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Abstract

In this chapter, an application-aware spectrum sharing and allocation problem
for cellular systems with multiple frequency bands is presented. Mobile users
are categorized based on applications running on their devices. They could
be either delay-tolerant or real-time applications which are approximated by
logarithmic utility functions and sigmoidal-like utility functions, respectively.
The objective is to share spectrum resources from multiple base stations with
different frequency bands according to a utility proportional fairness policy. This
policy guarantees no user is dropped, i.e., allocated zero resource. Additionally,
it ensures that mobile users with real-time applications are given priority in
resource allocation to achieve higher overall user satisfaction with the available
shared resources. Hence, this problem is casted as a convex optimization problem
to ensure optimality and the existence of a tractable global optimal solution.
Using optimization techniques, e.g., duality and Lagrange multipliers, a dis-
tributed spectrum sharing and allocation algorithm is constructed. This algorithm
is tested for convergence in different traffic conditions. Based on the convergence
analysis, a robust resource allocation and sharing algorithm is developed to allo-
cate the optimal resources for high-traffic situations where conventional resource
allocation algorithms fail to converge. Additionally, this algorithm provides the
option of traffic-dependent pricing for network providers. This pricing approach
can be used to flatten the network traffic and decrease cost per bandwidth for
mobile users. The simulation results of the performance of this robust optimal
algorithm are explored for a single-carrier and two-carrier scenarios.

Keywords
Inelastic traffic � Convex optimization � Robust algorithm � Traffic-dependent
pricing � Optimal resource allocation � Joint carrier aggregation �

Application-aware � Sigmoidal-like utility

Introduction

Nowadays, mobile phones are becoming smarter with a wide variety of advanced
applications that are hungry for bandwidth resources. Mobile phone industry is
witnessing a rapid growth in both number of subscribers and traffic consumption per
subscriber. Mobile subscribers are currently running multiple applications, simulta-
neously, on their smart phones. Network providers are moving from single service
(e.g., Internet access) to multiple service offering (e.g., multimedia telephony,
mobile-TV, etc.) [16]. In order to meet this strong demand for wireless resources
by mobile users, more spectrum resources are needed [40]. However, due to the
scarcity of the dedicated cellular spectrum, it is difficult to have a single frequency
band fulfilling this demand. Therefore, the dedicated cellular frequency bands are
not sufficient to satisfy demands of this industry, and sharing other frequency bands
is necessary for pushing further advances in the mobile phone industry.
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The National Broadband Plan (NBP) and the findings of the President’s
Council of Advisors on Science and Technology (PCAST) spectrum study
have recommended that underutilized federal spectrum be made available for
secondary use [19,36]. Furthermore, National Telecommunications and Information
Administration (NTIA) findings revealed that not efficiently sharing radar band can
result in large exclusion zones that reach up to tens of kilometers from the west and
east coasts [34]. Hence, this excludes millions of mobile users living within tens
of kilometers from the west and east coasts from aggregating additional secondary
band to their existing primary spectrum. Additionally, the Federal Communications
Commission (FCC) recommended the use of small cells, i.e., low-power wireless
base stations, to operate in the 3.5 GHz radar band efficiently [21]. Hence, radar
band can be shared by cellular networks similar to previous sharing examples, e.g.,
Wi-Fi, Bluetooth, wireless local area network (WLAN), etc. [20].

Making more spectrum available will certainly provide opportunities for mobile
broadband capacity gains, but only if those resources can be aggregated efficiently
with the existing commercial mobile system [35, 49, 50]. The efficient sharing and
aggregation of federal spectrum with the existing cellular network is a challenging
task. The challenges are both in hardware implementation and sharing and allocation
of spectrum resource from multiple carriers with different bands. Hardware imple-
mentation challenges are in the need for multiple oscillators, multiple RF chains,
more powerful signal processing, and longer battery life [5]. For sharing of spectrum
resources from multiple base stations, e.g., macro cells and small cells, with multiple
bands, e.g., dedicated cellular bands and secondary radar bands, a distributed
resource allocation and aggregation algorithm is needed to optimally allocate these
spectrum resources from different carriers operating using different frequency
bands. Hence, the problem boils down to optimally allocating resources from differ-
ent carriers with different frequency bands. In other words, it is a resource allocation
optimization problem with carrier aggregation. This problem holds for sharing
federal or commercial spectrum from various network providers as well [39].

The area of resource allocation optimization has received significant interest
since the seminal network utility maximization problem presented in [28]. The
network utility maximization problem allocates the resources among users based
on bandwidth proportional fairness and using Lagrange multiplier methods of
optimization theory. An iterative algorithm based on the dual problem has been
proposed to solve the resource allocation optimization problem in [32]. The
utility functions used in early research work, as in [28] and [32], are logarithmic
utility functions that are good approximations of elastic Internet traffic for wired
communication networks. Therefore, all utility functions are strictly concave
functions, and hence the optimization problem is convex and converges to the
global optimal solution.

Nowadays, there has been an increasing demand for wireless adaptive real-time
applications. The utility functions that approximate real-time applications are non-
concave functions. Applications with utility functions that are not strictly concave
are presented in [41]. For example, voice-over-IP (VoIP) can be approximated as
a step function where the utility percentage is zero below a certain rate threshold
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and is 100% above that threshold, while rate-adaptive applications, e.g., video
streaming, have utility functions that can be approximated as a sigmoidal-like
function according to [41]. The sigmoidal-like function is a convex function for
rates below the curve inflection point and is a concave function for rates above
that inflection point. Hence, there is an urgent need to provide an optimal sharing
and allocation algorithm that is aware of different applications running on mobile
devices. The developed algorithm has to allocate shared spectrum resources based
on the characteristics of the applications running on users’ devices and the impact
of that on users’ experience. In other words, an application-aware spectrum sharing
solution is needed.

In this chapter, a single carrier resource allocation optimization problem that
includes users with non-concave utility functions (i.e., sigmoidal-like functions)
and users with strictly concave utility functions (i.e., logarithmic utility functions)
is discussed first. The optimization problem is formulated to ensure application
awareness and fairness when allocating available evolved Node B (eNodeB)
resources to all users. A resource allocation algorithm is developed to give priority
to real-time application users who have non-concave utility functions approximated
by sigmoidal-like functions with different parameters for different real-time applica-
tions. The algorithm and corresponding optimization problem inherently guarantee
by construction that all users are assigned a fraction of the resources. This satisfies
the objective of cellular system to provide a minimum quality of service (QoS) for
all the users subscribing for the mobile service.

This developed rate allocation algorithm converges to the optimal rate only when
the maximum available rate by the eNodeB exceeds the mid-utilization point for
all the real-time application users as shown in section “Convergence Analysis”.
So, this algorithm does not converge for eNodeB with scarce bandwidth resources
with respect to the number of users. This situation is a realistic situation during
peak network traffic hours. Therefore, a modified algorithm to solve this problem is
presented in section “A More Robust Algorithm”. The modified algorithm provides
a more robust algorithm that converges for both scarce and abundant bandwidth
resources. Additionally, this robust algorithm provides traffic-dependent pricing.
This pricing approach can be utilized by network providers to incentivize users to
use the mobile service during less congested times [25].

