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Abstract

We have witnessed an explosion in wireless video traffic in recent years. Video
applications are bandwidth intensive and delay sensitive and hence require
efficient utilization of spectrum resources. Born to utilize wireless spectrum more
efficiently, cognitive radio networks are promising candidates for deployment of
wireless video applications. In this chapter, we introduce our recent advances in
foresighted resource allocation mechanisms that enable multiuser wireless video
applications over cognitive radio networks. The introduced resource allocation
mechanisms are foresighted, in the sense that they optimize the long-term video
quality of the wireless users. Due to the temporal coupling of delay-sensitive
video applications, such foresighted mechanisms outperform mechanisms that
maximize the short-term video quality. Moreover, the introduced resource
allocation mechanisms allow wireless users to optimize while learning the
unknown dynamics in the environment (e.g., incoming traffic, primary user
activities). Finally, we introduce variations of the mechanisms that are suitable
for networks with self-interested users. These mechanisms ensure efficient video
resource allocation even when the users are self-interested and aim to maximize
their individual video quality. The foresighted resource allocation mechanisms
introduced in this chapter are built upon our theoretical advances in multiuser
Markov decision processes, reinforcement learning, and dynamic mechanism
design.

Keywords
Cognitive radio networks � Multimedia communications � Game theory �

Reinforcement learning

Introduction

Video applications, such as video streaming, videoconferencing, remote teaching,
and surveillance, have become the major applications deployed over wireless
networks. Video applications are bandwidth intensive and delay sensitive and hence
require efficient allocation of spectrum resources among the users and efficient
scheduling of each user’s video packets based on its allocated resources.

One promising physical-layer technology to improve the spectrum efficiency
is cognitive radio. In cognitive radio, secondary users (SUs) can utilize the idle
spectrum when primary users (PUs) are inactive. Due to the potential of high
spectrum efficiency, cognitive radio is a promising candidate for the physical-layer
technology of video applications. Although cognitive radio is promising, there are
several challenges in efficiently deploy video applications over cognitive radio
networks.

First, video applications are delay-sensitive, namely, the video packets have
to be received before strict deadlines for successful decoding. Therefore, video
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applications require not only high spectrum efficiency but also efficient scheduling
of video packets.

In addition, there is interdependency across video packets, which makes the issue
of delay sensitivity more challenging. Specifically, the successful decoding of some
video packets may depend on the successful decoding of others. In other word, even
if a video packet is received before its deadline, it may not be decoded if some
packets that it depends on were not received by deadlines. This interdependency
results in temporal coupling of packet scheduling decisions. Therefore, we need
foresighted video packet scheduling that aims at maximizing the long-term video
quality, instead of instantaneous video quality.

Moreover, the delay sensitivity and interdependency mentioned above require not
only efficient packet scheduling but also efficient allocation of spectrum resources.
More specifically, we need foresighted resource allocation among the users in the
network, in order to maximize the long-term video quality.

Furthermore, the unknown dynamic environment requires users to make resource
allocation and packet scheduling decisions while learning the unknown dynamics.
Here the unknown dynamics include incoming video traffic, the channel quality, and
the PU activities.

Finally, the users in cognitive radio networks are autonomous and may aim
to maximize their own video quality (i.e., they are self-interested). It is more
challenging to design efficient resource allocation mechanism for self-interested
users, because they may misreport their information (e.g., their video traffic and
channel quality). In this case, the resource allocation mechanism has to be strategy
proof.

In this chapter, we introduce our solutions to the aforementioned challenges in
multiuser wireless video transmission over cognitive radio networks. Specifically,
we introduce a framework to design foresighted resource allocation mechanisms and
packet scheduling algorithms [1–7]. The introduced resource allocation mechanisms
allow wireless users to optimize while learning the unknown dynamics in the
environment (e.g., incoming traffic, channel quality, primary user activities). We
also describe variations of the mechanisms that are suitable for self-interested users
[1–5]. These mechanisms ensure efficient video resource allocation even when the
users are self-interested and aim to maximize their individual video quality. The
foresighted resource allocation mechanisms introduced in this chapter are built upon
our theoretical advances in multiuser Markov decision processes, reinforcement
learning, and dynamic mechanism design.

