
Chapter 2
Polarization Theory of Nonlinear Medium

This chapter starting from the Maxwell’s equations deduces different forms of
nonlinear wave equations for the light propagation in the isotropic and anisotropic
nonlinear mediums, and in the time and frequency domains; gives the
frequency-domain expressions of the polarization and susceptibility of the nonlinear
medium; defines the degenerate factor of polarization; introduces the symmetries of
nonlinear susceptibility; discusses the relationship between the real part and the
imaginary part of susceptibility (K–K relation); points out that the physical
meanings of the real part and the imaginary part of third-order nonlinear suscep-
tibility are the nonlinear refractive index and nonlinear absorption coefficient
respectively; finally introduces the two kinds of unit systems in nonlinear optics.

2.1 Wave Equations of Nonlinear Medium

2.1.1 Maxwell’s Equations for Nonlinear Medium

Under the action of the laser, a medium appears the nonlinear optical effect, which
is called the nonlinear medium. When a light wave, as an electromagnetic wave,
propagates in the nonlinear medium, it obeys the law depended on the Maxwell
equations, in general which can be written as

r� E ¼ � @B
@t

; ð2:1:1Þ

r �H ¼ @D
@t

þ J; ð2:1:2Þ

r � D ¼ q; ð2:1:3Þ
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r � B ¼ 0: ð2:1:4Þ

It also has the following matter equations:

D ¼ e0E þ P, ð2:1:5Þ

B ¼ l0ðH þ MÞ; ð2:1:6Þ

J ¼ rE; ð2:1:7Þ

where E and H are denoted the electric field strength and the magnetic field
strength, respectively; D and B are denoted the electric induction strength and the
magnetic induction strength, respectively; P and M are denoted the electric
polarization and magnetic polarization, respectively. For non-ferromagnetic mate-
rial, the magnetization phenomenon is very week, we can let M ¼ 0; e0 and l0 are
denoted the vacuum electric coefficient and the vacuum permeability, respectively;
r is the conductivity, strictly speaking, it is a second-order tensor in the anisotropic
medium, here approximately is a scalar; J is the conduction current density; q is the
free charge density, both can be connected each other through the law of conser-
vation of charge:

r � J þ @q
@t

¼ 0: ð2:1:8Þ

For the metal and semiconductor, the conduction current density J and the free
charge density q these two quantities cannot be neglected, but for the insulator
medium, we can assume they are inexistence, then do not consider Eq. (2.1.8).
Because the conductivity r is related to the absorption, assuming the linear
absorption coefficient is a, and then we have relationship a ¼ l0rc=n, so
Eq. (2.1.7) should be reserved.

If a strong light (laser) acts on the nonlinear medium, the relationship between
P andE is nonlinear, themedium inducedP can be spread out into a power series ofE:

P ¼ e0v
ð1Þ � E þ e0v

ð2Þ : EE þ e0v
ð3Þ..
.
EEE þ � � � ; ð2:1:9Þ

where vðnÞ is n-order electric susceptibility (n ¼ 1; 2; 3; . . .Þ, which is a n þ 1-order
tensor.

The polarization P can be divided into the linear and nonlinear two parts. The
nonlinear part is just the sum of high-order terms of polarization, which is called as
nonlinear polarization noted by PNL, that is

PNL ¼ e0v
ð2Þ : EE þ e0v

ð3Þ..
.
EEE þ . . . ¼ Pð2Þ þ Pð3Þ þ � � � : ð2:1:10Þ
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Then Eq. (2.1.9) can be expressed as

P ¼ e0v
ð1Þ � EþPNL: ð2:1:11Þ

Substituting Eq. (2.1.11) into Eq. (2.1.5), we obtain

D ¼ e0Eþ e0v
ð1Þ � EþPNL ¼ e � EþPNL; ð2:1:12Þ

where

e ¼ e0ð1þ vð1ÞÞ ð2:1:13Þ

is the linear dielectric coefficient; in which vð1Þ is linear susceptibility. In the ani-
sotropic medium, vð1Þ and e are complex-number second-order tensors. Here we
only consider the electric dipole moment approximate, and neglected the action of
the electric quadrupole moment and the magnetism dipole moment.

Therefore, Maxwell equations in anisotropic, nonlinear, nonmagnetic medium
can be simplified [1] as

r� E ¼ �l0
@H
@t

; ð2:1:14Þ

r �H ¼ @D
@t

þ rE; ð2:1:15Þ

D ¼ e � EþPNL: ð2:1:16Þ

2.1.2 Time-Domain Wave Equation in Anisotropic
Nonlinear Medium

In both sides of Eq. (2.1.14) carrying on r� operation, then substituting
Eq. (2.1.15) into it, and using Eq. (2.1.16), finally we obtain

r�r� Eþ l0r
@E
@t

þ l0
@2e � E
@t2

¼ �l0
@2PNL

@t2
: ð2:1:17Þ

This is wave equation for describing the transportation of the light wave in the
anisotropic nonlinear medium. In comparison with the linear wave equation, this
equation is only added an item on the right side, equivalent to exist a secondary
wave source related with polarization PNL. The second item on the left is associated
with the absorption loss of the medium.
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Suppose the medium is lossless, i.e., r ¼ 0, and using the formula c ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0e0

p
,

then Eq. (2.1.17) can be written to

½r � ðr�Þþ 1
e0c2

@2

@t2
e��Eðr; tÞ ¼ � 1

e0c2
@2

@t2
PNLðr; tÞ: ð2:1:18Þ

This is time-domain wave equation in the non-absorption anisotropic nonlinear
medium.

The light field strength E and nonlinear polarization PNL in Eqs. (2.1.17) and
(2.1.18) are the function of the time and position. In order to solve the equation and
find the optical field strength E, we mast firstly find out the nonlinear polarization
PNL.

2.1.3 Time-Domain Wave Equation in Isotropic Nonlinear
Medium

Assuming that the nonlinear medium is an non-absorption, homogeneous, isotopic
medium, in Eq. (2.1.18) r � E ¼ 0, then r�r� E ¼ rðr � EÞ�r2E ¼ �r2E;
the original e is a tensor, if the light wave with the amplitude of E is a plane wave
and a transverse wave, its component paralleled to propagation direction can be
neglected, so the tensor e can be written to scalar quantity e. Using formula
n ¼ ffiffiffiffiffiffiffiffiffi

e=e0
p

, thus Eq. (2.1.18) becomes

r2Eðr; tÞ � n2

c2
@2

@t2
Eðr; tÞ ¼ 1

e0c2
@2

@t2
PNLðr; tÞ: ð2:1:19Þ

This is a time-domain wave equation for the plane light wave propagates in a
non-absorption and isotopic nonlinear medium, which is an inhomogeneous
second-order differential equation, it is difficulty to solve, in general, it needs
approximately simplification treatment, the slow amplitude approximation is an
used way. By using this method, the second-order differential equation will become
a first-order differential equation.

