
12Principles and Challenges of Cooperative
Spectrum Sensing in Cognitive Radio
Networks

Lamiaa Khalid and Alagan Anpalagan

Contents

Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Fundamental Concepts of Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385

Hypothesis Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 385
Primary Transmitter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Sensing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Matched Filter Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 388
Energy Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Cyclostationary Feature Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Other Sensing Techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 390

Cooperative Spectrum Sensing (CSS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Cooperation Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Fusion Schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392

Performance of Cooperative Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Cooperative User Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 398
Cooperation Overhead . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 400
Multiband Spectrum Sensing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 402

Implementation of Sensing Techniques on Testbeds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 404
Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 406

Abstract

Cognitive radio (CR) technology is a promising solution to the inevitable
problem of spectrum scarcity and underutilization. Cognitive radios can perform
spectrum sensing, dynamically identify unused spectrum, and opportunisti-
cally utilize those spectrum holes for their own transmission. Cognitive radio
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technology is also a key concept suggested to be part of the fifth generation
of cellular wireless standards (5G). Efficient spectrum sensing is crucial to
the effective deployment of CR networks. Cooperative spectrum sensing (CSS)
schemes can significantly improve the sensing accuracy of CR networks by
exploiting multiuser spatial diversity. However, the cooperative gain can be
impacted by factors such as the detection performance of each secondary user
(SU) and the fusion techniques used to combine the secondary users’ decisions.
Moreover, CSS incurs cooperation overhead that may deteriorate its overall
performance. In this chapter, we provide a comprehensive survey on the different
factors that contribute to the efficient design of CSS schemes for cognitive radio
networks. We specifically focus on the elements of cooperative sensing that
can leverage the achievable cooperative gain, limit the cooperation overhead, or
provide trade-off between the gain and overhead such as the number of channels
sensed in each sensing period, the selection of secondary users, the selection of
the fusion scheme, and the correlation between the cooperating secondary users.
We also highlight key open research challenges in cooperative spectrum sensing.

Introduction

Driven by the proliferation of new wireless services and applications, as well as
the steadily increasing number of wireless users, the demand for radio spectrum
has increased dramatically. The government regulatory agencies employ inflexible
spectrum management approaches by granting each operator an exclusive license
to operate in a certain frequency band. With most of the prime radio frequency
spectrum already exclusively assigned, it is becoming exceedingly hard to find
vacant bands to either deploy new services or enhance existing ones. However,
this spectrum scarcity is mainly due to inefficient fixed frequency allocations
rather than a physical shortage in the spectrum. This inefficiency in the spectrum
usage necessitates a new communication paradigm to exploit the existing wireless
spectrum opportunistically. Dynamic spectrum access (DSA) has been proposed as
an alternative policy to allow the radio spectrum to be more efficiently utilized
[1]. Using DSA, a portion of the spectrum can be licensed to one or more users,
which are called primary users (PUs); however, the use of that spectrum is not
exclusively granted to these licensed users, although they have higher priority in
using it. The unlicensed users, which are referred to as secondary users, are allowed
to opportunistically utilize the unused licensed bands, commonly referred to as
“white spaces” or “spectrum holes,” as long as the primary users’ transmissions
can be adequately protected. By doing so, the radio spectrum can be reused in an
opportunistic manner or shared all the time which can significantly improve the
spectrum utilization efficiency [2]. The key enabling technology of DSA is the
cognitive radio (CR) technology.

A cognitive radio system is a radio system which is aware of its operational
and geographical environment, established policies, and its internal state. Moreover,
it is able to dynamically and autonomously adapt its operational parameters and
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protocols and to learn from its previous experience [3]. Cognitive radios are enabled
by the rapid and significant advancements in radio technologies (e.g., software-
defined radios, frequency agility, power control, etc.) and can be characterized by
the utilization of disruptive techniques such as wideband spectrum sensing, real-
time spectrum allocation and acquisition, and real-time measurement dissemination
[4]. To reliably identify the vacant licensed bands, some methods that the secondary
users can employ are geolocation combined with access to database, beacons,
spectrum sensing, or a combination of any of those methods [5,6]. In the geolocation
method, primary users register the relevant data such as their location and transmit
power as well as expected duration of usage at a centralized database. Secondary
users then have to access this database to determine the availability of vacant
licensed bands at their location. Geolocation database is based on field strength
estimates for the primary users obtained using terrain-based radio propagation
models. However, the limited geographical information restricts the achievable
accuracy of the field strength estimates. Therefore, radio environment mapping
(REM) has been introduced as an alternative or complementary procedure to radio
propagation models [7–9].

In the beacon method, secondary users only transmit if they receive a control
signal (beacon) identifying vacant channels within their service areas. Without
reception of this control signal, no transmissions are permitted by the secondary
users. In [10], beacon-assisted channel access was assumed in which a codeword
from the codebook of the primary users is reserved as a beacon, and each time
a primary user releases a channel, it broadcasts this beacon message. The authors
assumed that the codebook of the primary users as well as the beacon codeword was
a priori known to the secondary users. The proposed protocol showed performance
gain in terms of more reliable detection of spectrum holes as well as achieving
higher secondary channel capacity. In [11], novel detection schemes employed at
the fusion center, namely, the robust estimator-correlator detector and the robust
generalized likelihood detector, were proposed for multiple beacon signaling-based
cooperative spectrum sensing in multiple-input multiple-output wireless cognitive
radio networks with channel state information (CSI) uncertainty. Simulation results
demonstrated that the proposed detection techniques yield a significant improve-
ment in the detection performance compared to the conventional CSI uncertainty
matched filter detector.

With the aforementioned methods, secondary devices will need additional
connectivity in a different band in order to be able to access the database [5] or
a dedicated standardized channel will be needed to broadcast the beacons [6]. In
the spectrum sensing method, secondary users autonomously detect the presence
of the primary signals and only use the channels that are not used by the primary
users. All the abovementioned methods have their advantages and disadvantages. It
is up to the regulator to decide on the best approach with the considerations from
all the stakeholders. However, it is expected that in the future, both database and
spectrum sensing techniques will be used together in order to have flexibility and
achieve maximum efficiency for secondary users [12]. In this chapter, we focus
on spectrum sensing performed by cognitive radios because of its relatively lower
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infrastructure cost and its compatibility with licensed primary systems which allows
for broader application areas.

Spectrum sensing enables the capability of a cognitive radio to measure, learn,
and be aware of the radio’s operating environment, such as the spectrum availability
and interference status. Availability of radio spectrum varies depending on time,
frequency, and location resulting in spectrum access opportunities. Secondary users
can use the available idle spectrum in an opportunistic manner by identifying the
available spectrum reliably and rapidly. It also helps in quickly determining if the
primary users have become active in the bands used by secondary users so that
those bands can be vacated immediately. This is important for ensuring that the
interference caused to the primary users’ transmissions remains below a permitted
level. Moreover, detection of other secondary users may be necessary as well for
coexistence with other secondary networks. However, due to the effects of multipath
fading and shadowing, the signal-to-noise ratio (SNR) of the received primary
signal can be extremely low, and a secondary user may not be able to distinguish
between a deeply faded band and an idle one. Since receiver sensitivity indicates the
capability of detecting weak signals, the sensitivity requirement of the secondary
user’s receiver may end up being too stringent. In order to mitigate these effects,
secondary users often cooperate for spectrum sensing.

