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Abstract A central goal of molecular simulations is to predict physical or chemical
properties such that costly and elaborate experiments can be minimized. The reli-
able generation of molecular models is a critical issue to do so. Hence, striving for
semiautomated and fully automated parameterization of entire force fields for
molecular simulations, the authors developed several modular program packages in
recent years. The programs run with limited user interactions and can be executed in
parallel on modern computer clusters. Various interlinked resolutions of molecular
modeling are addressed: For intramolecular interactions, a force-field optimization
package named Wolf2Pack has been developed that transfers knowledge gained
from quantum mechanics to Newtonian-based molecular models. For intermolec-
ular interactions, especially Lennard–Jones parameters, a modular optimization
toolkit of programs and scripts has been created combining global and local opti-
mization algorithms. Global optimization is performed by a tool named CoSMoS,
while local optimization is done by the gradient-based optimization workflow
named GROW or by a derivative-free method called SpaGrOW. The overall goal of
all program packages is to realize an easy, efficient, and user-friendly development
of reliable force-field parameters in a reasonable time. The various tools are needed
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and interlinked since different stages of the optimization process demand different
courses of action. In this paper, the conception of all programs involved is presented
and how they communicate with each other.

Keywords Molecular modeling � Force field � Numerical optimization �
High-performance computing � Modular software packages

1 Introduction

1.1 Molecular Simulation and Its Tools

Molecular simulation methods, most prominently molecular dynamics (MD) and
Monte Carlo (MC), are powerful tools to gain insight into microscopic processes that
govern the macroscopic behavior of matter. There is a long-standing tradition of
studying molecular behavior for biomolecules (e.g., proteins, DNA, and carbohy-
drates) and for soft materials (e.g., plastics, fibers, carbon nanotubes, and ionic liq-
uids). This is reflected by a long history of parameter and software development in this
area, which is often distributed together as a collection of predefined parameters,
molecular building blocks, and a simulation engine. However, in recent years, sig-
nificant algorithmic progress has been made to enhance molecular simulation and
analysis. There is a widespread utilization of GPUs in existing software packages
(e.g., Amber [1], Charmm [2], Gromacs [3], and LAMMPS [4]) and automated pro-
cedures to derive force-field parameters [5, 6]. In addition, recent coarse-grained
methods that access the mesoscale introduced new powerful scientific concepts to the
field of molecular simulations (e.g.,HOOMD [7], ESPResSo++ [8], and IBIsCO [9]).

To gain a molecular-level understanding, chemical systems are modeled at
atomistic or near atomistic (e.g., united atom, fine coarse graining) resolution levels.
Since computable properties obey the laws of statistical physics, an ensemble of
several ten thousands of atoms is necessary to compute the macroscopic observ-
ables. Furthermore, modern industrially relevant systems (e.g., chemically hetero-
geneous, surfaces, mixed phase states) require large models for accurate
representations. This results in the necessity to implement the calculations in
high-performance computing environments. Driven by the ongoing growth in
computational power, it can be expected that these molecular methods will be
increasingly useful in the coming decades.

One goal of our research is to provide a computational modeling service to
external researchers, both in industry and academics, who wish to obtain a
molecular understanding of their systems. As such, we have been faced with using,
modifying, and optimizing all atom, united atom, and coarse-grained force fields for
natural products, polymers, lipids, ionic liquids, and organic solvents. While the
technique of molecular simulations has existed for decades and in spite of its
obvious powers, only a few companies have in-house departments, that is due to
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(a) the diversity of knowledge needed to do high-quality research (i.e., the method’s
core is mathematics and physics, the content is often being chemical, and the
technical aspects require computational scientists) and (b) the high-performance
hardware that is required to execute the simulation software.

1.2 Force Fields

One key requirement in molecular mechanics (MM)-based models is the need to be
as accurate as possible. This accuracy is directly dependent upon the force field,
which describes the intra- and intermolecular interactions. Force fields are a
semiempirical approach to represent these interactions—that is a set of equations
and associated parameters that model stretching, bending, internal rotations, van der
Waals, and Coulombic interactions. In general, there is a consensus on what
function form of the equations should be used. Coupled directly to the equations are
the parameters, whose optimization is very important but often tedious to
accomplish.

Over the past decades, many researchers have developed force fields for a
variety of areas, such as thermodynamic properties of fluids [10–15], mechanic
properties of solids [16–18], phase change phenomena [19–21], protein folding
[22–24], transport processes in biological tissue [25, 26], transport processes in
liquids [27–29], polymer properties using different length scales [30–33], and
generic statistic properties of soft matter [34]. Some of these force fields have been
molecule specific, while others have been transferable over a chemical class (e.g.,
hydrocarbons, alcohols). For our models, the criterion is that they accurately
reproduce or predict the relevant observable(s) using the modeling software that is
most appropriate for the investigation. Quantum mechanical methods are useful to
determine some of the target observables used in parameter fitting (i.e., geometry,
electrostatics, relative energies). However, weak short-range nonbonded interac-
tions are difficult to isolate target quantum mechanical observables, particularly
when the molecules are composed of heterogeneous atom types. Hence, the
force-field parameters for these weak interactions are often fitted to experimental
condense-phase target values. Thus, a manual parameter adjustment is usually not
feasible or is, at best, extremely time-consuming.

