|E1(0)|z). (3.2.23)
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Fig. 3.6 Under the phase T T T T
matched condition, the curves TF
of the frequency doubling |E (2)]
light relative amplitude IE(0)]
|2 (2)|/|E1 (0)] and the !
foundational frequency light
relative amplitude
|E1(2)|/|E1(0)] versus the
relative coordinate z/Lsyg
along the length direction of
crystal

|E, (2)[/1E,(0)]

IE;(2)1/ |E(0)]

1 1 L Il

0 | 2 3

T

Making a definition of the efficient frequency doubling length:

L = K| (0] ' = [2”"

-1
on |E; (0)|] , (3.2.24)

then Egs. (3.2.22) and (3.2.23) can be written as
|E3(Z)| = |E1 (0)' tanh(z/LSH(;), (3225)
|E1 (Z)| = |E1(0)|SCCh(Z/LSHG). (3226)

Figure 3.6 shows the curves of |E3(z)|/|E1(0)| and |E;(z)|/|E1(0)| as the
function of z/Lsyg.

We can see that, under the phase matching condition, the foundational frequency
light continually transforms to the frequency doubling light with the increase of the
crystal length coordinate. In the theory, when the frequency doubling crystal length
achieves to the two times of efficient frequency doubling length, E3(z) will tend to
E;(0), namely near the frequency doubling conversion efficiency of 100 %.
However, in practice, there are many restrictions, such as the absorption and the
diffraction of the materials, the reflection from crystal end face, and the laser beam
is not monochromic plane wave, etc. For the KDP crystal with length of L =
2Lsyc = 2 cm, the frequency doubling conversion efficiency is less than 60 %.

Utilizing the amplitude-intensity relation of Egs. (3.2.9) and (3.2.10), from
Eq. (3.2.25) we can obtain the frequency doubling conversion efficiency formula
under the condition of high fundamental wave consumption:

P5(L o Es(L)* na L
3(L) _ o |E3( )|2:”2 tanh? ——_ . (3.2.27)
Pl(O) N, |E1 (0)| g Lsuc

17:
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According to Eq. (3.2.24), (L/LSHG)2 o« I1(0), in the case of small signal
approximation, there is the approximate relation:

tanh?(L/Lsuc) ~ (L/Lsuc)*- (3.2.28)

For Ak=0, ny, =n, =n is required, then Eq. (3.2.27) changes to
Eq. (3.2.13), which is the frequency doubling conversion efficiency formula for the
small signal approximation.

3.2.3 Phase Matching Technology

When the frequency doubling light and the fundamental frequency light are collinear,
the phase matching condition is Ak = k3 — 2k; = 0, or 2k; = k3, i.e., 2k, = k-
From wave vector formulas k,=(w/c)n,, and ky,, = (20/c)na, we obtain

Ny = N2g. (3229)

Namely, the phase matching condition requires that the refractive index for the
frequency doubling light is equal to the refractive index for the fundamental fre-
quency light in the crystal.

How to realize that the fundamental frequency light and the frequency doubling
light induce the same refractive index in an identical crystal? In general, we can use
the birefringence characteristic of the anisotropic crystal to realize it.

The light at any frequency @ propagates in the anisotropic crystal, besides the
direction of optical axis, generally there exists two orthogonal polarization direc-
tions with different refractive index, namely n, (w) # ny(w), such as the situation of
o light and e light. However, for two light beams at different frequency (such as the
fundamental frequency light at o and the frequency doubling light at 2 ), it is
possible to find a propagation direction that its two orthogonal polarization direc-
tions have same refractive index, i.e., n)(®) = ny(®’), in this way the phase
matching condition can be satisfied.

Previous we have talk about that there are 7 crystal systems in the nature, in
which 6 crystal systems are belong to anisotropic crystal; only one - cubic crystal
system is belong to isotropic crystal. The 6 anisotropic crystals can be divided into
two kinds: the uniaxial crystal and the biaxial crystal. The trigonal crystal system,
the tetragonal crystal system, and the hexagonal crystal system are belong to the
uniaxial crystal; the triclinic crystal system, the monoclinic crystal system and the
orthorhombic crystal system are belong to the biaxial crystal. The classification of
crystal is shown in Table 3.1.
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Table 3.1 Classification of crystal

Classification of crystal Crystal system

Anisotropic crystal Uniaxial crystal Trigonal, tetragonal, hexagonal
Biaxial crystal Triclinic, monoclinic, orthorhombic

Isotropic crystal Cubic

Fig. 3.7 Refractive index
ellipsoid of the positive
uniaxial crystal

In order to describe the law of light wave propagation in the anisotropic medium,
one can use the refractive-index ellipsoid method. We can establish an equation in
the principal axis coordinate system Oxyz:

x2 2 '2
R ! (3.2.30)
nx ny nz

The index ellipsoid described by this equation is shown in Fig. 3.7. In which n,,
ny, n; are the half axis length of rectangular coordinates axis x, y, z, respectively,
which are called the principal refractive index.

For the isotropic cubic crystal, n,= n,= n,= ng, Eq. (3.2.30) becomes

Py +P=nd (3.2.31)

This is a ball with radius of ng, so no matter the light propagation along any
direction, the refractive index always is same.

For anisotropic crystal, in general there exists one or two special optical axis
directions, the light wave propagates along the optical axis direction without
birefringence. The crystal only has one optical axis, which is called the uniaxial
crystal. If selecting z-axis as the optical axis c, then n,= ny,= n, , n,= n, # n,, the
refractive index ellipsoid equation is

x2 2 ZZ
L= (3.2.32)
0 [ e

where n, is the refractive index of ordinary light (o light); n, is the refractive index
of extraordinary light (e light). This is an index ellipsoid, its rotation axis is z-axis.
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There are two kinds of uniaxial crystals: if n, > n,, it is a negative uniaxial
crystal; if n, > n,, it is a positive uniaxial crystal. Figure 3.7 shows a refractive
index ellipsoid of positive uniaxial crystal.