The main idea of cooperative spectrum sensing (CSS) is to enhance the sensing
performance by exploiting the spatial diversity in the observations of spatially
located secondary users [13–17]. Having multiple cooperating secondary users
increases diversity by providing multiple measurements of the signal and, therefore,
guarantees a better detection performance. Consequently, the diversity gain achieved
through cooperative spectrum sensing improves the overall detection sensitivity
without imposing higher sensitivity requirements on individual secondary users
[18]. A less stringent sensitivity requirement is particularly appealing from the
implementation point of view due to the reduced hardware cost and complexity.
The performance improvement due to spatial diversity is called cooperative gain.
However, cooperative gain is not limited to the improved detection performance
and relaxed sensitivity requirement. For instance, since it is difficult, using a
single radio, to transmit on a licensed band and sense it simultaneously, sensing
has to be interleaved with data transmission [13, 19]. Therefore, if the sensing
time can be reduced due to cooperation, secondary users will have more time for
data transmission so as to improve their opportunistic throughput which is also
considered a part of the cooperative gain. From the above discussion, it is apparent
that well-designed techniques for cooperative spectrum sensing can significantly
contribute to improving the achievable cooperative gain. However, CSS can incur
cooperation overhead and the achievable cooperative gain can be impacted by many
factors. The goal of this chapter is to point out several aspects of cooperative
spectrum sensing. These aspects are discussed in the rest of this chapter.

In section “Fundamental Concepts of Spectrum Sensing,” we present the
fundamental concepts of spectrum sensing. In section “Sensing Techniques,” we
review the most common spectrum sensing techniques for cognitive radio networks
and detail their advantages and disadvantages. In section “Cooperative Spectrum



12 Principles and Challenges of Cooperative Spectrum Sensing in: : : 385

Sensing (CSS),” we present the different elements of cooperative spectrum sensing.
In section “Performance of Cooperative Spectrum Sensing,” we discuss the
different factors impacting the performance of cooperative spectrum sensing.
We present some research challenges which offer directions for future work in
section “Research Challenges.” Section “Conclusions” concludes this chapter.

Fundamental Concepts of Spectrum Sensing

The spectrum sensing problem is traditionally formulated as a binary hypothesis
testing problem as described below. To identify the idle spectrum and protect
the primary users’ transmissions, different local spectrum sensing techniques have
been proposed for individual secondary users based on hypothesis testing. Some
of the most common spectrum sensing techniques for the detection of primary
users’ transmissions for cognitive radio networks are discussed in section Sensing
Techniques.

Hypothesis Testing

A key task in spectrum sensing is to decide whether the spectrum is idle or busy.
The spectrum sensing problem is traditionally formulated as a binary hypothesis test
[20]. The null hypothesis denoted by H0 corresponds to the absence of the primary
user’s transmission, i.e., the received signal being only noise. On the other hand, the
alternative hypothesis denoted by H1 indicates that the primary user’s transmission
is present, i.e., the received signal contains the primary signal along with noise.
In case the hypotheses have no unknown parameters, the hypotheses are called
simple. If there are unknown or unspecified parameters, then the hypotheses are
called composite. As an example, a binary hypothesis test for detecting the primary
user’s transmission in an additive white Gaussian noise (AWGN) channel is given
by

x.n/ D

�
v.n/; H0

h.n/s.n/ C v.n/; H1

(1)

where x.n/ denotes the sampled received signal with sampling rate fs (Hz) and
an observation time T . The channel gain and primary user’s transmitted signal are
denoted by h.n/ and s.n/, respectively, and v.n/ is the AWGN noise.

In most practical cases, a test statistic Y is computed from the observation vector
x D Œx.1/; x.2/; ::; x.N /� containing N observation samples, where N , fsT is
assumed to be an integer. The detection is based on comparing the test statistic Y

to the threshold � . If the test statistic is greater than the threshold, i.e., Y > � , then
H1 is declared true. Otherwise, H0 is declared true. Two main performance metrics
that are crucial in the design of spectrum sensing techniques are the probability
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of miss-detection, Pm, and the probability of false alarm, Pf . The probability of
miss-detection is defined as the probability that the detector declares the absence
of a primary user (PU) transmission (decide H0), when PU transmission is actually
present (H1 is true). The probability of false alarm is defined as the probability
that the detector declares the presence of PU transmission (decide H1), when PU
transmission is actually absent (H0 is true). Therefore, we represent the probabilities
of miss-detection and false alarm, respectively, as [21]

Pm D P .H0jH1/ D P .Y � � jH1/; (2)

and

Pf D P .H1jH0/ D P .Y > � jH0/: (3)

It is clear that we need the probability of detection to be high as it indicates
the level of protection of the primary users’ transmissions from the interfering
secondary users’ transmissions. On the other hand, low probabilities of false alarm
are necessary in order to maintain high opportunistic secondary throughput, since a
false alarm would prevent the unused bands from being accessed by secondary users
leading to inefficient spectrum usage.

Primary Transmitter Detection

The transmitter detection model is based on the detection of weak signals from a
primary transmitter through the local observations of secondary users. This model
has a wider applicability due to its compatibility with the licensed systems. The main
drawback of the primary transmitter sensing model is its reliance on the detection of
primary transmitters to infer the availability of white spaces while the interference
happens at the primary receivers. As such, a detection margin has to be included in
order to protect primary receivers [6].

When the primary system employs bursty transmission, the secondary user can
detect the empty time slots and multiplex its signal over them without causing
any performance degradation at the primary receivers. On the other hand, when
the primary system employs continuous transmission, the secondary user has to
estimate the interference it generates at the primary receivers by using signal level
measurements. If the transmitter of the secondary user is far from the primary
receiver, depending on the signal-to-interference ratio (SIR) limit at the receiver
of the primary user supplied by the regulatory bodies, both the primary user and
the secondary user could transmit data simultaneously [6, 22]. In this case, the
interference range is defined as the minimum distance that a secondary transmitter
should be away from the primary receiver such that it does not cause harmful
interference at this receiver. Figure 1 shows the primary receiver located at a
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Fig. 1 Interference range of a cognitive radio

distance D0
1 from the primary transmitter and D0

2 is the interference range. The
interference range will depend on the SU-transmitted power and the primary
receiver’s interference tolerance and can be obtained from [23]

SIR D
P 0

uh.D0
1/

P 0
s h.D0

2/ C P 0
b

; (4)

where P 0
u and P 0

s are the transmit power of the primary and secondary users,
respectively, h.D0/ is the channel gain at distance D0 from the transmitter, and P 0

b

is the background interference power at the primary receiver.
To avoid causing harmful interference to the primary receiver, the secondary user

must be able to detect a signal from the primary transmitter within the range of
D0

1 C D0
2 which can translate to a certain sensitivity requirement for the secondary

detector. Although the cases where an active primary transmitter is present but it is
far away from the secondary user fall under hypothesis H1, the interference to the
primary receiver would not be harmful, and as such these cases should be treated as
white space by definition. In particular, since the detection of the primary transmitter
is dependent on the SNR at the secondary user as seen in (1), it would be unlikely
for low-SNR primary signals to trigger the secondary user’s detector resulting in
unusable white spaces [24].