1.3 Goal of This Work

What has become clear is that a user-friendly and versatile software package, which
facilitates the optimization of force-field parameters for a given MM or MD engine,
is very important. Hence, automated and semiautomated parameterization process
can reduce the time required for optimization and subsequently allow researchers
more time to explore their ideas. We contribute to this field by creating modular
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software packages that follow our ideas for force-field development and by effi-
ciently and systematically combining these programs for the (semi)automated
optimization of bonded and nonbonded parameters.

The benefits of utilizing scientific workflows are numerous, and they represent a
major improvement in how one approaches force-field development. These benefits
include (a) saving time by automating certain optimization tasks; (b) making
force-field development quasi-deterministic; (c) reducing human error; (d) enabling
tasks to be executed in a distributed environment; (e) accommodating ideas,
algorithmic changes, and updates easier; and finally (f) accelerating and trans-
forming the process of scientific analysis. From a scientific perspective, workflows
enable researchers to focus more on scientific issues, and due to its hierarchical
organization, new advancement in theories can be easily incorporated. In addition
to this, errors within the force field and models are better avoided, making the
simulation results become more trustworthy and reliable. Moreover, the algorithms
involved within the workflow can handle overdetermined and underdetermined
optimization problems. From a community service perspective, our workflows
significantly reduce the real time needed for force-field development and allow
nonspecialists access to more standardized optimization procedures.

For the determination of the intramolecular parameters, we developed a tool
named Wolf2Pack, and for the intermolecular parameters, we use a combination of
a global optimization procedure with a local one. For the former, we developed a
global optimization tool named CoSMoS, and for the latter, we developed a
gradient-based optimization toolkit named GROW and a derivative-free sparse
grid-based algorithm named SpaGrOW. The three tools are described in more detail
in the next subsections.

2 Goal-Driven Software Conception

2.1 Wolf2Pack: Intramolecular Parameters

The concept for Wolf2Pack
1 came from our goals to have a tool that would

(a) allow for quick optimization of bonded parameters,
(b) enable one to qualify observed MD structural results,
(c) allow one to evaluate existing force fields,
(d) allow for the systematic generation and archiving of QM target data for reuse,
(e) enable nonforce-field experts the opportunity to generate their own parameters, and
(f) enable reproducibility of reported force-field research results (e.g.,

molecule-specific QM and MM energy curves).

1http://www.wolf2pack.com.
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To achieve these goals, a scientific workflow was developed that provided a
guiding architecture for software development [35]. Each step of the workflow was
realized through shell scripts, whose output data are organized, as illustrated in
Fig. 1, into subdirectories. This modular construct has the advantage that individual
scripts can be easily updated, discovered errors in the scripts and generated data can
be efficiently corrected, and the generated data are organized in a systematic manner
that easily allow for the inclusion of new computations, archiving, and reuse.

To enable nonforce-field experts the chance to check and optimize parameters, a
Web site was created that serves as a front-end to Wolf2Pack [36]. This Web site
guides users in the parameter optimization process, starting from selecting an
appropriate molecule to the determination of a suitable parameter. The site also
provides a collection of “Knowledge Modules” that are a combination of tutorials
and examples. Currently, the Web site only provides access to a truncated amount
of the existing data within the Wolf2Pack’s database. In the near future, we intend
to provide users’ access to the full database and enable them to upload a molecule
and compute the QM curves that they desire.

An important component of Wolf2Pack is its molecular database. The database
contains molecules of diverse chemical functionalities for which bond, angle, and
torsion relative energies curves have been generated. This database naturally grows
over time as new functional groups and combinations thereof are investigated.
Thus, the statistical evaluation of force fields improves as the database expands.
Due to its systematic development, the database also enables users to reproduce
results in published force-field papers, which is currently a difficult task to
accomplish. We believe this will become an important feature in the future as users
make use of Wolf2Pack for optimizing parameters. The challenge will be to con-
tinually update the database for the new QM theories that are reported in the

Fig. 1 Illustration of the basic directory structure within Wolf2Pack. Each molecule with a given
conformation has its own parent directory. The number of bond, angle, and torsion subdirectories
is dependent upon the molecule’s unique internal coordinates. The “QM n” and “FF n” labels
indicate data from constraint QM and MM optimizations using a specific theory level (e.g.,
HF/6-31G(d)//HF/6-31G(d)) or force field (e.g., Parm14SB)
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literature, which will be an increasingly demanding task as the number of molecules
and internal coordinates grow.

Considering parameterization philosophy, we are pursuing new ideas in addition
to the traditional fitting of continuous relative potential energy curves. Through the
assistance of the Balloon algorithm [37], Wolf2Pack can quantum mechanically
generate and identify unique conformations automatically. For illustration, we
recently predicted 76 unique octane conformations at the HF/6-31G(d) using
Balloon and Wolf2Pack algorithms. While this does not represent the complete set
of unique octane conformations, which have been determined to be 95 [38], it does
impressively cover a wide range of relative energies (0.0–8.9 kcal/mol). These high
numbers of conformations for a flexible molecule allow for a unique way to validate
force fields. Traditionally, nonbonded and bonded force-field terms are optimized
by reproducing experimental observables (e.g., density) and relative energy curves
(i.e., transition states, minima), which rarely consider more than a few high energy
minima. By having access to a large number of minima, one can observe how a
given force field’s parameters transfer to higher energy minima and conformations
not originally considered during the optimization process.