In Fig. 3.7, wave vector k denotes the propagation direction of light wave, the
intersection angle between k and optical axis c is . A cross section passing through
the original point and perpendicular to k intersects with the ellipsoid to form a
ellipse-shape intersecting line. The length of two half axis of the ellipsoid are just
refractive indexes n, and n, corresponding to two orthogonal polarization states.
Visible, the polarization direction of the ordinary light (0 light) is perpendicular to
the plane consisted with the optical axis ¢ and wave vector k; and the polarization
direction of the extraordinary light (e light) is just in that plane.

The refractive index of extraordinary light n, is a function of intersection angle 0
of the optical axis ¢ and the wave vector k, It is not difficult to prove that the
following formula is satisfied:

1 sin?0  cos? 0
e —|— .

m(0)  n g

(3.2.33)

When k is along the optical axis direction, 6 =0 |, ne(OO) =n,; when k is
perpendicular to the optical axis direction, 0 = 90°, 1,(90°) = n, .

We can through adjusting the interaction angle 6 between the crystal optical axis
¢ and the incident light wave vector k to change the refractive index of crystal
n.(0), to lead the frequency doubling effect satisfying the phase matching condition
Ak = 0. This is called as angle phase matching method [3, 4]. Meanwhile, we also
can through varying the temperature of crystal to change refractive index of crystal
ne(0), to realize Ak = 0, this is called the temperature phase matching method.

Now we discuss the so called first phase matching condition, in this condition,
two fundamental frequency lights take the same polarization direction. In general,
the polarization state of fundamental frequency light is selected with higher
refractive index. Namely for negative uniaxial crystal (n, > n,), taking the fun-
damental frequency light as o polarization state, the frequency doubling light as e
polarization state; for positive uniaxial crystal (n, > n,), taking the fundamental
frequency light as e polarization state, the frequency doubling light as o polarization
state.

The phase matching condition for the negative uniaxial crystal is

ng =n2(0p). (3.2.34)

Figure 3.8 draws a refractive index surface diagram in the negative uniaxial
crystal when the phase matching between the fundamental frequency light and the
frequency doubling light are sufficed. The solid line are the o light index ball and
the e light index ellipsoid for the fundamental frequency light at frequency of w; the
imaginary line are o light index ball and the e light index ellipsoid for the frequency
doubling light at frequency of 2 @w. We can see that there is a point of intersection
between the o light index surface of fundamental wave and the e light index surface
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Fig. 3.8 In negative uniaxial z(c) &
axis crystal, the fundamental
frequency light and the
frequency doubling light
matched refractive-index
surface diagram. The solid
line are the o light index ball
and the e light index ellipsoid
for the fundamental frequency
light at frequency ; the
imaginary line are the o light
index ball and the e light
index ellipsoid for the
frequency doubling light at
frequency 2m

of frequency doubling wave, the intersection point corresponded the intersection
angle between the wave vector and optical axis 0, satisfies Eq. (3.2.34), 0,, is just
phase matching angle. In the figure, n;’, n?’ and ng“’, ng‘” are two principal refractive
indexes of the fundamental frequency light and the frequency doubling light,
respectively.

Substituting Eq. (3.2.34) into Eq. (3.2.33), we can obtain the formula of the
phase matching angle of negative uniaxial crystal 0,,:

() (2)

sin? 6,,= .
") ()

(3.2.35)

For example, in negative uniaxial crystal KDP, using the ordinary light of ruby
laser at frequency of 0.6943 um as the fundamental frequency, under the phase
matching condition, the matching angle is 6,, = 50.4°, the extraordinary light of
frequency doubling wave at frequency of 0.3471 um can be obtained.

The phase matching condition of the positive uniaxial crystal is

n2? =n®(0,,). (3.2.36)

Figure 3.9 draws a refractive index surface diagram in positive uniaxial crystal
when the phase matching between the fundamental frequency light and the fre-
quency doubling light are sufficed. Visible, there is an intersection point between
the fundamental wave e light refractive-index surface and the frequency doubling
wave o light refractive-index surface. The intersection point corresponded inter-
section angle between the wave vector and the optical axis 0,, satisfies Eq. (3.2.34),
0, is just the phase matching angle.
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fi(w)

2o n®
n2e=ng(4,)

Fig. 3.9 In positive uniaxial crystal, the fundamental frequency light and the frequency doubling
light matched refractive-index surface diagram. The solid line are the o light index ball and the e
light index ellipsoid for the fundamental frequency light at frequency ®; the imaginary line are the
o light index ball and the e light index ellipsoid for the frequency doubling light at frequency 2w

Substituting Eq. (3.2.36) into Eq. (3.2.33), in same way the possible uniaxial
crystal phase matching angle 6,, formula can be obtain:

20 72_ )2
sin? g, = %) =) (3.2.37)

(n) = (n9)

In above phase matching condition, two fundamental frequency lights take same
polarization direction, we call the first class phase match. In which, the polarization
characteristic of negative uniaxial crustal is denoted by symbol o + 0 — e; the
polarization characteristic of positive uniaxial crustal is denoted by symbol e +
e — o. their phase matching condition are list in the Table 3.2.

