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Abstract A coarse-grained water model is developed using multistate iterative
Boltzmann inversion. Following previous work, the k-means algorithm is used to
dynamically map multiple water molecules to a single coarse-grained bead,
allowing the use of structure-based coarse-graining methods. The model is derived
to match the bulk and interfacial properties of liquid water and improves upon
previous work that used single state iterative Boltzmann inversion. The model
accurately reproduces the density and structural correlations of water at 305 K and
1.0 atm, stability of a liquid droplet at 305 K, and shows little tendency to crys-
tallize at physiological conditions. This work also illustrates several advantages of
using multistate iterative Boltzmann inversion for deriving generally applicable
coarse-grained forcefields.
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1 Introduction

Coarse-grained (CG) models have proven to be useful in many fields of chemical
research [1–10], allowing molecular simulations to be performed on larger system
sizes and access longer timescales than is possible with atomistic-level models,
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enabling complex phenomena such as hierarchical self-assembly to be described
[11, 12]. In CG simulations of aqueous systems, especially ones with significant
amounts of hydrophobic and/or hydrophilic interactions, the water model
is important and can have a major impact on the resulting properties of the
system [13].

While the assignment of atoms to CG beads (i.e., defining the CG mapping) is
relatively straightforward for most chemical systems (e.g., aggregating four methyl
groups bonded in sequence into a single CG bead), mapping an atomistic water
trajectory to the CG level (i.e., grouping several water molecules into a single CG
bead) is not as well-defined given the lack of permanent bonds between water
molecules. Even if a mapping were chosen, water molecules will diffuse away from
their initial clusters over time, such that the initial mapping is no longer repre-
sentative of the local clustering of water. This ambiguity presents a problem for
structure-based methods that require an atomistic configuration to be mapped to the
corresponding CG configuration, e.g., to generate a target radial distribution
function (RDF) against which the forcefield is optimized. As such, the majority of
many-to-one CG models of water (i.e., where one CG bead represents multiple
water molecules) have instead been derived by assuming a functional form of the
forcefield and optimizing the associated parameters to match selected physical
properties of water, such as density, vaporization enthalpy, surface tension, etc.
[13–19]. For example, Chiu et al. developed a 4:1 CG water forcefield by opti-
mizing the parameters of a Morse potential to accurately reproduce the surface
tension and density of liquid water [18]. Despite capturing the interfacial properties
and density, this potential overestimates structural correlations, as one might expect
given that structural data was not used in its optimization.

Recently, Hadley and McCabe [20] proposed a method for mapping configu-
rations of atomistic water to their CG representations using the k-means clustering
algorithm. Subsequently in related work, van Hoof et al. [21] developed the
CUMULUS method for mapping atoms to CG beads. Both methods enable
dynamic mapping of multiple water molecules to a single CG bead, allowing
structure-based schemes to be used. Here, dynamic refers to a CG mapping that
changes over the course of the atomistic trajectory, i.e., different water molecules
are assigned to different CG beads in each frame of the atomistic trajectory. Both
works employed the iterative Boltzmann inversion (IBI) [22] method to derive the
intermolecular interaction by optimizing a numerical, rather than analytical,
potential to reproduce RDFs calculated from the atomistic-to-CG mapped config-
urations [20, 21]. The forcefields derived are similar and show good agreement with
the structural properties and density of the atomistic water models studied.
However, neither model is able to accurately reproduce interfacial properties, since
they were derived solely from bulk fluid data. This failure to capture interfacial
properties is a consequence of the single-state nature of the IBI approach and may
alter the balance of hydrophobic and hydrophilic interactions when using these
water models in multicomponent systems.

Recently, the multistate IBI (MS IBI) method [23] was developed as an
extension of the original IBI approach, with the goal of reducing state dependence
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and structural artifacts often found in IBI-based potentials [24–26]. While IBI-based
potentials have been derived that show some degree of transferability [26–28] a
significant issue related to the IBI method is that a multitude of potentials can give
rise to similar RDFs, and the method cannot necessarily differentiate which of the
many potentials is most accurate, as only RDF matching is considered. MS IBI
operates based on the idea that different thermodynamic states will occupy different
regions of potential “phase space” (i.e., regions where potentials give rise to similar
RDFs), and that the most transferable, and thus most accurate, potential lies in the
overlap of phase space for the different states. That is, by optimizing a potential
simultaneously against multiple thermodynamic states, MS IBI provides constraints
to the optimization, forcing the method to derive potentials that exist in this overlap
region, and thus are transferable among the states considered. The MS IBI approach
has been shown to reduce state dependence and improve the quality of the derived
potentials, as compared to the original IBI method [23].

