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Abstract In prior work, Sallai, et al. introduced the concept and algorithms of
building molecular topologies through the use of a hierarchical data structure and
the use of an affine coordinate transformation to connect molecular components. In
this work, we expand upon the original concept and present a refined version of this
software, termed mBuild, which is a general tool for constructing arbitrarily
complex input configurations for molecular simulation in a programmatic fashion.
Basic molecular components are connected using an equivalence operator which
reduces and often removes the need for users to explicitly rotate and translate
components as they assemble systems. Additionally, the programmatic nature of
this approach and integration with the scientific Python ecosystem seamlessly
exposes high-level variables that users can tune to alter the chemical composition of
their systems, such as mixtures of polymers of different chain lengths and surface
patterning. Leveraging these features, we demonstrate how mBuild serves as a
stepping stone towards screening and performing optimizations in chemical
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parameter space of complex materials by performing automated screening studies
of monolayer systems as a function of graft type, degree of polymerization, and
surface density.

Keywords Molecular dynamics � Software � System construction

1 Introduction

The biophysics simulation community has put considerable effort into creating tools
and databases for building and parameterizing biological molecules with minimal
effort, e.g. the Protein Data Bank [1], VMD [2], AmberTools [3], the Omnia suite
[4]. Such toolchains allow researchers to generate input files for complex structures,
such as proteins and DNA, that can run on most molecular dynamics simulation
engines with little to no manual intervention. However, while the biophysics
community’s tools provide excellent functionality for biological system setup, they
do not allow one to easily generate arbitrary structures found outside the biophysics
community. For example, surface bound brushes or tethered nanoparticles, which
often feature semi-infinite substrates and/or irregular surface bonding sites, require
a less specialized approach. These systems may not be regular and thus defining a
small unit cell and replicating it is not always possible. Additionally, many tools are
tied to a specific simulation environment [3] or are operated via a custom language
that complicates integration with a broader scientific ecosystem of tools for per-
forming tasks not specific to the domain of molecular simulation, such as statistical
analysis and visualization.

In prior work [5], we introduced the preliminary concepts underpinning
mBuild’s functionality. Since then, mBuild has evolved into a Python package
designed to simplify the construction of complex, regular and irregular structures
and topologies as well as integrate seamlessly with the Python scientific stack and
more recently developed Python tools in the area of molecular simulation [6–10].
mBuild adopts a hierarchical approach to system construction that relies on
equivalence relations to connect chemical building blocks (components). Every
component can recursively contain particles and other components to generate
arbitrary, hierarchical structures where every particle represents a leaf in the hier-
archy. Low-level components, such as an alkyl group or a monomer, can be
hand-drawn using software like Avogadro [11] and then connected using an
equivalence operator which matches defined attachment sites between two com-
ponents—the operator forces two sets of points in space to overlap thus translating
and rotating components into the desired positions. This approach minimizes and
often even eliminates the need for users to explicitly translate or rotate components
while constructing initial configurations—users simply specify which components
should be connected. Additionally, the hierarchical nature of this approach allows
for complex families of chemical structures to be encapsulated in a single
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component class which exposes user defined, tunable parameters that adjust the
structural properties of the system (e.g. chain length, surface coverage). By pro-
viding a more natural avenue to express such structures, where the requirement for
mental visualization of spatial arrangements is minimized, mBuild provides a
stepping stone towards the goals outlined by the Materials Genome Initiative [12],
by enabling screening of and optimizations in chemical parameter space of com-
plex, soft-materials.

Here, we provide an overview of the algorithms associated with mBuild
including several recent improvements, and demonstrate its use as a means for
automating screening of soft matter systems. We illustrate the construction of basic
components, how they can be connected programmatically into complex chemical
systems, and finally showcase this functionality by generating and performing
parameter sweeping simulations of an ensemble of monolayers constructed of
alkanes and polyethylene glycol (PEG) where, through the functionality of
mBuild, we trivially vary surface density, patterning and chain length in an
automated, programmatic way.