The rest of this chapter is organized as follows. We give a literature review
in section “Related Work.” We introduce the system model in section “General
Model for Video Applications over Cognitive Radio” and then formulate the design
problem in section “The Design Problem.” We describe the introduced solutions
in section “Optimal Foresighted Video Transmission.” We also briefly describe
the strategy-proof variations of the solutions in section “Strategy-Proof Resource
Allocation Mechanisms.” Finally, we conclude the chapter in section “Conclusion
and Future Directions.”
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Related Work

Multimedia Applications over Cognitive Radio Networks

A plethora of recent works [1–14] propose distinct solutions to optimize the
video quality. Some works [8–16] assume that the users are myopic, namely,
they only maximize their instantaneous video quality over a given time interval
without considering the impact of their actions on the long-term video quality.
They cast the problem in a network utility maximization (NUM) framework to
maximize the instantaneous joint video quality of all the users and apply the NUM
framework repeatedly when the channel conditions or video traffic characteristics
change. However, since the users are optimizing their transmission decisions
myopically, their long-term average performance is inferior to the performance
achieved when the users are foresighted [17]. Some of the works considering
the foresighted decision of users focus solely on a single foresighted user making
sequential transmission decisions (e.g., packet scheduling, retransmissions, etc.)
[17]. However, these single-user solutions do not discuss how to allocate resources
among multiple users as well as how this allocation is impacted by and impacts the
foresighted scheduling decisions of individual users. Static allocations of resources,
which are often assumed in the works studying the foresighted decisions of a single
user, have been shown to be suboptimal compared to the solutions that dynamically
allocate resources among multiple users [6].

In contrast, our introduced solutions, based on [1–7], make foresighted resource
allocation and packet scheduling decisions over multiple video users.

Table 1 summarizes the above discussions. Note that the optimality shown in the
last column of Table 1 indicates whether the solution is optimal for the long-term
network utility (i.e., the joint long-term video quality of all the users in the network).

Last but not the least, there are a plethora of works that address other important
issues in cognitive radio networks with multimedia applications, such as spectrum
handoff [18], routing [19], spectrum sensing [20], and applications in smart grid
[21]. These works are out of scope of this chapter.

Theoretical Frameworks

Single-user foresighted decision-making in a dynamically changing environment
has been studied and formulated as Markov decision process (MDP). Foresighted

Table 1 Related works on video (the first two rows are works introduced in this chapter)

Users Foresighted Learning Strategy proof Optimal

[1–5] Multiple Yes Yes Yes No

[6, 7] Multiple Yes Yes No Yes

[8–16] Multiple No No Yes/No No

[17] Single Yes Yes No No
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Table 2 Related theoretical frameworks (the first row is works introduced in this chapter)

Decision makers Foresighted Learning Optimal

MU-MDP [6, 7] Multiple Yes Yes Yes

MDP [17] Single Yes Yes No

Repeated NUM [16] Multiple No No No

Lyapunov optimization [22] Single Yes Yes No

decision-making in a dynamically changing environment can also be solved using
the Lyapunov optimization framework [22]. However, the Lyapunov optimization
framework is not able to make optimal decisions for video streaming since it
disregards specific interdependency and distortion impact of video traffic [23].

Table 2 summarizes the above discussions about existing theoretical frameworks.

General Model for Video Applications over Cognitive Radio

We first present a general model for multiuser wireless video transmission in
cognitive radio networks. Then we give an example of a commonly used model
as in [6, 14, 17] as an instantiation of our general model.

The General Model

We consider a cognitive radio network with a network manager indexed by 0 and
a set I of I wireless video users, indexed by i D 1; : : : ; I . Time is slotted at
t D 0; 1; 2; : : :. In the rest of the paper, we will put the user index in the superscript
and the time index in the subscript of variables. The multiuser wireless video
transmission system is described by the following features.

States
Each user i has a finite state space Si, from which a state si is realized and revealed
to user i at the beginning of each time slot. The state si may consist of several
components, such as the video traffic state and the channel state. An example of a
simplified video traffic state can be the types of video frames (I, P, or, B frame)
available for transmission and the numbers of packets in each available video
frame. Note that the video traffic in our model can come from video sequences
that are either encoded in real time, or offline, and stored in the memory before the
transmission. An example channel state can be the channel quality reported to the
application layer by the lower layers. The network manager has a finite state space
S0 that describes the status of the resource in the network. An example resource
state can be the available idle bandwidth.
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Actions
At each state si, each user i chooses an action ai 2 Ai .si /. For example, an action
can be how many packets within each available video frame should be transmitted.
We allow the sets of actions taken under different states to be different, in order to
incorporate the minimum video quality requirements that will be discussed.