Actually, the phase matching condition also exists second class phase matching
scheme, that is taking perpendicular propagation directions of two foundational
frequency lights: one is o light, another one is e light. Its polarization characteristics
for negative uniaxial crystal is o + e — e; for positive uniaxial crystal is o +
e — o. Their phase matching condition is also listed Table 3.2. About the

Table 3.2 Phase matching condition of uniaxial crystal

Crystal type First class phase match Second class phase match
Polarization | Phase matching | Polarization | Phase matching condition
characteristic | condition characteristic
Negative o+e e |n=n2(0,) |[o+o—e |Ln(0,)+ne]=n2"(0n)
uniaxial crystal
quitiye o+e—o0 ”3{0 = n?(0n) e+e —o %[”Z) +n2(0,)] = n(z)‘”
uniaxial crystal
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deduction of second class phase matching condition, reader can refer to the related
reference material, here we do not give unnecessary details.

Except for the uniaxial crystal phase matching condition, there is the biaxial
crystal phase matching condition, if you want to know the knowledge in this aspect,
please also refer to the related reference material.

3.2.4 Experimental Facilities for Second Harmonic
Generation

Figure 3.10 gives several schematic diagrams of typical experimental facilities,
these facilities are composed by three parts: the nonlinear optical crystal, the fun-
damental wave source, and the phase matching system.
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Fig. 3.10 Typical experimental facilities for the optical second harmonic generation a single-pass
mode; b external cavity mode; ¢ intracavity mode
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1. Nonlinear Optical Crystal

Generally people use the artificial growth bulk or flake-like high quality crystal, the
optical axis of crystal relative to the incident fundamental wave has a certain
matching angle. To reduce the reflection loss, it can plate the antireflection coating
on crystal two parallel end surface. According to the different methods of phase
matching, the nonlinear crystal is divided into the following three categories:

(1) Angle tuning phase matching crystal: KDP, ADP, KTP, LilO;, BBO, LBO
etc. Frequency doubling of the incidence laser at the near infrared or visible
wavelength, to produce the visible light or near ultraviolet light, the efficiency
can reach 30 and 50 %.

(2) Temperature tuning phase matching crystal: LiNbO3, KNbO;, Ba,NaNbO5
etc. They have better optical transmission property in the spectrum region
0.4-5um, it can be used to produce near-infrared frequency doubling light, the
efficiency is higher than 50 %.

(3) Semiconductor crystal for producing infrared second harmonic wave, such as
Ag3AsS;, AgGaSe,, CdGeAs,, CdSe, GaSe, etc. These crystals have high
second-order nonlinear susceptibility, in the wide infrared spectrum region
have better transmittance.

2. Fundamental Wave Optical Source

Mostly people adopt the solid pulse lasers as the optical sources, such as Nd-glass
laser, Nd-doped Gamet laser, Ruby laser, etc. The CW solid and liquid laser can
also be used for continuous frequency doubling light output. In order to enhance the
frequency doubling conversion efficiency, the focusing light passing through the
crystal also can be used.

3. Phase Matching System

According to the different nonlinear crystals and experimental conditions, the dif-
ferent phase matching, exciting and coupling methods can be used. Figure 3.10a
shows a usually used the mode that the light beam single-pass through the crystal, it
is suitable to the angle phase matching method. Figure 3.10b showed equipment is
suitable to temperature phase matching frequency doubling crystal, the crystal
inserts into the resonance cavity, let’s lower power fundamental light multiple-pass
through the crystal, to enhance the convention efficiency. It also can insert the
frequency doubling crystal into the fundamental wave laser cavity, as shown in
Fig. 3.10c, because the light intensity inside laser cavity is much stronger than
outputted light intensity outside the cavity, in benefit of enhancement of conversion
efficiency.
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3.3 Optical Sum Frequency, Difference Frequency
and Parameter Amplification

3.3.1 Optical Sum Frequency and Frequency
Up-Conversion

Now we discuss the coupled Eqs. (3.1.28)—(3.1.30), which will be used for the sum
frequency and difference frequency processes. In order to simplify the equations,
we define a set of new light electric field amplitudes A; and nonlinear coefficient x,
which are

AiR) = [ 2E(2) (i=1,2,3), (3.3.1)

W

X(Z) 103 :L_i\/colwﬂm (3.3.2>

2c ninons ¢\ mmng’

where d is the frequency doubling coefficient. So the coupled Egs. (3.1.28)-
(3.1.30) are simplified as

9A,(2)

5 = iDKAS(2)A5(2)e™™, (3.3.3)

aAg(Z) = iDKA3(2)A] (z)e™™%, (3.3.4)
VA

8A83Z(Z) = iDKA|(2)Ay(z)e %, (3.3.5)

where Ak =k, +k, —k; =0.

Now we discuss the sum frequency process. There are three photons at different
frequency joining this process. According to Egs. (3.1.13) and (3.1.14), they satisfy
following the energy and momentum conservation relations, respectively:

w3 = W] + 2, (336)
ky =k +k>. (3.3.7)

The optical sum frequency can be used for the frequency upconversion [5, 6],
that is an effective means to produce shorter wavelength coherent radiation. For
example, using crystal AgzAsS; as a sum frequency crystal, a 1.06-wavelength
YAG laser as the pumping light (w;), to convert the 10.6 pm-wavelength CO,
infrared light (w;) into the 96 pm-wavelength visible light (w3). That is because the
detection of middle and far infrared light must use the refrigerant detector, the
detection of visible light can use the room temperature fast detector.
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Fig. 3.11 Schematic diagram ——z

of the collinear optical sum E(w,)
frequency procesf 2 sum frequency E (&J3 =0 +w2)
EEE——— crystal

E(w,)
—z—

Assuming that the three waves at w;, @, and w3 participated in sum frequency
process collinearly propagate in the nonlinear crystal, all along z-direction, as
shown in Fig. 3.11, we will used coupled Egs. (3.3.3)-(3.3.5) to calculate the
variation of field amplitudes of the sum frequency light (w3;) and the signal light
(1) with the coordinate axis z.