By extending the single carrier optimization problem, an application-aware spec-
trum sharing optimization problem is formulated. In this problem multiple spectrum
bands are shared by solving for resource allocation of multiple carriers. This
resource allocation optimization problem with joint carrier aggregation is casted
into a convex optimization framework. Application awareness is augmented by
usage of logarithmic and sigmoidal-like utility functions to represent delay-tolerant
and real-time applications, respectively. This model supports both contiguous
and noncontiguous carrier aggregation from one or more frequency bands. The
corresponding distributed algorithm allocates resources from one or more carriers
to provide the lowest resource prices for mobile users. In addition, this algorithm
uses utility proportional fairness policy to be aware of the priority of real-time
applications over delay-tolerant applications when allocating resources.
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Related Work

A distributed power allocation algorithm for mobile cellular system is presented in
[30]. The authors used non-concave sigmoidal-like utility functions. The proposed
algorithm approximates the global optimal solution but could drop users to maxi-
mize the overall system utilities; therefore, it does not guarantee minimum QoS for
all users. In [7,46,47], the authors presented novel algorithms for different scenarios
of power allocation in cellular systems that are optimal based on the optimality proof
in [24].

A weighted aggregation of elastic and inelastic utility functions in each user
equipment (UE) is presented in [29]. These aggregated utility functions are then
approximated to the nearest concave utility function from a set of functions using
minimum mean-square error. That approximate utility function is used to solve
the rate allocation problem using a modified version of distributed rate allocation
algorithm presented in [28]. In [24], the authors showed that sigmoidal-like
and logarithmic utility functions are suitable for representing real-time and delay-
tolerant applications, respectively.

In [43] and [44], the authors presented a non-convex optimization formulation for
the maximization of utility functions in wireless networks. They used both elastic
and sigmoidal-like utility functions and proposed a distributed algorithm to solve it
when the duality gap is zero. But the algorithm does not converge to the optimal
solution for a positive duality gap. A fair allocation heuristic is included to ensure
network stability which resulted in a high aggregated utility.

In [26], the authors proposed a utility max-min fairness resource allocation for
users with elastic and real-time traffic sharing a single path in the network. In
[45], the authors proposed a utility proportional fair optimization formulation for
high-SINR wireless networks using a utility max-min architecture. They compared
their algorithm to the traditional bandwidth proportional fair algorithms [33] and
presented a closed form solution that prevents oscillations in the network.

In [25], the authors conducted a pilot trial with 50 iPhone or iPad 3G data
users, who were charged according to time-dependent pricing algorithms. Their
results show that time-dependent pricing benefits both operators and customers. The
algorithms flatten demand fluctuations over time. It also allows users to choose the
time and volume of their usage and hence save money. However, this method lacks
application awareness which is essential in advancing mobile service industry.

A Round Robin packet scheduling method which distributes the load among
multiple component carriers across the network is proposed in [48]. A collaborative
scheme, where users covered by multiple base stations are allocated resources from
the base station with the best channel, is presented in [15]. The problem of spectrum
sharing of resources using carrier aggregation for LTE Advanced is addressed in
[42]. The authors consider modulation and coding scheme (MCS) selection and
mobile users’ MIMO capabilities. These proposed methods in [15, 42, 48] are not
application-aware and hence are less efficient in maximizing user’s satisfaction and
quality of experience. In this chapter, we address quality of experience by including
application-awareness into spectrum sharing problem.
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Our Contributions

Our contributions in this chapter are summarized as:

• An application-aware utility proportional fairness optimization problem that
solves for utility functions that are both strictly concave and non-concave
(i.e., sigmoidal-like [24]) is formulated. In addition, the optimization problem
inherently gives priority to real-time application users (i.e., with sigmoidal-like
utility functions) while allocating resources.

• The proposed application-aware optimization problem is convex, and therefore
the global optimal solution is tractable. A distributed rate allocation algorithm is
presented.

• The convergence of the distributed rate allocation algorithm is analyzed. A
modified distributed rate allocation algorithm that converges to the optimal rates
for high-traffic and low-traffic periods is identified.

• A pricing policy is proposed for service providers to charge to service subscribers
that can flatten traffic load on the network.

• Extension of the application-aware optimization problem to include spectrum
sharing with carrier aggregation between multiple different frequency bands is
formulated.

• Simulation results for one- and two-carrier scenarios are explored.

The chapter is organized as follows. Section “Single-Carrier Scenario” presents
the single-carrier problem formulation. Section “Optimality” shows that the single-
carrier optimization problem is convex, and section “UE and eNodeB Subprob-
lems” provides the corresponding distributed subproblems. Section “Distributed
Algorithm for Single-Carrier Scenario” presents a single-carrier algorithm. Sec-
tion “Simulation Example: One Carrier” explores the simulation results for a
single-carrier scenario setup. Section “Convergence Analysis” analyzes the algo-
rithm convergence. Section “A More Robust Algorithm” constructs a more robust
single-carrier algorithm, and the corresponding simulation results are shown in sec-
tion “Simulation Example: One Carrier (Cont.)”. The multiple-carrier optimization
problem is formulated in section “Multiple-Carrier Scenario”, its optimality shown
in section “Optimality and Subproblems”, corresponding algorithm developed in
section “Distributed Algorithm for Multiple-Carrier Scenario”, and its simulation
results provided in section “Simulation Example: Two Carriers”. Section “Conclu-
sion and Future Direction” concludes the chapter with future direction.

Single-Carrier Scenario

A single-cell system consisting of a single eNodeB and M UEs is considered as our
system model. The bandwidth allocated by the eNodeB to i th UE is given by ri .
Each UE has its own utility function Ui .ri / that corresponds to the type of traffic
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being handled by it. Our objective is to determine the bandwidth the eNodeB should
allocate to the UEs. We assume the utility functions Ui .ri / to be strictly concave or
a sigmoidal-like functions. The utility functions have the following properties:

• Ui .0/ D 0, and Ui .ri / is an increasing function of ri .
• Ui .ri / is twice continuously differentiable in ri .

In our model, we use the normalized sigmoidal-like utility function, as in [24, 30],
that can be expressed as

Ui .ri/ D ci

� 1

1 C e�ai .ri �bi /
� di

�
(1)

where ci D 1Ceai bi

eai bi
and di D 1

1Ceai bi
. So, it satisfies U .0/ D 0 and U .1/ D 1. In

Fig. 1, the normalized sigmoidal-like utility function with a D 5 and b D 10 is a
good approximation for a step function (e.g., VoIP), and a D 0:5 and b D 20 is a
good approximation to an adaptive real-time application (e.g., video streaming). In
addition, we use the normalized logarithmic utility function, as in [18, 45], that can
be expressed as

Ui .ri/ D
log.1 C ki ri /

log.1 C ki rmax/
(2)

where rmax is the required rate for the user to achieve 100% utility percentage and ki

is the rate of increase of utility percentage with the allocated rate ri . So, it satisfies
U .0/ D 0 and U .rmax/ D 1. The logarithmic utility functions with k D 15 and

Fig. 1 The sigmoidal-like utility functions (representing real-time traffic) and logarithmic utility
functions (representing delay-tolerant traffic) Ui .ri/
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k D 0:1 are shown in Fig. 1. We consider the utility proportional fairness objective
function given by

max
r

MY
iD1

Ui .ri/ (3)

where r D fr1; r2; : : : ; rM g and M is the number of UEs in the coverage area of
the eNodeB. The goal of this resource allocation objective function is to allocate
the resources for each UE that maximize the total mobile system objective (i.e.,
the product of the utilities of all the UEs) while ensuring proportional fairness
between individual utilities. This resource allocation objective function ensures
nonzero resource allocation for all users. Therefore, the corresponding resource
allocation optimization problem guarantees minimum QoS for all users. In addition,
this approach allocates more resources to users with real-time applications providing
improvement to the QoS of cellular system.