Payoffs
Each user i has a payoff function ui W Si � Ai ! R. The payoff function ui is
concave in the action under any state. A typical payoff can be the distortion impact
of the transmitted packets minus the cost of energy consumption in transmission.

State Transition
Each user i ’s state transition is Markovian and can be denoted by pi .si 0jsi ; ai / 2

�.Si /, where �.Si / is the probability distribution over the set of states.

Resource Constraints
Given the status of the resource (i.e., the network manager’s state s0), we can write
the (linear) resource constraint as

f .s0; a1; : : : ; aI / , f 0.s0/ C
PI

iD1 f i .s0/ � ai � 0;

where f i .s0/ is the coefficient under state s0. When ai is a vector, f i .s0/ is a vector
of the appropriate length, and f i .s0/ � ai is the inner product of the two vectors.

A variety of multiuser wireless video transmission systems can be modeled
as special cases of our general model. Next, we present a packet-level video
transmission model as an example.

An Example Packet-Level Video Transmission Model

Packet-level video transmission models have been proposed in a variety of related
works, including [6–14]. In the following, we briefly describe the model based on
[6–14] and refer interested readers to [6–14] for more details.

We first consider a specific video user i and hence drop the superscript before we
describe the resource constraints. The video source data is encoded using an H.264
or MPEG video coder under a group of pictures (GOP) structure: the data is encoded
into a series of GOPs, indexed by g D 1; 2; : : :, where one GOP consists of N data
units (DUs). Each DU n 2 f1; : : : ; N g in GOP g, denoted DU

g
n , is characterized

by its size l
g
n 2 NC (i.e., the number of packets in it), distortion impact q

g
n 2 RC,

delay deadline d
g
n 2 NC, and dependency on the other DUs in the same GOP. The

dependency among the DUs in one GOP comes from encoding techniques such as
motion estimation/compensation. In general, if DU

g
n depends on DU

g
m, we have

d
g
n � d

g
m and q

g
n � q

g
m, namely, DU

g
m should be decoded before DU

g
n and has

a higher distortion impact than DU
g
n [17]. Note that in the case of scalable video

coding, there is no dependency among the DUs, and the following representation of
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the model can be greatly simplified. We will keep the dependency for generality in
our exposition.

Among the above characteristics, the distortion impact q
g
n , delay deadline d

g
n ,

and the dependency are deterministic and fixed for the same DUs across different
GOPs (e.g., q

g
n D q

gC1
n ) [6, 17]. As in [6], the sizes of all the DUs are independent

random variables and that the sizes of the nth DUs in different GOPs have the same
distribution.

States
Each user’s state consists of the traffic state Tt and the channel state ht . We describe
the traffic state Tt first. At time slot t , as in [6, 14, 17], we assume that the wireless
user will only consider for transmission the DUs with delay deadlines in the range of
Œt; t CW /, where W is referred to as the scheduling time window (STW). Following
the model in [6, 17], at time slot t , we introduce context to represent the set of DUs
that are considered for transmission, i.e., whose delay deadlines are within the range

of Œt; t C W /. We denote the context by Ct D
n
DU

g
j jd

g
j 2 Œt; t C W /

o
. Since the

GOP structure is fixed, the transition from context Ct to CtC1 is deterministic. An
illustration of the context is given in Fig. 1.

Given the current context Ct , we let xt;DU denote the number of packets in the
buffer associated with a DU in Ct . We denote the buffer state of the DUs in Ct by
xt D fxt;DU jDU 2 Ct g. The traffic state Tt at time slot t is then Tt D .Ct ; xt /,
where the context Ct represents which DUs are available for transmission, and the
buffer state xt represents how many packets each available DU has left in the buffer.

Next we describe the channel state ht . At each time slot t, the wireless user
experiences a channel condition ht 2 H , where H is the finite set of possible
channel conditions. We assume that the wireless channel is slow fading (i.e., remains
the same in one time slot) and that the channel condition ht can be modeled as a
finite-state Markov chain [24].

t+1

I

t t+2 t+3 t+4 t+5 time slot

P

B

P

B

GOP g

I P

B

P

B

GOP g+1

W
(Scheduling time window)

1 2

3

4

5

1 2

3

4

5

Fig. 1 Illustration of group of pictures (GOP), data unit (DU), and the context. Since the
scheduling time window is W D 2, the contexts in different time slots are Ct D

fDU
g
1 ; DU

g
2 ; DU

g
3 g, CtC1 D fDU

g
2 ; DU

g
3 ; DU

g
4 ; DU

g
5 g, CtC2 D fDU

g
4 ; DU

g
5 ; DU

gC1
1 g,

CtC3 D fDU
gC1
1 ; DU

gC1
2 ; DU

gC1
3 g, and so on
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In summary, the state of a user at each time slot t is st D .Ct ; xt ; ht /, which
includes the current context, buffer state, and channel state.