We suppose that the intensity of pump light w, is strong enough, so that its
amplitude does not change in the sum frequency process, i.e., it is a constant:

A, (z) =~ A(0) = constant. (3.3.8)

Thus the three coupled Egs. (3.3.3)—(3.3.5) becomes two. Considering the fre-

quency without degeneration, taking D = 2; and to defied a sum-frequency non-
linear coefficient kgp, it is two times of the original nonlinear coefficient x, i.e.,

Ksr=2K, (3.3.9)

Therefore the two coupled equations for sum frequency process are given by

8A1 (Z)

o, = iKsrA2(0)As (z)e™%, (3.3.10)

Z

6A5 (&) _ isrA; (2)Ay(0)e ™A%, (3.3.11)
Z

We further define gg is the sum frequency gain factor (suppose it is a real
number):

2d w13

gsr = KsrA2(0) = E(0), (3.3.12)

c nins

Under phase matching condition, i.e., Ak =0, Egs. (3.3.10) and (3.3.11) are
simplified to

8A81Z(Z) = iggeAs(2), (3.3.13)
0) _ o a2, (3.3.14)

0z
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Then making derivation of two side of Eq. (3.3.14), and substituting
Eq. (3.3.13) into it, we obtain

d*As(z)

e g5:A3(2) = 0. (3.3.15)

The general solution of Eq. (3.3.15) is
A3(z) = Cy cos(gsrz) + Co sin(gsrz). (3.3.16)

To take z =0 in Eq. (3.3.16), and use boundary condition A3(0) = 0, obtain
C; = 0. Equation (3.3.16) becomes

A3 (Z) = C2 sin(gspz). (3317)

Then we substitute Eq. (3.3.17) into (3.3.14), after derivation, set z = 0 to get
C, = iA;(0). So from Eq. (3.3.16) to obtain

As(z) = iA1(0) sin(gsr2). (3.3.18)
Further substituting Eq. (3.3.18) into (3.3.14), after derivation to obtain
A(z) = A1(0) cos(gsrz), (3.3.19)

To take mode square of above two amplitudes A3(z) and A;(z) respectively, then
add together, we obtain

141 (2)* + 143 (2)P= |41 (0) . (3.3.20)
Using relations
1 , 1 )
Iy = 5 eocmi |Er|"= S eoconAr[ (3.3.21)
1 , 1 )
I; = 5806n3|E3| = 5806w3\A3| ) (3.3.22)
we obtain
1
(w—) I(z) +1i(z) = 1(0). (3.3.23)
3

We can see that because the intensity of incident signal 7 (0) is a constant, the
increase of light intensity I3(z) is the price of the decrease of light intensity /;(z).

From Eq. (3.3.19) to obtain |A; |2, then use Egs. (3.3.21) and (3.3.23), we obtain
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Fig. 3.12 In the phase match
sum frequency process the 1) I2(2)
curves of variation of
intensities of two light beams
at w; and w3 with the distance
8SFZ
I5(2)
I1(z)
I,(0)
0 e
% * }Qg' 8 Z
w3 )
L(z) = o (0) sin®(gsrz). (3.3.24)
1

If the length of crystal is L, the conversion efficiency of sum frequency is

n= = sin®(gsrL). (3.3.25)
Y

Figure 3.12 shows that in sum frequency process, under phase matching con-
dition, the curves of variation of light intensities of two beams at frequency w; and
w3 with distance z.

Figure 3.12 can be explained as follows:in the beginning the intensity of light
wave at o drop off gradually, its energy transfers to the light wave at w3 . When the
propagation distance increases to gsrz = 7/2, the conversion efficiency reaches to
maximum. In this case, 7 > 1, that is due to except all 1;(0) converts to I3(z) at this
point, actually there is a small part light coming from pump light /(z) at o, . It can be
proved that the sum of three light intensities remains unchanged, i.e., I} + L + Iz =
constant. After the intensity of light wave at w3 reaches the peak, it will pass through
the difference frequency with the pump light at w, to send its energy back to the light
at m; = w3 — w; . Therefore, the periodic oscillation situation will appear.

If the intensity of pump light I,(z) at frequency w, is very small, from gain
factor definition Eq. (3.3.12) we can know that gg is also very small, so in the
efficiency Eq. (3.3.25) we have

sin®(gsrL) ~ (gsrL)’, (3.3.26)
This is the case of small signal approximation. Therefore we obtain the fre-

quency conversion efficiency formula in the case of the small signal approximation
and Ak =0:
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29272
w3 5 5 8w3d L’L(0)
n~—ggpl” = .

3.3.27
W gonnanzc3 ( )

It can be proved, in the case of the small signal approximation and A k # 0, the
frequency conversion efficiency formula becomes

8w3d*L*1,(0)

goninansc3

32

n =~ w—gSFL2 = sinc?(AkL/2). (3.3.28)
1

We can see that Eq. (3.3.28) is only an oscillation factor more than Eq. (3.3.27).