The basic formulation of the utility proportional fairness resource allocation
problem is given by the following optimization problem:

max
r

MY
iD1

Ui .ri/

subject to
MX

iD1

ri � R

ri � 0; i D 1; 2; : : : ; M:

(4)

where R is the total rate of the eNodeB covering the M UEs, and r D

fr1; r2; : : : ; rM g.
We prove in section “Optimality” that there exists a tractable global optimal

solution to the optimization problem (4).

Optimality

In the optimization problem (4), since the objective function arg max
r

QM
iD1 Ui .ri/

is equivalent to arg max
r

PM
iD1 log.Ui .ri//, then optimization problem (4) can be

written as:

max
r

MX
iD1

log.Ui .ri//

subject to
MX

iD1

ri � R

ri � 0; i D 1; 2; : : : ; M:

(5)
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In section “Single-Carrier Scenario”, we assume that all the utility functions of
the UEs are strictly concave or sigmoidal-like functions. In the strictly concave
utility function case, recall the utility function properties in section “Single-Carrier
Scenario”; the utility function is positive Ui .ri/ > 0, increasing, and twice differen-
tiable with respect to ri . Then, it follows that U 0

i .ri/ D dUi .ri/

dri
> 0 and U 00

i .ri/ D

d2Ui .ri/

dr2
i

< 0. It follows that, the utility function log.Ui .ri// in the optimization

problem (5) has d log.Ui .ri//

dri
D

U 0

i .ri/

Ui .ri/
> 0 and d2 log.Ui .ri//

dr2
i

D
U 00

i .ri/Ui .ri/�U 02
i .ri/

U 2
i .ri/

< 0.

Therefore, the strictly concave utility function Ui .ri/ natural logarithm log.Ui .ri// is
also strictly concave. It follows that the natural logarithm of the logarithmic utility
function in equation (2) is strictly concave.

In the sigmoidal-like utility function case, the utility function of the normalized

sigmoidal-like function is given by equation (1) as Ui .ri/ D c
�

1

1Ce�ai .ri �bi / � d
�

.

For 0 < ri < R, we have 0 < 1 � di .1 C e�ai .ri �bi // < 1
1Cci di

. It follows that for
0 < ri < R, we have the first and second derivative as

d

dri

log Ui .ri/ > 0 and
d 2

dr2
i

log Ui .ri/ < 0:

Therefore, the sigmoidal-like utility function Ui .ri/ natural logarithm log.Ui .ri// is
strictly a concave function.

All the utility functions in the optimization problem presented in equation (5)
have strictly concave natural logarithms. For visualization, an example of four users
is shown in Fig. 1 where two users run applications with sigmoidal-like utility
functions and the other two users run application with logarithmic utility functions.
The sigmoidal-like utility functions parameters are a D f5; 0:5g and b D f10; 20g,
respectively. The logarithmic utility functions parameters are k D f15; 0:1g and
rmax D 100. The natural logarithms of the utility functions of Fig. 1 are shown in
Fig. 2, and the derivatives of natural logarithms of the utility functions are shown in
Fig. 3. It follows that for all UEs, utility functions are strictly concave. Therefore, the

Fig. 2 The natural logarithm of sigmoidal-like and logarithmic utility functions log Ui .ri/
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Fig. 3 The first derivative of the natural logarithm of sigmoidal-like and logarithmic utility
functions @ log Ui .ri/

@ri

optimization problem (5) is a convex optimization problem [10]. The optimization
problem (5) is equivalent to optimization problem (4); therefore it is also a convex
optimization problem. For a convex optimization problem, there exists a unique
tractable global optimal solution [8].

UE and eNodeB Subproblems

The key to UE and eNodeB subproblems from the primal problem in (5) is to convert
to the dual problem, similar to [28] and [32]. The optimization problem (5) can
be divided into two simpler problems by using the dual problem. We define the
Lagrangian

L.r; p/ D

MX
iD1

log.Ui .ri// � p

 
MX

iD1

ri C z � R

!
(6)

where z � 0 is the slack variable and p is Lagrange multiplier or the shadow price
(i.e., the total price per unit bandwidth for all the M channels). Therefore, the i th UE
bid for bandwidth can be given by wi D pri , and we have

PM
iD1 wi D p

PM
iD1 ri .

The first term in equation (6) is separable in ri . Hence, the dual problem objective
function can be written as

D.p/ D

MX
iD1

max
ri

�
log.Ui .ri// � pri

�
C p.R � z/ (7)

The dual problem is given by

min
p

D.p/

subject to p � 0:

(8)
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Hence,

@D.p/

@p
D R �

MX
iD1

ri � z D 0 (9)

substituting by
PM

iD1 wi D p
PM

iD1 ri we have

p D

PM
iD1 wi

R � z
(10)

Now, divide the primal problem (5) into two simpler optimization problems in the
UEs and the eNodeB. The i th UE optimization problem is given by:

max
ri

log Ui .ri/ � pri

subject to p � 0

ri � 0; i D 1; 2; : : : ; M:

(11)

The eNodeB optimization problem is given by:

min
p

D.p/

subject to p � 0:

(12)

The minimization of shadow price p is achieved by the minimization of the slack
variable z � 0 from equation (10). Therefore, the maximum utility percentage for
the available eNodeB bandwidth is achieved by setting the slack variable z D 0.
In this case, we replace the inequality in primal problem (5) constraint by equality

constraint, and so we have
PM

iD1 wi D pR. Therefore, we have p D
PM

iD1 wi

R
where

wi D pri is transmitted by the i th UE to the eNodeB. The utility proportional
fairness in the objective function of the optimization problem (4) is guaranteed in
the solution of the optimization problems (11) and (12).