Researchers usually strive to generate continuous QM rotational energy curves.
A continuous curve is one whose incremented internal coordinate changes, while all
other unconstrained torsion angles remain in their original position (e.g., within
±5°). The advantage of this is that the obtained relative energies directly reflect the
rotation around a single bond. The subsequent parameter optimization is then fairly
straightforward. A discontinuous rotational curve would be when a second torsion
undergoes significant rotation at some point during the interested torsion rotation
(e.g., Fig. 2). The resulting energy curve then reflects contribution from changes

Fig. 2 Potential energy curves and geometric overlays for dimethoxymethane as determined by
HF/6-31G(d) (red) and the Gaff (black) force field. In this case, the C–C–O–C torsion on the left
side of the molecule is systematically rotated. The left image shows the discontinuous curve where
the right side C–O–C–C adopted a transconformation at 300°, while the right image shows the
continuous curve. The continuous curve was generated by constraining the mobile torsion
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within two torsion angles, making parameter optimization more convoluted. In
Wolf2Pack, we strive to generate continuous curves and will apply a secondary
torsion constraint if necessary to obtain one for parameter optimization purposes.
Nevertheless, we also make use of the discontinuous curves that are produced for
testing the robustness of the optimized parameters. Fundamentally, the discontin-
uous curve represents significant coupling between internal coordinates, for which
force fields should ideally reproduce. We believe that reproduction of discontinuous
curves is a more rigorous test of a force field’s performance in comparison with the
reproduction continuous curves. In addition to investigated torsion angles, dis-
continuous curves also occur when generating bond stretching and angle bending
energy profiles. Typically, a close contact occurs between atoms, resulting in the
rotation about a bond to relieve the high energy strain.

2.2 CoSMoS, GROW, and SpaGrOW: Intermolecular
Parameters

The optimization of nonbonded parameters is difficult since one can rarely isolate the
parameters for a specific atom type, with the notable exception of the noble gases. If
one considers simple saturated hydrocarbons, the carbon and hydrogen Lennard–Jones
parameters are often optimized simultaneously. This results in a large possible
parameter space, making an a priori understanding of the loss function’s shape
impossible. For this reason, as illustrated in Fig. 3, we have developed both global (i.e.,

Fig. 3 The funnel workflow approach for optimizing nonbonded parameters
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CoSMoS) and local (i.e., GROW and SpaGrOW) tools that are implemented in a
funnel workflow. CoSMoS is based on metamodeling that enables rough identification
of potential optimal values, while either a gradient-based (GROW) or derivative-free
(SpaGrOW) approach is used to refine the identified parameters.

In the last two decades, substantial research occurred for the optimization of
intermolecular force-field parameters [39–54]. In most cases, intermolecular
parameters, especially Lennard–Jones parameters, cannot be strictly derived via
physical considerations since they parameterize semiempirical models (i.e., based on
classical mechanics) whom themselves only approximate reality. Hence, they are
usually adjusted so that the resulting model is able to reproduce physical or chemical
experimental target properties as accurately as possible.

The overall optimization task is to find a solution to the following mathematical
optimization problem:

min
x2X

FðxÞ :¼ Wðf simðxÞ � f expÞ�� ��2
p; p 2 ½1;1�; ð1Þ

where x ¼ ðx1; . . .; xNÞT 2 R
N is a vector consisting of the force-field parameters to

be adjusted, N 2 N is the number of parameters, n 2 N is the number of physical
properties to be fitted, f simðxÞ 2 R

n is the vector containing all properties calculated
by simulation, f simi ; i ¼ 1; . . .;m, and f exp 2 R

n is the vector containing the
experimental target values f expi ; i ¼ 1; . . .;m. For reasons of brevity, �k k indicates
an arbitrary p 2 ½1;1�. If a particular norm is considered, this will be expressed
explicitly (e.g., �k k2 or �k k1). The weighting matrix is defined as:

W ¼

w1
f exp1

0 � � � 0

0 w2
f exp2

. .
. ..

.

..

. . .
. . .

.
0

0 � � � 0 wn
f expn

0
BBBBBB@

1
CCCCCCA

ð2Þ

with specific weights wi; i ¼ 1; . . .; n, for each property, accounting for the fact that
some properties may be easier to reproduce than others due to statistical noise on
both simulation and experimental data. The loss function F(x) has to be minimized
with respect to x within an admissible domain X � R

N . Hence, the optimization
problem is constrained.