In order to simplify, assuming a monochromic plane wave field propagates along
z-direction, and the light field strength and the nonlinear polarization are denoted as
a product of amplitude factor and phase factor, respectively:

Eðr; tÞ ¼ Eðz; tÞeiðkz�xtÞ; ð2:1:20Þ

PNLðr; tÞ ¼ PNLðz; tÞeiðk0z�xtÞ: ð2:1:21Þ
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Substituting Eqs. (2.1.20) and (2.1.21) into Eq. (2.1.19), in which the various
items have following differential coefficients of Eðz; tÞ and PNLðz; tÞ, respectively:

r2Eðz; tÞ ¼ @2

@z2
þ i2k

@

@z
� k2

� �
Eðz; tÞj j

� �
eiðkz�xtÞ; ð2:1:22Þ

@2

@t2
Eðz; tÞ ¼ @2

@t2
� i2x

@

@t
� x2

� �
Eðz; tÞj j

� �
eiðkz�xtÞ; ð2:1:23Þ

@2

@t2
PNLðz; tÞ ffi �x2 PNLðz; tÞj jeiðk0z�xtÞ: ð2:1:24Þ

Suppose the variation of field strength is very slow in the space distant within the
scope of light wavelength and within the time scope of optical frequency; i.e.,
satisfy the following space and time conditions of the slowly varying field ampli-
tude approximation [2]

@2Eðz; tÞ
@z2

����
����\\ k

@Eðz; tÞ
@z

����
���� and @2Eðz; tÞ

@t2

����
����\\ x

@Eðz; tÞ
@t

����
����: ð2:1:25Þ

Substituting Eqs. (2.1.22)–(2.1.24) into Eq. (2.1.19), using the slowly varying
amplitude approximation condition of Eq. (2.1.25), omitting the items with
second-order differential coefficients for the space and time, and using k ¼ ðx=cÞn
and v ¼ c=n, therefore, we obtain the following Eq. [3]:

@Eðz; tÞ
@z

þ 1
v
@Eðz; tÞ

@t
¼ ix

2e0cn
PNLðz; tÞeiDkz; ð2:1:26Þ

where Dk ¼ k0 � k, k and k0 are the wave vectors of original light field and
polarization field, respectively. Equation (2.1.26) is the time-domain wave equation
when the monochromic plane light wave propagates in non-absorption and isotopic
nonlinear medium, and the optical field strength Eðz; tÞ satisfies the space and time
slowly varying amplitude approximation condition. If the light wave is a continuous
wave, or a light pulse with a wide pulse width, in Eq. (2.1.26) v ¼ c=n is the phase
velocity of light wave; if the light wave is a short pulse (for example is a picosecond
pulse), it is not a monochromic wave, we can regard as a wave packet, the form of
time-domain nonlinear wave equation is same as Eq. (2.1.26), in which optical field
amplitude Eðz; tÞ should express as an integral of time. In this case, the group
velocity of wave pocket should denoted by v ¼ dx=dk.
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2.1.4 Frequency-Domain Wave Equation in Anisotropic
Nonlinear Medium

The anisotropic-medium time-domain nonlinear wave Eq. (2.1.18) can be changed
to frequency-domain formation. For this purpose we should pass through Fourier
transform, to spread Eðr; tÞ and PNLðr; tÞ into the sum of multiple monochromic
plane waves, and write each monochromic wave to be the product of amplitude and
phase two factors, then we have

Eðr; tÞ ¼
X
i

Eiðki;xiÞ ¼
X
i

Eie
iðkir�xi tÞ; ð2:1:27Þ

PNLðr; tÞ ¼
X
n� 2

PðnÞðr; tÞ ¼
X
n� 2

X
i

PðnÞ
i ðk0i;xiÞ

¼
X
i

PNL
i ðk0

i;xiÞ ¼
X
i

PNL
i ðk0

i;xiÞeiðk
0
i r�xitÞ;

ð2:1:28Þ

where x is the angular frequency of light wave, k and k0 are wave vectors of the
light field and the polarization field of the monochromic plane wave, respectively.
To substitute Eqs. (2.1.27) and (2.1.28) into Eq. (2.1.18), and omit the summation
mark and ordinal number i, we can obtain

½r � ðr�Þ � x2

e0c2
e��Eðk;xÞ ¼ x2

e0c2
PNLðk0;xÞ: ð2:1:29Þ

This is the frequency-domain wave equation for the monochromic plane wave
propagating in a non-absorption anisotropic nonlinear medium.

2.1.5 Frequency-Domain Wave Equation in Isotopic
Nonlinear Medium

Assuming that the medium is isotopic and homogeneous; E(k;xÞ is denoted the
light field strength of the monochromic plane wave, which is a transverse wave, i.e.,
the component paralleled to K can be neglected, so that in wave Eq. (2.1.29)
r � E ¼ 0, and r�r� E ¼ �r2E, the tensor e can be written to the scalar e,
further using the relations k ¼ k0n, k0 ¼ x=c and n ¼ ffiffiffiffiffiffiffiffiffi

e=e0
p

, then we obtain

r2Eðk;xÞþ k2Eðk;xÞ ¼ � k20
e0
PNLðk0;xÞ: ð2:1:30Þ

This is frequency-domain wave equation for the monochromic plane wave
propagating in a non-absorption isotopic nonlinear medium. This is an
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inhomogeneous second-order differential equation, it is difficult to directly solve.
We can take a simplified deal with by using the slowly varying amplitude
approximate method as follows.

Considering that the monochrome plane wave propagates along z-direction, its
amplitude varies with z, but no change with time. The light field strength and
nonlinear polarization are respectively denoted by

Eðk, xÞ ¼ Eðz, xÞeiðkz�xtÞ, ð2:1:31Þ

PNLðk;xÞ ¼ PNLðz, xÞeiðk0z�xtÞ. ð2:1:32Þ

where k and k
0
are wave vectors of the original light field and polarization field

respectively. Eðz, xÞ and PNLðz, xÞ denote the field amplitudes and nonlinear
polarization respectively. Substituting Eqs. (2.1.31) and (2.1.32) into Equation
(2.1.30), the first item of left of Eq. (2.1.30) is

r2Eðz;xÞ ¼ @2

@z2
þ i2k

@

@z
� k2

� �
Eðz, xÞeiðkz�xtÞ: ð2:1:33Þ

So the items containing coefficient k2 in Eq. (2.1.30) can be eliminated,
Eq. (2.1.30) becomes

@2

@z2
þ i2k

@

@z

� �
Eðz;xÞeiðkz�xtÞ ¼ � k20

e0
PNLðz, xÞðzÞeiðk0z�xtÞ: ð2:1:34Þ

Suppose that the light field strength satisfies the space slowly varying field
amplitude approximation condition:

@2Eðz;xÞ
@z2

����
����\\ k

@Eðz;xÞ
@z

����
����; ð2:1:35Þ

the items having second derivative of light field strength in Eq. (2.1.34) can be
omitted, and to combine the exponent factors in both side of equation, Eq. (2.1.34)
can be written to

@Eðz;xÞ
@z

¼ ik20
2e0k

PNLðz;xÞeiDkz; ð2:1:36Þ

where

Dk ¼ k0 � k; ð2:1:37Þ

where k and k0 are wave vectors of the original light field and the polarization field,
respectively.
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Because k ¼ ðx=cÞn and k0 ¼ x=c, then Eq. (2.1.36) also can be expressed as

@Eðz;xÞ
@z

¼ ix
2e0cn

PNLðz;xÞeiDkz: ð2:1:38Þ

Equation (2.1.38) is a frequency-domain wave equation for a monochromic
plane light wave propagating along z-direction in the isotopic, uniform and lossless
nonlinear medium under the condition of slowly varying amplitude approximation.
It is a first-order differential equation, relatively easy to be solved. If know the
nonlinear polarization PNLðz;xÞ, we can obtain the solution of light field strength
Eðz;xÞ. In this book, all of the investigative nonlinear optical processes will
describe and explain by using this simple first-order differential equation.