3.3.2 Optical Difference Frequency and Frequency
Down-Conversion

In the optical difference frequency process, according to the energy and momentum
conservation laws, the frequencies and wave vectors are required to satisfy the
following relations:

Wy = w3 — 1, (3.3.29)
k> = ks — k. (3.3.30)

Figure 3.13 is a schematic diagram of the optical difference frequency process in
the z-direction collinear propagation case. To utilize this process can realize fre-
quency down-conversion: using the difference frequency of two visible laser (w;
and m;) to obtain an infrared laser (w; = w3 — w;) output. For example using
LiNbO;3 as a difference frequency crystal, and a 532 nm-wavelength YAG fre-
quency doubled laser (w3) as a pump laser, it makes difference frequency with a
tunable dye laser (w;) with the wavelength range of 575-650 nm, the result of
difference frequency can obtain a tunable infrared laser (w;) output with the
wavelength range of 3.40-5.65 pum [7].

Assuming that the intensity of the pump light at frequency w3 is strong enough,
so that its intensity can be regarded do not change in the difference frequency
process, we have

As(z) = A3(0), (3.3.31)
Fig. 3.13 Schematic diagram p——z
of optical difference E(®,) difference frequency E(@y=03-0,)
frequency or frequency S— erystal —
down-conversion process E(w;)




76 3 Optical Three-Wave Coupling Processes

Suppose A3(0) is a real number, and taking D = 2 for the difference frequency
process, then three coupled Egs. (3.3.3)—(3.3.5) become two equations:

P ioras (s 0)™, (3332)
Z
’ |
Pl corai (s 000 (3333)
Z

where kpp is the nonlinear coupling coefficient of difference frequency, the rela-
tionship between xpr and x is

Kpr = 2K. (3334)

Under the case of Ak = 0, Egs. (3.3.32) and (3.3.33) are simplified as

MG _ g s (2), (3:3.35)
0z
A2(Z) . %
D i at(0) 3
e e (3.3.36)
Z

where gp- is defined as the gain coefficient of difference frequency:

2d  Jwimo

gpr = KprAs(0) = E;(0). (3.3.37)

C niny

Making derivation of two side of Eq. (3.3.35), and substituting the conjugate
Eq. (3.3.36) into it, then we obtain

d*A, (z)

e g5rA1(z) = 0. (3.3.38)

The general solution of Eq. (3.3.38) is
A|(z) = Dy sinh(gprz) + D, cosh(gprz). (3.3.39)

To utilize the bounder condition at z=10: A,(0) =0 and A;(0) # 0, from
Egs. (3.3.39) to (3.3.36), we obtain the following field amplitudes:

A1(z) = A1(0) cosh(gprz), (3.3.40)
A3(z) = —iA;(0) sinh(gprz). (3.3.41)

Figure 3.14 draws the variation of two field amplitudes with z. from the figure
we can see that the difference frequency generation field at frequency w; and the
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Fig. 3.14 Characteristics of
the variation of field
amplitude |A;(z)| and |A>(2)|
with z

Fig. 3.15 Explanation of
difference frequency
characteristics: a the signal
filed w; excites to generate
the difference frequency filed
w; = w3 — wp; b the
difference frequency filed w;
excites to generation the new
signal field w,
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signal field at «; monotonously increase at the same time in the nonlinear inter-
action, it is total different with the sum frequency appeared oscillation.

Following figure of the energy level transition is used for explaining the reason
of the difference frequency generation field and the signal filed monotonously

increase at the same time.

Figure 3.15a shows the signal field w; excites to generate the difference fre-
quency field w, = w3—w;, Fig. 3.15b shows the difference frequency field w,
excites to generate the signal field w;, the new signal field w; again enhances the
generation of the new difference frequency field w,, such repetition, to lead the two
fields exponentially growth.

From Eqgs. (3.3.40) to (3.3.41) we obtain the amplitude square formulas:

A1 (2)[*= |A1(0)[*cosh?(gz), (3.3.42)

|A2(2)|*= A1 (0)|*sinh?(gz). (3.3.43)

If the length of crystal is L, from Eq. (3.3.43) and relationships

1 1
Il = < &opcny |E1 |21 58()6(1)1 ‘Al

2
> %, (3.3.44)

1 1
12 = —8001’12|E2|2: Esoccuz\A2|2, (3345)

2
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we obtain the difference frequency conversion efficiency formula under Ak =0 :

b(L
p = L ):%sinhz(gDpL). (3.3.46)

In small signal case, the pump light £3(0) is small, from Eq. (3.3.37) gpr is also
small, so that in Eq. (3.3.46) we have

sinh®(gprL) ~ (gprL)’, (3.3.47)

Therefore, under the small signal and Ak = 0 case the difference frequency
conversion efficiency is

) 8w2d?**15(0
N~ _2(gDFL)2 — 273()

3.3.48
(OF] 80n1n2n3c3 ( )

3.3.3 Optical Parametric Amplification

In the process similar to the difference frequency, the pump light energy gradually
transfers to the signal light with the increase of propagation distance, leads the
signal light to amplify, and in the same time generates the idler frequency light, this
process is similar to the parametric amplification in microwave waveband, so it is
called the optical parametric amplification (OPA) [8]. Suppose that the pump light
at the frequency of w3 = w, with the amplitude E3 = E,; the signal light at the
frequency of w; = w, with the amplitude E| = Ej; the idler light at the frequency
of w, = w; with the amplitude E, = E;, the optical parametric amplification pro-
cess is shown in Fig. 3.16.

We can regard the gain coefficient of difference frequency gpr as the gain
coefficient of parametric amplification g, which is described by Eq. (3.3.37).

In the beginning, 7;(0) # 0 and 1,(0) = 0. If the pump light filed E5(0) is very
strong, we have gz > > 1, so that

8 _ o8t ] 82 | o8z
e e et +e
————— =~ —¢%, and coshgz = —

inh oz —
sinh gz 5 2

b

1
%2
Ze

then Eqs. (3.3.42) and (3.3.43) becomes

Fig. 3.16 Schematic diagram E (o)  — E(ws)

of optical parametric — ™| parameter | E(&p)

amplification process crystal E(,)

e 1 — | (0= 0p-05)

E (@p)
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1

A1 () 4 141 (0) e, (3.3.50)
1

[42(2) P~ Z\A1(0)|2e2ﬂ. (3.3.51)

That means that in this case, the intensity of idler light is equal to the intensity of
signal light.