The loss function does not have any analytical form with respect to the
force-field parameters, and the simulated properties are affected by statistical noise.
Hence, it cannot be assumed to be smooth or differentiable. Its shape is not known a
priori and is often jagged in real applications. Moreover, as the optimization
problem may be overdetermined, the loss function may form a rain drain, where
many global optima are located at the bottom. Additionally, the evaluations of the
loss function may be costly, in particular if molecular simulations have to be
performed. For all these reasons, the solution of the optimization problem (1) is
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challenging and not possible using standard line-search methods. In order to jump
over intermediate local minima, an efficient global optimization that focuses into a
close neighborhood of the global minimum is indispensable. Mostly, global opti-
mization algorithms get stuck at a certain iteration because the points in the
parameter space are generated via random sampling methods. In this case, local
optimization procedures are more reliable and faster because they are directed to the
minimum, especially when they are gradient based. Hence, the combination of
global with local optimization algorithms turned out to be much more reliable and
efficient in order to solve the present optimization task than the usage of a single
global or local algorithm [55].

2.3 Methodological Aspects of CoSMoS

The recently developed global optimization tool for the Calibration of molecular
force fields by Simultaneous Modeling of Simulated data (CoSMoS) [56] uses a
metamodeling procedure based on radial basis functions (RBFs). It has been shown
in [56] that metamodel-based optimizers particularly suit the quest for quickly
finding nearly optimal force-field parameters. The metamodels constructed by
CoSMoS describe functional dependencies between the force-field parameters and
the relative deviations of the simulated properties to experimental data so that the
minimization task is easier to solve. The RBFs are rational symmetric functions
U : RN ! R of the form UðxÞ ¼ U xk kð Þ for x 2 R

N . For the present optimization

problem, inverse multiquadric RBFs, i.e., UðxÞ ¼ ð xk k2 þ c2Þ�1
2; c 2 R, turned out

to perform best. However, CoSMoS also offers the possibility to use other RBFs,

e.g., cubic UðxÞ ¼ xk k3
� �

and Gaussian (UðxÞ ¼ expð�ðc xk kÞ2Þ) functions,

thin-plate splines (UðxÞ ¼ xk k2log xk k), or multiquadrics UðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
jjxjj2 þ c2

q� �
.

The metamodel MmðxÞ interpolating a target property m 2 f1; . . .; ng is then given
by

MmðxÞ ¼
Xq
j¼1

amjUð x� xj
�� ��Þþ Xr

k¼1

bmkpkðxÞ; ð3Þ

where xj; j ¼ 1; . . .; q; q 2 N are sampling points that fulfill the interpolation
condition MmðxjÞ ¼ f simm ðxjÞ; j ¼ 1; . . .; q. The pkðxÞ; k ¼ 1; . . .; r; r 2 N are
low-order polynomials, and the coefficients amj 2 R; j ¼ 1; . . .; q; m ¼ 1; . . .; n and
bmk 2 R; k ¼ 1; . . .; r; m ¼ 1; . . .; n are obtained by solving a linear equation system
(LES): The radial basis function matrix of the sampling points is given by
H ¼ ðHÞli :¼ ðUðjjxl � xijjÞÞl;i¼1;...;q 2 R

q�q, and the polynomial matrix is given by
P :¼ ðPÞlk ¼ pkðxlÞl¼1;...;q;k¼1;...;r 2 R

q�r. The right hand side is as follows:
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dsimm :¼ ðdsimm Þl ¼
f simm ðxlÞ � f expm

ssimm f expm

� �
l¼1;...;q

; ð4Þ

where ssimm ; m 2 f1; . . .; ng is the standard deviation of the relative noise of the
property m. Hence, the following linear equation system (LES) has to be solved:

H P
PT 0

� �
am

bm

� �
¼ dsim

0

� �
; ð5Þ

where
am

bm

� �
is the vector containing the coefficients amj 2 R; j ¼ 1; . . .; q; m ¼ 1;

. . .; n, and bmk 2 R; k ¼ 1; . . .; r; m ¼ 1; . . .; n. The second line mirrors an addi-
tional orthogonality to render the coefficients unique. However, this procedure may
lead to large RBF coefficients, resulting in wavy metamodels that do not reflect the
underlying data properly. This is particularly severe for noisy data, which demands
proper smoothing approaches. Thus, in this work, CoSMoS was extended by two
different smoothing methods: The smoothest metamodel is the one with the smallest
RBF coefficients, which can be calculated by solving

minam amk k2; ð6Þ

where f siml � n� bl � f siml þ n; l ¼ 1; . . .; q; ð7Þ

where n[ 0 is a small tolerance value, and b is the vector H Pð Þ am

bm

� �
. As the

statistical noise is taken into account by the method due to Eq. (4), confidence
intervals are drawn around the sampling points so that overfitting can be avoided
during interpolation. Hence, the method searches for metamodels which are as
smooth as possible.

The weighted smoothing method tries to find a compromise between the two
contradictory requirements of high smoothness and low smoothing error. This
compromise is controlled via an additional weighting parameter v[ 0, and the
following constrained minimization problem is solved:

min
am;bm

H Pð Þ am

bm

� �
� dsimm

����
����

����
����
2

þ v amk k2; ð8Þ

which is equivalent to solving the LES

HTHþ vI HTP
PTH PTP

� �
am

bm

� �
¼ HT dsimm

PT dsimm

� �
: ð9Þ
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An optimal choice of v would lead to a perfect metamodel fulfilling both criteria.
However, the parameter is problem-dependent and thus difficult to optimize in
practice.