Firstly, using the nonlinear coupling wave equations we can solve the
multi-wave mixing nonlinear optical problem. Generally speaking, for n-order
nonlinear polarization effect, we can list nþ 1 nonlinear coupling wave Equations
similar to Eq. (2.1.38), simultaneous solving these nþ 1 equations, we can find the
nþ 1 light field strengths with different frequency, thus obtain the law of energy
mutual transformation among these light fields.

For example, for the second-order nonlinear optical effect, there are 2 original light
fields at two different frequencies and 1 new generated polarization field, it requires 3
couplingwave equations, we can simultaneous solve these 3 couplingwave equations
to obtain the 3 field strengths; For the third-order nonlinear optical effect, there are 3
original light fields and 1 new generated polarization field, it requires 4 coupling
equations, then we can simultaneous solve out the 4 field strengths.

If existing absorption in the medium, according to Eq. (2.1.17), r 6¼ 0, we can
obtain the slowly varying amplitude approximation frequency-domain wave
equation considering the absorption for the propagation of the monochromatic light
wave along z-direction:

@Eðz;xÞ
@z

þ a
2
Eðz;xÞ ¼ ix

2e0cn
PNLðz;xÞeiDkz; ð2:1:39Þ

where a ¼ l0rc=n is the linear absorption coefficient of medium.

2.2 Polarization and Susceptibility of Nonlinear Medium

2.2.1 Frequency-Domain Expressions of Polarization
and Susceptibility

1. Frequency-Domain Expressions in Anisotropic Medium

Under the action of light field, the polarization phenomenon is generated in an
anisotropic medium. What is relationship between the polarization P and the light
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electric field strength E? At first, we are going to investigate the causal relationship
in time between P and E [4], and then discuss the frequency-domain expressions of
polarization P and susceptibility v in the case of the linear optics and different order
nonlinear optics phenomena.

(1) In Linear Polarization Case

The induced electric polarization of medium dPð1ÞðtÞ at the moment t is generated
by the light electric filed strength Eðt1Þ before the moment t1 ¼ t � dt1, dPð1ÞðtÞ and
Eðt1Þ has the following direct-ratio relation in the time interval dt1:

dPð1ÞðtÞ ¼ e0v
ð1Þðt � t1Þ � Eðt1Þdt1: ð2:2:1Þ

Considering the contribution of Eðt1Þ to Pð1ÞðtÞ in all time before the moment t,
we have

Pð1ÞðtÞ ¼
Z1

�1
e0v

ð1Þðt � t1Þ � Eðt1Þdt1: ð2:2:2Þ

Actual, when t1\t, Eðt1Þ has no contribution to Pð1ÞðtÞ, i.e., vð1Þðt � t1Þ ¼ 0.
In order to further get the relationship between P and E in the frequency-domain,

we take the Fourier transform of Eðt1Þ and Pð1ÞðtÞ, i.e.,

Eðt1Þ ¼
Z1

�1
EðxÞe�ixt1dx; ð2:2:3Þ

Pð1ÞðtÞ ¼
Z1

�1
PðxÞð1Þe�ixtdx: ð2:2:4Þ

To substitute Eqs. (2.2.3) and (2.2.4) into Eq. (2.2.2), and eliminate the integral
sign, we obtain the frequency-domain expression:

Pð1ÞðxÞ ¼ e0v
ð1ÞðxÞ � EðxÞ, ð2:2:5Þ

where

vð1ÞðxÞ ¼
Z1

�1
vð1Þðt � t1Þeixðt�t1Þdt1: ð2:2:6Þ
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where vð1ÞðxÞ is a linear polarization tensor, it is a second-order tensor with 9 tensor
elements, that is

vð1ÞðxÞ ¼
vð1Þ11 ðxÞ vð1Þ12 ðxÞ vð1Þ13 ðxÞ
vð1Þ21 ðxÞ vð1Þ22 ðxÞ vð1Þ23 ðxÞ
vð1Þ31 ðxÞ vð1Þ32 ðxÞ vð1Þ33 ðxÞ

2
64

3
75: ð2:2:7Þ

In the rectangular coordinate system, the every element of linear polarization
tensor can be expressed by its index, i.e.,

vð1ÞðxÞ ¼
XX XY XZ
YX YY YZ
ZX ZY ZZ

2
4

3
5: ð2:2:8Þ

(2) In Nonlinear Polarization Case

As mention in the previous section, the polarization P can spread as the power
series of E, in the frequency domain the P can be expressed as

PðxÞ ¼ Pð1ÞðxÞþPð2ÞðxÞþPð3ÞðxÞþ � � � : ð2:2:9Þ

Similar to Eqs. (2.2.5) and (2.2.6), the second-order nonlinear polarization and
the second-order nonlinear susceptibility can be expressed as

Pð2ÞðxÞ ¼ e0v
ð2Þðx;x1;x2Þ : Eðx1ÞEðx2Þ; ð2:2:10Þ

vð2ÞðxÞ ¼
Z1

�1
vð2Þðt � t1; t � t2Þei½x1ðt�t1Þþx2ðt�t2Þ�dt1dt2: ð2:2:11Þ

vð2Þ is called second-order polarization tensor, it is a third-order tensor with 27
tensor elements:

vð2ÞðxÞ ¼
XXX XYY XZZ XYZ XZY XZX XXZ XXY XYZ
YXX YYY YZZ YYZ YZY YZX YXZ YXY YYZ
ZXX ZYY ZZZ ZYZ ZZY ZZX ZXZ ZXY ZYZ

2
4

3
5:

ð2:2:12Þ

In a similar way, the third-order nonlinear polarization and the third-order
nonlinear susceptibility can be expressed as respectively

Pð3ÞðxÞ ¼ e0v
ð3Þðx;x1;x2;x3Þ..

.
Eðx1ÞEðx2ÞEðx3Þ; ð2:2:13Þ

32 2 Polarization Theory of Nonlinear Medium



vð3ÞðxÞ ¼
Z1

�1
vð3Þðt � t1; t � t2; t � t3Þei½x1ðt�t1Þþx2ðt�t2Þþx3ðt�t3Þ�dt1dt2dt3:

ð2:2:14Þ

vð3Þ is called third-order polarization tensor, it is a four-order tensor with 81
tensor elements.

In the similar way, n-order nonlinear polarization and n-order nonlinear sus-
ceptibility can be expressed as

PðnÞðxÞ ¼ e0v
ðnÞðx;x1;x2; . . .;xnÞ

..

.

..

.Eðx1ÞEðx2Þ; . . .;EðxnÞ; ð2:2:15Þ

where vðnÞ is a n+1-order tensor, sign of “
..
.

..