Sensing Techniques

In this section, we will discuss some of the most common spectrum sensing tech-
niques for the detection of the primary transmitter in the cognitive radio literature.
From the perspective of signal detection, sensing techniques can be classified into
two broad categories: coherent and noncoherent detection. In coherent detection,
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Fig. 2 Classification of spectrum sensing techniques

the primary signal can be coherently detected by comparing the received signal
or the extracted signal characteristics with prior knowledge of primary signals. In
noncoherent detection, no prior knowledge of the primary signal is required for
detection. Another way to classify sensing techniques is based on the bandwidth
of the spectrum of interest, that is, narrowband and wideband. The classification of
sensing techniques is shown in Fig. 2. Next, we introduce matched filter detection,
energy detection, and cyclostationary detection and briefly discuss some other
spectrum sensing techniques. A more complete review on various spectrum sensing
techniques and design challenges can be found in [25, 26].

Matched Filter Detection

Matched filtering is known as the optimum method for the detection of the primary
signal when the transmitted signal is known, since it maximizes the received signal-
to-noise ratio (SNR). The main advantage of matched filtering is the short time
it requires to achieve a certain detection performance, such as low probabilities of
miss-detection and false alarm [27], since a matched filter needs less received signal
samples. However, matched filtering requires the secondary users to demodulate
the received signals. Therefore, it requires perfect knowledge of the primary users’
signaling features such as bandwidth, operating frequency, modulation type and
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order, and pulse shaping as well as accurate synchronization at the secondary user
[25, 28, 29]. However, in cognitive radio networks, such knowledge is not readily
available to secondary users, and the implementation cost and complexity of this
detector are high. Another significant drawback of matched filter detection is that a
secondary user would need a dedicated receiver for every primary user class [30].

Energy Detection

Energy detection [21,31] is a noncoherent detection method that is most commonly
used if the receiver cannot gather sufficient information about the primary user’s
signal. This simple scheme accumulates the energy of the received signal during the
sensing interval and declares the primary band to be occupied if the energy surpasses
a certain threshold which depends on the noise floor [21]. Due to its simplicity and
the fact that it does not require prior knowledge of the primary users’ signals, energy
detection is the most popular sensing technique among others for spectrum sensing
[6, 15, 32–34]. However, some of the challenges with energy detection include
selection of the threshold for detecting primary users, inability to differentiate
interference from primary users’ transmission and noise, and poor performance
under low signal-to-noise ratio [29]. Moreover, energy detection does not work
efficiently for detecting spread spectrum signals for which more sophisticated signal
processing algorithms need to be devised [35].

In addition to narrowband sensing, energy detection has been used for multiband
joint detection in wideband sensing by employing an array of energy detectors,
each of which detects one frequency band [36]. The multiband joint detection
framework enables secondary users to simultaneously detect primary users’ signals
across multiple frequency bands for efficient management of the wideband spectrum
resource at the cost of detection hardware.

Cyclostationary Feature Detection

Another detection method that can be applied for spectrum sensing is the cyclosta-
tionary feature detection. Modulated signals are in general coupled with sinusoidal
wave carriers, pulse trains, repeated spreading or hopping sequences, or cyclic
prefixes, which result in built-in periodicity. Cyclostationary features are caused by
the periodicity in the signal or in its statistics such as mean and autocorrelation
[29]. Cyclostationary feature detection is a method for detecting primary user
transmissions by exploiting the cyclostationary features of the received signals.
Instead of power spectral density (PSD), cyclic correlation function is used for
detecting signals present in a given spectrum. The cyclostationary-based detection
algorithms can differentiate noise from primary users’ signals. This is a result of
the fact that noise is wide-sense stationary with no correlation, while modulated
signals are cyclostationary with spectral correlation due to the redundancy of signal
periodicity. Therefore, a cyclostationary feature detector can perform better than
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the energy detector in discriminating against noise due to its robustness to the
uncertainty in noise power [28, 37]. However, it is computationally complex and
requires significantly long observation time. Moreover, it requires the knowledge
of the cyclic frequencies of the primary users, which may not be available to the
secondary users.

Other Sensing Techniques

Alternative spectrum sensing methods include waveform-based sensing, multitaper
spectral estimation, and wavelet detection. Waveform-based sensing is usually based
on correlation with known signal patterns. Known patterns are usually utilized
in wireless systems to assist synchronization or for other purposes. Such patterns
include preambles, regularly transmitted pilot patterns, and spreading sequences.
In [35], it was shown that waveform-based sensing outperforms energy detector-
based sensing in reliability and convergence time. Furthermore, it was shown that
the performance of the sensing algorithm increases as the length of the known
signal pattern increases. Waveform-based sensing, however, is only possible when
the target primary user’s signal contains known signal patterns.

In [38], the authors proposed a spectrum sensing method based on the auto-
correlation of the received samples. The proposed method was evaluated by means
of experiments wherein the probabilities of detection and false alarm at different
signal-to-noise ratios (SNRs) were observed. A metric called the Euclidean distance
was derived to analyze the autocorrelation of the received samples in order to decide
whether only noise was present or signal plus noise. Simulation results showed that
the proposed method is more efficient than using autocorrelation function at first lag
method in terms of probability of detection and false alarm and more efficient than
the energy detection method in terms of probability of false alarm.

Multitaper spectrum estimation was proposed in [39]. The proposed algorithm
was shown to be an approximation to the maximum likelihood power spectral
density estimator, and for wideband signals, it is nearly optimal. Most importantly,
unlike the maximum likelihood spectral estimator, the multitaper spectral estimator
is computationally feasible. In [40], wavelets are used for detecting edges in the
power spectral density of a wideband channel. Once the edges, which correspond to
transitions from an occupied band to an empty band or vice versa, are detected, the
power within the bands between two edges is estimated. Using this information and
the edges’ positions, the power spectral density can be characterized as occupied
or empty in a binary fashion. The assumptions made in [40], however, need to be
relaxed for building a practical sensing algorithm. The method proposed in [40] was
extended in [41] by using sub-Nyquist sampling (compressed sensing). Assuming
that the signal spectrum is sparse, sub-Nyquist sampling is used to obtain a coarse
spectrum knowledge in an efficient way. Table 1 presents a brief comparison of the
above spectrum sensing techniques.
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Table 1 Comparison of spectrum sensing techniques

Spectrum sensing technique Advantages Disadvantages

Matched filter detection - Optimal performance
- Low computational cost

Requires prior knowledge of the
primary user’s signal

Energy detection - Low complexity
- No primary knowledge
required

- Poor performance for low SNR
- Cannot differentiate signal and
noise

Cyclostationary detection - Robust in low SNR region
- Robust against interference