Furthermore, CoSMoS provides an intelligent sampling procedure extending the
approach of the Constrained Optimization using Response Surfaces (CORS) [57].
The latter focuses the sampling onto potentially optimal regions, avoiding previ-
ously sampled regions. This neighborhood is a ball around a sampling point x 2 ~X,
where ~X � X is the set of the already sampled points, of radius

r\dmax
~X :¼ max

x2X
min
~x2~X

x� ~xk k: ð10Þ

This taboo search approach is then realized by solving the constrained mini-
mization problems:

min
x2X

W � MmðxÞj jj j; ð11Þ

where x 2
[
~x2~X

Urð~xÞ; m ¼ 1; . . .; n: ð12Þ

CoSMoS extends this approach by introducing a penalty term

pðxÞ :¼ dmax
~X

min
~x2~X

x� ~xk k � 1; ð13Þ

which grows to infinity, whenever x approaches a sampling point. In contrast to
CORS, CoSMoS minimizes the penalized metamodels

sm~cðxÞ :¼ pðxÞ~cðMmðxÞ � cÞ; m ¼ 1; . . .; n: ð14Þ

where ~c and c are control parameters. For more algorithmic details, see reference
[56]. Figure 4 demonstrates the adaptive nature of the intelligent sampling strategy.
The plot shows a preliminary metamodel after 20 evaluations (right) compared to
the actual loss function (left). The metamodel generally captures the optimal region
of the loss function, i.e., the vicinity of the minimum. The intelligent sampling
strategy takes advantage of this and preferably samples points in the optimal region.
In return, each function evaluation further improves the accuracy of the metamodel,
improving the sketch of the optimal region. This circular procedure within
CoSMoS, which is also depicted in Fig. 3, reduces the number of required simu-
lations and thus the time-to-solution substantially.

An additional advantage of CoSMoS is the fact that it can handle abortive
simulations. Whenever a simulation goes wrong due to a bad selection of the
force-field parameters, the corresponding sampling points are penalized in the same
way so that they are not triggered anymore by the sampling algorithm. Within one
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CoSMoS iteration, all belonging sampling points are evaluated in parallel via a
simple job threading.

2.4 Methodological Aspects of GROW

The GRadient-based Optimization Workflow (GROW) [58] explicitly considers the
euclidean norm for the loss function in Eq. (1). GROW is a collection of
gradient-based numerical optimization algorithms (e.g., steepest descent, conjugate
gradients, and trust region) combined with an efficient Armijo step length control.
The latter prevents GROW from both jumping over the minimum and leaving the
admissible domain of the force-field parameters. For more details of the algorithms
involved in GROW, see Ref. [59].

The gradient at an iteration x 2 X is given by the partial derivatives

@F
@xj

ðxÞ ¼ �2
Xn
i¼1

wi
f expi � f simi ðxÞ

f expið Þ2
@f simi

@xj
ðxÞ; j ¼ 1; . . .;N:

The partial derivatives of the properties are approximated numerically by

@f simi

@xj
ðxÞ ¼ f simi ðx1; . . .; xj þ h; . . .; xNÞ � f simi ðxÞ

h
; h[ 0; j ¼ 1; . . .;N:

On the one hand, due to the statistical uncertainties on the simulated properties
f simi ðxÞ, GROW can get stuck in an intermediate local minimum caused by the
noise, if the discretization parameter h is chosen too small. On the other hand, if h is
too large, the estimations of the gradient might be incorrect. Hence, a good com-
promise has to be found, and the choice of h is problem-dependent and thus difficult

Fig. 4 Left The original loss function for a test problem is shown. The black points, sampled by
CoSMoS, adapt the shape of the loss function. Right The metamodel of the loss function after 20
CoSMoS iterations is depicted, with the first 20 sampling points
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to optimize in practice. However, GROW turned out to be very successful for the
parameterization of force fields in many applications [55, 60–62]. For more algo-
rithmic details concerning GROW, see reference [58].

Local optimization procedures always start with an initial guess x0 2 X, which
must be situated in the sphere of influence of the minimum. By evaluating the loss
function, the simulated properties are compared with the experimental target data. If
a specified stopping criterion is fulfilled, the parameters are final and the workflow
ends. Otherwise, for the current iteration xk 2 X; k 2 N, GROW searches for a
iteration xkþ 1 2 X with a lower loss function. At each iteration, a gradient has to be
calculated, whose components are evaluated in parallel together with the original
iteration xk. Note that the force-field parameters for the gradient components are the
same as in xk except for one component which deviates by h from the original one.
Hence, at each iteration, N + 1 loss function evaluations are parallelized. The
Armijo steps are parallelized as well. For each job, time-consuming molecular
simulations are required, and parallelization of these simulations reduces the real
computation time significantly. Another approach to reduce computational effort
consists in efficient gradient computations, which do not require new function
evaluations. This is achieved by computing directional derivatives instead of the
partial derivatives so that previously performed loss function evaluations can be
used again. The same approach can be applied to Hessians (i.e., for the trust region)
method as well [63, 64].

The stopping criterion depends on the specific properties to be fitted. For
example, if the density deviates by less than 0.5 % from experiment, the corre-
sponding force field is considered as optimal because the experiment is not more
accurate either. The same holds for all other properties. However, the experimental
accuracy is much lower for transport properties like diffusion coefficients or
viscosity.