. ” is denoted the multiplication of n

+1-order tensor.

vðnÞðxÞ ¼
Z1

�1
vðnÞðt � t1; t � t2; . . .; t

� tnÞei½x1ðt�t1Þþx2ðt�t2Þþ ...þxnðt�tnÞ�dt1dt2. . .dtn: ð2:2:16Þ

It is worth noting that in the bracket of above every order susceptibility is inserted
a semicolon, according to the regulation of this book, after the semicolon are original
light fields at the frequencies of x1;x2; . . .;xn; before the semicolon is the polar-
ization field at the frequency of x. According to the energy conservation law, the
frequency of polarization field is the sum of frequencies of all original fields:

x ¼ x1 þx2 þ � � � þxn: ð2:2:17Þ

2. Rectangular Coordinate Frequency-Domain Expressions in Anisotropic
Medium

Below we provide the frequency-domain expressions by rectangular coordinate
component for each order polarizations in anisotropic medium. The
polarization-filed frequency x is a sum of the original-field frequencies,
x ¼ x1 þx2 þx3 þ � � �.

Pð1Þ
l ðxÞ ¼

X
a

e0v
ð1Þ
la ðx;xÞEaðxÞ; ð2:2:17Þ

Pð2Þ
l ðxÞ ¼

X
ab

e0v
ð2Þ
labðx;x1;x2ÞEaðx1ÞEbðx2Þ; ð2:2:18Þ
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Pð3Þ
l ðxÞ ¼

X
abc

e0v
ð3Þ
labcðx;x1;x2;x3ÞEaðx1ÞEbðx2ÞEcðx3Þ; ð2:2:19Þ

PðnÞ
l ðxÞ ¼

X
abc

e0v
ðnÞ
labcðx;x1;x2; . . .;xnÞEaðx1ÞEbðx2Þ. . .EcðxnÞ; ð2:2:20Þ

式中 l; a; b; c; . . . ¼ x; y; z.

3. Frequency-Domain Expressions in Isotopic Medium

For uniform isotopic nonlinear medium, the light field strength E(xÞ and the
polarization PðxÞ are complex number vectors, and the susceptibility v is a com-
plex number scalar. The each-order polarization can be expressed as follows.

Linear polarization:

Pð1ÞðxÞ ¼ e0v
ð1Þðx;xÞEðxÞ: ð2:1:21Þ

Second-order nonlinear polarization:

Pð2ÞðxÞ ¼ e0v
ð2Þðx;x1;x2ÞEðx1ÞEðx2Þ: ð2:1:22Þ

Third-order nonlinear polarization:

Pð3ÞðxÞ ¼ e0v
ð3Þðx;x1;x2; � � �x3ÞEðx1ÞEðx2ÞEðx3Þ: ð2:1:23Þ

The n-order nonlinear polarization:

PðnÞðxÞ ¼ e0v
ðnÞðx;x1;x2; . . .;xnÞEðx1ÞEðx2Þ. . .EðxnÞ: ð2:1:24Þ

When you write the the expressions of polarization, you should determine the
frequences of each light field participated in the designated nonlinear optical pro-
cess and write out correct susceptibility expressions. If in the incident light electric
fields having conjugate complex number of field, we should add a minus sign in the
front of corresponding frequency inside the bracket of susceptibility.

2.2.2 Degeneration Factor of Polarization

Assuming the incident light field is consisted by a series monochromic plane waves
at frequencies x1;x2; � � �xn. The electric field strength of each monochromic plane
wave at frequency xiði ¼ 1; 2; 3 � � �Þ is a complex number, in general it can be
written to a sum of complex number and its conjugate complex number (c.c).
Therefore the total incident light electric field strength Eðr; tÞ can be expressed as
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Eðr; tÞ ¼
X
i

EðxiÞe�iðxit�ki�rÞ þ c:c: : ð2:2:25Þ

The n-order polarization at the frequency of x ¼ x1 þx2 þ � � � þxn is induced
by n original light fields at frequencies of x1;x2; � � � ;xn. Actually, the original
light fields may include several light fields at the same frequency, i.e., existing the
frequency degeneracy. Because the frequency degeneracy and the symmetry of
susceptibility, in the rectangular coordinate component expression for the aniso-
tropic nonlinear medium should add a coefficient D, which is called degeneration
factor, so the rectangular coordinate component expression of n-order polarization
is given by

PðnÞ
l ðxÞ ¼ D

X
ab���c

e0v
ðnÞ
lab���cðx;x1;x2;x3; � � � ;xnÞEaðx1ÞEbðx2Þ � � �EcðxnÞ;

ð2:2:26Þ

For the isotopic nonlinear medium, if all the light fields propagate along the
z-direction, the n-order polarization expression in the frequency degeneracy case
also need add the degeneration factor, namely

PðnÞðz;xÞ ¼ De0v
ðnÞðx;x1;x2; . . .;xnÞEðz;x1ÞEðz;x2Þ. . .Eðz;xnÞ; ð2:2:27Þ

It can be proved that, if the light field strength is expressed as Eq. (2.2.25), the
formula of degeneration factor is given by [5]

D ¼ n!
m!

; ð2:2:28Þ

where n is the order number of nonlinear polarization, m is the frequency degen-
erate number of original light fields. In this book the light field strength is all
expressed as Eq. (2.2.25), so the Eq. (2.2.28) is used to calculate the degeneration
factor in this book.

In some literature, considering the relation EðtÞ ¼ E0 cosxt ¼ 1
2E0ðeixt þ e�ixtÞ,

the light field strength is expressed as

Eðr; tÞ ¼ 1
2

X
i

EðxiÞe�iðxit�ki�rÞ þ c:c: ð2:2:29Þ

It can be proved that in this case the formula of degeneration factor should be
written to

D ¼ 21�n n!
m!

� �
: ð2:2:30Þ
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Same as above, here n is the order number of nonlinear polarization, m is the
frequency degenerate number of original light fields.

Table 2.1 list the susceptibility expressions and corresponding two kinds of
degeneration factors for various nonlineal optical effects. In the susceptibility
expressions, after the semicolon are the frequencies of the incident (original) light
fields, x1;x2; � � � ;xn; before the semicolon is the frequency of the generated
(polarization) field x ¼ x1 þx2 þ � � � þxn, the negative frequency delegates that
its light field is a conjugate complex of the light field at positive frequency.

Table 2.1 Susceptibility expressions and two kinds of degeneration factors for nonlineal optical
effects

Nonlinear optical process Order
(n)

Susceptibility D ¼ n!=m! D ¼ 21�nðn!=m!Þ

Linear absorption 1 vð1Þðx;xÞ 1 1

Linear refraction 1 vð1Þðx;xÞ 1 1

Electrooptical effect 2 vð2Þðx;x; 0Þ 2 1

Frequency doubling effect 2 vð2Þð2x;x;xÞ 1 1/2

Sum frequency effect 2 vð2Þðx3;x1;x2Þ 2 1

Difference frequency effect 2 vð2Þðx2;x3;�x1Þ 2 1

Triple frequency harmonic 3 vð3Þð3x;x;x;xÞ 1 1/4

Single-photon nonlinear
refraction

3 vð3Þðx;x;�x;xÞ 3 3/4

Single-photon nonlinear
absorption

3 vð3Þðx;x;�x;xÞ 3 3/4

Two-photon nonlinear
absorption

3 vð3Þðx1;x2;�x2;x1Þ 6 3/2

Self-phase modulation
optical Kerr effect

3 vð3Þðx;x;�x;xÞ 3 3/4

Cross-phase modulation
optical Kerr effect

3 vð3Þðx;xp;�xp;xÞ 6 3/2

Four wave mixing 3 vð3Þðx4;x1;x2;x3Þ 6 3/2

Degenerate four wave
mixing

3 vð3Þðx;x;�x;xÞ 3 3/4

Degenerate four wave
mixing back phase
conjugation

3 vð3Þðxc;x1;�x2;xpÞ 6 3/2

Degenerate four wave
mixing forward phase
conjugation

3 vð3Þðxc;x1;x2;�xpÞ 6 3/2

Stoks stimulated Raman
scattering

3 vð3Þðxs;xp;�xp;xsÞ 6 3/2

Anti-stoks stimulated
Raman scattering

3 vð3Þðxas;xp;xp;�xsÞ 3 3/4
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2.2.3 Symmetry of Susceptibility Tensor