In this work, multistate iterative Boltzmann inversion (MS IBI) is used to derive
an intermolecular potential that captures both bulk and interfacial properties of
water, improving upon the CG water model of Hadley and McCabe [20]. Again,
optimizations are carried out using the MS IBI method, where both bulk and
interfacial systems are used simultaneously as target conditions for the optimization.
MS IBI is also used, for the first time, in a multi-ensemble context, enabling opti-
mizations in both the canonical (NVT) and isothermal-isobaric (NPT) ensembles to
be performed simultaneously to derive the density-pressure relationship of the
system. To further constrain the optimization, a slightly modified version of the Chiu
et al. CG water forcefield, originally optimized for surface tension, is used as a
starting condition, allowing the MS IBI method to make specific modifications to the
potential to improve structural properties. The remainder of the paper is organized as
follows: In Methods, a brief overview of the k-means clustering and MS IBI algo-
rithms is given and the models used are described. The potential derivation is then
presented, validated, and compared to existing CG water models in the Results
section and finally, conclusions are drawn about the applicability of the derived CG
model and the broader applicability of the MS IBI method discussed.

2 Methods

2.1 k-Means Clustering Algorithm

Mapping a water trajectory to a many-to-one CG level is inherently different than
mapping a larger molecule’s trajectory, since for water, atoms mapped into a single
CG bead necessarily exist on different molecules. Furthermore, the water molecules
mapped to a common bead are not likely to remain associated throughout the full
simulation because of thermal diffusion. A dynamic mapping scheme is therefore

Development of a Coarse-Grained Water Forcefield … 39



required to generate CG structures from atomistic configurations for water.
Following the work of Hadley and McCabe [20], the k-means algorithm has been
used to map atomistic water trajectories to the CG level. In short, k-means is a
clustering algorithm that is used to find clusters of data points in a large data set.
The positions of the water molecules are here analogous to the points in the data set
and waters mapped to a single bead are analogous to the clusters. Additional details
on the algorithm can be found elsewhere [20, 29]. While the k-means algorithm can
be used to group together any number of water molecules, a 4:1 mapping is chosen,
as this was found in prior work to provide the best balance between accuracy
and computational efficiency [20] and 4:1 models are common in the literature
[17, 18, 20].

2.2 Multistate Iterative Boltzmann Inversion Method

MS IBI was used to derive the intermolecular potential between water beads. The
goal of MS IBI is to derive a single potential that can be used over a range of
thermodynamic states. As an extension of the original IBI method [22], the
potential is updated based on the average differences in CG and target RDFs at
multiple states (i.e., a single potential for each pair is updated based on RDFs from
multiple states). The potential is adjusted according to

Viþ 1ðrÞ ¼ ViðrÞ � 1
N

X
s

asðrÞkBTs ln g�s ðrÞ
gisðrÞ

� �
; ð1Þ

where Vi(r) is the pair potential as a function of separation r at the ith iteration;
N the number of target states; as(r) an effective weighting factor for state s, allowing
more or less emphasis to be put on a particular target state; kB the Boltzmann
constant, Ts the absolute temperature of state s; gs

i(r) the RDF from the CG simu-
lation at state s using Vi(r); and gs

�(r) the target RDF from state s. as(r) was chosen
to be a linear function of the form

asðrÞ ¼ a0;s 1� r
rcut

� �
; ð2Þ

such that as(rcut) = 0 and the potential remains 0 for r � rcut. This form of
as(r) also places more emphasis on the short-ranged part of the potential to suppress
long-range structural artifacts.