2 Software Concept

While the basic concepts and algorithms underlying mBuild were outlined in Ref.
[5] additional refinement and development has been undertaken, as reported here, in
particular to simplify and increase the generality of the data structure and provide
enhancements with regards to connecting individual components via equivalence
transforms. The primary building blocks of an mBuild hierarchy are
Compounds; every user-created component inherits from this class. Each
Compound can contain an arbitrary amount of other Compounds, allowing for
systems to be flexibly built in a hierarchical manner. The programmatic connection
of Compounds in three dimensional space is facilitated by an equivalence trans-
form. This concept is formalized and implemented via the Port class which
defines connection sites and orientation. These are each discussed below.

2.1 Data Structure

The hierarchical data structure of mBuild is composed of Compounds.
Compounds maintain an ordered set of children which are other Compounds.
Compounds at the bottom of an mBuild hierarchy, i.e., the leafs of the tree, are
referred to as Particles and can be instantiated as, for example, lj = mb.
Particle(name=‘lennard-jonesium’). Note however, that this merely
serves to illustrate that this Compound is at the bottom of the hierarchy;
Particle is an alias for Compound which can be used to clarify the intended
role of an object you are creating.
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Every mBuild hierarchy also maintains a network of bonds between its
Particles in the form of a graph as provided by the NetworkX package [13].
This graph is maintained by the root (top level component) of the given hierarchy.
When two Compounds with bonds are added together, their bond graphs are
composed.

Additionally, Compounds have built-in support for copying and deep copying
Compound hierarchies, enumerating particles or bonds in the hierarchy, proximity
based searches, visualization, I/O operations, and a number of other convenience
methods that enable complex topologies to be constructed with little user effort.

2.2 Equivalence Transforms

When connecting components in 3D space, their relative orientations must be
specified. In mBuild, this is accomplished via an equivalence transform. The
equivalence operator described here declares points in a component’s local coor-
dinate system to be equivalent to points in another component’s coordinate system.
Using these point pairs, it is possible to compute a rigid transformation, specifically
an affine coordinate transformation conserving scaling and orientation (chirality),
that, when applied to one component, will transform its designated points to the
other component’s respective points. Specifying four or more pairs of non-coplanar
points is sufficient to compute an unambiguous transformation matrix in 3D space.

Using a rigid transformation F, one can map a point vector t to its image FðtÞ in
a different coordinate system. This operation can be expressed as a multiplication
by a rotation matrix R 2 R

3�3 and a translation with vector t 2 R
3�1.

FðtÞ ¼ Rtþ t ð1Þ

R and t can be solved for using the singular value decomposition to get the
pseudoinverse given four or more points Piðxi; yi; ziÞ and their images P
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where the lower elements in the transformation matrix (0 and 1) are of dimensions
1� 3 and 1� 1 respectively.

In mBuild, this equivalence transform is used to force four points of one
compound to overlap with four points of another. Achieving this generally, requires
that the same arrangement of four non-coplanar points must be added to any
compound intended to make use of the equivalence transform.
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2.2.1 Ports

To formalize, simplify, and enable this behavior to function with any compound,
mBuild provides the Port class, which is a simple Compound containing four
untypedParticles in a compact, non-coplanar arrangement (see Fig. 1). Note that
for most use cases, it is not desirable to print these untyped, extra Particleswhen
outputting the final structure to a file, which is the default behavior of the Compound.
save() method, but they can be saved if desired, e.g. for visualization purposes.

Instead of having to explicitly define an equivalence relation between four pairs of
points, mBuild allows for declaring two Ports, one in each compound, to be
equivalent. When performing an equivalence transform on two Ports, one of the
Compounds that the two Ports are a part of is rotated and translated, such that the
untyped particles inside their respective ports overlap (see Fig. 2). Since it is common
that Ports represent bonding sites where molecule fragments need to be attached,
mBuild allows for defining an anchorCompound associatedwith aPort. After the
affine transformation is applied, mBuild will by default create a bond between the
two respective anchors, relieving the user from this often tedious task.