There are some universal symmetric relationships among tensor elements of non-
linear susceptibility tensor. These symmetric relationships reflect the real-number
character of polarization and the symmetry of medium structure. If you want to
know the certification of these symmetries in detail, you can refer to relater ref-
erence materials [4, 6–8]. Here we just give a brief introduction.

1. Authenticity Condition

Linear susceptibility tensor of medium can be expressed as the form of Eq. (2.2.6):

vð1ÞðxÞ ¼
Z1

�1
vð1Þðt � t1Þeixðt�t1Þdt1:

Taking its conjugate complex number, we obtain

vð1Þ�ðxÞ ¼
Z1

�1
vð1Þðt � t1Þe�ixðt�t1Þdt1 ¼ vð1Þð�xÞ: ð2:2:31Þ

In a similar way, we can prove that the tensor elements of each-order nonlinear
susceptibility have following characteristics:

v
ð2Þ�
ijk ðx;x1;x2Þ ¼ v

ð2Þ
jki ðx1;�x2;xÞ ¼ v

ð2Þ
kji ðx2;�x1;xÞ; ð2:2:32Þ

v
ð3Þ�
ijkl ðx;x1;x2;x3Þ ¼ v

ð3Þ
jkliðx1;�x2;�x3;xÞ

¼ v
ð3Þ
kijlðx2;x;�x1;�x3Þ

¼ v
ð3Þ
lijkðx3;x;�x1;�x2Þ;

. . .. . .

ð2:2:33Þ

Above relationships guarantee the characteristics that the each susceptibility is a
real number, so it is called the authenticity condition. If the frequency of original
optical field is far from the resonance frequency of medium, the medium is know as
non-dispersion and lossless, we can remove out the symbol of conjugate complex
number “*” in Eqs. (2.2.32)–(2.2.33).

1. Symmetry of Intrinsic Substitution

It can be proved that susceptibility tensor has following intrinsic symmetry of
frequency substitution: if do not change the location of polarization-field frequency,
when the sequence of any two frequencies of original optical field mutually
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interchanges, corresponding two tensor elements are same. For example, for
second-order and third-order nonlinear effects we have:

vð2Þijk ðx;xm;xnÞ ¼ vð2Þikj ðx;xn;xmÞ; ð2:2:34Þ

vð3Þijklðx;xm;xn;xqÞ ¼ vð3Þikjlðx;xn;xm;xqÞ
¼ vð3Þijlkðx;xm;xq;xnÞ
¼ vð3Þilkjðx;xq;xn;xmÞ:

ð2:2:35Þ

2. Symmetry of Complete Substitution

If the frequency of original optical field far from the resonance frequency of
medium, the medium is know as non-dispersion and lossless, there is the symmetry
of complete substitution, i.e., the frequency of the polarization field can interchange
place with any frequency of original field, for example, the second-order and the
third-order nonlinear optical effects have:

vð2Þijk ðx;xm;xnÞ ¼ vð2Þj ik ðxm;x;xnÞ ¼ vð2Þkj i ðxn;xm;xÞ; ð2:2:36Þ

vð3Þijklðx;xm;xn;xqÞ ¼ vð3Þjiklðxm;x;xn;xqÞ
¼ vð3Þkjilðxn;xm;x;xqÞ
¼ vð3Þljkiðxq;xm;xn;xÞ:

ð2:2:37Þ

In the above tensor elements of susceptibility, interchange the frequency in any
order, the numerical value of tensor elements keeps no change; this feature is called
complete-substitution symmetry.

3. Time Reversion Symmetry

According to the real number character of nonlinear polarization, it is can be proved
that any tensor element possesses following characteristic:

vðnÞll1l2���lnðx;x1;x2; . . .;xnÞ ¼ vðnÞll1l2���lnð�x;�x1;�x2; . . .;�xnÞ: ð2:2:38Þ

4. Spatial Structure Symmetry

We mentioned previous, the susceptibility is a 3-D space tensor. In which vð1Þ is a
second-order tensor, with 9 tensor elements; vð2Þ is a third-order tensor, with 27
tensor elements; vð3Þ is a four-order tensor, with 81 tensor elements. Because the
structure of nonlinear medium (such as nonlinear crystal) has symmetry (rotate
symmetry and translation symmetry, etc.), it makes the part of tensor elements to be
zero, and there exists specific relationships among some tensor elements, to lead
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total number of independent tensor elements of nonlinear susceptibility tensor
depletes.

According to the symmetry of the crystal, the crystal can be divided into 7
systems of crystallization: triclinic crystal system, monoclinic crystal system,
orthorhombic crystal system, quadratic crystal system, trigonal crystal system,
hexagonal crystal system, cubic crystal system (or isotopic medium). People
already found the susceptibility tensor form of these 7 crystal systems and their 32
crystal classes. Visible, the symmetry is higher; the number of the non-zero tensor
element and independent tensor element is less.

For example, for second-order tensor vð1Þ, its orthorhombic crystal system and
cubic crystal system (or isotopic medium) only have 3 and 1 independent tensor
element respectively:

vð1ÞðxÞ ¼
XX 0 0
0 YY 0
0 0 ZZ

2
4

3
5; vð1ÞðxÞ ¼

XX 0 0
0 XX 0
0 0 XX

2
4

3
5:

Orthorhombic crystal system Cubic crystal system and isotopicmedium

For another example, for third-order tensor vð2Þ, its crystal class 222 (D2) of
orthorhombic crystal system and crystal class 43m (Td) of cubic crystal system,
they only have 6 and 1 independent tensor element respectively:

vð2ÞðxÞ ¼
0 0 0 XYZ XZY 0 0 0 0
0 0 0 0 0 YZX YXZ 0 0
0 0 0 0 0 0 0 ZXY ZYZ

2
4

3
5

Crystal class 222 (D2) of orthorhombic crystal system

vð2ÞðxÞ ¼
0 0 0 XYZ XYZ 0 0 0 0
0 0 0 0 0 XYZ XYZ 0 0
0 0 0 0 0 0 0 XYZ XYZ

2
4

3
5

Crystal class 43m (Td) of cubic crystal system
Now we study the characteristics of susceptibility of the medium with centre

(inversion) symmetry, So called centre symmetry, it is P and E should change to
revers direction under inverse conversion of coordinate fx; y; zg ! f�x;�y;�zg to
keep the formula of polarization invariability. That is to say, for the following
general formula of n-order polarization:

PðnÞðxÞ ¼ e0v
ðnÞðx;x1;x2; . . .;xnÞ

..