An initial potential is assumed for each pair interaction. In theory, there are no
restrictions on the initial potential, so it may take any form; however, in practice,
the initial potential is often taken to be the potential of mean force (PMF) calculated
from the Boltzmann inverted RDF. In this work, rather than taking an average of
the PMFs over the states used, the initial potential used was chosen to be a slightly
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modified version of Chiu et al.’s water model, as discussed below. That is, rather
than starting from an initial potential that is likely to do a poor job of predicting the
behavior, we start from a robust starting point as the Chiu et al. potential is known
to accurately reproduce several properties of water.

A CG simulation is then run with the initial potential. Based on the RDFs from
the CG simulation, the potential is updated according to Eq. (1). The updated
potential is used as input to the next cycle, and the process is repeated until some
stopping criterion is met. Here, the stopping criterion is determined using the
following fitness function

ffit ¼ 1�

Rrcut
0
dr giðrÞ � g�ðrÞj j

Rrcut
0
dr giðrÞj j þ g�ðrÞj j

; ð3Þ

where the optimization is stopped when the value of ffit exceeds a specified value
(i.e., meets some tolerance), given below.

2.3 Models

Atomistic simulations of pure water were performed with the TIP3P model [30]. All
atomistic systems contained 5,832 water molecules and were simulated in
LAMMPS [31, 32] using a 1 fs timestep. A cutoff distance of 12 Å was used for the
van der Waals interactions; long-range electrostatics were handled with the PPPM
method with a 12 Å real space cutoff. Three distinct states were simulated: bulk,
NVT at 1.0 g/mL and 305 K; bulk, NPT at 305 K and 1.0 atm; and an NVT droplet
state at 305 K, where the box from the bulk NVT state was expanded by a factor of
3 in one direction. Each atomistic simulation was run for 7 ns. The atomistic
trajectories were mapped to the CG level using the k-means algorithm. Target RDFs
were calculated from the final 5 ns of the mapped trajectory from each state (bulk
NVT, bulk NPT, and droplet NVT). MS IBI was performed using the target data
from each of the three states. The initial guess of the potential is given as a Morse
potential of the form

VðrÞ ¼ De e�2b r�reqð Þ�2e�b r�reqð Þ� �
; ð4Þ

where req is the location of the potential minimum, −De is the value of the potential
minimum, and b is related to the width of the potential well. Parameters are taken to
be those from Chiu et al: De = 0.813 kcal/mol, b = 0.556 Å−1, and req = 6.29 Å,
however, we note that the potential was adjusted so that b = 0.5 Å−1 for r < req.
This change was made to increase sampling at small separations, because numerical
issues arise in the potential update when the CG RDF is zero but the target RDF is
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nonzero. This modification of the potential will slightly alter the properties as
compared to the original model, as discussed below. The potential update scaling
factor a0,s (see Eqs. 1 and 2) was set to 0.7 to avoid large updates to the potential.
The optimizations were stopped when ffit � 0.98 and ffit(i) − ffit(i − 1) < 0.001 for
each state.

All optimizations were performed with the open-source MS IBI Python package
we developed [33], which calls HOOMD-Blue [34–36] to run the CG simulations
and uses MDTraj [37, 38] for RDF calculations and file-handling. CG simulations
were run at the same states as the atomistic systems. Initial CG configurations were
generated from the CG-mapped atomistic trajectories at each state. As a result of the
4:1 mapping, CG water simulations contained 1,458 water beads. All CG simula-
tions were run with a 10 fs timestep. The derived CG potential was set to 0 beyond
the cutoff of 12 Å.

The surface tension c of the droplet state was calculated as

c ¼ 1
2
Lz Pzz � Pxx þPyy

2

� 	
;

where Lz is the length of the box in the expanded direction, Pzz is the pressure
component in the direction normal to the liquid-vapor interfaces, Pxx and Pyy are the
pressure components in the directions lateral to the interfaces, and the angle
brackets denote a time average. The factor of ½ is included to account for the two
interfaces that are present in the droplet simulation setup.