Notice that ports have directionality, as well. Consider Component C1 in Fig. 2,
representing a methyl group. It is not possible to create an ethane molecule from

downup up/down

Fig. 1 The spatial arrangement of the particles within a port. Both up and down contain the same
arrangement of four non-coplanar particles except that they face opposite directions

Fig. 2 A Port is a compound with two pairs of four Particles. Here, one pair of three points
is shown to illustrate this 2D example. Ports are attached to any other Compound, most
commonly anchored to a Particle where a chemical bond should exist. Compound C1 is a
methyl group with a Port anchored to the carbon atom. C2 is a methylene bridge already
connected to a hydroxyl group. C1 and C2 are then attached using the equivalence relation
described in Eq. (2) to create C3, an ethanol molecule. By default, a Bond is created between the
two anchoring carbons. Adapted with permission from Fig. 2 in Sallai, J. et al. (2013) Web- and
Cloud-based Software Infrastructure for Materials Design. Procedia Computer Science: Elsevier
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two such components, because the equivalence transform would render not just the
untyped atoms in the ports, but also the carbon and hydrogen atoms to
overlap. While one way of solving this problem would be to have two flavors of
each such Compound class, one with an “outward pointing” Port, and another one
with an “inward pointing” one, mBuild takes an alternate approach. The actual
implementation of the Port class contains not four, but eight untyped atoms: four
of them forming an “inward pointing”, while the other four comprising an “outward
pointing” collection of points. When performing an equivalence transform,
mBuild computes two affine transformation matrices, and choses the one that
avoids the overlap of the compounds’ typed atoms. This is achieved by checking
which of the two transformations forces the anchor atoms as far away from one
another as possible (see Fig. 1 for an illustration of how these quartets of
Particles are arranged). Figure 2 highlights this procedure via the construction
of an ethanol molecule. Additional documentation is included at the development
website (http://imodels.github.io/mbuild/) via an interactive IPython notebook [14].

3 Applications

Below, we highlight the basics of assembling low level components into succes-
sively more complex structures in mBuild and how to programmatically control
these workflows to perform automated screening for monolayer systems. All the
examples discussed below are also available as tutorials in IPython notebook format
where users can seamlessly visualize components as they are constructed from
Python code via a widget provided by the imolecule package [8]. Static versions
of these notebooks are also hosted on our documentation page at http://imodels.
github.io/mbuild/. Many additional example systems of varying complexity are
provided together with the mBuild source code on GitHub.

3.1 Defining and Connecting Basic Components

The simplest way to define a basic component in mBuild is to draw the component
using software such as Avogadro [11], output it as a .mol2 or .pdb file with
defined bonds and then use the load function in mBuild. Adding a Port to a
compound that a user wants to be able to connect to other compounds requires
placing the Port where a bond could be formed and specifying an anchor particle
with which the Port is associated. Just as with any other Compound, Ports can
not only be translated but also rotated thus allowing non-linear arrangements to be
constructed. This procedure is highlighted in Listing 1; basic components can be
stored and reused for future system construction thus minimizing the need for users
to place Ports, as will be demonstrated as part of the construction of alkane
monolayers in the screening application below.
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Listing 1 Example code to generate a CH2 group and attach two ports

Any two Ports can be forced to overlap using the equivalence transform.
Listing 2 demonstrates how this functionality can be leveraged via the simple yet
common use case of creating an alkane polymer chain which will be used for
screening—in this example, a CH2 group with the ports “up” and “down” defined.

Listing 2 Example code for polymerizing CH2 groups

To further simplify the composition of basic components into more complex
structures, several classes and functions have been developed to more naturally
express many commonly performed tasks. For example, the functionality of the
example in Listing 2 is encapsulated within the Polymer class which reduces the
above for loop to one line for end users. For example, the PEG chains referenced in
the following examples, are created with the code in Listing 3.

Listing 3 Using the Polymer class to create PEG chains
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3.2 Patterning Surfaces

mBuild provides functionality for patterning of surfaces in arbitrary ways. Below,
we highlight this feature via the patterning of scientifically relevant 2D and 3D
systems.