.

..

.Eðx1ÞEðx2Þ. . .EðxnÞ; ð2:2:39Þ
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when making conversion of coordinates fx; y; zg ! f�x;�y;�zg, in left side of
formula the vector P becomes −P, and in the right side of formula every vector
E becomes −E, so the Eq. (2.2.39) becomes

P0ðnÞðxÞ ¼ ð�1Þnþ 1½e0v0ðnÞðx;x1;x2; . . .;xnÞ
..
.

..

.E
0ðx1ÞE0ðx2Þ. . .E0ðxnÞ�:

ð2:2:40Þ

In order to maintain the form of Eq. (2.2.40) same as that of Eq. (2.2.39), we
should require that when n ¼ 2; 4; . . . (even number), P0ðnÞ ¼ 0, i.e., v0ðnÞðx;x1;
x2; . . .;xnÞ ¼ 0. Namely even-order susceptibility is zero for the medium with
centre symmetry. If we only consider the nonlinear effect up to third-order, for the
medium with centre symmetry, it is nonexistence of second-order nonlinear effect,
only existence of third-order nonlinear effect.

2.3 Real Part and Imaginary Part of Susceptibility

2.3.1 Relation Between Real Part and Imaginary Part
of Susceptibility (K–K Relation)

The susceptibility vðxÞ is a function of frequency, in general it is a complex
number, can be expressed as

vðxÞ ¼ v0ðxÞþ iv00ðxÞ: ð2:3:1Þ

Between the real part and the imaginary part of linear susceptibility has fol-
lowing relationships (the derivation of the formula see Appendix 2.A):

v0ðxÞ ¼ 1
p
P:V :

Z1

�1

v00ðx0Þ
x0 � x

dx0; ð2:3:2Þ

v00ðxÞ ¼ � 1
p
P:V :

Z1

�1

v0ðx0Þ
x0 � x

dx0; ð2:3:3Þ

The integral in Eqs. (2.3.2) and (2.3.3) is Cauchy’s principle value integral,
namely when integral removing the singular point x0 ¼ x. Equations (2.3.2) and
(2.3.3) are famous Kramers-Kronig dispersion relation, in short K–K relation [9,
10]. From K–K relation we can see that as long as know any one of the real part and
the imaginary part of the susceptibility as a function of frequency, we can through
above relationship to find out another one.
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According to the substitution symmetry of susceptibility vð�xÞ ¼ v�ðxÞ and
Eq. (2.3.1), we can rewrite the K–K relation to be:

v0ðxÞ ¼ 2
p
P:V :

Z1

0

x0v00ðx0Þ
x02 � x2dx

00; ð2:3:4Þ

v00ðxÞ ¼ � 2x
p

P:V :
Z1

0

v0ðx0Þ
x02 � x2dx

0: ð2:3:5Þ

Because integral just in positive frequency range, the K–K relations as form of
Eqs. (2.3.4) and (2.3.5) are more accord with the physical significance.

K–K relation is derived from the linear susceptibility, for the linear optical
system it is always correct, but only a part of processes in nonlinear optical system
comply with K–K relation. For instance, second harmonic effect, third harmonic
effect, four-wave mixing (except degenerate four-wave mixing), cross-phase
modulation Kerr effect (except self-phase modulation Kerr effect) etc. (see Ref.
[10]).

2.3.2 Physical Significance of Real Part and Imaginary Part
of Susceptibility

1. Relation of Linear Susceptibility with Linear Refractive Index and Linear
Absorption Coefficient

Now we investigate that a monochrome plane wave at frequency of x propagates in
an isotopic medium along z-direction to generate the polarization. Suppose the light
field denoted by

Eðz;xÞ ¼ EðzÞeiðkz�xtÞ þ c:c:; ð2:3:6Þ

where k is a complex number wave vector, its real part k0 is related with the
refractive index of medium; the imaginary part k00 is related with the absorption
coefficient of medium, namely

k ¼ k0 þ ik00 ¼ k0n0 þ i
a0
2
; ð2:3:7Þ

where k0 ¼ x=c is the wave vector in vacuum; n0 and a0 are linear refractive index
and linear absorption of medium respectively (a0 is absorption coefficient for light
power, so it is divided by 2).
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Considering the linear polarization effect in far from the resonance situation,
using the definition of electric induction strength, we obtain

D ¼ e0EþPð1Þ ¼ e0Eþ e0v
ð1ÞðxÞE ¼ ½e0 þ e0v

ð1ÞðxÞ�E ¼ eE; ð2:3:8Þ

where e0 is the dielectric coefficient in vacuum; e ¼ e0 þ e0vð1ÞðxÞ is the complex
linear dielectric coefficient of medium; vð1ÞðxÞ is complex linear susceptibility of
medium, which can be divided into the real and the imaginary two parts:
vð1ÞðxÞ ¼ vð1Þ0ðxÞþ ivð1Þ00ðxÞ. Using relation e0 ¼ e0½1þ vð1Þ0ðxÞ�, then e can be
expressed as

e ¼ e0 þ e0v
ð1Þ0ðxÞþ ie0v

ð1Þ00ðxÞ ¼ e0 þ ie0v
ð1Þ00ðxÞ ¼ e0½1þ i

e0
e0
vð1Þ00ðxÞ�:

ð2:3:9Þ

To use the linear refractive index n0 ¼
ffiffiffiffiffiffiffiffiffiffi
e0=e0

p
, Eq. (2.3.9) can be written as

e ¼ n20e0½1þ i
vð1Þ00ðxÞ

n20
�: ð2:3:10Þ

Further use complex linear refractive index n ¼ ffiffiffiffiffiffiffiffiffi
e=e0

p
and light velocity in

vacuum c ¼ 1=
ffiffiffiffiffiffiffiffiffi
l0e0

p
, the complex wave vector of medium can be written as

k ¼ x
c
n ¼ x

ffiffiffiffiffiffiffi
l0e

p
: ð2:3:11Þ

Substituting Eq. (2.3.10) into Eq. (2.3.11), we obtain

k ¼ k0n0 1þ i
vð1Þ00ðxÞ

n20

� �1
2

; ð2:3:12Þ

In the bracket of left of Eq. (2.3.12), the model of second item is much smaller
than 1, so the bracket factor can be spread to Taylor’s series, after that approxi-
mately taking front two items, we obtain

k 	 k0n0 1þ i
vð1Þ00ðxÞ
2n20

� �
¼ k0n0 þ i

k0
2n0

vð1Þ00ðxÞ: ð2:3:13Þ

To compare the Eq. (2.3.13) with Eq. (2.3.7), and use of n0 ¼
ffiffiffiffiffiffiffiffiffiffi
e0=e0

p
and

e0 ¼ e0½1þ vð1Þ0ðxÞ�, we obtain

n0 ¼ ½1þ vð1Þ0ðxÞ�12 	 1þ 1
2
vð1Þ0ðxÞ; ð2:3:14Þ
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a0 ¼ k0
n0

vð1Þ00ðxÞ ¼ x
cn0

vð1Þ00ðxÞ: ð2:3:15Þ

We can see that, the linear reflective index and the linear absorption coefficient
of the medium are linearly related with the real part and the imaginary part of
first-order susceptibility, respectively.