Distributed Algorithm for Single-Carrier Scenario

The distributed application-aware resource allocation algorithm for optimization
problems (11) and (12) is an iterative algorithm for allocating the network resources
with awareness of applications running on UEs. For the Algorithm in (1) and (2),
each UE starts with an initial bid wi .1/ which is transmitted to the eNodeB. The
eNodeB calculates the difference between the received bid wi .n/ and the previously
received bid wi .n�1/ and exits if it is less than a prespecified threshold ı. Note that
wi .0/ D 0. If the value is greater than the threshold ı, eNodeB calculates the shadow

price p.n/ D
PM

iD1 wi .n/

R
and sends that value to all the UEs. Each UE receives the
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Algorithm 1 UE algorithm for a single-carrier scenario
Send initial bid wi .1/ to eNodeB
loop

Receive shadow price p.n/ from eNodeB
if STOP from eNodeB then

Calculate allocated rate r
opt
i D

wi .n/

p.n/

STOP
else

Solve ri .n/ D arg max
ri

�
log Ui .ri/ � p.n/ri

�

Send new bid wi .n/ D p.n/ri .n/ to eNodeB
end if

end loop

Algorithm 2 eNodeB algorithm for a single-carrier scenario
loop

Receive bids wi .n/ from UEs {Let wi .0/ D 0 8i}
if jwi .n/ � wi .n � 1/j < ı 8i then

Allocate rates, r
opt
i D

wi .n/

p.n/
to user i

STOP
else

Calculate p.n/ D
PM

iD1 wi .n/

R

Send new shadow price p.n/ to all UEs
end if

end loop

shadow price to solve for the rate ri that maximizes log Ui .ri/ � p.n/ri . That rate
is used to calculate the new bid wi .n/ D p.n/ri .n/. Each UE sends the value of its
new bid wi .n/ to the eNodeB. This process is repeated until jwi .n/ � wi .n � 1/j is
less than the prespecified threshold ı.

Simulation Example: One Carrier

In this section, the Algorithm in (1) and (2) is applied to the cell in Fig. 4 with
six utility functions corresponding to six UEs shown in Fig. 5. We use real-time
applications represented by equation (1) with different parameters, a D 5, b D 10,
which is an approximation to VoIP application at rate r D 10, a D 3, b D 20

which is an approximation of a standard definition video streaming application with
inflection point at rate r D 20, and a D 1, b D 30 which is also an approximation
of a high definition video streaming application with inflection point at rate r D 30.
We use three logarithmic functions that are expressed by equation (2) with rmax

=100 and different ki parameters which are approximations for delay-tolerant
applications (e.g., browsing, FTP, emails). We use k D f15; 3; 0:5g, and eNodeB has
R = 100 [23].

In Fig. 6, the allocated rates for each users per iteration are shown. The real-
time applications have priority over delay-tolerant applications. In Fig. 7, the
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1

2

4

3

5

C1

6

Fig. 4 System model with one carrier and six users

Fig. 5 The users utility functions Ui .ri/ [or Ui .r1i C r2i / for section “Simulation Example: Two
Carriers”] used in the simulation (three sigmoidal-like functions and three logarithmic functions)

Fig. 6 The users allocated rate convergence ri .n/ with number of iterations n for eNodeB rate
R D 100
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Fig. 7 The users bid convergence wi .n/ with number of iterations n for eNodeB rate R D 100

corresponding bids per iteration are shown. Note that the distributed algorithm
avoids the situation of allocating zero rate to any user (i.e., no user is dropped).

Convergence Analysis

In this section, the convergence analysis of Algorithms (1) and (2) for different
values of R is explored.

For the sigmoidal-like function Ui .ri/ D ci .
1

1Ce�ai .ri �bi / � di /, let Si .ri/ D
@ log Ui .ri/

@ri
be the slope curvature function. Then,

@Si

@ri

D
�a2

i di e
�ai .ri �bi /

ci

�
1 � di .1 C e�ai .ri �bi //

�2
�

a2
i e�ai .ri �bi /

�
1 C e�ai .ri �bi /

�2

and

@2Si

@r2
i

D
a3

i di e
�ai .ri �bi /

�
1 � di .1 � e�ai .ri �bi //

�

ci

�
1 � di

�
1 C e�ai .ri �bi /

� �3

C
a3

i e�ai .ri �bi /.1 � e�ai .ri �bi //�
1 C e�ai .ri �bi /

�3
:

(13)

By inspection, @Si

@ri
< 0 8 ri . The first term S1

i of @2Si

@r2
i

in equation (13) can be

written as

S1
i D

a3
i eai bi .eai bi C e�ai .ri �bi //

.eai bi � e�ai .ri �bi //3
(14)
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and hence

lim
ri !0

S1
i D 1; and lim

ri !bi

S1
i D 0 for bi �

1

ai

: (15)

For second term S2
i of @2Si

@r2
i

in equation (13), the following properties are satisfied

S2
i .bi / D 0; S2

i .ri > bi / > 0; and S2
i .ri < bi / < 0: (16)

From equations (15) and (16), Si has an inflection point at ri D rs
i � bi . In

addition, the curvature of Si changes from a convex function close to origin to a
concave function before the inflection point ri D rs

i then to a convex function after
the inflection point. Therefore, the first remark is that for sigmoidal-like utility
functions Ui .ri/, the slope curvature function @ log Ui .ri/

@ri
has an inflection point at

ri D rs
i � bi and is convex for ri > rs

i .
For the sigmoidal-like function Ui .ri/ D ci .

1

1Ce�ai .ri �bi / � di /, the optimal
solution is achieved by solving the optimization problem (5). In Algorithms (1), an
important step to reach to the optimal solution is to solve the optimization problem
ri .n/ D arg max

ri

.log Ui .ri/�p.n/ri / for every UE. The solution of this problem can

be written using Lagrange multipliers method in the form

@ log Ui .ri/

@ri

� p D Si .ri/ � p D 0: (17)

From equation (15) and (16), the curvature of Si .ri/ is convex for ri > rs
i � bi . The

Algorithm in (1) and (2) is guaranteed to converge to the global optimal solution
when the slope Si .ri/ of all the utility functions natural logarithm log Ui .ri/ is in a
convex domain, similar to the analysis of logarithmic functions in [27] and [12].
Therefore, the natural logarithm of sigmoidal-like functions log Ui .ri/ converges
to the global optimal solution for ri > r�

i bi . The inflection point of sigmoidal-
like function Ui .ri/ is at r inf

i D bi . For
PM

iD1 r inf
i � R, Algorithms (1) and (2)

allocate rates ri > bi for all users. Since Si .ri/ is convex for ri > rs
i � bi , then the

optimal solution can be achieved by Algorithm (1) and (2). We have from equation
(17), and Si .ri/ is convex for ri > rs

i � bi , that pss < Si .ri D max bi / where

Si .ri D max bi / D
aimax dimax
1�dimax

C
aimax

2
and imax D arg maxi bi . Therefore, the second

remark is that if
PM

iD1 r inf
i � R then Algorithms (1) and (2) converge to the

global optimal rates which corresponds to the steady state shadow price pss <
aimax dimax
1�dimax

C
aimax

2
where imax D arg maxi bi .

For
PM

iD1 r inf
i > R there exists i such that the allocated rates r

opt
i < bi .

Therefore, if pss � ai di e
ai bi

2

1�di .1Ce
ai bi

2 /

C ai e
ai bi

2

.1Ce
ai bi

2 /

is the optimal shadow price for

optimization problem (5), then a small change in the shadow price p.n/ in the
nth iteration can lead to rate ri .n/ (root of Si .ri/ � p.n/ D 0) to fluctuate
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Fig. 8 The @ log Ui .ri/

@ri
diff log of sigmoidal-like utility function and shadow price p.n/ in algorithm

(1) and (2) for R D 25

between the concave and convex curvature of slope curvature Si .ri/ for the i th user.
Hence, this causes fluctuation in the bid wi .n/ sent to eNodeB and fluctuation in
the shadow price p.n/ set by eNodeB. Then, the iterative solution of Algorithms
(1) and (2) fluctuates about the global optimal rates r

opt
i . Therefore, the third

remark is that for
PM

iD1 r inf
i > R and the global optimal shadow price pss �

ai di e
ai bi

2

1�di .1Ce
ai bi

2 /

C ai e
ai bi

2

.1Ce
ai bi

2 /

, then Algorithms (1) and (2) fluctuate about the global

optimal solution.
From the first, second, and third remarks, the Algorithm in (1) and (2) does not

converge to the global optimal solution for all values of R.