(Packet Scheduling) Actions
At each time slot t, the user decides how many packets should be transmitted
from each DU in the current context. The decision is represented by at .st / D

fyt;DU jDU 2 Ct ; yt;DU 2 Œ0; xt;DU �g, where yt;DU is the amount of packets
transmitted from the DU.

Payoffs
As in [17], we consider the following instantaneous payoff at each time slot t : (The
payoff function can be easily extended within our framework to include additional
features in the model. For example, when there are packet losses, we can modify
the first term to be the expected distortion reduction given the packet loss rate or
modify the second term to consider the additional energy consumption associated
with packet retransmission.)

u.st ; at / D
P

DU 2Ct
qDU yt;DU � ˇ � � .ht ; kat k1/ ; (1)

where the first term
P

DU 2Ct
qDU yt;DU is the instantaneous video quality, namely,

the distortion reduction obtained by transmitting the packets from the DUs in the
current context, and the second term ˇ � � .ht ; kat k1/ represents the disutility of the
energy consumption by transmitting the packets. Since the packet scheduling action
at is a vector with nonnegative components, we have kat k1 D

P
DU 2Ct

yt;DU ,
namely, kat k1 is the total number of transmitted packets. As in [17], the energy
consumption function �.h; kak1/ is assumed to be convex in the total number of
transmitted packets kak1 given the channel condition h. An example of such a
function can be �.h; kak1/ D �2.e2kak1b � 1/=h, where b is the number of bits in
one packet [25]. The payoff function is a trade-off between the distortion reduction
and the energy consumption, where the relative importance of energy consumption
compared to distortion reduction is characterized by the trade-off parameter ˇ > 0.
In the simulation, we will set different values for ˇ to illustrate the trade-off between
the distortion reduction and energy consumption.

The Resource Constraint
Suppose that the users access the channels in a frequency-division multiple access
(FDMA) manner. The total bandwidth B is shared by the users. We assume that each
user i uses adaptive modulation and coding (AMC) based on its channel condition.
In other words, each user i chooses a data rate ri

t under the channel state hi
t . Note

that the rate selection is done by the physical layer and is not a decision variable in
our framework. Then as in [8], we have the following resource constraint:

PI
iD1

kai
t k1b

ri
t .hi

t /
� B; (2)



29 Cognitive Radio Networks for Delay-Sensitive Applications: Games and Learning 977

where kai
t k1�b

ri
t .hi

t /
is the bandwidth needed for transmitting the amount kai

t k1 � b of bits

given the data rate ri
t .hi

t /.
In this model, the network manager’s state s0 is then the collection of channel

states, namely, s0 D .h1; : : : ; hI /. The information about the channel states is fed
back from the users to the network manager. We can write the constraint compactly
as the linear constraint f .s0

t ; a1
t ; : : : ; aN

t / � 0 with f i .s0
t / D b

ri
t .hi

t /
; i D 1; : : : ; I

and f 0.s0
t / D �B .

The Design Problem

Each user makes decisions based on its state st . Hence, each user i ’s strategy can
be defined as a mapping �i W Si ! [si Ai .si /, where Ai .si / is the set of actions
available under state si . We allow the set of available actions to depend on the state,
in order to capture the minimum video quality guarantee. For example, at any time,
user i has a minimum distortion impact reduction requirement Di , formulated as

Ai .si
t / D

n
ai

t W
P

DU 2C i
t

qDU � yi
t;DU � Di

o
:

The users aim to maximize their expected long-term payoff. Given its initial state
si

0, each user i ’s strategy �i induces a probability distribution over the sequences
of states si

1; si
2; : : :, and hence a probability distribution over the sequences of

instantaneous payoffs ui
0; ui

1; : : :. Taking expectation with respect to the sequences
of payoffs, we have user i ’s long-term payoff given the initial state as