2.5 SpaGrOW as an Enhanced GROW-Alternative

The Sparse Grid-based Optimization Workflow (SpaGrOW) [65] counteracts the
drawbacks of local gradient-based optimization mentioned above. It approximates
the loss function near the minimum and filters out the statistical noise by regular-
ization methods using naive elastic nets [66]. In order to reduce the computational
effort, this approximation is performed on sparse grids [67], meaning that simula-
tions only have to be performed for sparse grid points. As sparse grids are fully
occupied at their boundary, transformations onto the unit hypercube is performed,
followed by multiplications of the loss function values with sine functions so that
they vanish at the boundary and no simulation has to be performed. Afterward,
interpolations from sparse to full grids are performed via a combination technique
[68], and the loss function is discretely minimized on the resulting full grids.
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The integrated trust region approach [59] makes SpaGrOW an iterative proce-
dure: At each iteration, the loss function is considered on a trust region of a certain
size. It must be large enough in order to increase the speed of convergence and to
distinguish different loss function values despite the statistical noise, and it must be
small enough such that the loss function can be reproduced accurately by the sparse
grid interpolations. The discrete minimum of the model on the full grid is compared
to the corresponding original loss function value. If both coincide well, then the
trust region is increased, if not then it is decreased. Due to the grid-based approach,
SpaGrOW is able to find a much more direct path to the minimum than GROW.
The practical proof that SpaGrOW is able to outperform gradient-based methods for
the present optimization task and all algorithmic details can be found in reference
[65].

Note that the loss function evaluations for the different sparse grid points are
independent from each other. Hence, they are evaluated in parallel like the gradient
components within GROW. Due to its derivative-free approach and due to the fact
that it leads more directly to the optimum, SpaGrOW is always preferred to GROW
within the funnel workflow. However, one or two steepest descent directions may
also be reliable after the CoSMoS’s global optimization, leading to faster force-field
parameters with a lower loss function value. Moreover, SpaGrOW is not suitable
for high-dimensional problems due to the involved smoothing and interpolation
procedures, whose computation effort increases exponentially with the dimension.

3 Software Realization

3.1 Wolf2Pack

Wolf2Pack is a software package that uses a series of shell scripts that interlink
already existing and specialized software (e.g., for computing QM data, statistical
analysis, visualization). It enables researchers to optimize intramolecular parameters
by fitting to target QM data (i.e., relative energies and geometries) [35, 36].
The QM theories that are possible for generating target data include HF, B3LYP,
MP2, AM1, and PM3, while both basis sets proposed by Pople [69] (e.g., 6-31G
(d)) and correlation consistent [70] (e.g., aug-cc-pVDZ) basis sets can be specified
to describe the orbital space. Currently, Amber force fields are available (i.e.,
Parm14SB [71], Gaff [72], Glycam06j [52], and Lipid14 [73]), as well as our own
force field (ExTrM) that is continually being refined and extended.

Parameters optimization can be done using an algorithm or by hand in an iter-
ative process. Several algorithms already exist for intramolecular parameter opti-
mization [1, 6, 53, 74–82]. Currently, we have integrated the algorithms published
in Refs. [78, 79]. However, Wolf2Pack strongly encourages the user to perform the
optimization by hand in an iterative manner. Doing so allows the users to explore
the parameter space and thus build their intuition of how the parameters influence
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the resulting curves. With gained experience, one can better decide the importance
of specific parameters (e.g., a V3 term in HC–CT–CT–HC), which ones have little
influence on given energy curves. For example, an optimization algorithm may
determine nonzero values for torsions V1, V2, and V3, while during a manual
adjustment, the user observes that the V2 has little effect on the resulting fit. In such
a case, setting the V2 to zero should lead to an increase in the parameter transfer-
ability over diverse molecules. And due to Wolf2Pack’s molecular database, such a
transferability test can be done easily.

Within Wolf2Pack, all QM calculations are performed by GAMESS [83], while
all MM calculations are performed by AmberTools [1] (i.e., Sander). Partial atomic
charges are determined using R.E.D. [54]. File format conversions are executed
using OpenBabel [84] and shell scripts. Statistical analysis and image generation
are done using Ptraj [1], R statistical language [85], and pymol [86]. LATEX
typesetting language, with the graphics and animate packages sourced, is used to
generate PDF documents with embedded images of relative energy curves and
animations that display an overlay of the resulting QM and MM geometries of each
conformation [87]. These PDF files serve to archive the final data and allow for
easy dissemination of the results to other researchers.

3.2 CoSMoS, GROW, and SpaGrOW

CoSMoS, GROW, and SpaGrOW are integrated into a fully modular program
structure. The program is implemented in a generic manner such that modules can
be easily exchanged. This modular structure allows a developer to easily exchange
the optimization algorithm, the optimization problem, the objective function, and
the constraints. An interface to a new simulation tool can also be easily imple-
mented. The overall structure is object-oriented and easy to extend. All three tools
are written in python (version 2.6.6). The program is categorized into the following
four layers, whereas the first two layers are related to general optimization problems
and the last two are related to the execution of molecular simulations:

• Generic Optimization,
• Force-Field Parameterization,
• Parallel Jobs, and
• Simulation.