2. Relation of Third-Order Nonlinear Susceptibility with Nonlinear
Refractive Index and Nonlinear Absorption Coefficient

We suppose the medium is a third-order nonlinear medium; the input laser is
monochromatic plane wave as expressed by Eq. (2.3.6), the light field EðzÞ can be
solved by using the slowly varying amplitude approximation nonlinear wave
Eq. (2.1.38). Here let Dk ¼ k0 � k ¼ 0. Equation (2.1.38) becomes

@EðzÞ
@z

¼ ix
2e0cn0

PNLðzÞ: ð2:3:16Þ

The third-order nonlinear polarization (for example, Kerr effect) can be
expressed as

PNLðzÞ ¼ Pð3ÞðzÞ ¼ 3e0vð3ÞðxÞ EðzÞj j2EðzÞ: ð2:3:17Þ

Using vð3Þ ¼ vð3Þ0ðxÞþ ivð3Þ00ðxÞ, Eq. (2.3.17) becomes

PNLðzÞ ¼ 3e0½vð3Þ0ðxÞ EðzÞj j2 þ ivð3Þ00ðxÞ EðzÞj j2�EðzÞ: ð2:3:18Þ

Substituting Eq. (2.3.18) into Eq. (2.3.16), we obtain

@EðzÞ
@z

¼ i3x
2cn0

½vð3Þ0ðxÞ EðzÞj j2 þ ivð3Þ00ðxÞ EðzÞj j2�EðzÞ: ð2:3:19Þ

Using I ¼ 1
2 e0cn0 EðzÞj j2, Eq. (2.3.19) becomes

@EðzÞ
@z

¼ i3 k0
vð3Þ0ðxÞ
e0cn20

Iþ i
xvð3Þ00ðxÞ
e0c2n20

I

� �
EðzÞ: ð2:3:20Þ

Setting

kNL ¼ 3k0
vð3Þ0ðxÞ
e0cn20

Iþ i3
xvð3Þ00ðxÞ
e0c2n20

I; ð2:3:21Þ
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Equation (2.3.20) becomes

@EðzÞ
@z

¼ ikNLEðzÞ: ð2:3:22Þ

The solution of Eq. (2.3.22) is

EðzÞ ¼ Eð0ÞeikNLz: ð2:3:23Þ

From the definition Eq. (2.3.6) of light field

Eðz;xÞ ¼ EðzÞeiðkz�xtÞ ¼ Eð0ÞeikNLzeiðkz�xtÞ ¼ Eð0ÞeikT ze�ixt ð2:3:24Þ

where kT ¼ kþ kNL is the total wave vector, it is a complex number, can be divided
into the real part and the imaginary part, the real part is corresponding to the total
refractive index n; the imaginary part is corresponding to the total absorption a:

kT ¼ k0T þ ik00T ¼ nþ i
a
2
: ð2:3:25Þ

The each of total refractive index and total absorption coefficient can be divided
into linear and nonlinear two parts, namely

n ¼ n0 þDn; ð2:3:26Þ

a ¼ a0 þDa: ð2:3:27Þ

Substituting Eqs. (2.3.26) and (2.3.27) into Eq. (2.3.25), we obtain

kT ¼ k0n0 þ k0Dnþ i
a0
2

þ i
Da
2

: ð2:3:28Þ

Using Eq. (2.3.21), the total wave vector can be written to the sum of linear and
nonlinear two parts:

kT ¼ kþ kNL ¼ k0n0 þ i
a0
2

þ 3k0
vð3Þ0ðxÞ
e0cn20

Iþ i3
xvð3Þ00ðxÞ
e0c2n20

I: ð2:3:29Þ

To compare Eqs. (2.3.28) and (2.3.29), then we obtain the expressions of
nonlinear refractive index Dn and the nonlinear absorption coefficient Da:

Dn ¼ 3
e0cn20

vð3Þ0ðxÞI; ð2:3:30Þ

Da ¼ 6x
e0c2n20

vð3Þ00ðxÞI: ð2:3:31Þ
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From Eqs. (2.3.30) to (2.3.31) we can see that for the third-order nonlinear
medium, its nonlinear refractive index depends on the real part of third-order
susceptibility and is proportional to the light intensity; its nonlinear absorption
coefficient depends on the imaginary part of third-order susceptibility and is also
proportional to the light intensity.

2.3.3 Relation Between Nonlinear Refractive Index
and Nonlinear Absorption Coefficient

If K–K relation is applicative to a certain third-order nonlinear process, from
Eqs. (2.3.30) and (2.3.31) we can obtain the relation between the real part of
susceptibility vð3Þ0ðxÞ and the nonlinear refractive index DnðxÞ, and the relation
between the imaginary part of susceptibility vð3Þ00ðxÞ and the nonlinear absorption
coefficient DaðxÞ, respectively. Substituting them into Eq. (2.3.4) of K–K relation,
thus we get the relation between the nonlinear refractive index DnðxÞ and the
nonlinear absorption coefficient DaðxÞ:

DnðxÞ ¼ c
p
P:V :

Z1

0

Daðx0Þ
x02 � x2dx

0: ð2:3:32Þ

Because the nonlinear refractive index of medium is very difficult to measure
directly, often pass through measuring nonlinear absorption coefficient to indirectly
determine the nonlinear refractive index. If measured the linear absorption spectrum
of a nonlinear medium and its nonlinear absorption spectrum under a high power
light, from the difference of these two spectrums to obtain Daðx0Þ, then we can
using Eq. (2.3.32) to calculate the nonlinear refractive index at the frequency of x,
DnðxÞ. Then we can also use Eq. (2.3.30) to reversely calculate the real part of the
third-order susceptibility at that frequency vð3Þ0ðxÞ.
Review Questions of Chapter 2

1. From Maxwell equations to deduce the time-domain wave equation for the light
wave propagates in the anisotropic nonlinear medium and the isotopic nonlinear
medium.

2. To deduce frequency-domain wave equation for the monochromic plane light
wave in the anisotropic nonlinear medium and the isotopic nonlinear medium.

3. To deduce the steady-state wave equation and dynamic equation for mono-
chromic plane light wave in isotopic medium under the slowly-varying-amplitude
approximation.

4. Write down the general frequency-domain expression of nonlinear polarization.
What is degeneration factor? List several examples of second and third-order
nonlinear effects, and write their nonlinear polarization expressions (including
degeneration factors).
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5. What kinds of symmetries do the nonlinear polarization tensor has? Why the
mediums with centre symmetry have no the second-order nonlinearity, only
have the third-order nonlinearity?

6. Write down the expression of relation between real part and imaginary part of
linear susceptibility (K–K relation). What high order nonlinear processes can
apply K–K relation?

7. For linear medium, what are the relationships of the refractive index and
absorption coefficient with the real part and the imaginary part of the suscep-
tibility respectively? For third-order nonlinear medium, what is the relationship
between the nonlinear refractive index and the nonlinear absorption coefficient?

8. In nonlinear optics, there are two systems of units: International system (MKS//
SI) and Gaussian system (mgs/esu). How to distinguish the basic formula in
these two systems and how to convert the units between two systems?