U i .�i jsi
0/ D E

˚
.1 � ı/

P1
tD0

�
ıt � ui

t

��
; (3)

where ı 2 Œ0; 1/ is the discount factor.
The design problem can be formulated as

max�1;:::;�I

P
s1
0 ;:::;sI

0

PI
iD1 U i .�i jsi

0/ (4)

s:t: minimum video quality guarantee W

�i .si / 2 Ai .si /; 8i; si ;

resource constraint W

f .s0; �1.s1/; : : : ; �I .sI // � 0; 8s0:

Note that the design problem (4) is a weakly coupled MU-MDP as defined by [26].
It is a MU-MDP because there are multiple users making foresighted decisions. The
MU-MDP is coupled, because the users influence each other through the resource
constraints (namely, the choice of one user’s action depends on the choices of the
other users). However, it is weakly coupled, because the coupling is through the
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resource constraints only and because one user’s instantaneous payoff ui .si ; ai / is
not affected by the other users’ actions aj . It is this weak coupling that enables
us to decompose the multiuser problem into multiple single-user problems through
prices. Such a decomposition of weakly coupled MU-MDPs has been studied in
a general setting [26] and in wireless video transmission [6], both adopting a
dual decomposition approach based on uniform price (i.e., the same Lagrangian
multiplier for the resource constraints under all the states).

Note also that we sum up the network utility
PI

iD1 U i .�i jsi
0/ under all the initial

states .s1
0 ; : : : ; sI

0 /. This can be interpreted as the expected network utility when
the initial state is uniformly distributed. The optimal stationary strategy profile that
maximizes this expected network utility will also maximize the network utility given
any initial state.

The design problem (4) is very challenging and has never been solved optimally.
To better understand this, let us assume that a central controller would exist which
knows the complete information of the system (i.e., the states, the state transitions,
the payoff functions) at each time step. Then, this central controller can solve
the above problem (4) as a centralized single-user MDP (e.g., using well-known
value iteration or policy iteration methods) and obtain the solution to the design
problem �? and the optimal value function U ?. However, the multiuser wireless
video system we discussed is inherently informationally decentralized, and there
is no entity in the network that possesses the complete information. Moreover, the
computational complexity of solving (4) by a single entity is prohibitively high.
Hence, our goal is to develop an optimal decentralized algorithm that converges to
the optimal solution.

Optimal Foresighted Video Transmission

In this section, we show how to determine the optimal foresighted video transmis-
sion policies. We propose an algorithm that allows each entity to make decisions
based on its local information and the limited information exchange between the BS
and the users. Specifically, in each time slot, the BS sends resource prices to each
user, and the users send their total numbers of packets to transmit to the BS. The
BS keeps updating the resource prices based on the resource usage by the users and
obtains the optimal resource prices based on which the users’ optimal individual
decisions achieve the optimal network utility.

Decoupling of The Users’ Decision Problems

Each user aims to maximize its own long-term payoff U i .�i jsi
0/ subject

to the constraints. Specifically, given the other users’ strategies ��i D

.�1; : : : ; �i�1; �iC1; : : : ; �I / and states s�i D .s1; : : : ; si�1; siC1; : : : ; sI /, each
user i solves the following long-term payoff maximization problem:
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�i D arg max
Q�i

Ui . Q�i jsi
0/ (5)

s:t: Q�i .si / 2 Ai .si /; 8si ;

f .s0; Q�i .si /; ��i .s�i // � 0:

Assuming that the user knows all the information (i.e., the other users’ strategies
��i and states s�i ), user i ’s optimal value function should satisfy the following:

V .si / Dmax
ai 2Ai .si /

.1 � ı/ui .si ; ai / C ı
X

si0

pi .si 0jsi ; ai /V .si 0/

s:t: f .s0; ai ; ��i .s�i // � 0: (6)

Note that the above equations would be the Bellman equation, if user i knew the
other users’ strategies ��i and states s�i and the BS’ state s0 (i.e., the channel
states of all the users). However, such information is never known to a particular
user. Without such information, one user cannot solve the decision problem above
because the resource constraint contains unknown variables. Hence, we need to
separate the influence of the other users’ decisions from each user’s decision
problem.