3 Results and Discussion

3.1 Modified Chiu Potential

Since the MS IBI optimization of water uses a modified version of the Chiu, et al.
potential as an initial guess, we first consider the impact of modifying the potential
to create a softer repulsion. Figure 1 plots the RDFs of the three target states for the
original and modified potentials and the RDF of the 4:1 mapped state (i.e., the target
data used later for the MS IBI optimization). The peak location of the NVT state is
relatively unchanged; however, upon modification, there is a slight shift in the first
peak for the NPT and interfacial states, allowing the model to access smaller
separations, as was intended and required for the potential update scheme. The
softer potential allows closer contact and thus allows the MS IBI algorithm to
modify this region of the potential where the 4:1 mapped atomistic water has
non-zero values of the RDF. The density predicted with both potentials is the same
(0.991 ± 0.003 g/mL); however, due to softening the potential, the calculated
surface tension of the droplet changes from 70.3 to 45 mN/m after the modification,
although this value is still sufficient for the droplet to maintain a stable interface.
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These surface tension values agree favorably with that of TIP3P water, which is
reported to have a surface tension of 52.3 mN/m at 300 K [39].

3.2 Potential Derivation and Validation

Starting from the modified Morse potential of Chiu, et al., the new water forcefield
is optimized using the bulk NVT and NPT states and the interfacial state. This
potential is chosen as the initial starting guess, rather than an arbitrary starting point,

Fig. 1 RDFs from
simulations using the original
and modified Chiu potentials.
Top NVT; top-middle NPT;
bottom-middle interface;
bottom comparison of the two
potentials
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as the unmodified version has been shown to accurately reproduce many properties
of water (e.g., density and surface tension), but overestimates the structural cor-
relations. The use of MS IBI should allow for modification of this potential, such
that it is able to reproduce structural quantities. The results of the potential
derivation are summarized in Fig. 2, where it is clear that the modified Chiu, et al.
potential (i.e., step 0) overestimates the structural correlations, as was also seen in
Fig. 1 for both the modified and original potentials. After only a few iterations, the
RDFs match the targets with a high degree of accuracy. This trend is shown in
Fig. 3, which plots the fitness value from Eq. (3) as a function of iteration. The
value of ffit changes most rapidly in the first 3 steps of the optimization. After 10
iterations, the stopping criteria are met and the optimization stopped. While the

Fig. 2 RDFs and potentials
from the MS IBI potential
derivation. Top NVT;
middle-top NPT;
middle-bottom interface;
bottom potentials. The initial
potential shows significant
structural correlations missing
from the target data. The
derived potential at ten
iterations shows excellent
structural agreement with the
target
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changes to the potential are small, there is a noticeable shift in the location of the
minimum to a slightly larger r value and the potential becomes slightly more
attractive. Although the shape of the attractive well is mostly unchanged, the
potential more rapidly decays to 0 than the original Morse potential at larger
r values, while the shape of the repulsive regime at small r is changed slightly.
These subtle changes to the potential are sufficient to create significant changes in
the RDF and provide excellent convergence of the structural correlations. These
changes are made possible by modifying a numerical potential rather than adjusting
parameters for an analytical potential. Note that in Figs. 1 and 2 the RDFs from the
interfacial state do not decay to 1 at large r. This is due to the fact that 2/3 of the box
is essentially devoid of particles, but the RDF is normalized based on the volume of
the whole simulation box. This has no effect on the potential update scheme, as both
the target and CG RDFs are normalized by the same factor, which cancels out in
Eq. (1).

In addition to accurately capturing the RDFs, the multi-ensemble approach
provides an accurate estimate of the density at 305 K and 1 atm. NPT simulations
performed using the optimized CG forcefield find a density of 1.027 ± 0.006 g/mL,
compared to 1.037 ± 0.004 g/mL for TIP3P water which was used to generate
target data. This approach is successful because the RDFs will not match if the
pressure-density relationship is not satisfied, as the density is implicitly represented
in Eq. (1) through the RDF terms (i.e., the RDFs at the NPT state will not match the
target RDFs if the density is significantly different than the density of the target
state). In contrast, the original IBI method proposed the use of a pressure correction
term of the form ΔV(r) = A(1 − r/rcut) to account for the pressure [22]. This
approach has been successful, but requires a somewhat arbitrary estimate of
the parameter A. While a method exists for estimating A based on the virial
expression [40], some degree of trial-and-error is still necessary. Furthermore, the
multi-ensemble approach within MS IBI does not require direct calculation of the
pressure, which often demonstrates considerable fluctuations, providing a simpler
route to account for pressure in the CG model.