Appendix A: Derivation of K–K Relation [9, 10]

K–K relation is obtained at first from linear system. Firstly we consider the
mathematic property of linear susceptibility. The light frequency can be regard as a
complex number quantity, in the complex number plane of frequency x0 we integral
to linear susceptibility vð1Þðx0Þ as follows.

Z1

�1

vð1Þðx0Þdx
x0 � x

: ð2:A:1Þ

Considering there is a singular point at point of x0 ¼ x. In order to avoid that
singular point, we integral along a loop on the upper half of x0 complex number
plane x0 � 0ð Þ, as shown in Fig. 2.1; then take the limitation of R ! 1; e ! 0,
the integral of Eq. (2.A.1) can be finished. According to Cauchy’s theorem, because
it has no singular point on the closed loop, the integral should be zero. We can
explain physically like this: for the real frequency x, the susceptibility vðxÞ is
measurable, so that it is limited, the integral to it is convergent.

Fig. 2.1 Field of integration
used for derivation of K–K
relation
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The integral of loop can be divided into following four segments: the semicircle
c0 around the original point from −R to R; the semicircle c around point x from
x� e to xþ e; and the two straight lines along the real axis of x0: from –R to x� e
and from xþ e to R, i.e.,

Z
c0

vð1Þðx0Þ
x0 � x

dx0 þ
Z
c

vð1Þðx0Þ
x0 � x

dx0 þ
Zx�e

�R

vð1Þðx0Þdx0

x0 � x
þ

ZR

xþ e

vð1Þðx0Þdx0

x0 � x

2
4

3
5 ¼ 0:

ð2:A:2Þ

For the first item, the integral of c0 tends to zero with Rj j ! 1, that is because
when Rj j ! 1, x0j j increases, vðx0Þ= x0j j tens to zero. For the second item, in the
integral of c, assuming x0 ¼ xþ eeiu, when e ! 0, the integral becomes

lim
e!0

Z
c

vð1Þðx0Þ
x0 � x

dx0 ¼ lim
e!0

Z0

p

vð1Þðxþ eeiuÞieiu
eeiu

du ¼ �ipvð1ÞðxÞ: ð2:A:3Þ

For the third item, when R ! 1, it is Cauchy-principal-value integral:

Zx�e

�1

vð1Þðx0Þdx0

x0 � x
þ

Z1

xþ e

vð1Þðx0Þdx0

x0 � x

2
4

3
5 ¼ P:V :

Z1

�1

vð1Þðx0Þdx0

x0 � x
: ð2:A:4Þ

In the condition of R ! 1; e ! 0, substituting Eqs. (2.A.3) and (2.A.4) into
Eq. (2.A.2), we obtain

vð1ÞðxÞ ¼ � i
p
P:V :

Z1

�1

vð1Þðx0Þ
x0 � x

dx0: ð2:A:5Þ

To substrate vð1ÞðxÞ ¼ vð1Þ0ðxÞþ ivð1Þ00ðxÞ and vð1Þðx0Þ ¼ vð1Þ0ðx0Þ þ ivð1Þ00ðx0Þ
into Eq. (2.A.5) respectively, and the real part and imaginary part respectively
equal, then we obtain K–K relation expressions as same as Eqs. (2.3.2) and (2.3.3)
in the case of linear polarization.

vð1Þ0ðxÞ ¼ 1
p
P:V :

Z1

�1

vð1Þ00ðx0Þ
x0 � x

dx0; ð2:A:6Þ

vð1Þ00ðxÞ ¼ � 1
p
P:V :

Z1

�1

vð1Þ0ðx0Þ
x0 � x

dx0: ð2:A:7Þ
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According to vð1Þð�x0Þ ¼ vð1Þðx0Þ�, vð1Þ0ðx0Þ is the even function of x0, i.e.,
vð1Þ0ð�x0Þ ¼ vð1Þ0ðx0Þ; and vð1Þ00ðx0Þ is odd function of x0, i.e.,
vð1Þ00ð�x0Þ ¼ �vð1Þ00ðx0Þ, therefore Eqs. (2.A.6) and (2.A.7) can be written as

vð1Þ0ðxÞ ¼ 1
p
P:V :

Z0

�1

vð1Þ00ðx0Þ
x0 � x

dx0 þ
Z1

0

vð1Þ00ðx0Þ
x0 � x

dx0

2
4

3
5

¼ 1
p
P:V :

Z1

0

vð1Þ00ðx0Þ
x0 þx

dx0 þ
Z1

0

vð1Þ00ðx0Þ
x0 � x

dx0

2
4

3
5

¼ 2
p
P:V :

Z1

0

x0vð1Þ00ðx0Þ
ðx02 � x2Þ dx

0;

ð2:A:8Þ

vð1Þ00ðxÞ ¼ � 1
p
P:V :

Z0

�1

vð1Þ0ðx0Þ
x0 � x

dx0 þ
Z1

0

vð1Þ0ðx0Þ
x0 � x

dx0

2
4

3
5

¼ 1
p
P:V :

Z1

0

vð1Þ0ðx0Þ
x0 þx

dx0 �
Z1

0

vð1Þ0ðx0Þ
x0 � x

dx0

2
4

3
5

¼ � 2x
p

P:V :
Z1

0

vð1Þ0ðx0Þ
ðx02 � x2Þ dx

0:

ð2:A:9Þ

Thus we have proved the K–K relation expressions (2.3.4) and (2.3.5) in the
linear polarization.

Appendix B: Two Systems of Units [11]

There are two different unit systems commonly used in nonlinear optics: one is the
international system (System International, SI), or called the practical unit system to
use the units of Meter, Kilogram and Second (i.e., MKS system); other one is the
Gaussian system to use the units of centimeter, gram and second (i.e., cgs system).
This unit system also can be called the electrostatic unit system (i.e., esu system). In
short, there are two unit systems in nonlinear optics: International system (MKS/SI)
and Gaussian system (cgs/esu). This book only uses the international unit system.

Here we briefly review these two unit systems and the conversion between two
systems.
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I. Fundamental Formula

Electric displacement formula:
MKS/SI unit system D ¼ e0EþP
cgs/esu unit system D ¼ Eþ 4pP
Susceptibility formula:
MKS/SI unit system PðtÞ ¼ e0½vð1ÞEðtÞþ vð2ÞE2ðtÞþ vð3ÞE3ðtÞþ � � ��
cgs/es unit system PðtÞ ¼ vð1ÞEðtÞþ vð2ÞE2ðtÞþ vð3ÞE3ðtÞþ � � �

II. Conversion of Two Unit Systems

Electric field strength EðSIÞ ¼ 3� 104EðesuÞ
Linear susceptibility vð1ÞðSIÞ ¼ 4pvð1ÞðesuÞ
Second-order susceptibility

vð2ÞðSIÞ ¼ 4p
3� 104

vð2ÞðesuÞ ¼ 4:189� 10�4vð2ÞðesuÞ

Third-order susceptibility

vð3ÞðSIÞ ¼ 4p

ð3� 104Þ2 v
ð3ÞðesuÞ ¼ 1:40� 10�8ðesuÞ

n-order susceptibility

vðnÞðSIÞ ¼ 4p

ðc� 10�4Þn�1 v
ðnÞðesuÞ; c ¼ 3� 108
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