As shown in Fig. 5, each layer considers two independent optimization sections: the
Solver and the Problem Formulation section. The former regards the optimization
algorithm itself, while the latter regards the evaluation of the objective function (i.e., the
function to be minimized and the constraints). Within the Generic Optimization layer,
there are two abstract upper classes, which are the OptimizationAlgorithm and
OptimizationProblem in the Solver and Problem Formulation sections. These two
classes are connected in the sense that the OptimizationAlgorithm requires a defined

Optimizing Molecular Models Through Force-Field … 67



problem to solve from OptimizationProblem. For OptimizationProblem, it is irrelevant
which optimization algorithm is used to solve the optimization problem.

Within the Solver section, the class OptimizationAlgorithm defines an object of the
class StepLengthControl, which steers the step length control. The specific class
ArmijoStepLengthControl is derived from it and can be exchanged by another step
length control method other than Armijo. The CoSMoS, GROW, and SpaGrOW
algorithms are steered by specific child classes derived from OptimizationAlgorithm.
GROW itself encompasses the classes SteepestDescent, ConjugateGradients, and
TrustRegion.

The optimization problem for OptimizationAlgorithm is defined within the Problem
Formulation as an objective function to be minimized and box constraints to be met,
which are represented by abstract classes ObjectiveFunction and BoxConstraints. These
two classes contain getter and setter functions (e.g., for the function value, the gradient,
the Hessian), which have to be overwritten by specific derived child classes in the layer
Force-Field Parameterization. A generic loss function class (i.e., Loss) is derived from
ObjectiveFunction implementing a general loss function between calculated and target
values (Eq. 1). Its child class PhysicalPropertiesLoss steers the molecular simulations

Fig. 5 Generic modular structure of the overall intermolecular optimization toolbox consisting of the
abstract layer Generic Optimization and the three specific layers Force-Field (FF) Parameterization,
Parallel Jobs (PJOBS), and Simulation. Most of the modules require input parameters, which are
defined in the configuration file (i.e., “Config’’)
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that are executed in parallel and collects the simulation results. This module interacts
with a wrapper script for the molecular simulation steering calling specific python
scripts for the desired simulation tools. Currently, interfaces to the simulation tools
Gromacs [3], ms2 [88], and korr (simulated simulations) [89] are implemented. The
molecular simulations can be replaced by so-called simulated simulations based on
equations of state defining functional dependencies between specific force-field
parameters and certain physical observables. This makes it possible to compute
physical properties without performing time-consuming molecular simulations (see
Refs. [60, 89] for further details).

Finally, an abstract class named BoxConstraints is used by OptimizationProblem
with the specific child class ForceFieldConstraints implementing the admissible
domain X for the force-field parameters. An object of the latter is given to the class
MolecularSimulationOptimizationProblem derived from the abstract class
OptimizationProblem. Once the simulation results (i.e., the simulated physical prop-
erties) have been calculated, they are given back to the class PhysicalPropertiesLoss.

A majority of the modules requires certain input parameters, which have to be
defined in a user-written configuration file, and is read by the main python module
main.py. The configuration file specifies all class objects, modules, and submodules
that are desired for optimization process. It also contains important preferences
concerning the system (e.g., input/output paths, number of computer cores, batch
system), the optimization (e.g., algorithm, step length control, stopping criterion,
initial parameters, constraints), and the optimization problem (e.g., objective
functions, the loss function’s target values). When molecular simulations are per-
formed, all desired properties and parameters of the thermodynamic system have to
be defined (e.g., ensemble, temperatures, pressures, physical properties to be fitted,
number of molecules, box size, number of MD/MC steps, time step). Hence, the file
is divided into three blocks. If more than one substance is considered in the opti-
mization, one block for each substance has to be indicated.

The final output file contains an evaluation in tabular form of all simulation and
optimized force-field parameters, the simulated properties along with their actual
deviations from the experimental reference data at each temperature, the loss
function values, and algorithm-specific information.

The steering of parallel molecular simulations requires special consideration.
This is realized by three different modules: the producer, the executer, and the
collector. The main function of the producer, illustrated in Fig. 6, is to generate all
configuration files for the molecular simulations. In order to generate transferable
force fields, a variation level was added to the producer. This allows researchers to
vary their optimization jobs by the force-field parameters, number of ensembles,
temperatures, and molecular models (i.e., different substances). Before running the
producer, the user must define all model systems with their properties in the initial
configuration file, which contains several sections for each system. The relevant
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properties for the producer are the force-field parameters, substances, ensembles,
and temperatures.

Generally, all necessary configuration files are realized in the following manner.
First, the x-mol-ens-T-variation script is started, which calls the x-variation script.
This script then reads the initial configuration file and generates subdirectories that
contain new configuration files with the new force-field parameters as varied by the
optimization algorithm. Second, the mol-ens-T-variation script calls the mol-vari-
ation script, which varies the new configuration files with respect to different
substances and stores them in new subdirectories. Third, the ens-T-variation script
calls the ens-variation script. This script then reads the new configuration files and
varies the ensembles as well. The new files are stored into subdirectories. Finally,
the T-variation script is called, varying the temperature and storing the new con-
figuration files into a new subdirectory. In summary, the producer generates a
four-level subdirectory structure with varied configuration files, as exemplified in
Fig. 7, according to the following pattern: force-field parameters–substances–
ensembles–temperatures.