According to Eq. (3.3.50), the magnification of parametric amplification M for
signal light is defined as

_LE_AEP 1 e
ThO) f s e

Because the gain coefficient of parametric amplification g is proportional to the
pump light filed amplitude E;(0), form Eq. (3.3.45) we can see that the magnifi-
cation of parametric amplifier exponentially enhances with increase of E3(0). Due
to g is proportional to d o< z?, so that the second-order nonlinear susceptibility
decides the ability of parametric amplification.

3.3.4 Comparison of Four Kinds of Three-Wave Mixing
Processes and Experimental Facilities

1. Comparison of Characteristics of Four Kinds of Three-Wave Mixing
Processes

Previous we introduced 4 kinds of three-wave mixing processes: the second har-
monic generation (SHG), the sum frequency generation (SFG), the difference fre-
quency generation (DFG) and the optical parametric amplification (OPA), as shown
in Fig. 3.17.

() (b) f
fundamental Frequency signal light @, sum frequency
frequency light @y . doubling light @4 R . light @24
—————— = nonlinear crystal |———®=— nonlinear crystal
E———
pump light @,
W= 20, 0= 0, + o,
(C) r (d) y : amplified signal
signal light @ difference signal light @, light @,
— frequency light @, —_— =] i f——————————
nonlinear crystal | g nonlinear crystal
——— ] —_—— L e
pump light @, pump light @, idlelr_ fLeouency
ight @,
@, = w,- o, W, = @,- @,

Fig. 3.17 Three-wave mixing processes: a second harmonic generation; b sum frequency
generation; ¢ difference frequency generation; d optical parametric amplification
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The second harmonic is a particular case of the sum frequency w; = w; + wy,
both are belong to the case that the energy of two low-frequency light fields transfer
to that of a high-frequency light field, i.e., the frequency up-conversion; the optical
parametric amplification is particular case of the difference frequency, both are
belong to the case that the energy of two high-frequency light fields transfer to that
of a low-frequency light field, i.e., the frequency down-conversion. The difference
of both is that the difference frequency pays attention to the generation of the
difference frequency light at w, = w3 — w;, however the optical parametric
amplification pays attention to the amplification of the signal light at o, (the light at
w, regards as the idler-frequency light). For the three processes: the frequency
doubling, the sum frequency and the difference frequency, the power conversion
efficiency # needs to be studied. For the parametric amplification, the magnification
M is instead of u. The pump light is different in above 4 different processes: in
second harmonic process, it is the fundamental frequency light at w;; in sum
frequency process, it is the light at w,; in difference frequency process and para-
metric amplification process, it is the light at ws.

2. Experimental Facilities of Three-Wave Mixing Process

Above four kinds of optical three-wave mixing processes have similar generation
mechanism, the requirements of the nonlinear crystal materials and the phase
matching condition are the same.

The common requirements of nonlinear crystals are (1) piezo-electric crystal
without center symmetry; (2) the phase match in certain way is satisfied, for
example the angle match or the temperature match. The propagation directions of
three waves can be different, but should satisfy the momentum conservation con-
dition; (3) the crystal materials have good optical transparency for the two incident
lights and one generated light.

To three-wave mixing experimental systems we have following same require-
ments: (1) two incident light sources at different frequencies; (2) the facilities to
realize angle match or temperature match; (3) the dispersion element and absorption
element (prism, grating and filter, etc.) used for separating the transmitted lights at
different frequencies.

As an example, Fig. 3.18 gives a typical three-wave mixing (such as sum fre-
quency) experimental setup.

optical axis

laser 1 polarizer / dispersion element

— K

i L—— 1§ l ‘
| 1 .
laser 2 polarizer i i i
| @ nonlinear crystal 2
] ; {E 2y Y 0,+ 6,

I—TF

Fig. 3.18 Typical experimental setup for three-wave mixing (sum frequency)
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3.4 Optical Parametric Oscillator

Because the amplification factor of the single pass through the nonlinear crystal in
the optical parametric amplification is small, in order to enhance the energy con-
version efficiency, we can place the parametric amplifier into a resonant cavity, the
lights at frequency @, (and ®;) oscillates in the cavity to be enhanced, when
the energy of pump light at frequency w), over a certain threshold value, the gain
of the nonlinear interaction overcomes the intracavity loss, then a stable light beam
at frequency of w; (and w;) can be outputted from the cavity, this device is called
the optical parametric oscillator (OPO) [9, 10].

In comparison of the parametric oscillator with the laser oscillator, the similar-
ities is that both can generate the coherent light output; the difference is that the gain
in the cavity of optical parametric oscillator is generated by the nonlinear effect, not
by the population inversion; and the gain is in one way, the returning light cannot
be enhanced, only be wastage.

3.4.1 Threshold Value Equations of Optical Parametric
Oscillation

In order to deduce the optical parametric oscillation threshold value equation,
suppose the length of crystal is L, two ends of crystal is fabricated to be spherical
mirrors with the equal radius of curvature, their amplitude reflectivity are r| and r,
for the signal light at frequency w; and the idler light at frequency w,, respectively;
the intensity reflectivity are R, = |r;|* and R, = |r,|*, respectively; and the pump
light at frequency wj3 is transparent, as shown in Fig. 3.19.