- Requires partial prior
information
- High computational cost

Waveform-based detection - Robust in low SNR region
- Short measuring time

- Requires prior knowledge of
the primary user’s signal
- Susceptible to synchronization
errors

Multitaper spectrum
estimation

- Near-optimal performance for
wideband signals
- No primary knowledge
required

High implementation
complexity

Wavelet detection Effective for wideband signal
detection

- Requires high sampling rate
analog-to-digital converter
- High computational cost

Cooperative Spectrum Sensing (CSS)

In cooperative spectrum sensing, information from multiple secondary users are
incorporated for the detection of the primary signal. In the literature, cooperative
sensing is discussed as a solution to problems that arise in spectrum sensing due
to noise uncertainty, fading, and shadowing since the uncertainty in a single user’s
detection can be minimized [32]. The main idea of cooperative sensing is to enhance
the sensing performance by exploiting the spatial diversity in the observations
of spatially located secondary users. By cooperation, secondary users can share
their sensing information for making a combined decision more accurate than the
individual decisions [17]. The performance improvement due to spatial diversity
is called cooperative gain. While cooperative gain such as improved detection
performance and relaxed sensitivity requirement can be obtained, cooperative
sensing can incur cooperation overhead. Cooperation overhead refers to any extra
sensing time, delay, energy, and operations devoted to cooperative sensing and any
performance degradation caused by cooperative sensing.

Cooperation Architecture

Depending on how the secondary users share their sensing data, several cooperative
spectrum sensing architectures for CR networks have been proposed in the literature
[15, 42–44]. The most commonly proposed architecture is the parallel fusion
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Fig. 3 Parallel fusion architecture

architecture, in which all the sensing secondary users send their sensing information
directly to a centralized controller called a fusion center. This fusion center then
makes a final decision regarding the presence or absence of the primary signal
and broadcasts this information to other secondary users or directly controls the
cognitive radio network traffic [15, 32, 42]. The parallel fusion architecture is
illustrated in Fig. 3.

Another possible sensing architecture is the decentralized sensing architecture
which does not rely on a fusion center for making the cooperative decision [16, 35,
44]. In this case, secondary users exchange the sensing observations and converge
to a unified decision on the presence or absence of primary user’s transmissions
by iterations. Based on a distributed algorithm, each secondary user sends its own
sensing data to other users, combines its data with the received sensing data, and
decides whether or not the primary user’s transmission is present by using a local
criterion. If the criterion is not satisfied, secondary users send their combined results
to other users again and repeat this process until the algorithm is converged and a
decision is reached. The decentralized sensing architecture is illustrated in Fig. 4.

Fusion Schemes

In cooperative sensing, a fusion scheme refers to the process of combining locally
sensed data of individual secondary users. Depending on which type of sensing data
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Fig. 4 Decentralized fusion architecture

is transmitted to the fusion center or shared with neighboring users, CSS can employ
data or decision fusion schemes. In soft-decision schemes (data fusion), secondary
users exchange their test statistics calculated from their local observations. On the
other hand, in the hard decision schemes (decision fusion), secondary users only
exchange their individual binary decisions.

Soft Combining and Data Fusion
Existing receiver diversity techniques such as equal gain combining (EGC) and
maximal ratio combining (MRC) can be utilized for soft combining of local
observations or test statistics. If the channel state information (CSI) between the
primary users and the secondary users are perfectly known, the optimal combining
strategy, which is MRC, can be used for achieving the highest output SNR. In
MRC, the local observations of secondary users are weighted proportionately to
their channel gain and then summed up [45]. In EGC, the local observations of
secondary users are weighted equally [46]. The EGC scheme has a performance
close to that of MRC but with simpler implementation.

It was shown in [47] that the soft combining scheme yields better gain than the
hard combining scheme. However, there is a significant difference in the cooperation
overhead between the hard- and soft-decision-based detectors, which requires a
wideband control channel for the soft-decision cooperative approach. The soft
information-based signal detection method for the single-carrier case and multi-
carrier case was investigated in [48]. In [33], a linear cooperation strategy was
developed which is based on the optimal combination of the local statistics from
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spatially distributed secondary users. In [49], an optimal soft combination scheme
based on Neyman-Pearson criterion was proposed to combine the weighted local
observations. The proposed scheme reduces to EGC at high SNR and reduces to
MRC at low SNR. Since such a soft combining scheme results in large overhead, a
softened two-bit combining scheme was also proposed for energy detection. In this
method, there are three decision thresholds dividing the whole range of test statistics
into four regions. Each secondary user reports the quantized two-bit information
of its local test statistics. The performance of this method is comparable to the
performance of the EGC scheme with less complexity and overhead.

In [50], the authors proposed a cooperation strategy in which the local decisions
are combined with weighting factors that reflect the local sensing reliability of each
secondary user based on partial channel side information to make a final decision
with the correspondingly optimized threshold level. In [51], the authors proposed
a weighted cooperative spectrum sensing scheme for which the optimal weights
are derived under the constraint of equal probabilities of false alarm and miss-
detection. They also incorporated reference matrix into the weight setting procedure
to store the most recent sensing data in either noise matrix or signal energy matrix
according to their corresponding sensing decisions in order to acquire the primary
user signal energies from the sensing data of the cooperating sensing nodes. In [52],
the authors proposed a cooperative spectrum sensing technique which considers the
spatial variation of secondary users, and each user’s contribution is weighted by
a factor that depends on the received power and path loss. The proposed scheme
provides better probability of detection and spectrum utilization when compared to
EGC scheme.

In [53], the authors proposed a weighted cooperative sensing scheme that assigns
weights to secondary users based on the local detection accuracy of each SU,
instead of SNR. In this scheme, the authors used the total error probability, which
combines the false-alarm probability and miss-detection probability, to measure the
detection accuracy. At the fusion center, each cooperating user is assigned a weight
corresponding to its probability of error, i.e., an SU with higher probability of error
is assigned lower weight. The optimal detection threshold, as well as the number of
SUs required to participate in cooperative sensing, was derived, subject to a given
total error probability. Simulation results showed that the proposed scheme provides
performance improvement, in terms of the probability of error, when compared to
the equal weighted and SNR-based weighted schemes. The authors in [54] proposed
a penalty-based weight adjustment mechanism for cooperative spectrum sensing
(CSS) to enhance the adaptability of secondary users in time-varying environments.
Similar to [53], each secondary user is characterized by its probability of error but
the weight factor is adjusted using a penalty mechanism based on the current local
decision made by the secondary user. The final result is then computed by fusion of
weighted soft decisions made by each cooperating secondary user.