One way to decouple the interaction among the users is to remove the resource
constraint and add it as a penalty to the objective function. Denote the Lagrangian
multiplier (i.e., the “price”) associated with the constraint under state s0 as �0.s0/.
Then the penalty at state s0 is

��0.s0/ � f .s0; a1; : : : ; aI / D ��0.s0/ �
PI

iD1 f i .s0/ � ai :

Since the term ��0.s0/ �
P

j ¤i f j .s0/ � aj is a constant for user i, we only need to

add ��0.s0/ � f i .s0/ � ai to each user i ’s objective function. We define �i .s0/ ,
�0.s0/ � f i .s0/. Then we can rewrite user i ’s decision problem as

QV �i .s0/.si / D max
ai 2Ai .si /

.1 � ı/
�
ui .si; ai / � �i .s0/ � ai

�

Cı �
P

s0
i

h
pi .si 0jsi; ai / QV �i .s0/.si 0/

i
: (7)

By contrasting (7) with (6), we can see that given the price �i , each user can
make decisions based only on its local information since the resource constraint
is eliminated. Note, importantly, that the above decision problem (7) for each user
i is different from that in [6] with uniform price. This can be seen from the term
�i .s0/ � ai in (7), where the price �i .s0/ is user specific and depends on the state,
while the uniform price in [6] is a constant �. The decision problem (7) is also
different from the subproblem resulting from dual decomposition in NUM, because
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it is a foresighted optimization problem that aims to maximize the long-term payoff.
This requires a different method to calculate the optimal Lagrangian multiplier
�i .s0/ than that in NUM.

Optimal Decentralized Video Transmission Strategy

For the general model described in section “General Model for Video Applications
over Cognitive Radio”-A, we propose an algorithm used by the BS to iteratively
update the prices and by the users to update their optimal strategies. The algorithm
will converge to the optimal prices and the optimal strategy profile that achieves the
minimum total system payoff U ?. The algorithm is described in Table 3.

Theorem 1. The algorithm in Table 3 converges to the optimal strategy profile,
namely,

limt;k!1

ˇ
ˇ
ˇ
P

s1
t ;:::;sI

t

PI
iD1 Ui .�

i;�i
k jsi

t / � U ?
ˇ
ˇ
ˇ D 0 :

Proof. See the appendix in [7].
We illustrate the BS’s and users’ updates and their information exchange in

one time slot in Fig. 2. At the beginning of each time slot t , the BS and the
users exchange information to compute the optimal resource price and the optimal
actions to take. Specifically, in each iteration k, the BS updates the resource price
�0

k . Then based on the user-specific resource price �i
k , each user i solves for the

optimal individual strategy �i;�i
k and sends the BS its resource request f i ��i;�i

k .si
t /.

Then the BS updates the prices based on the users’ resource requests using the
stochastic subgradient method, which can be performed easily. The difference from
the dual decomposition in NUM is that each user’s decision problem in our work
is a foresighted optimization problem aiming to maximize the long-term, instead of
instantaneous, payoff. Our algorithm is also different from the algorithm in [6] in
that we have different prices under different states.

Table 3 Distributed algorithm to compute the optimal strategy at time t

Input: Performance loss tolerance �

Initialization: Set k D 0, �0
k D 0.

Each user i observes si
t , the BS observes s0

t

repeat
Each user i solves the decoupled decision problem (7) to obtain �i;�i

k

Each user i submits its resource request f i .s0
t / � �i;�i

k .si
t /

The BS updates the prices (stochastic subgradient update):

�i
kC1.s0

t / D �i
k.s0

t / C 1
kC1

f .s0
t ; �1;�1

k .s1
t /; � � � ; �I;�I

k .sI
t //

until k�i
kC1.s0

t / � �i
k.s0

t /k � �

Output: optimal price �0
k , optimal strategies f�i;�i

k gI
iD1
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Table III:

Fig. 2 Illustration of the interaction between the BS and user i (i.e., their decision-making and
information exchange) in one period

From Fig. 2, we can clearly see what information (namely, resource prices �0
k and

resource requests f i � �i;�i
k .si

t /) is exchanged. The amount of information exchange
is small (O.I /), compared to the amount of information required by each user to
solve the decision problem (6) directly (

Q
j ¤i jSi j states plus the strategies ��i ). In

other words, the algorithm enables the entities to exchange a small amount (O.I /)
of information and reach the optimal video transmission strategy that achieves the
same performance as when each entity knows the complete information (i.e., the
states and the strategies of all the entities) about the system.