Suppose the pump light intensity in the cavity is independent of propagation
distance, the signal light electrical field and the idler light electrical field on the
plane at any position z in the cavity can be expressed by a matrix A(z) :

~ etkiz
<
AR = ‘ O (3.4.1)
nonlinear crystal
_..'wl,wz
— w3 (pump light)
S K (71,72
L

Fig. 3.19 Schematic diagram of the parametric oscillator with crystal structure
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Fig. 3.20 The signal light
and the idler light satisfy the
self-consistent condition

Considering that under the excitation of pump light w3, at z = 0 the spontaneous
radiation of the signal light at w; and the idler light at w, are produced in the
meantime, namely A;(0) # 0 and A,(0) # 0, the solutions of coupled Egs. (3.3.32)
and (3.3.33) in difference frequency process are

A1(2) = A41(0) cosh(gz) +iA3(0) sinh(gz), (34.2)
A5(z) = A5(0) cosh(gz) — iA;(0) sinh(gz). (3.4.3)
The optical field amplitude at z = L is

<~ | eMlcosh(gl)  ie*Esinh(gL) |+
A= ie kL sinh(gL) e** cosh(gL) A(0). (3.4.4)

The stable oscillation requires satisfying the self-consistent condition that after
the light propagation for a round trip in the cavity A(z) is invariable, as shown in
Fig. 3.20.

At the reference plane e, it should have

A.(z) = Au(2), (3.4.5)

A,(z) is obtained from A,(z) multiplies the following 4 matrixes: the parametric
amplification matrix for the light propagation from left to right, the reflection matrix
at the end of right, the propagation matrix from right to left without gain, and the
reflection matrix at the end of left, namely

i |n Offeft 0 (i 0 efitcosh(gL)  ie'itsinh(gL) |
710 || 0 el 0 r5|| —ie *Lsinh(gL) e *lcosh(gL)|
(34.6)
That is
. 2 cosh( el )ei2bL 22 Ginh( oLkl |- .
A, —| rreoshel)e™ o insinh(eL)e™ g yA, (3.47)
—i(r})” sinh(gL)e " (r})” cosh(gL)e "
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The following self-consistent condition should be satisfied:
A, =A,=1A,=MA,
or
(M -DA, =0, (3.4.8)

where I is an unit matrix. If fla has nonzero solution, it requires the determinant
M —1| =0, so we obtain

[} cosh(gL)e - — 1][(r3)* cosh(gL)e 2k — 1] = #3(r;)? sinh?(gL)e 2k —k)L,
(3.4.9)

Equation (3.4.9) is called the parametric oscillation threshold equation, i.e. the
starting oscillation condition of the parametric oscillator.

There are two kinds of optical parameter oscillators: one parameter oscillator
allows signal light (wy) and idler light (w;) together oscillation and output, which is
called the Double Resonant Oscillator (DRO); another one only allows the signal
light (wy) oscillation and output, which is called the Singly Resonant Oscillator
(SRO). Below we will introduce their working principles respectively.

3.4.2 Double Resonant Parametric Oscillator

Figure 3.21 shows the schematic diagram of the double resonant oscillator, in
which the three light beams are collinear. The nonlinear crystal is inserted into the
optical cavity consisted of two spherical reflectors. The signal light and the idler
light are two longitudinal modes of resonant cavity, and the resonant cavity for the

laser medium nonlinear crystal
®p o,
- _ oy
% h
pump laser paremeter oscillator

-R]_s =~1 st <]

Rli =1 R2i <]

Ryp=0 Ryp =0

Fig. 3.21 Schematic diagram of collinear double resonant oscillator



84 3 Optical Three-Wave Coupling Processes

pump light is transparent. So that the reflectivity of two spherical reflectors at front
and back of the cavity for the signal light, the idler light and the pump light are
Riy~1,R; =1, Ry, =0 and Ry <1, Ry; <1, Ry, = 0, respectively.

Considering two cavity mirrors have the reflection loss and phase shift at the
same time for the two lights at w;=w; and wr,=w;, we set

12 =Rie (3.4.10)
() = Ry, (3.4.11)

where ¢, and ¢, are two cavity mirrors induced phase shifts. Substituting
Egs. (3.4.10) and (3.4.11) into Eq. (3.4.9), we obtain the threshold equation:

[R) cosh(gL)e! =90 _ 1][R, cosh(gL)e {*b=#2) _ 1

34.12
= R\ R, sinh?(gL)e 1P —k)L=(#2=¢,)] ( )

When satisfying the phase condition:
2L =y =2mn (m, nis the integer), (3.4.13)

2k L — ¢y = 2nm

the exponents in two factors on left side of Eq. (3.4.12) are positive real numbers,
in this case the corresponding gain is minimum, i.e., the threshold gain is g = g;.
The Eq. (3.4.13) denoted two light beams at frequency of w; and w, are laser
longitudinal modes of the resonant cavity.