Oscillation example: An example of four users with the utilities shown in Fig. 1
and the assumption that eNodeB maximum rate is R D 25, i.e.,

P4
iD1 r inf

i D

30 > R D 25. Therefore, we cannot guarantee convergence with Algorithms (1)
and (2), as stated in section “Convergence Analysis”. In Fig. 8, the shadow price
p.n/ oscillates between a concave and convex curvature of the @ log Ui .ri/

@ri
curve. The

oscillation in the shadow price p.n/ causes an oscillation in the allocated rates
and hinders the convergence to the optimal rates, and therefore the optimal rate
allocation is not achievable by Algorithm in (1) and (2).

A More Robust Algorithm

In this section, a robust algorithm is developed to ensure the proposed rate allocation
algorithm converges for all values of the eNodeB rate R. For

P
r inf

i > R, the
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Fig. 9 The @ log Ui .ri/

@ri
diff log of sigmoidal-like utility function and p.n/ for Algorithm in (3) and

(4) with �w D 5e�
n
10 and �w D 10

n
and R D 25

algorithm must avoid fluctuations in the non-convergent region discussed in sec-
tion “Convergence Analysis”. This is achievable by adding a convergence measure
�w.n/ that senses the fluctuations in the bids wi s. In case of fluctuations, this robust
algorithm decreases the step size between current and previous bid wi .n/�wi .n�1/

for each user i using fluctuations decay function. The fluctuations decay function
could be in the following forms:

• Exponential function: It takes the form �w.n/ D l1e
� n

l2 .
• Rational function: It takes the form �w.n/ D l3

n
.

where l1; l2; l3 can be adjusted to change the rate of decay of the bids wi s. The
fluctuations decay function can be included in Algorithm (3) of the UE or Algorithm
(4) of the eNodeB. In this model, the decay part is added to Algorithm (3) of the UE.
The example of four users with the utilities shown in Fig. 1 and R D 25 is executed
with fluctuation decay functions as shown in Fig. 9.

Simulation Example: One Carrier (Cont.)

In this section, simulation setup and parameters are similar to section “Simulation
Example: One Carrier” with the exception of R = 45 for a comparison between
Algorithm in (1) and (2) and Algorithm in (3) and (4). Here, we choose the
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Algorithm 3 Modified UE algorithm for a single-carrier scenario
Send initial bid wi .1/ to eNodeB
Set rmin

i D 0

loop
Receive shadow price p.n/ from eNodeB
if STOP from eNodeB then

Calculate allocated rate r
opt
i D

wi .n/

p.n/

else
Calculate new bid wi .n/ D p.n/ri .n/

if jwi .n/ � wi .n � 1/j > �w.n/ then
wi .n/ D wi .n � 1/ C sign.wi .n/ � wi .n � 1//�w.n/ {�w D l1e

�
n
l2 or �w D l3

n
}

end if
Send new bid wi .n/ to eNodeB

end if
end loop

Algorithm 4 Modified eNodeB algorithm for a single-carrier scenario
Receive r inf

i from UEs
loop

Receive bids wi .n/ from UEs {Let wi .0/ D 0 8i}
if jwi .n/ � wi .n � 1/j < ı 8i then

STOP and calculate rates r
opt
i D

wi .n/

p.n/

else
Calculate p.n/ D

PM
iD1 wi .n/

R

Send new shadow price p.n/ to all UEs
end if

end loop

eNodeB rate R to be less than the sum of real-time application user inflection pointsP
bi . As expected Algorithm in (1) and (2) does not converge in this region as

shown in Fig. 10 for rates and in Fig. 11 for bids. On the other hand, Algorithm
in (3) and (4) behavior is more robust due to the fluctuation decay function. It
damps the fluctuations with every iteration for rates as shown in Fig. 12 and for
bids as shown in Fig. 13. Figure 14 shows the oscillatory shadow price p.n/ of
Algorithm in (1) and (2) and the damping shadow price p.n/ of Algorithm in (3)
and (4).

For ı D 10�3 and R changing between 5 and 100 with step of 5, the final
rates and the corresponding final bids of different users with different eNodeB rate
R are shown in Figs. 15 and 16, respectively. Note that the eNodeB allocates the
majority of its resources to the UEs running adaptive real-time application until
they reach their inflection rates ri D bi . When the total rate R exceeds the sum of
the inflection rates

P
bi of all the adaptive real-time applications, eNodeB allocates

more resources to the UEs with delay-tolerant application. Additionally, real-time
application users bid higher when the resources are scare, and their bids decrease
as R increases. Therefore, the pricing which is proportional to the bids is traffic-
dependent. This gives the service providers the option to increase the service price
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Fig. 10 The rate convergence ri .n/ of Algorithm in (1) and (2) with number of iterations n for
different users and R D 45

Fig. 11 The bid convergence wi .n/ of Algorithm in (1) and (2) with number of iterations n for
different users and R D 45

for subscribers when the traffic load on the cellular system is high. In other words,
service providers can motivate subscribers to use the network when the traffic is
lower as they pay less for the same QoS. Figure 17 shows the shadow price p.n/

with eNodeB rate R. The price is high for high-traffic case (i.e., fixed number of
users but less resources, R is small) which decreases for low traffic (i.e., same
number of users but more resources, R is large).



432 A. Abdelhadi and C. Clancy

Fig. 12 The rate convergence ri .n/ of Algorithm in (3) and (4) with number of iterations n for
different users and R D 45

Fig. 13 The bid convergence wi .n/ of Algorithm in (3) and (4) with number of iterations n for
different users and R D 45

Fig. 14 The shadow price p.n/ convergence with the number of iterations n
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Fig. 15 The allocated rates ri for different values of R and ı D 10�3 for Algorithm in (3) and (4)

Fig. 16 The final bids wi for different values of R and ı D 10�3 for Algorithm in (3) and (4)

Fig. 17 The final shadow price p for different values of R and ı D 10�3 for Algorithm in (3)
and (4)



434 A. Abdelhadi and C. Clancy

Multiple-Carrier Scenario

In this scenario, UEs share the spectrum of K carriers eNodeBs. These carriers
could be forming macro or small cells, i.e., K cells, with M UEs distributed in these
cells. The rate allocated by the l th carrier eNodeB to i th UE is given by rli where
l D f1; 2; : : : ; Kg and i D f1; 2; : : : ; M g. Each UE has its own utility function
Ui .r1i C r2i C : : : C rKi / that corresponds to the type of traffic being handled by
the i th UE. The objective is similar to section “Single-Carrier Scenario” which is
to determine the optimal rates that the l th carrier eNodeB should allocate to UEs
under its coverage. The utility functions Ui .r1i C r2i C : : : C rKi / are assumed to be
a strictly concave or a sigmoidal-like functions. Hence, the utility functions satisfy
the following properties:

• Ui .0/ D 0 and Ui .r1i C r2i C : : : C rKi / is an increasing function of rli for all l .
• Ui .r1i C r2i C : : : C rKi / is twice continuously differentiable in rli for all l .