Calculation of the surface tension of the derived MS IBI potential yields a value
of 42 mN/m, lower than the original Chiu, et al. potential (70.3 mN/m) which was
optimized to match experiment, but only slightly perturbed from the modified
potential (45 mN/m). This reduction in surface tension appears directly related to
the softening of the potential, although, we note that this softening is required to
provide an accurate match of the structure and that this value reasonably

Fig. 3 ffit from Eq. (3) as a
function of iteration in the
potential derivation.
Convergence with the
criterion is found after 10
iterations
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approximates the surface tension of the atomistic TIP3P model used as target data
(52.3 mN/m at 300 K) [39].

3.3 Validation and Comparison to Other Models

To further explore the efficacy of the MS IBI-derived model, comparisons are made
to other CG water models in the literature, namely, the k-means based potential of
Hadley and McCabe [20] derived via the single state (SS) IBI procedure (here
referred to as the SS IBI potential) and the MARTINI potential [17]. These models
were chosen because they are short-ranged, non-polarizable, and 4:1 models. For
reference, these potentials are plotted in Fig. 4. Note that the MS IBI and SS IBI
potentials are numerical (as they were derived via IBI), while the MARTINI
potential is represented by a 12-6 Lennard-Jones potential with a well depth of
1.195 kcal/mol located at a separation of 5.276 Å. Note that all of the potentials
considered in this paper provide a close estimate of the density of water at 1 atm
and 305 K, as reported in Table 1.

First considering the SS IBI potential, it can be seen that the well depth is
approximately 0.5 kcal/mol weaker than the MS IBI potential and shifted to larger
separations. While this has little impact on the density or the structural correlations
of the bulk states (not shown), simulations of droplets show that the interfacial
properties are not sufficiently captured. Specifically, as shown in Fig. 5, simulations
of atomistic TIP3P, SS IBI, and MS IBI water were performed with interfaces.
From these it can be clearly seen that the SS IBI potential model fills the box, rather

Fig. 4 Interaction potentials
from the CG water models
compared in this work.
The MS IBI and SS IBI
potentials are numerical,
derived with structure-based
methods. MARTINI is a
Lennard-Jones 12-6 potential

Table 1 Density of water at
305 K, 1 atm calculated with
different models

Model Density (g/mL)

TIP3P 1.037 ± 0.004

MS IBI 1.027 ± 0.006

SS IBI 1.083 ± 0.008

MARTINI 1.015 ± 0.003

Chiu 0.991 ± 0.003
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than maintaining an interface. In contrast, the MS IBI model maintains a stable
interface in agreement with the atomistic model. Thus, while an exact match to the
experimental surface tension is not found for the MS IBI potential, as discussed
above, it is still sufficiently strong to maintain a clear interface, providing a sig-
nificant improvement over the SS IBI potential. We note that the difference between
the SS IBI and MS IBI potentials is likely related to the aforementioned issue
whereby many potentials can give rise to matching RDFs, and SS IBI provides no
means to determine which ones are most physical. This limitation is overcome by
the use of the interfacial state during the MS IBI optimization.

It is also important that the potential is not so strong that the system can solidify
at physiological conditions. For example, the MARTINI water model is known to
spontaneously crystallize at physiologically relevant temperatures [17]. This phe-
nomenon is enhanced by the presence of interfaces (e.g., a lipid bilayer surface),
and requires the addition of unphysical “antifreeze” particles to avoid crystalliza-
tion. While we note that modifications to the MARTINI water model exist
(e.g., adding charge polarization) [41, 42], only the original MARTINI model was
tested, since it more closely resembles the model derived via MS IBI (i.e., both