In [55], an adaptive weighting scheme with double threshold energy detection
based on the water-filling principle was proposed for cooperative spectrum sensing.
For this scheme, each secondary user was allocated a weighting factor based on
the relation between the instantaneous SNR of the sensing channel and the water
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level. The authors showed that the proposed weighting scheme can achieve better
detection performance and lower average number of sensing bits when compared
to the equal weighted and SNR weighted schemes. A cooperative spectrum sensing
scheme based on ROCQ reputation management model for cognitive radio networks
was proposed in [56]. The ROCQ scheme is a reputation-based trust management
system that computes the trustworthiness of peers on the basis of transaction-
based feedback. The ROCQ model combines four parameters: (i) reputation,
(ii) a peer’s global trust rating or opinion formed by a peer’s firsthand interactions,
(iii) credibility of a reporting peer, and (iv) the quality or the confidence a reporting
peer puts on the feedback it provides. In this scheme, each secondary user has a
reputation degree used to calculate its coefficient in the linear fusion process, and
the reputation degree is initialized and adjusted by the fusion center according to
each secondary user’s sensing result, sensing correctness, and report consistency.
Simulation results showed that the detection performance of the proposed scheme
in [56] is approximately the same as that of the optimal linear fusion scheme while
it requires no instantaneous SNR.

Hard Combining and Decision Fusion
In the hard combining scheme, the final decision is reached by taking into
consideration the individual local decisions reported by each secondary user. When
binary local decisions are reported to the fusion center, it is convenient to apply
linear fusion rules to obtain the cooperative decision. The main advantage of the
hard combining scheme is the reduction of communication overhead. Hard decision
combining for CSS has been considered in several works [47,49,57]. The commonly
used fusion rules are AND, OR, and majority voting rules which are special cases
of the general K-out-of-M rule. Those decision fusion rules can be summarized as
below [58]:

• K-out-of-M rule: In this fusion rule, the fusion center decides on the presence
of the primary user’s transmission if, and only if, K or more than K secondary
users out of the total M cooperating secondary users report the detection of the
primary user’s signal, where K 2 Œ1; M �. Therefore, in the K-out-of-M rule, if
K users or more decide in favor of H1, then the cooperative decision declares
that H1 is true. If the decisions from all the secondary users are independent, the
network probabilities of detection and false alarm are, respectively, given by [59]
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where Pd;k and Pf;k are, respectively, the probabilities of detection and false
alarm of the kth secondary user and
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• Majority voting (MV) rule: In the MV fusion rule, also known as half-voting
rule, if half, or more than half, of the local detectors decide that there is a primary
user’s transmission, then the final decision at the fusion center declares that there
is a primary user’s transmission [58]. Therefore, for the MV rule, the cooperative
decision declares H1 only if half or more than half of the secondary users decide
on H1, i.e., K D d M

2
e in (5) and (6), where d M

2
e denotes the smallest integer not

less than M
2

. If the decisions from all the secondary users are independent, the
network probabilities of detection and false alarm are, respectively, given by
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• Logical OR rule: In this fusion rule, the fusion decides on the presence of
primary user’s transmission if any of the secondary users reports the detection
of the primary user’s transmission. Therefore, for the OR rule, the cooperative
decision declares H1 if any of the secondary users decides on H1, i.e., setting
K D 1 in (5) and (6). Since an SU occupying a licensed frequency band may
cause interference to the primary users, the risk of SUs causing interference to
the primary users is minimized using the logical OR rule. If the decisions from
all the secondary users are independent, the network probabilities of detection
and false alarm are, respectively, given by
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• Logical AND rule: In the AND fusion rule, if all local detectors decide that
there is a primary user’s transmission, then the final decision at the fusion center
declares that there is a primary user’s transmission [58]. Therefore, for the AND
rule, the cooperative decision declares H1 only if all of the secondary users
decide on H1, i.e., setting K D M in (5) and (6). Using this fusion rule, the



12 Principles and Challenges of Cooperative Spectrum Sensing in: : : 397

probability of false alarm is minimized, but the risk of causing interference
to primary users will increase. If the decisions from all the secondary users
are independent, the network probabilities of detection and false alarm are,
respectively, given by
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Pd;k; (11)

and
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In [60], the authors proposed a decision fusion rule for the sensing-throughput
trade-off design that considers the differences in the signal-to-noise ratios of the
secondary users. These differences were reflected in the weighing of the decisions
based on the likelihood ratio test at the fusion center. A decision fusion scheme
was proposed in [61] that combines all secondary users decisions, taking into
account the credibility of each decision via Dempster-Shafer (D-S) theory of
evidence. This scheme can give a significant improvement in detection probability
as well as reduction in false-alarm rate and is best suited for a fast-changing
radio frequency environment. In [62], an enhanced scheme was proposed that
assigns a reliability value to each detector based on its SNR. This value reflects
the relative relationship between detectors and is used to adjust the credibility of
each decision to a more accurate value before combining the decisions via D-S
theory. In [63], the authors proposed a trust weighted cooperative spectrum sensing
scheme to identify malicious secondary users and mitigate their harmful effect on
sensing performance. To make an accurate final decision, the trust weight factor
of each SU is calculated by their trust values. The fusion center initializes the
trust values of SUs by the number of true sensing that agrees with the primary
user’s actual behavior and the number of total sensing. The trust value for each
secondary user is then increased or decreased according to whether it provides true
or false sensing information. Simulation results showed a performance improvement
in the probability of detection as compared to the conventional cooperative spectrum
sensing scheme without trust weighted factors for OR, AND, and majority fusion
rules. In [64], a centralized trust management scheme for secondary user base
station was proposed. The authors introduced the notion of self-confidence and trust.
Self-confidence is a rate supplied by a sensing secondary user of its own confidence
on the accuracy of its sensing results. Trust is a measure of reputation and represents
the historical accuracy of secondary user’s sensing reports. The authors incorporated
the trustworthiness evaluation from a modified beta reputation model into the K-out-
of-M decision fusion rule to give greater weight to the opinions of more trustworthy
secondary users.
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Performance of Cooperative Spectrum Sensing

In this section, we discuss some of the factors affecting the performance of CSS,
in terms of cooperation gain or incurred overhead, such as the number of channels
sensed in each sensing period, the selection of secondary users, the selection of the
fusion scheme, and the correlation between the cooperating secondary users. We
also discuss the performance of cooperative wideband spectrum sensing.

Cooperative User Selection

The selection of secondary users for cooperative sensing plays a key role in
determining the performance of CSS because it can be utilized to improve the
trade-off between cooperative gain and cooperation overhead. In [57], for the
case of independent secondary users’ observations with energy detection-based
cooperation, it was shown that cooperating with all users in the network does
not necessarily achieve the optimum performance. It was observed that including
secondary users experiencing bad channels, in terms of the SNR received at a
secondary user, for cooperation may degrade the performance. In order to relax
the requirement on prior knowledge of the received SNR at each secondary user,
the authors in [65] proposed to select the sensing secondary users that have the best
detection probabilities with respect to a given false-alarm probability. Specifically,
the false-alarm probability is set to be identical at each secondary user. Therefore,
the SU that reports the largest number of 1’s is first chosen to participate in
cooperative sensing. In [66], the optimal number of secondary users, K, that
minimizes the total error probability for secondary users with independent local
decisions for the general K-out-of-M fusion rule was found to be approximately
half of the total number of secondary users M . A user selection strategy based
on a modified deflection coefficient with low complexity was proposed in [67].
The optimal number of secondary users and the user set were obtained in order to
provide sufficient protection to the primary users and improve the total throughput
of the cognitive radio network. CSS using counting rule was studied in [68], and the
sensing errors were minimized by choosing the optimal probability of false alarm
to satisfy a given constraint and the optimal number of cooperating secondary users
for both matched filtering and energy detection.

