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Abstract Recently, Moricz and Veres generalized the classical results of Bernstein,
Szasz, Zygmund and others related to the absolute convergence of single andmultiple
Fourier series. In this paper, we have extended this result for single Fourier series of
functions of the classes �BV (T) and �BV (p)(T).
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1 Introduction

The classical result of Zygmund, for the absolute convergence of Fourier series if a
function of bounded variation on T , where T = [−π,π) is the torus, is generalized
in many ways and many interesting results are obtained for different generalized
absolute convergence of Fourier of functions of different generalized classes (see
[1, 4]). In 2006, Gogoladze and Meskhia [1] obtained sufficient conditions for the
generalized absolute convergence of a single Fourier series. Moricz and Veres [2]
obtained sufficient conditions for the generalized absolute convergence of single and

multiple Fourier series of functions of the classes BV (p)(T) and BV (p)(T
N
), respec-

tively (also see [5]). In this paper, generalizing such results for single Fourier series,
we have obtained sufficient conditions for the generalized absolute convergence of
single Fourier series of functions of the classes �BV (T) and �BV (p)(T).

In the sequel, L is the class of non-decreasing sequence � = {λi} (i = 1, 2, . . .)
of positive numbers such that

∑
i
1
λi
diverges, a real number p ≥ 1 and C represents

a constant vary time to time.
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2 Notations and Definitions

For a complex valued, 2π-periodic, function f ∈ L1(T), its Fourier series is defined as

f (x) ∼
∑

m∈Z
f̂ (m)eimx, x ∈ T,

where

f̂ (m) =
(

1

2π

) ∫

T

f (x)e−imx dx

denotes the mth Fourier coefficient of f .
For p ≥ 1, the p-integral modulus of continuity of f over T is define as

ω(p)(f ; δ) := sup

0 < h ≤ δ
‖ Thf − f ‖p,

where Thf (x) = f (x + h) for all x and ‖ (.) ‖p denotes the Lp-norm over T. p = ∞
gives the modulus of continuity ω(f ; δ) of f .

Following the definition in [1], a sequence γ = {γm : m ∈ N} of nonnegative
numbers is said to belongs to the class Aα for some α ≥ 1 if

⎛

⎝
∑

m∈Dμ

γα
m

⎞

⎠

1/α

≤ κ2μ(1−α)/α
∑

m∈Dμ−1

γm, μ ∈ N, (2.1)

where
D0 := {1}; Dμ := {2μ−1 + 1, 2μ−1 + 2, . . . , 2μ}, μ ∈ N; (2.2)

and the constantκ does not dependent onμ.Without the loss of generality, we assume
that κ ≥ 1.

Note that,
Aα2 ⊂ Aα1 , where 1 ≤ α1 < α2 < ∞. (2.3)

If a sequences γ is such that

max{γm : m ∈ Dμ} ≤ κ min{γm : m ∈ Dμ−1}, μ ∈ N, (2.4)

then γ ∈ Aα for everyα ≥ 1. This inequality was introduced byUl’yanov [3]. More-
over, Moricz and Veres [2] observed that, if a sequence γ = {γm} is of the form

γm = mτw(m), m ∈ N,



Generalized Absolute Convergence of Trigonometric Fourier Series 233

where τ ∈ R and w : R+ → R+ is a slowly varying function, that is,

lim

x → ∞
w(λx)

w(x)
= 1, for every 0 < λ < ∞, (2.5)

then γ ∈ Aα for every α ≥ 1.
For convenience in writing, put

γ−m := γm, m ∈ N. (2.6)

Definition 2.1 Given � = {λn} ∈ L. A complex valued function f defined on an
interval I := [a, b] is said to be of p − �-bounded variation (that is, f ∈ �BV (p)(I))
if

V�p(f , I) = sup
{Ik}

(
∑

k

|f (Ik)|p
λk

)1/p

< ∞,

where {Ik} is a finite collections of non-overlapping subintervals Ik = [ak, bk] ⊂
[a, b] and f (Ik) = f (bk) − f (ak).

Note that, for p = 1 and � = {1} (that is, λn = 1, for all n,) the class �BV (p)(I)
reduces to the classBV (I) (the class of functions of bounded variation). For p = 1 the
class �BV (p)(I) reduces to the class �BV (I); and for � = {1} the class �BV (p)(I)
reduces to the class BV (p)(I) (the class of functions of p-bounded variation).

3 Results for Functions of Single Variable

Theorem 3.1 If f ∈ �BV (T) and γ = {γm} ∈ A2/(2−β) for some β ∈ (0, 2) then

∑
(γ; f )β =

∑

|m|≥1

γm|f̂ (m)|β ≤ κC
∞∑

μ=0

2−μβ/2�μ−1

(
(ω(f ; π

2μ ))
∑2μ

i=1
1
λi

)β/2

,

where κ is from (2.1) corresponding to α = 2/(2 − β) and C is a constant,

�μ :=
∑

m∈Dμ

γm for μ ∈ N, and �−1 := �0 = {γ1} (3.1)
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Corollary 3.2 Under the hypothesis of Theorem 3.1, we have

∑
(γ; f )β ≤ κC

∞∑

m=1

m−β/2γm

(
(ω(f ; π

m ))
∑m

i=1
1
λi

)β/2

,

In the case when γm ≡ 1, it follows from the above Corollary that
∑

(1; f )β :=
∑

|m|≥1 |f̂ (m)|β

≤ C
∞∑

m=1

m−β/2

(
(ω(f ; π

m )
∑m

i=1
1
λi

)β/2

.