Fig. 5 Simulation snapshots of droplets using the various models discussed. Top all-atom TIP3P;
middle SS IBI; bottom MS IBI. Atomistic and MS IBI models agree, producing a system with a
stable interface, whereas SS IBI does not form a stable interface
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represent 4 water molecules as a single, spherically symmetric interaction site). To
test the crystallization tendency, a nucleation site is generated with the following
protocol. A crystalline state is generated by running a simulation with the MS IBI
potential in the NVT ensemble. During this simulation, the temperature is decreased
from 305 to 1 K over 10 ns. A subsequent CG simulation is run at 1000 K, where
the middle-most 1/8th of the beads are kept fixed, resulting in a configuration that
contains a crystal seed surrounded by a fluid of CG water beads. The beads in the
crystal seed are kept fixed in the nucleation site simulations, with interactions
identical to the fluid interactions. While neither model shows a tendency to freeze at
305 K in the absence of a nucleation site over a 100 ns simulation, the MARTINI
model rapidly crystallizes in the presence of a nucleation site, while the MS IBI
potential remains fluid (Fig. 6). Note, for a direct comparison with the MS IBI
model derived here, antifreeze particles were not used with the MARTINI model.
To ensure that the MS IBI system is not an amorphous solid structure, the ratio of
the diffusion coefficients with and without a nucleation site were calculated for each
model from the slope of the mean-squared displacement. As shown in Table 2, the
diffusion coefficient of the MS IBI potential model remains relatively unchanged
when a nucleation site is added, whereas a significant drop is seen for the
MARTINI model resulting from crystallization. Additionally, Fig. 7 plots the RDF
of the MARTINI model for the bulk NVT state as compared to the 4:1 mapped
target data. Clearly, the MARTINI potential does not accurately capture the

Fig. 6 Configurations from simulations in the presence of a nucleation site with the MARTINI
(left) and MS IBI (right) models. CG water beads colored silver were kept fixed during the
simulations, but were treated as the same type as the blue particles (i.e., the color is different to
show the nucleation site)

Table 2 Ratio of diffusion
coefficients from simulations
with (Dnuc) and without
(Dbulk) a nucleation site with
different potentials

Model Dnuc/Dbulk

MS IBI 0.88

MARTINI 0.02

Diffusion coefficient D calculated from the slope of a linear fit to
the long-time mean squared displacement (MSD), using
MSD = 6Dt
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structural correlations of bulk water, further demonstrating the significant
improvement of the MS IBI model in reproducing key properties of water.

We note that the self-diffusion coefficient of MS IBI water is calculated to be
16.07 � 10−9 m2/s at 305 K and 1 atm, as compared to 3.05 � 10−9 m2/s for the
atomistic TIP3P water at the same conditions, both run for 5 ns. This factor of *5
difference is not entirely unexpected, given the softening of the free energy land-
scape that often comes with CG models and the fact that kinetic data was not used
in the optimization. However, we also note that the dynamics of the CG model does
not bear a strong connection with the atomistic level behavior, given that each CG
bead represents 4 water molecules, but not necessarily the same water molecules
through time, due to the lack of permanent bonds between the waters being grouped
together.

4 Conclusions

In this work, the MS IBI method was used to derive the interactions for a 4:1
mapped CG water model, using a modified version of the Chiu, et al. potential as an
initial guess. An improvement over previous models is made by simultaneously
matching the fluid structure to target data from bulk and interfacial states. It was
shown that a model that reproduces the structure and density of water does not
necessarily reproduce the interfacial properties and that the addition of a droplet
target state constrains the potential to also capture the interfacial properties. The
resulting potential is able to accurately predict the density of water at 305 K and
1 atm, interfacial properties, and structural correlations. Additionally, the model
shows no tendency to spontaneously crystallize at physiological conditions. This is
important, since inaccuracies in a water model can propagate as more potentials are
derived against it when simulating mixed systems.

This work highlights a key advantage of deriving potentials via the MS IBI
approach. For simulations that cover multiple states, it is important to have a
forcefield that is accurate across the states of interest. MS IBI allows this to be
achieved by including target data from states that represent structures present in the

Fig. 7 RDFs of the
MARTINI model and the
atomistic TIP3P model
mapped to the CG level for
the bulk NVT state
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states of interest. This is realized here by including a multi-ensemble state to
accurately model the pressure-density relationship, and a droplet state to capture the
interfacial properties of water. Another case where this would be beneficial is
studying systems over multiple phases, e.g., phase transitions in liquid crystals.
While clever approaches are taken to capture behavior across multiple states [43], a
more systematic approach would be useful. Based on the results presented here, we
foresee this method being useful for deriving CG potentials for a wide range of
applications.
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