When the cooperating secondary users experience correlated shadowing, it
was shown in [18] that selecting independent secondary users for cooperation
can improve the robustness of sensing results. In [69], a correlation-aware user
selection algorithm was developed to address the dynamic changes in the spatial
correlation experienced by mobile secondary users. To accurately derive the spatial
correlation coefficient, a correlation model between mobile secondary users was first
developed. Based on this correlation model, a distributed user selection algorithm
that adaptively selects uncorrelated secondary users through the spatial correlation
coefficient was designed. In [70], a joint spatial-temporal sensing scheme for CR
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networks was proposed, where secondary users collaboratively estimate the location
and transmit power of the primary transmitter. Based on those estimates, secondary
users determine their maximum allowable transmission power and use the location
information to decide which users should participate in cooperative sensing in order
to minimize the correlation among the secondary users’ observations. CSS with
correlated secondary users’ local decisions was studied in [71]. The probability of
sensing error was minimized by choosing the optimal assignments for the number
of cooperating secondary users, K, in the K-out-of-M fusion rule and the local
threshold for a certain correlation index.

Moreover, removing malicious users from cooperation ensures the security and
the reliability of the network. A robust secondary user selection algorithm for CSS
considering the presence of malicious users was proposed in [72]. The users were
selected based on the consistency check with known trusted users, and simulation
results showed that the proposed algorithm is effective in identifying and excluding
malicious secondary users. The authors in [73] presented a soft-decision reporting
scheme that is robust against malicious users. They proposed a heuristic approach to
iteratively identify malicious users, where the fusion center computes the secondary
user’s suspicious level, i.e., the posterior probability that this SU is an attacker,
based on the honest SU and malicious SU report probabilities. These probabilities
are estimated assuming that the fusion center knows the position of the users’ and
the attackers’ policy. When the suspicious level of the secondary user goes beyond a
threshold, it is discarded from the final decision process and moved into a malicious
user set. This process is repeated until no more malicious users can be found, and
only the reports from honest users are fused to make the final decision.

Most of the existing cooperative sensing schemes assume all the secondary users
are willing to cooperate. In reality, some selfish secondary users may refuse to pro-
vide the sensing results to save energy or transmission time, while benefiting from
sensing results of other users which may disrupt CSS. To enhance the cooperation,
several researchers investigate this incentive problem from the perspective of game
theory.

In [74], the authors modeled the cooperative spectrum sensing as an N-player
horizontal infinite game and then studied various strategies with it. They examined
the classical grim trigger strategy and proved it can sustain cooperation easily
but will result in poor performance under uncertainty of wireless channel. They
then proposed a strategy based on the carrot-and- stick strategy which can recover
cooperation from deviation. The authors proved that the proposed strategy can
achieve mutual cooperation as well as recover from failures. Performance evaluation
showed that the proposed strategy can achieve good network performance and
reduce interference to primary users.

In [75], the author proposed an evolutionary game-theoretic framework to
develop the best cooperation strategy for cooperative sensing with selfish users.
Using replicator dynamics, users can try different strategies (behavior dynamics)
and learn a better strategy through strategic interactions (evolutionarily stable
strategy). The authors also proposed a distributed learning algorithm that aids the
secondary users approach the evolutionarily stable strategy only with their own
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payoff history. Simulation results showed that the proposed game has a better
performance, in terms of total throughput, than having all secondary users sense
at every time slot.

In [76], the authors proposed a game in which every user can choose to
collaborate or not in each time slot depending on whether the benefit of the
cooperation is worth the cost. From this perspective, the cooperative spectrum
sensing game was modeled as the stag hunt game. The authors then proposed
cooperative communication incentive scheme (CCIS) to enhance the cooperative
sensing. The basic idea is to introduce a periodically available trusted authority to
compensate the secondary users (e.g., using the relay to help transmit their data
during transmission time) who suffer losses in the cooperative sensing.

Cooperation Overhead

The exploitation of spatial diversity in cooperative sensing results in a significant
improvement in detection performance. However, cooperation among secondary
users may also introduce a variety of overheads that limit or even compromise
this improved detection performance. The overhead associated with all elements of
cooperative sensing is called cooperation overhead. Cooperation overhead can refer
to any transmission cost, extra sensing time, delay, energy, and operations devoted
to cooperative sensing and any performance degradation caused by cooperative
sensing.

Since the sensing time is proportional to the number of samples taken by each
individual secondary user, the longer the sensing time is, the better the detection
performance will be. However, when each secondary user is equipped with a single
radio transceiver, it will be difficult for the secondary users to simultaneously
perform sensing and transmission. Therefore, the more time is devoted to sensing,
the less time is available for transmissions which reduces the secondary users’
throughput, also known as opportunistic throughput. In addition, the cooperation
overhead due to the extra sensing time will generally increase with the number of
cooperating users due to the increased volume of data that needs to be reported
to and be processed by the fusion center. This is known as the sensing efficiency
problem [77] or the sensing-throughput trade-off [59] in spectrum sensing.

The cooperation overhead, in terms of the extra sensing time or reduced
opportunistic throughput, will also increase as the delay in finding an available
channel increases [78]. In [79], a sensing-period optimization mechanism and an
optimal channel-sequencing algorithm were developed to maximize the discovery
of spectrum access opportunities and minimize the delay in discovering an available
channel when all secondary users participate in sensing an identical channel in
each sensing period. In [80], two different channel sensing policies, the random
sensing policy and the negotiation-based sensing policy, were proposed to discover
the available channels. In both policies, different users are allowed to sense different
channels that are selected either randomly or through negotiation, which enables
SUs to identify and utilize the maximum number of vacant channels. The authors
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assumed that each secondary user is equipped with two transceivers. One transceiver
is tuned to the dedicated control channel, and another transceiver is used to
periodically sense and dynamically use the identified unused channels. Parallel
cooperative sensing was proposed in [81,82] where the cooperative secondary users
are divided into multiple groups, and each group senses one channel such that more
than one channel are sensed in each sensing period. Since multiple channels are
detected in one sensing period, the cooperation overhead associated with the delay
in finding an available channel is significantly reduced.

Since each sensing phase is usually separated into several subslots used for signal
detection and decision reporting, reporting delay will also affect the performance of
cooperative spectrum sensing. In [83], the authors proposed cooperative spectrum
sensing where the secondary network optimizes the decision thresholds at the
sensors and the division between time samples used for sensing the primary users
and time slots used for reporting the sensing results. Simulation results showed
that joint optimization of thresholds and sensing/reporting time slots achieve good
sensing performance in terms of the network probabilities of false alarm and miss-
detection.