In our model, we use the normalized sigmoidal-like utility function, as in [37], that
can be expressed as

Ui .r1i C r2i C : : : C rKi / D ci

� 1

1 C e�ai .
PK

lD1 rli �bi /
� di

�
(18)

where ci D 1Ceai bi

eai bi
and di D 1

1Ceai bi
. So, it satisfies Ui .0/ D 0 and Ui .1/ D 1. We

use the normalized logarithmic utility function, as in [38], that can be expressed as

Ui .r1i C r2i C : : : C rKi / D
log.1 C ki

PK
lD1 rli /

log.1 C ki rmax/
(19)

where rmax is the required rate for the user to achieve 100% utilization and ki is
the rate of increase of utilization with allocated rates. So, it satisfies Ui .0/ D 0

and Ui .rmax/ D 1. We consider the utility proportional fairness objective function
given by

max
r

MY
iD1

Ui .r1i C r2i C : : : C rKi / (20)

where r D fr1; r2; : : : ; rM g and ri D fr1i ; r2i ; : : : ; rKi g. This resource allocation
objective function has a similar goal which is to allocate the resources that
maximizes the total system utility while ensuring proportional fairness between
utilities (i.e., the product of the utilities of all UEs). This construction of resource
allocation objective function ensures nonzero resource allocation for all users.
Therefore, the corresponding resource allocation optimization problem provides
minimum QoS for all users. In addition, this approach allocates more resources
to users with real-time applications which improves QoS for cellular system.
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Hence, the formulation of application-aware resource allocation with spectrum
sharing is given by the following optimization problem:

max
r

MY
iD1

Ui .r1i C r2i C : : : C rKi /

subject to
MX

iD1

r1i � R1;

MX
iD1

r2i � R2; : : :

: : : ;

MX
iD1

rKi � RK;

rli � 0; l D 1; 2; : : : ; K; i D 1; 2; : : : ; M:

(21)

where Rl is the total available rate at the l th carrier eNodeB.

Optimality and Subproblems

Similar to the analysis in section “Optimality”, the optimization problem (21) can
be written as:

max
r

MX
iD1

log
�
Ui .r1i C r2i C : : : C rKi /

�

subject to
MX

iD1

r1i � R1;

MX
iD1

r2i � R2; : : :

: : : ;

MX
iD1

rKi � RK;

rli � 0; l D 1; 2; : : : ; K; i D 1; 2; : : : ; M:

(22)

For strictly concave utility function in section “Multiple-Carrier Scenario”,
the utility function is positive Ui .r1i C : : : C rKi / > 0, increasing, and twice
differentiable with respect to rli . Then, it follows that @Ui .r1i C:::CrKi /

@rli
> 0 and

@2Ui .r1i C:::CrKi /

@r2
li

< 0. It follows that the utility function log.Ui .r1i Cr2i C: : :CrKi // in

the optimization problem (22) has @ log.Ui .r1i C:::CrKi //

@rli
>0 and @2 log.Ui .r1i C:::CrKi //

@r2
li

<0:

Hence, the strictly concave utility function Ui .r1i Cr2i C: : :CrKi / natural logarithm
log.Ui .r1i C r2i C : : : C rKi // is also strictly concave. It follows that the natural
logarithm of the logarithmic utility function in equation (19) is strictly concave.
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In the sigmoidal-like utility function case, the utility function of the normalized
sigmoidal-like function is given by equation (18) as Ui .r1i C r2i C : : : C rKi / D

ci

�
1

1Ce
�ai .

PK
lD1

rli �bi /
� di

�
. For 0 <

PK
lD1 rli <

PK
lD1 Rl , we have

0 < 1 � di

�
1 C e�ai .

PK
lD1 rli �bi /

�
<

1

1 C ci di

:

It follows that for 0 <
PK

lD1 rli <
PK

lD1 Rl , we have the first and second derivative

as @
@rli

log Ui .r1i C : : : C rKi / > 0 and @2

@r2
li

log Ui .r1i C : : : C rKi / < 0. Hence, the

sigmoidal-like utility function Ui .r1i C : : : C rKi / natural logarithm log.Ui .r1i C

: : : C rKi // is strictly concave function. Then, all the utility functions in our model
have strictly concave natural logarithm. Therefore, the optimization problem (22) is
a convex optimization problem [10]. The optimization problem (22) is equivalent
to optimization problem (21); therefore it is a convex optimization problem. For
a convex optimization problem, there exists a unique tractable global optimal
solution [9].

Similar to section “UE and eNodeB Subproblems”, the optimization problem
(22) can be divided into simpler subproblems by using the dual problem. We define
the Lagrangian

L.r; p/ D

MX
iD1

log .Ui .r1i C r2i C : : : C rKi //

� p1

 
MX

iD1

r1i C z1 � R1

!
� : : :

� pK

 
MX

iD1

rKi C zK � RK

!
(23)

where zl � 0 is the l th slack variable and pl is Lagrange multiplier or the shadow
price of the l th carrier eNodeB and p D fp1; p2; : : : ; pKg. Therefore, the i th UE
bid for rate from the l th carrier eNodeB can be written as wli D plrli , and we havePM

iD1 wli D pl

PM
iD1 rli . The first term in equation (23) is separable in ri . Hence,

the dual problem objective function can be written as

D.p/ D

MX
iD1

max
ri

.Li .ri ; p// C

KX
lD1

pl .Rl � zl / (24)

and the corresponding dual problem is given by
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min
p

D.p/

subject to pl � 0; l D 1; 2; : : : ; K:

(25)

By differentiating @D.p/

@pl
and substituting by

PM
iD1 wli D pl

PM
iD1 rli , we have

pl D

PM
iD1 wli

Rl � zl

: (26)

Now, divide the primal problem (22) into simpler optimization problems in the UEs
and the eNodeBs. The i th UE optimization problem is given by:

max
ri

log.Ui .r1i C r2i C : : : C rKi // �

KX
lD1

plrli

subject to pl � 0

rli � 0; i D 1; 2; : : : ; M; l D 1; 2; : : : ; K:

(27)

The second problem is the l th eNodeB optimization problem for rate propor-
tional fairness that is given by:

min
pl

D.p/

subject to pl � 0:

(28)

The minimization of shadow price pl is achieved by the minimization of the slack
variable zl � 0 from equation (26). Therefore, the maximum utilization of the l th
eNodeB rate Rl is achieved by setting the slack variable zl D 0. In this case, replace
the inequality in primal problem (22) constraints by equality constraints and soPM

iD1 wli D plRl . Accordingly, pl D
PM

iD1 wli

Rl
where wli D plrli is transmitted by

the i th UE to l th eNodeB. The utility proportional fairness in the objective function
of the optimization problem (21) is guaranteed in the solution of the optimization
problems (27) and (28).