Optimal Packet Scheduling

In the previous subsection, we propose an algorithm of optimal foresighted resource
allocation and packet scheduling for the general video transmission model described
in section “General Model for Video Applications over Cognitive Radio”-A. In
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the algorithm, each user’s packet scheduling decision is obtained by solving the
Bellman equation (7) (see Table 3). The Bellman equation (7) can be solved by a
variety of standard techniques such as value iteration. However, the computational
complexity of directly applying value iteration may be high, because each user’s
state contains the information of all DUs, and thus each user’s state space can
be very large. In the following, we show that for the specific model described in
section “General Model for Video Applications over Cognitive Radio”-B, we can
greatly simplify the packet scheduling decision problem. The key simplification
comes from the decomposition of each user’s packet scheduling problem with
multiple DUs into multiple packet scheduling problems with single DU. In this
way, we can greatly reduce the number of states in each single-DU packet
scheduling problem, such that the total complexity of packet scheduling grows
linearly, instead of exponentially without decomposition, with the number of
DUs.

The decomposition closely follows the decomposition of multiple-DU packet
scheduling problems proposed in [17]. The only difference is that the decision
problem (7) in our work has an additional term ��i .s0/ � ai due to the price, while
such a term does not exist in [17] because the single-user packet scheduling problem
is considered in [17].

Lemma 1 (Structural Result). Suppose DU1 2 Ct and DU2 2 Ct . If DU2

depends on DU1, we should schedule the packets of DU1 before scheduling the
packets of DU2.

Although Lemma 1 is straightforward, it greatly simplifies the scheduling prob-
lem because we can now take advantage of the partial ordering of the DUs. However,
this still does not solve the scheduling decision for the DUs that are not dependent
on each other. Next, we provide the algorithm of optimal packet scheduling in
Table 4. The algorithm decomposes the multiple-DU packet scheduling problem
into a sequence of single-DU packet scheduling problems and determines how
many packets to transmit for each DU sequentially. This greatly reduces the total
computational complexity (which is linear in the number of DUs) compared to

Table 4 The optimal packet scheduling algorithm

Input: Directed acyclic graph given the current context: DAG.Ct /

Initialization: Set DAG1 D DAG.Ct /.

For k D 1; : : : ; jCt j

DUk D arg max
DU 2root.DAGk /

max
0�y�xt;DU

.1 � ı/
�
qDU � y � �i

k.s0/ � y
�

C ı �
P

si0

h
pi .si0jsi ; af;t / QV i;�i;.k/.s0/.si0/

i

y�
t;DUk

D arg max
0�y�xt;DUk

.1 � ı/
�
qDUk � y � �i

k.s0/ � y
�

C ı �
P

si0

h
pi .si0jsi ; af;t / QV i;�i;.k/.s0/.si0/

i

DAGkC1 D DAGk n fDUkg

End for
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solving the multiple-DU packet scheduling problem directly (in which the number
of states grows exponentially withe number of DUs). The algorithm is similar to
[17, Algorithm 2]. The only difference is the term ��i .s0/ � ai .

Learning Unknown Dynamics

In practice, each entity may not know the dynamics of its own states (i.e., its
own state transition probabilities) or even the set of its own states. When the state
dynamics are not known a priori, each entity cannot solve their decision problems
using the distributed algorithm in Table 3. In this case, we can adapt the online
learning algorithm based on post-decision state (PDS) in [17], which was originally
proposed for single-user wireless video transmission, to the considered deployment
scenario.

The main idea of the PDS-based online learning is to learn the post-decision
value function, instead of the value function. Each user i ’s post-decision value
function is defined as QU i . Qxi ; Qhi /, where . Qxi ; Qhi / is the post-decision state. The
difference from the normal state is that the PDS . Qxi ; Qhi / describes the status of
the system after the scheduling action is made but before the DUs in the next period
arrive. Hence, the relationship between the PDS and the normal state is

Qxi D xi � ai ; Qhi D hi :

Then the post-decision value function can be expressed in terms of the value
function as follows:

QU i . Qxi ; Qhi / D
X

xi0;hi0

pi .xi 0; hi 0j Qxi C ai ; Qhi / � QV i .xi 0; Qhi /:

In PDS-based online learning, the normal value function and the post-decision value
function are updated in the following way:

V i
kC1.xi

k; hi
k/ D max

ai
.1 � ı/ � ui .xi

k; hi
k; ai /

C ı � U i
k .xi

k C .ai � l i
k/; hi

k/;

U i
kC1.xi

k; hi
k/ D .1 �

1

k
/U i

k .xi
k; hi

k/

C
1

k
� V i

k .xi
k � .ai � l i

k/; hi
k/:

We can see that the above updates do not require any knowledge about the state
dynamics. In particular, we propose the decomposed optimal packet scheduling
with PDS-based learning in Table 5. Note that the difference between the learning
algorithm in Table 5 with the algorithm assuming statistic knowledge in Table 4
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Table 5 The optimal decomposed packet scheduling algorithm with PDS-based learning

Input: Directed acyclic graph given the current context: DAG.Ct /

Initialization: Set DAG1 D DAG.Ct /.