In [84], the authors proposed two distributed reporting SU selection methods
to reduce the overall sensing overhead and to mitigate the interference to PUs
in CR networks. The authors also considered the reporting channel errors and
the interference impact on PUs induced by decision reporting. Simulation results
showed that the proposed strategies achieve better detection performance and lower
sensing overhead than the traditional case.

In cooperative sensing, secondary users involve in activities such as local
sensing and data reporting that consume additional energy. The energy consumption
overhead can be significant if the number of cooperating secondary users or the
amount of sensing results to be reported is large. One approach to address this
issue is to use censoring to limit the amount of reported sensing data according
to certain criteria or constraints. Since the censoring criteria are chosen to refrain
cooperating secondary users from transmitting unnecessary or uninformative data,
the energy efficiency can be improved in cooperative sensing. In [85], a simple
censoring method was proposed to decrease the average number of sensing bits
reported to the fusion center. In this method, the energy detector output of each
secondary user is compared to two thresholds, and the decision is sent to the fusion
center if the energy detector output is between those two thresholds. Otherwise, no
decision is made and this sensing output is censored from reporting. The simulation
results showed that even though the network probability of false alarm may degrade
due to the possibility that the sensing outputs of all secondary users are censored,
the amount of reported local decisions can be dramatically reduced. Therefore, the
energy efficiency can be traded off with the network probability of false alarm.

Another approach to reduce the cooperation overhead in terms of energy
consumption is to minimize the energy consumption with detection performance
constraints. In [86], the energy efficiency problem was addressed by energy
minimization under detection performance constraints. This method investigates the
trade-off between the two aspects of sensing time. On one hand, longer sensing
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time consumes more energy at each secondary user. On the other hand, longer
sensing time can improve detection performance at each secondary user and reduce
the number of cooperating users and the associated energy consumption overhead.
Therefore, this method finds the optimal sensing time and the optimal number of
cooperating users to balance the energy consumption in local sensing and the energy
overhead due to cooperation for a required detection performance.

An energy-efficient CSS scheme was proposed in [87] to maximize the energy
efficiency. The authors proposed a method in which sensing time, sensing threshold,
and the number of cooperating SUs are jointly optimized. In [88], the authors
proposed an efficient algorithm to solve the general problem of spectrum efficiency
and energy efficiency trade-off in cognitive radio with cooperative sensing. The
authors then considered the trade-off between spectrum efficiency and energy
efficiency such that the energy efficiency (spectrum efficiency) is maximized
via joint optimization of sensing duration and final decision threshold under the
constraint that the spectrum efficiency (energy efficiency) requirement is satisfied.
Simulation results showed that different spectrum efficiency (energy efficiency)
requirements need different optimal values of sensing duration and final decision
threshold, and there exists a trade-off between the spectrum efficiency and energy
efficiency.

To alleviate the energy deficiency, radio frequency (RF) harvesting techniques
have become alternative methods through which green energy can be used to
power the next generation wireless networks [89]. Recently, energy harvesting
communication has been considered for cognitive radio networks in order to
improve both energy and spectral efficiency in wireless and mobile networks. In
[90], the transmitters in a CR network either opportunistically harvest RF energy
from transmissions by nearby devices in a primary network or transmit data if
the devices are not in the interference range of any other primary network. The
optimal transmit power and density of the secondary transmitters that maximize the
throughput of the CR network were derived under an outage probability constraint.
The authors in [91] investigated the optimal detection threshold for opportunistic
spectrum access in an energy harvesting CR network to maximize the expected total
throughput under both the energy causality constraint and the collision constraint.
In [92], the authors extended the work in [91] to investigate the optimal sensing
duration and sensing threshold that jointly maximize the average throughput for a
given amount of harvested energy.

Multiband Spectrum Sensing

Wideband spectrum sensing, which we also refer to in this chapter as multiband
sensing, faces technical challenges, and there is limited work on it in the literature.
To sense multiple frequency bands simultaneously, secondary users may need to
scan the spectrum or use multiple radio frequency (RF) front ends for sensing
multiple bands. However, using these approaches for wideband sensing either
causes long sensing delay or incurs high computational complexity and hardware
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cost. Recent advances in compressed sensing [41, 93] enable the sampling of
the wideband signals at sub-Nyquist rate to relax the analog-to-digital converter
(ADC) requirements. The techniques of compressed sensing provide promising
solutions to promptly recover wideband signals and facilitate wideband sensing at
a reasonable computational complexity. Compressed sensing can be achieved by
various sensing matrix techniques such as random matrices. However, due to the
sub-Nyquist rate sampling and insufficient number of samples, a weak primary
user’s signal with a nearby strong signal may not be properly reconstructed for
detection in a wideband spectrum [17]. In addition, a new ADC architecture with
nonuniform timing and a pseudorandom clock generator is needed [94]. In [95],
the authors proposed two algorithms for wideband spectrum sensing at sub-Nyquist
sampling rates for the single node and cooperative multiple nodes, respectively.
In single node spectrum sensing, a two-phase spectrum sensing algorithm based
on compressive sensing is proposed to reduce the computational complexity and
improve the robustness at secondary users. In the cooperative multiple node case,
the signals received at SUs exhibit a sparsity property that yields a low-rank
matrix of compressed measurements at the fusion center. This leads to a two-phase
cooperative spectrum sensing algorithm for cooperative multiple SUs based on low-
rank matrix completion. The numerical results showed that the proposed algorithms
are robust to channel noise with low computational complexity.

In multiband cooperative sensing, secondary users cooperate to sense multiple
narrowbands instead of focusing on one band at a time. In [36], a multiband joint
detection scheme was proposed for combining the statistics of sensing multiple
bands from spatially distributed secondary users. The fusion center calculates the
test statistic and makes a cooperative decision in each band. The weight coefficients
and detection thresholds of all bands were obtained by jointly maximizing the
aggregate opportunistic throughput in each band subject to constraints on the miss-
detection and false-alarm probabilities. To enable the multiband sensing at each
secondary user, an energy detector is required for each band of interest. As a result,
the method may incur high hardware cost when the number of bands for cooperative
sensing is large. In [96], the authors proposed a multiband adaptive joint detection
framework for wideband spectrum sensing that collectively searches the secondary
transmission opportunities over multiple frequency bands. In this framework, both
the sensing slot duration and detection thresholds for each narrowband detector
were jointly optimized to maximize the achievable opportunistic throughput of the
secondary network subject to a limit on the interference introduced to primary users.

In [81], a parallel cooperative sensing scheme was proposed to enable the
multichannel sensing by optimally selected cooperating secondary users. Different
from the multiband sensing scheme in [36, 96], each cooperating secondary user
senses a different channel. In [82], the authors proposed a group-based CSS scheme
in which the cooperative secondary users are divided into several groups, and each
group senses a different channel during a sensing period, while the secondary users
in the same group perform joint detection on the targeted channel. In [97], the
authors proposed an adaptive user-group assignment algorithm for group-based CSS
that considers cooperating secondary users with heterogeneous sensing ability in
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terms of the sensing accuracy. By the methods in [81,82,97], multiple channels can
be cooperatively sensed in each sensing period. The objective is to maximize the
secondary opportunistic throughput while minimizing the sensing overhead such as
the sensing time and the number of secondary users required for cooperation.