Distributed Algorithm for Multiple-Carrier Scenario

In this section, a distributed algorithm for multiple-carrier scenario using optimiza-
tion problems (27) and (28) is presented. The algorithm provides a share spectrum
mechanism from multiple carriers simultaneously with an application awareness
policy. The algorithm is divided into the i th UE algorithm shown in Algorithm
(5) and the l th eNodeB carrier algorithm shown in Algorithm (6). In Algorithms
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(5) and (6), the i th UE starts with an initial bid wli .1/ which is transmitted to
the l th carrier eNodeB. The l th eNodeB calculates the difference between the
received bid wli .n/ and the previously received bid wli .n � 1/ and exits if it is
less than a prespecified threshold ı. We set wli .0/ D 0. If the value is greater

than the threshold, the l th eNodeB calculates the shadow price pl.n/ D
PM

iD1 wli .n/

Rl

and sends that value to all the UEs in its coverage area. The i th UE receives the
shadow prices pl from the in-range carrier eNodeBs and compares them to find the
first minimum shadow price p1

min.n/ and the corresponding carrier index l1 2 L

where L 2 f1; 2; : : : ; Kg. The i th UE solves for the l1 carrier rate rl1i .n/ that
maximizes log Ui .r1i C : : : C rKi / �

PK
lD1 pl .n/rli with respect to rl1i . The rate

r1
i .n/ D rl1i .n/ is used to calculate the new bid wl1i .n/ D p1

min.n/r1
i .n/. The i th

UE sends the value of its new bid wl1i .n/ to the l1 carrier eNodeB. Then, the i th
selects the second minimum shadow price p2

min.n/ and the corresponding carrier
index l2 2 L. The i th UE solves for the l2 carrier rate rl2i .n/ that maximizes
log Ui .r1i C: : :CrKi /�

PK
lD1 pl .n/rli with respect to rl2i . The rate rl2i .n/ subtracted

by the rate from l1 carrier r2
i .n/ D rl2i .n/ � r1

i .n/ is used to calculate the new bid
wl2i .n/ D p2

min.n/r2
i .n/ which is sent to l2 carrier eNodeB. In general, the i th UE

selects the mth minimum shadow price pm
min.n/ with carrier index lm 2 L and solves

for the lm carrier rate rlmi .n/ that maximizes log Ui .r1i C : : :CrKi /�
PK

lD1 pl .n/rli

with respect to rlmi . The rate rlmi .n/ subtracted by l1; l2; : : : ; lm�1 carrier rates
rm

i .n/ D rlmi .n/ � .r1
i .n/ C r2

i .n/ C : : : C rm�1
i .n// is used to calculate the new

bid wlmi .n/ D pm
min.n/rm

i .n/ which is sent to lm carrier eNodeB. This process is
repeated until jwli .n/ � wli .n � 1/j is less than the threshold ı.

This application-aware spectrum sharing algorithm ensures no user is dropped.
Additionally, the UE chooses from the nearby carrier eNodeBs the one with the
lowest shadow price and request spectrum resources from that carrier eNodeB.
If the allocated rate is not enough or the price of the resources increases due to
high demand on that carrier eNodeB resources from other UEs, the UE switches to
allocate the rest of the required resources from another nearby eNodeB carrier with
a lower resource price. This is done iteratively until an equilibrium between demand
and supply of resources is achieved and the optimal rates are allocated in the mobile
network.

Simulation Example: Two Carriers

In this section, Algorithm in (5) and (6) is used to simulate spectrum sharing
of frequency bands of two carriers and 18 UEs shown in Fig. 18. The UEs are
divided into three groups. The 1st group is connected to 1st carrier eNodeB only
(index i D 1; 2; 3; 4; 5; 6), the 2nd group is connected to 2nd carrier eNodeB
only (index i D 7; 8; 9; 10; 11; 12), and the 3rd group is connected to both 1st
and 2nd carrier eNodeBs (index i D 13; 14; 15; 16; 17; 18). Hence, the 3rd group
of users experiences spectrum sharing from 1st and 2nd carrier eNodeBs. Similar
utility functions as in section “Simulation Example: One Carrier”, shown in Fig. 5,
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Algorithm 5 The i th UE algorithm for multiple-carrier scenario
Send initial bid wli .1/ to l th carrier eNodeB (where l 2 L D f1; 2; : : : ; Kg)
loop

Receive shadow prices pl2L.n/ from all in range carriers eNodeBs
if STOP from all in range carriers eNodeBs then

Calculate allocated rates r
opt
li D

wli .n/

pl .n/

STOP
else

Set p0
min D fg and r0

i D 0

for m D 1 ! K do
pm

min.n/ D min.p n fp0
min; p1

min; : : : ; pm�1
min g/

lm D fl 2 L W pl D min.p n fp0
min; p1

min; : : : ; pm�1
min g/g {lm is the index of the

corresponding carrier}

Solve rlmi .n/ D arg max
rlmi

�
log Ui .r1i C : : : C rKi / �

PK
lD1 pl .n/rli

�
for the lm carrier

eNodeB
rm

i .n/ D rlmi .n/ �
Pm�1

j D0 r
j
i .n/

if rm
i .n/ < 0 then
Set rm

i .n/ D 0

end if
Calculate new bid wlmi .n/ D pm

min.n/rm
i .n/

if jwlmi .n/ � wlmi .n � 1/j > �w.n/ then
wlmi .n/ D wi .n � 1/ C sign.wlmi .n/ � wlmi .n � 1//�w.n/ {�w D h1e

�
n

h2 or
�w D h3

n
}

end if
end for

end if
end loop

Algorithm 6 The l th eNodeB algorithm for multiple-carrier scenario
loop

Receive bids wli .n/ from UEs {Let wli .0/ D 0 8i}
if jwli .n/ � wli .n � 1/j < ı 8i then

Allocate rates, r
opt
li D

wli .n/

pl .n/
to i th UE

STOP
else

Calculate pl .n/ D
PM

iD1 wli .n/

Rl

Send new shadow price pl .n/ to all UEs
end if

end loop

are used. UEs with indexes i D f1; 7; 13g have utility parameters a D 5 and
b D 10, indexes i D f2; 8; 14g have utility parameters a D 3 and b D 20, and
indexes i D f3; 9; 15g have utility parameters a D 1 and b D 30, while UEs
with indexes i D f4; 10; 16g have utility parameters k D 15 and rmax D 100,
indexes i D f5; 11; 17g have utility parameters k D 3 and rmax D 100, and indexes
i D f6; 12; 18g have utility parameters k D 0:5 and rmax D 100.
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Fig. 18 System model with three groups of users and two carriers. The 1st group with UE indexes
i D f1; 2; 3; 4; 5; 6g (red), 2nd group with UE indexes i D f7; 8; 9; 10; 11; 12g (blue), and 3rd
group with UE indexes i D f13; 14; 15; 16; 17; 18g (green)