In the example shown in Fig. 3, the TiledCompound class is used to replicate
a periodic substrate in the x- and y-dimensions. This class also internally adjusts
periodic bonds. In the final tier of the hierarchy, the patterning functionality, which
can be used to create patterns on, for example, substrates or spherical particles, is
used to randomly disperse polymer brushes on the substrate. Functionality is pro-
vided in mBuild for a variety of 2D and 3D patterns including random, grid-like,
disks and spherical patterns. Ultimately, a multi-tiered hierarchy of components is
assembled, from simple “hand-drawn” monomers, through polymerization and
replication of periodic substrates. This functionality is expressed with minimal code
via creating a new Python class (shown at the bottom of Fig. 3) to expose the
desirable tunable parameters. Here, the number of monomers in the chain, the
number of chains on the surface, the pattern on the surface, and the size of the
surface can all be trivially modified during screening.

The surface patterning illustrated in Fig. 3 was limited to a two-dimensional
surface; however, the underlying functionality in mBuild naturally generalizes to
three dimensions as well with essentially no changes to the user-level code.

-cristobalite

4.7 x 4.1 nm

-cristobalite

14.1 x 8.2 nm

CH2

CH3 (CH2)5 Silane

Alkylsilane monomer

Alkylsilane monolayer

Fig. 3 Hierarchy of compounds used to generate an alkylsilane monolayer on a b-cristobalite
substrate. Dashed boxes indicate base components for which .mol2 or .pdb files exist, e.g. drawn
using software such as Avogadro [11]. The code snippet used to generate the structures with all of
the tunable parameters exposed is shown at the bottom for two different parameter combinations
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Figure 4 and Listing 4 show how this could be used to functionalize a spherical
nanoparticle with various polymer chains. The code utilized to attach chemical
groups to two-dimensional systems can be reused for three dimensional structures
without significant modification or further effort by the end user.

Listing 4 Example code to tether PEG chains to a silica nanoparticle

4 Screening Soft Matter Systems: Self-assembled
Monolayers

Building upon the prior examples, monolayers are constructed in a programmatic
way to demonstrate the use of mBuild for screening applications. Monolayers
encompass a vast chemical parameter space that can be tuned for applications such

Fig. 4 An 8 nm diameter
silica nanoparticle sparsely
functionalized with PEG
chains bound to the surface
with a silane group
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as lubrication [15] and anti-fouling [16], and their behavior and properties often
strongly depend on the substrate, binding moiety, chain type, composition of
multiple chain types, surface patterning, etc. Sampling more than one or two
dimensions of this parameter space using experimental techniques, while techni-
cally possible, quickly becomes limited by practical considerations. Molecular
dynamics can be used as a screening step to inform subsequent experimental studies
and dramatically cut down the relevant search space. Here, using mBuild substrate
density, chain length, and chain type of monolayer systems are programmatically
varied in order to perform a basic screening.

The first step to performing a screening procedure across chemical space
involves building the input topologies. Ideally, a user should have seamless access
to any variables of interest thus enabling them to adjust these to mimic a statistical
distribution. As discussed previously, the hierarchical nature of mBuild provides
an avenue to expose an arbitrary set of variables to the end user and thus enables
users to leverage the scientific Python ecosystem to apply standard optimization
techniques and analysis to explore chemical parameter space. As highlighted above,
in mBuild, the only explicit rotation and translation occurs in the lowest level of
the hierarchy when placing ports. Once these simple components have been fitted
with ports, they can be stored in the database for future use thus completely
eliminating the need for explicit rotation and translation when building many
systems; here, we reuse many of the components previously defined in the prior
examples. Each higher tier in the hierarchy contains only a few lines of code to
express which ports to connect to one another.

Listing 5 shows the mBuild code that generates configurations for a simple
screening procedure of alkane and PEG monolayers on silica substrates. This code
varies the chain length and the number of chains on the surface for both molecules
types. It is important to note that the code to generate both monolayer types are
nearly identical due to the hierarchical nature of mBuild; the Monolayer
function is generic, as it simply expects a Compound with a Port defined for
attachment. Thus it can readily accept either the Alkane or PEG Compounds (or
mixture thereof) that have previously been define, where each of these
Compounds accepts an argument to define the length of the desired polymer chain.
As such, this example can be trivially extended by creating a different molecule
Compound, and substituting this in place of either the Alkane or PEG
Compound.