Implementation of Sensing Techniques on Testbeds

Testbeds are essential to advance the development of cognitive radio networks by
verification of proposed sensing techniques in a practical system and evaluation of
key performance metrics. Some of the existing CR testbed researches are focusing
on the algorithms of spectrum sensing and signal processing. In [98], the authors
proposed an experimental setup based on the Berkeley Emulation Engine 2 (BEE2)
platform, which is a multi-FPGA emulation platform, to experiment with various
sensing techniques and develop a set of metrics and test cases to allow them to
measure the sensing performance of these techniques. The authors in [99] proposed
KNOWS, which has a reconfigurable transceiver based on a modified Wi-Fi hard-
ware. The hardware consists of a development board with a scanner/receiver radio
and a reconfigurable transceiver. KNOWS spectrum allocation engine maintains
up-to-date information about the spectrum usage by all its neighbors and stores
it in a resource allocation matrix (RAM). The authors studied the bandwidth
allocation problem and designed a spectrum-aware medium access control (MAC)
protocol. The MAC protocol uses the RAM to dynamically decide on the portion
of the spectrum to use for a given communication. Simulations results showed that
KNOWS significantly increases the capacity when compared to IEEE 802.11-based
systems.

In [100], the authors presented a real-time testbed, based on programmable
system-on-chip processors, for the evaluation of cognitive radio MAC algorithms.
The proposed testbed is much easier to configure and control than the traditional
FPGA-based testbed. The authors introduced the testbed implementation details of
the spectrum sensing of PHY layer, the channel selection strategy, and the access
control strategy of MAC layer.

In [101], the author studied the performance of normal collaborative spectrum
sensing (NCSS) based on coalitional games and implemented NCSS in wireless
open-access research platform. Wireless open-access research platform is a scalable
and extensible programmable wireless platform, developed by Rice University
[102], to prototype advanced wireless networks. Based on testbed implementation,
the authors showed that under poor reporting channel conditions, the coalition
splits and the weaker SUs exhibit inefficient sensing performance. The authors
then proposed relay-based collaborative spectrum sensing that uses neighboring SU
with low error-prone relay path to share sensing results between affected SUs and
channel. Testbed results revealed that relay-based collaborative spectrum sensing
performs better than all other collections of coalitions, and it improves sum-utility
by 20%, as compared to NCSS at the cost of minimal 2.3% loss in energy efficiency.
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Research Challenges

Many operations in cooperative spectrum sensing, such as sharing data, broadcast-
ing spectrum-aware routing information, and coordinating spectrum access, rely
on control message exchange on a common control channel. The implementation
of a common control channel is one of the most challenging issues in cognitive
radio networks, since a fully reliable control channel cannot be created without
reserving bandwidth specifically for this purpose. However, if a dedicated channel is
used, the bandwidth available for traffic communications reduces. In addition, since
the common control channel may be subject to primary user’s activity, secondary
users have to negotiate a new control channel when the original one is occupied by
primary users. In [103], the authors investigate a promising solution that exploits
the ultrawideband (UWB) technology to allow the secondary users to discover
each other and exchange control information for establishing a communication
link. Other works assume that secondary users use an out-of-band common control
channel to report the local sensing results to the fusion center to avoid interfering
with the primary user [104, 105]. Setting up and maintaining common control
channel is still an open issue for CR networks.

In cooperative spectrum sensing, it is usually assumed that all cooperating CR
users are perfectly synchronized, and their sensing results are also assumed to
be available instantly at the fusion center. In reality, this is not always valid, and
therefore, the CSS scheme should consider the case of asynchronous observations
and reporting delay which result in time offsets between local sensing observations
and the final decision at the fusion center. In [106], a probability-based combination
scheme was proposed to combine asynchronous reports at the fusion center. The
proposed combining scheme considers both detection errors and time offsets
between local sensing observations and the final decision. Based on the knowledge
of the primary user channel usage model and the Bayesian decision rule, the
conditional probabilities of the local sensing decisions received at different times,
conditioned on each hypothesis, and their combined likelihood ratio were calculated
to make the final decision at the fusion center.

Most of the studies on CSS analyze its performance based on the assumption of
perfect knowledge of the average received SNR at the secondary user. However, in
practice, this is not always the case. The effect of average SNR estimation errors
on the performance of CSS was examined in [107]. In the noiseless sample-based
case, it was found that the probability of false alarm decreases as the average SNR
estimation error decreases for both independent and correlated shadowing. In the
noise sample-based case, it was found that there exists a threshold for the noise
level. Below this threshold, the probability of false alarm increases as the noise
level increases, while above the threshold, the probability of false alarm decreases
as the noise level increases.

Spectrum mobility, in which SU has to move from one spectrum hole to another
to avoid interference in case of the reappearance of PU, is another challenging
problem in CR networks. CR networks need to perform mobility management
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adaptively depending on the heterogeneous spectrum availability that is dependent
on the primary traffic.

Some new research directions focus on the design of architectures for the
integration of cognition network and cooperative communications in wireless
heterogeneous networks (HetNet) for better utilization of radio resources and
guaranteeing quality of service. The authors in [108] have focused their research
on the coexistence of wireless fidelity (Wi-Fi)and 4G cellular networks sharing the
unlicensed spectrum. They have introduced the network architecture for long-term
evolution (LTE)/LTE-advanced small cells to exploit unlicensed spectrum used by
Wi-Fi systems. They showed that the proposed architecture along with interference
avoidance schemes increases the capacity of 4G cellular networks by maintaining
the quality of service (QoS)of Wi-Fi systems. Cognitive radio networks are also
highly promising for providing timely smart grid wireless communications by
utilizing all available spectrum resources [109].

Conclusions

Cognitive radio technology allows a wireless network to expand its spectrum on
demand at a relatively low cost, thereby offering a natural solution to cope with
random and diverse mobile data traffic which makes it a promising candidate for
5G communication networks. In this chapter, the most common spectrum sensing
techniques for cognitive radio networks were surveyed and classified to provide
an overview of the research direction in the area of cognitive radio networks. To
address the limitations of the spectrum sensing techniques by a single secondary
user, cooperative spectrum sensing and its main elements have been discussed.
Different cooperation architectures and fusion schemes for fusion the decisions of
cooperating secondary users were presented, and their advantages and disadvantages
were highlighted.

We further identified some of the main factors that contribute to the efficient
design of cooperative spectrum sensing schemes for cognitive radio networks.
Different criteria for selecting the cooperating secondary users were discussed,
and the performance improvement achieved by the different selection criteria was
highlighted. The performance degradation due to cooperation overhead in terms
of transmission cost, extra sensing time, delay, energy, and operations devoted to
cooperative sensing was investigated which provided an insight on some of the key
challenges facing cooperative spectrum sensing in cognitive radio networks.
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