For k D 1; : : : ; jCt j

DUk D arg max
DU 2root.DAGk /

max
0�y�xt;DU

.1 � ı/
�
qDU � y � �i

k.s0/ � y
�

C ı � UDU .Ct ; xt;DU � y; ht /

y�
t;DUk

D arg max0�y�xt;DU .1 � ı/
�
qDU � y � �i

k.s0/ � y
�

C ı � UDU .Ct ; xt;DU � y; ht /

DAGkC1 D DAGk n fDUkg

End for

is that we use the post-decision state value function instead of the normal value
function. It is proved in [17] that the PDS-based online learning will converge to
the optimal value function. Hence, the distributed packet scheduling and resource
allocation solution in Table 3 can be modified by letting each user perform the packet
scheduling using the PDS-based learning in Table 5.

Strategy-Proof Resource Allocation Mechanisms

When the users are self-interested, they may not follow the solutions introduced
in section “Optimal Foresighted Video Transmission”. In particular, they may not
be truthful in the message exchange with the network manager. There are several
ways of designing strategy-proof resource allocation mechanisms, based on pricing
[3] and mechanism design [1–5]. In this section, we describe a representative
framework based on auctions [4, 5].

The auction-based resource allocation mechanism is illustrated in Fig. 3. The
basic procedure at each time slot is described as follows:

1. The network manager announces the total amount of available resources (e.g.,
state s0).

2. The SUs submit bids of how much resources they are willing to get.
3. Based on SUs’ bids, the network manager determines the resource allocation and

the payments required from SUs.
4. Based on the allocated resources, the SUs schedule their video packets.

As we can see, most elements (e.g., states, rewards) in auction-based mechanisms
are the same as in the general model in section “General Model for Video
Applications over Cognitive Radio”. Here we list some key features of the auction-
based mechanism.

• In the auction-based mechanism, the SUs’ actions consist of two types of actions,
internal actions and external actions. The internal actions, denoted by bt

i in
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Fig. 3 Illustration of strategy-proof resource allocation mechanism based on auctions

Fig. 3, are the packet scheduling actions described in section “General Model
for Video Applications over Cognitive Radio”. The external actions are unique
in the auction-based mechanism. Specifically, the external action is the amount
of resources each SU wants to get (i.e., their bids).

• In the auction-based mechanism, the network manager directly allocates the
resources to the SUs and announces the payments required from the SUs. This is
different from the mechanism in section “General Model for Video Applications
over Cognitive Radio”, where the network manager announces the prices and the
SUs determine the resource allocation based on the prices.

We refer interested readers to [4, 5] for detailed descriptions and theoretical
results of the auction-based mechanisms.

Conclusion and Future Directions

In this chapter, we introduce the optimal foresighted resource allocation and packet
scheduling for multiuser wireless video transmission over cognitive radio networks.
The introduced solution achieves the optimal long-term video quality subject to
each user’s minimum video quality guarantee, by dynamically allocating resources
among the users and dynamically scheduling the users’ packets while taking into
account the dynamics of the video traffic and channel states. We develop a low-
complexity algorithm that can be implemented by the network manager and the
users in an informationally decentralized manner and converges to the optimal
solution. We also introduce strategy-proof variations of our solutions for self-
interested users.

There are many important future research directions. First, we have focused on
the cases where users have orthogonal spectrum access. One interesting direction is
to allow non-orthogonal spectrum access through power control. This will further
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complicate the coupling among the users. This is because orthogonal spectrum
access results in resource allocation constraints as linear inequality, while non-
orthogonal spectrum access will destroy the linearity. Theoretically, the resulting
problems are strongly coupled multiuser MDPs, instead of weakly coupled multiuser
MDPs in this chapter.

Second, in the scenarios where users are self-interested, theoretical analysis of
the efficiency at the equilibrium is yet missing. There are existing works in computer
science and economics literature that analyze the Price of Anarchy (PoA) and
efficiency of learning in games. However, most of these works focus on one-shot
games (i.e., when users are myopic). When the users are foresighted, the problem is
more challenging and calls for novel analytical frameworks.
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