Figure 5 illustrates two of the systems created using this procedure
post-equilibration. In this example, the monolayers were patterned in a 2D grid but
the patterning of the surface is also tunable if desired, as shown previously. Each
monolayer that was created was sampled for 10 ns using GROMACS [17] and the
OPLS-aa forcefield [18] with modifications as described by Lorentz et al. [19].

Listing 5 Example code to generate alkane and PEG monolayers differing in both
chain length and number of surface grafted chains. Note that most of the code can
be reused to create both the PEG and alkane monolayer; the only difference is the
chain class that is instantiated
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Figure 6 shows the average nematic order parameter, S2, of the chains on
monolayer [20, 21]. S2 measures the orientational ordering of the chains, where for
monolayers, values below 0.7 indicate a fluid-like state (i.e., low order) whereas
values that approach unity indicate a high degree of crystalline orientational
ordering. It has been shown that S2 influences the frictional properties of mono-
layers, where lower values of S2 for monolayers tend to be correlated with higher
frictional forces when the monolayers are brought together in sliding contact [22].
Thus S2 serves as a useful surrogate for rapidly screening monolayers to determine
which regimes are likely to produce high/low coefficients of frictions. While
additional simulations and sampling are required to draw more robust conclusions,
several regimes are readily apparent. A clear transition from disordered, fluid-like
monolayer states to ordered states occurs for both systems. This transition occurs at
lower surface coverages for alkane chains as compared to PEG chains. That is, PEG
systems appear to have a smaller regime of well order states, which can be

Fig. 5 An alkane system with 81 chains with 7 carbons each (left) and a PEG system with 64
chains and 13 carbons/oxygens (right). Both shown post-equilibration
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accounted for by the increased flexibility in PEG. In both cases, systems with the
highest values of S2 tend to occur for higher surface densities and longer chains,
and thus one would expect materials in these regimes to demonstrate the most
favorable frictional properties. Interestingly, these screening simulations also reveal
a second regime for PEG occurring for low surface coverage and short chain length;
in this regime moderate values of S2 are observed, which, upon visual inspection,
appears associated with chains lying flat along the surface. The ability to rapidly
screen, evaluate and cross-correlate metrics like the nematic order parameter will
accelerate our ability to rationally design soft materials in complex parameter
landscapes.

5 Conclusion

mBuild provides a programmatic pathway to constructing arbitrary, complex input
topologies for molecular simulations. The use of an equivalence operator typically
eliminates the need for users to explicitly rotate or translate components while
assembling chemical structures. The core data structures of mBuild and how the
equivalence operator is implemented and used in practice are described and the
pathway from basic component creation all the way through constructing several
complex example hierarchies illustrated. The format-agnostic nature of mBuild
allows for flexible interoperability with other tools in the scientific Python and
molecular modeling communities, such as packmol [23], polymatic [6], MDTraj
[7], imolecule [8], OpenMM [9] and HOOMD-blue [10]. Using monolayers as an

Fig. 6 Average nematic order parameter of every system after 10 ns of sampling. The total
process of constructing all 84 systems with mBuild takes a few minutes on a modern laptop and
the simulations each take approximately 0.5–3 h depending on system size using a GTX980 and 8
CPU cores of an Intel Xeon E5 2600v3
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example, the power of this approach is highlighted by performing a small parameter
sweeping simulation study, demonstrating clear regimes of highly ordered mono-
layers which are likely correlated with favorable friction coefficients. This example
demonstrates how this approach can be leveraged to more broadly study, design and
optimize complex materials. Source code and interactive tutorials in the IPython
notebook format, which reinforce the basics of component construction and how to
re-use components to assemble more complex systems, are also provided on the
mBuild website (http://imodels.github.io/mbuild/).

The amount of easily generatable chemical configurations scales dramatically as
users contribute components to mBuild’s library. As such, we have begun curating
a version-controlled library of components such that they can be reused,
error-corrected and added to. mBuild and its component library are fully
open-sourced at https://github.com/imodels/mbuild and user contributions are
actively encouraged, which we hope will attract an active user base.
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