This gives the result [6, Theorem1,withnk = k, forall k,] as a particular case.
Above corollary can easily follow from the Theorem 3.1.

Theorem 3.3 If f ∈ �BV (p)(T) and γ = {γm} ∈ A2/(2−β) for some β ∈ (0, 2) then

∑
(γ; f )β ≤ κC

∞∑

μ=0

2−μβ/2�μ−1

⎛

⎝

(
(ω((2−p)s+p)(f ; π

2μ ))2r−p

∑2μ

i=1
1
λi

)1/r
⎞

⎠

β/2

,

where 1
r + 1

s = 1, κ is from (2.1) corresponding to α = 2/(2 − β) and C is a con-
stant.

Corollary 3.4 Under the hypothesis of Theorem 3.3, we have

∑
(γ; f )β ≤ κC

∞∑

m=1

m−β/2γm

⎛

⎝

(
(ω((2−p)s+p)(f ; π

m ))2r−p

∑m
i=1

1
λi

)1/r
⎞

⎠

β/2

,

In the case when γm ≡ 1, it follows from the above Corollary that

∑
(1; f )β :=

∑

|m|≥1

|f̂ (m)|β

≤ C
∞∑

m=1

m−β/2

⎛

⎝

(
(ω((2−p)s+p)(f ; π

m ))2r−p

∑m
i=1

1
λi

)1/r
⎞

⎠

β/2

.

This gives the result [4, Theorem1, with nk = k, forall k,] as a particular case.
Above Corollary 3.4 can be easily follows from the Theorem 3.3.

Proof of Theorem 3.1 f ∈ �BV (T) implies that f is bounded over T and hence
f ∈ L2(T). For given h > 0, put fj = Tjhf − T(j−1)hf , then f̂j(m) = 2if̂ (m)eim(j− 1

2 h)

sin(mh2 ).
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By Parseval’s equality, we get

4
∑

m∈Z
|f̂ (m)|2 sin2

(
mh

2

)

= O(||fj||22).

Putting h = π
2μ , μ ∈ N, and observing that

π

4
<

|m|π
2μ+1

≤ π

2
for |m| ∈ Dμ, implies sin2

(
mh

2

)

>
1

2
.

Thus, we have

B =
∑

|m|∈Dμ

|f̂ (m)|2 = O
(||fj||22

)

= O (ω(f ; h))
(∫ 2π

0
|fj(x)|dx

)

. (3.2)

Multiplying both the sides of the above inequality by 1
λj

and then summing over
j = 1 to j = 2μ, we have

B = O

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

⎛

⎝
∫ 2π

0

2μ
∑

j=1

(|fj(x)|)
λj

dx

⎞

⎠ = O

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠ ,

as f ∈ �BV (T) implies
∑2μ

j=1
(|fj(x)|)

λj
= O(1).

Since 1 = β
2 + 2−β

2 , by Holder’s inequality, for μ ≥ 1, we have

Sμ :=
∑

|m|∈Dμ

γm|f̂ (m)|β ≤
⎛

⎝
∑

|m|∈Dμ

|f̂ (m)|2
⎞

⎠

β/2 ⎛

⎝
∑

|m|∈Dμ

γ2/(2−β)
m

⎞

⎠

(2−β)/2

≤ C

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

β
2
⎛

⎝
∑

|m|∈Dμ

γ2/(2−β)
m

⎞

⎠

(2−β)/2

. (3.3)

Thus for μ ≥ 1,

Sμ ≤ Cκ

⎛

⎜
⎝2−μβ/2 �μ−1

⎛

⎝ ω(f ; h)
∑2μ

j=1
1
λj

⎞

⎠

β
2

⎞

⎟
⎠ .
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If μ = 0, then from (3.3) it follows that

S0 := γ1(|f̂ (−1)|β + |f̂ (1)|β) = O

(

γ1

(
ω(f ;π)

1
λ1

))

.

Hence, the result follows from

∑

|m|≥1

γm|f̂ (m)|β =
∞∑

μ=0

Sμ.

Proof of Theorem 3.3. f ∈ �BV (p)(T) implies that f is bounded over T [4, in view
of Lemma 1, p.771] and hence f ∈ L2(T). Proceeding as in the proof of Theorem
3.1, we get (3.2).

Since 2 = (2−p)s+p
s + p

r , by using Holder’s inequality, we have

||fj||22 ≤ (||fj||p
)p/r

(∫ 2π

0
|fj|(2−p)s+pdx

)1/s

≤ (||fj||p
)p/r

�
1/r
h ,

where �
1/r
h = (ω(2−p)s+p(f ; h))2r−p.

This together with (3.2) implies

Br =
⎛

⎝
∑

|m|∈Dμ

|f̂ (m)|2
⎞

⎠

r

= O

(

�h

∫ 2π

0
|fj(x)|pdx

)

.

Multiplying both the sides of the above inequality by 1
λj

and then summing over
j = 1 to j = 2μ, we have

Br = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠

⎛

⎝
∫ 2π

0

2μ
∑

j=1

(|fj(x)|p)
λj

dx

⎞

⎠ = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠ .

Thus

B = O

⎛

⎝ �h
∑2μ

j=1
1
λj

⎞

⎠

1/r

.

Now, proceeding as in the proof of the Theorem 3.1 the result follows.
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