The simulation setup is ı D 10�3, the 1st carrier eNodeB rate R1 takes values
between 20 and 300 with step of 10, and the 2nd carrier eNodeB rate is fixed at
R2 D 100. In Fig. 19, the final rates of different users with different 1st carrier
eNodeB total rates R1 are shown. In Fig. 19a, c, the increase in the rate allocated to
the users of 1st and 3rd groups is due to the increase in R1 (i.e., in range carrier). In
Fig. 19b, the increase in the rate allocated to the users of 2nd groups is associated
with the increase in R1 (i.e., out of range carrier). This is due to the decrease in
the number of users requesting resources from the 2nd carrier eNodeB (the users of
the 3rd group allocate most of their rates from the resources of 1st carrier eNodeB
and so decrease the load/demand on the 2nd carrier eNodeB). In spite of fixed 2nd
carrier eNodeB rate at R2 D 100, an increase in the allocated rates in the 2nd
group is observed with the increase in R1. This is more clear when monitoring the
change in the rates allocated to the 3rd group of users from the 1st carrier eNodeB
in Fig. 20a and from the 2nd carrier eNodeB in Fig. 20b. In Fig. 20a, b, when the
resources available at the 2nd carrier is more than that at 1st carrier, most of the
3rd group rates are allocated by the 2nd carrier. With the increase in R1, a gradual
increase in the 3rd group rates allocated from the 1st carrier is observed as well as a
gradual decrease from the 2nd carrier eNodeB resources. This shift in the resource
allocation increases the available resources to be allocated to 2nd group of users by
2nd carrier eNodeB.

The final bids of different users with different values of R1 are shown in Fig. 21.
It is observed that the users bid high when the resources are scarce and their
bids decrease as R1 increases. Hence, pricing in this model is traffic-dependent
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Fig. 19 The rates rli of the 3rd group of users verses 1st carrier rate 20 < R1 < 300 with 2nd
carrier rate fixed at R2 D 100. (a) The rates allocated r1i from the 1st carrier eNodeB to users of
the 1st group (i.e., i D 1; 2; 3; 4; 5; 6). (b) The rates allocated r2i from 2nd carrier eNodeB to users
of the 2nd group (i.e., i D 7; 8; 9; 10; 11; 12). (c) The rates allocated r1i C r2i from 1st and 2nd
carriers eNodeBs to users of the 3rd group (i.e., i D 13; 14; 15; 16; 17; 18)
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Fig. 20 The allocated rates rli from the l th carrier eNodeB to the 3rd group of users with 1st
carrier eNodeB rate 20 < R1 < 300 and 2nd carrier eNodeB rate fixed at R2 D 100. (a) The
allocated rates r1i from the 1st carrier eNodeB to the 3rd group of users. (b) The allocated rates r2i

from the 2nd carrier eNodeB to the 3rd group of users

(i.e., demand by users increase the price increase and vice versa). In Fig. 21a, c, the
decrease in the 1st and 3rd group users’ bids with the increase in R1 is noticeable.
The supply increases, and the demand is still the same. In Fig. 21b, the decrease
in the 2nd group users’ bids with the increase in R1 (which is an out-of-range
carrier) is observable. This is due to the decrease in the demand on 2nd carrier
eNodeB resources with fixed supply from 2nd carrier. In Fig. 22, the shadow price
of the 1st carrier eNodeB is higher than that of 2nd carrier eNodeB for R1 � 50,
approximately equal for 60 < R1 � 200, and lower for R1 > 200. This shows
how it is very efficient to have joint carrier aggregation on the pricing of the
user. In addition, provided this traffic-dependent pricing, the network providers can
flatten the traffic specially during peak hours by setting traffic-dependent bandwidth
resource price, which gives an incentive for users to use the network during less-
congested hours.
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Fig. 21 The users final bids wli (i.e., network provider pricing) for the three group of users vs
1st carrier eNodeB available rate 20 < R1 < 300 with 2nd carrier rate fixed at R2 D 100.
(a) The bids w1i of users of the 1st group (i.e., i D 1; 2; 3; 4; 5; 6). (b) The bids w2i of users
of the 2nd group (i.e., i D 7; 8; 9; 10; 11; 12). (c) The bids w1i C w2i of users of the 3rd group
(i.e., i D 13; 14; 15; 16; 17; 18)
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Fig. 22 The 1st carrier shadow price p1 and 2nd carrier shadow price p2 with the 1st carrier
eNodeB rate 20 < R1 < 300 and the 2nd carrier eNodeB rate R2 D 100

Conclusion and Future Direction

In this chapter, an application-aware optimization problem for UEs with delay-
tolerant and real-time applications in cellular networks is presented. Two scenarios
are discussed, i.e., one-carrier scenario and multiple-carrier scenario. Starting
with one-carrier scenario, the global optimal solution exists and is tractable for
the resource allocation optimization problem for UEs with logarithmic (delay-
tolerant applications) and sigmoidal-like (real-time application) utility functions.
A distributed algorithm for allocating the eNodeB resources optimally to the
UEs is presented. Additionally, convergence analysis is discussed. A solution
for ensuring convergence for different network traffic conditions is discussed.
Hence, this modified robust algorithm converges for high and low traffic loads.
The algorithm is aware of different applications and ensures fairness in the
utility percentage achieved by the allocated resources for all the users. Therefore,
the algorithm gives priority to the users with real-time applications over delay-
tolerant applications. In addition, a minimum resource allocation for users with
elastic or inelastic traffic is guaranteed to satisfy a minimum QoS for all service
subscribers. Simulations provide that the robust algorithm converges to the optimal
rates and allocates the eNodeB resources with priority to users running real-
time applications. For multiple-carrier scenario, spectrum sharing through carrier
aggregation is presented. The assumptions of applications running on smart phones
are similar to one-carrier scenario. But in this case, users share multiple bands
in an application-aware scheme. Optimality is shown for this scenario as well,
and robustness of convergence is considered in the resource allocation algorithm
design. Simulations provided for the two-carrier scenario for a proof of concept. The
algorithm guarantees allocating resources from the carrier with the lowest resource
price for the user. Hence, the algorithm converges to the optimal rate allocation with
the lowest possible resource price.

The algorithms discussed in this chapter can be extended to include cellular
system features such as frequency reuse [6]. Additionally, resource block allocation
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problems for an application-aware spectrum sharing can be included in the math-
ematical model presented in this chapter. Some preliminary examples are shown
in [17, 23]. The algorithm, presented in this chapter, provides a pricing approach
for network providers to flatten network traffic over time. Hence, it provides a
traffic-dependent pricing approach. This could be utilized to give the subscribers
the incentive to decrease the cost of using the network by choosing to access the
network at low-cost low-traffic load time. Additionally, the provided algorithm in
this chapter can be extended to a centralized method rather than distributed to
minimize overheads; more details are in [24].

The presented techniques could be used for allocating resources for smart grids
and power system as well, for example, the extension of the research work in
[31] to include sigmoidal-like utilities. Additionally, the pricing incentive used
in the presented model could be extended to improve smart grid current models,
e.g., [11]. Finally, this work can provide a platform for sharing radar spectrum
with communication systems. For instance, carrier aggregation between radar and
communication bands can improve the overall user QoS as shown in [22], radar
transmitters can be utilized as auxiliary network base stations as shown in [4],
and cooperative radar and communications signaling schemes can be considered
as shown in [13, 14].
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