After this procedure, the executer starts the parallel molecular simulations based
on the set of configuration files. After completion, the executer reports the status
and results of all simulations to the collector. The latter collects the simulation
results of each single molecular simulation being stored in the leaf subdirectory
level. The main idea is that the collector runs through all result folders, collects the
simulated physical properties, and stores them together in a result file within the
highest directory level. Afterward, the result file is used for the evaluation of the
loss function.

Fig. 6 Illustration of the producer module comprising the x-variation, mol-variation, ens-
variation, and T-variation scripts
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4 Interlinking Aspects of Bonded and Nonbonded
Parameter Optimization

It is well known that bonded and nonbonded parameters are coupled to each other.
For a given set of nonbonded parameters, there will be an optimal set of bonded
parameters and vice versa. This implies that through a successive iteration of
bonded and nonbonded parameter optimization, a self-consistent force field should
be achieved. Figure 8 shows the interaction between intramolecular and inter-
molecular parameter optimization tools. Often, an initial set of Lennard–Jones
parameters is chosen based on existing force fields and atom types. One then
optimizes the bonded parameters using Wolf2Pack. The resulting parameters are
then transferred to the intermolecular optimization tools, which optimizes the
nonbonded parameters. Depending on the algorithm used, the transferred Lennard–
Jones parameters are used as an initial guess (i.e., GROW and SpaGrOW) or they
are discarded (i.e., CoSMoS). Once new nonbonded parameters are generated, they

Fig. 7 Illustration of the
four-level subdirectory
structure that is generated by
the producer module.
A unique configuration file is
stored in all subdirectories
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are then transferred back to Wolf2Pack, and the cycle is repeated until all investi-
gated parameters converge. Currently, we are improving our understanding of the
sensitivity of this global optimization routine by performing it on selected saturated
hydrocarbons (e.g., octane).

5 Future Work: Methods and Applications

In addition to researching how to best realize the bonded–nonbonded optimization
cycle described in the last section, we are currently working toward the inclusion of
solution-phase models (e.g., pure solvent PBC box, ionic liquid PBC boxes) into
Wolf2Pack’s database. Experimentally known condense-phase observables (e.g.,
density, enthalpy of vaporization) will also be included into the database. These
models and target experimental values will be accessible to CoSMoS, GROW, and
SpaGrOW. This will allow future users to have a common access point and starting
models for nonbonded parameter optimization. Once this is realized, the next step
will be to extend Wolf2Pack’s online portal to include these condensed-phase
models and our nonbonded optimization algorithms, thus unifying our bonded and
nonbonded software packages.

With regard to application, we will apply our tools to optimize a force field
specific for fluorinated alcohols. Fluorinated alcohols are highly relevant in
industrial applications (e.g., as solvents used in chemical separation processes).
Their attractiveness is that they can be extracted from the reaction medium and be
reused, which makes them both environmentally friendly and economically
attractive [90]. The challenge in optimizing such a force field arises from the lack of
experimental data and lacks previously published parameters that can be used as an
initial input [91–93]. The goal will be to fit both vapor–liquid equilibrium data (e.g.,
saturated liquid density, vapor pressure) and transport properties (e.g., diffusion
coefficients) simultaneously and at different temperatures. Hence, not only paral-
lelization over different substances but also over different ensembles and temper-
atures are required.

Furthermore, a new force field for carbon dioxide will be developed that
reproduces bulk densities, vapor–liquid equilibrium data, and overcritical transport
properties (e.g., diffusion coefficients and viscosities) simultaneously. New force

Fig. 8 Interaction between
intramolecular (i.e.,
Wolf2Pack) and the
intermolecular parameter
optimization tools (i.e.,
CoSMoS, GROW,
SpaGrOW)
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fields for alkaline earth salts, including a transferable parameters, are about to be
published.

6 Conclusion

In this work, the conception and implementation of recently developed modular pro-
gram packages applied for force-field parameterizations was described in detail.
Intramolecular parameters (i.e., bond length, angles, and torsions) are obtained using
the software package Wolf2Pack. Intermolecular parameters, especially Lennard–Jones
parameters, are computed via a new set of software tools, implementing a so-called
funnel workflow combing global and local optimization procedures. The global
metamodeling package CoSMoS is combined with gradient-based (GROW) or
derivative-free methods (SpaGrOW). The derivative-free method, based on smoothing
procedures and sparse grid interpolation, tends to be much more efficient near the
global optimum. The mathematical optimization problem is formulated through the
minimization of a loss function between simulated physical properties and experimental
reference data. It was shown how the individual software is interlinked with each other
within the overall optimization package. These tools form the basis for user-friendly
and highly efficient parallelized force-field parameterizations. Finally, several applica-
tions are planed in order to obtain industrially relevant force fields (i.e., for
solution-phase models, ionic liquids, fluorinated alcohols, alkaline earth salts, and
overcritical CO2).
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