Using cosh?x —sinh®>x = 1 and phase condition Eq. (3.4.13), the threshold
Eq. (3.4.12) becomes

(Ry +Ry) cosh(giL) — RiR, = 1. (3.4.14)

When g;L is smaller, After series expansion of cosh(g.L) and approximately
taking the front two items, we obtain

L 2
cosh(gL) ~ 1+ (8‘2) , (3.4.15)

Substituting Eq. (3.4.15) into Eq. (3.4.14), we obtain

2 _2(1-Ri)(1-Ry)

(3.4.16)
Ri+R;

(gL)
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Assuming Ry =~ R, ~ 1, R; + R, ~ 2, then
(aL)” = (1 —Ry)(1 — Ry). (3.4.17)

Therefore, the threshold condition of double resonant parametric oscillator is

(&L)pro = V(1 —Ri)(1 — Ry). (3.4.18)

Substituting Eq. (3.4.18) into Eq. (3.3.48) for the difference frequency conver-
sion efficiency, then we obtain the pump light intensity threshold of double resonant
parametric oscillator:

3

Eoninansc
I =—"7"=(1—-R|)(1 — Ry). 3.4.19
<3t)DRO 8w1w2d2L2< 1)( 2) ( )

As an example, the LiNbOj; crystal based double resonant parametric oscillator,
to take the single pass loss of cavity is 2%, A} =4, =1pum,
(1-R)=(1-Ry)=2x10"2, d=5x10"2m/V, n; ~n,~n3=~2, the
estimated oscillation threshold intensity is I3 = 1.2 x 10° W/cm?. It is equiva-
lently the output intensity of a common CW laser.

Although the pump light intensity threshold of the double resonant parametric
oscillator is lower, its requirement for the stability of the resonant cavity is very high,
and the length of cavity is easy effected by temperature variation and vibratory.

3.4.3 Singly Resonant Parametric Oscillator

The use of non-collinear phase matching technology to separate the directions of
three light beams is shown in Fig. 3.22. It only allows the wave vector k; of signal
light at w, along the cavity axis direction, and making the signal light resonance
with the resonant cavity. But the k,, of pump light and k; of idler light are not along
the cavity axis direction. The wave vectors of three light beams must satisfy fol-
lowing phase matching condition:

k, = ks +k;. (3.4.20)
Now we start from the threshold Eq. (3.4.9) to deduce the threshold condition of
the singly resonant parametric oscillator. For the singly resonant parametric oscil-

lator, r; = 0, Eq. (3.4.9) is simplified as

17 cosh(gL)e®t = 1. (3.4.21)
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pump light

Wy

nonlinear crystal

Wi wWp

Fig. 3.22 Schematic diagram of non-collinear phase match in the singly resonant parametric
oscillator

Setting rf = Rie” ™, and substituting it into Eq. (3.4.21), then we obtain the
phase condition:
2kiL — ¢; = 2mm, (3.4.22)
Equation (3.4.21) then is
R; cosh(gL) = 1. (3.4.23)

Because g,L is very small, Eq. (3.4.23) can approximately simplify to

2L2
R (1 + g‘T> =1 (3.4.24)

Taking R; = 1, then

(&L)sro = V2(1 — Ry). (3.4.25)

We substitute Eq. (3.4.24) into Eq. (3.3.48) for the difference frequency con-
version efficiency, then obtain the pump light intensity threshold of singly resonant
parametric oscillator:

807111121136‘3

(B)sgo = Wz(l —Ry). (3.4.26)
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To compare the pump light threshold intensity formula (3.4.26) for the singly
resonant parametric oscillator and the formula (3.4.19) for the double resonant
parametric oscillator, we obtain

(I)sro _ [(8L)sk ]2 2
(Isr)ZRZ - [(gtL)lS)RZ]Z T1-R (3.4.27)

where 1 — R, can be regard as the cavity mirror loss of idler light at frequency ;.
If the loss is 2 %, then the threshold of singly resonant parametric oscillator is
higher than the threshold of double resonant parametric oscillator about 100 times.
Even though the starting threshold of singly resonant parametric oscillator is higher,
however its requirement in respect of resonant cavity stability is much lower.

Optical parametric oscillation (OPO) can be used to obtain wavelength tunable
laser in a wide wavelength region. It not only can obtain the visible and infrared
steady-state continuous wave, but also can obtain the picosecond or femtosecond
ultrashort pulse laser, it has extensive application in the optical spectrum technol-
ogy. There are many kinds of nonlinear crystal used for OPO, more good crystals
mainly include KTP, BBO and LBO, they have not only larger second-order
nonlinear coefficient and much higher optical damage threshold, but also wide
transparent wavelength range, for example, BBO can reach 2500-190 nm; LBO
can reach 3000-160 nm.

Review Questions of Chapter 3

1. Please deduce slowly-varying-amplitude approximation wave equation for
describing the propagation of the monochromic plane wave in anisotropic
medium and the three-wave mixing equations for describing the second-order
nonlinear optics processes.

2. In fundamental wave small signal approximation condition, from three-wave
mixing equations, please find out the frequency doubling wave intensity con-
version efficiency formula. In order to enhance the frequency doubling effi-
ciency, what measures you can adopt?

3. In high fundamental wave consumption condition, from three-wave mixing
equations, please find out the law of variation of the frequency doubling field
amplitude and fundamental frequency field amplitude with the propagation
distance, and find out frequency doubling wave intensity conversion efficiency
formula.

4. When the frequency doubling light and fundamental frequency light collinearly
propagate, what is the refractive-index phase matching condition of frequency
doubling crystal? Please discuss the phase matching conditions of negative
uniaxial crystal and positive uniaxial crystal in the first- class phase matching
condition and the second-class phase matching condition.

5. From three-wave mixing equations to deduce the coupling equations between
the sum frequency light field and the signal light field, and the intensity con-
version efficiency formula.
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. From three-wave mixing equations to deduce the coupling equations between

the difference frequency light field and the signal light field, and the intensity
conversion efficiency formula.

What is optical parameter amplification? Please deduce the magnification for-
mula of parameter amplification. The parameter amplification process has what
different physical meaning in comparison with the sum frequency and difference
frequency processes?

What is optical parametric oscillator? Please discuss the working principles of
the double resonant parametric oscillator and the singly resonant parametric
oscillator, please deduce the pump light intensity threshold formula of these two
parameter oscillators, and point out the advantages and disadvantages of both
parameter oscillators.
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