
A Discontinuous Potential Model
for Protein–Protein Interactions

Qing Shao and Carol K. Hall

Abstract Protein–protein interactions play an important role in many biologic and
industrial processes. In this work, we develop a two-bead-per-residue model that
enables us to account for protein–protein interactions in a multi-protein system
using discontinuous molecular dynamics simulations. This model deploys discon-
tinuous potentials to describe the non-bonded interactions and virtual bonds to keep
proteins in their native state. The geometric and energetic parameters are derived
from the potentials of mean force between sidechain–sidechain, sidechain–back-
bone, and backbone–backbone pairs. The energetic parameters are scaled with the
aim of matching the second virial coefficient of lysozyme reported in experiment.
We also investigate the performance of several bond-building strategies.

Keywords Coarse-grained model � Protein–protein interactions � Discontinuous
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1 Introduction

Here, we report the development of a two-bead-per-residue protein model that can
be used with discontinuous molecular dynamics (DMD) simulations to investigate
protein–protein interactions in a multi-protein system. We expect that this new
model will allow us to simulate multi-protein systems on longer timescales than
what has heretofore been achievable, helping us to deepen our understanding of
processes such as protein crystallization [1], protein recognition [2], and protein
purification [3].

Protein models can be classified broadly into two types: all-atom if they describe
every atom in the protein explicitly and coarse-grained if they group several atoms
into one interactive site. All-atom force fields such as CHARMM [4], AMBER [5],
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GROMOS [6, 7], and OPLS/AA [8] are very good at describing the behavior of a
single protein and how it interacts with other molecules in explicit solvent.
However, atomistic simulations are usually limited to one or several small proteins
and timescales up to several hundred nanoseconds, effectively precluding the
investigation of many interesting multi-protein problems. Coarse-grained models
enable us to simulate larger systems for longer timescales using less computational
resources. There are two major choices to be made in the development of
coarse-grained models: (1) how to coarse-grain the protein geometry and (2) how to
obtain the geometric and energetic parameters (see recent review papers [9–15] that
summarize the various coarse-graining methods, coarse-grained protein models,
and their applications). Coarse-grained protein models can be categorized based on
how the atoms are grouped together to form the coarse-grained bead
(four-bead-per-residue [16], two-bead-per-residue [17], one-bead-per-residue [18,
19], and ultra-coarse-grained [20]) and how the force field parameters are deter-
mined (e.g., Go-type [21], knowledge-based [22, 23], and physics-based [24]).

Coarse-grained models are usually more problem-specific than all-atom models
because of transferability issues. Coarse-grained protein models are often developed
with the goal of examining particular properties. Most of the current coarse-grained
protein models focus on the folding/unfolding problem. It thus remains to be seen
how well protein models developed based on such properties do in describing
behavior that is a consequence of protein–protein interactions. For example, Stark
et al. [25] found that the popular MARTINI force field predicts a second virial
coefficient of lysozyme that differs considerably from the experimental value. This
inconsistency between simulation and experiment points out the importance of
developing protein models that are designed to apply to problems where protein–
protein interactions play a major role.

It is also important that the method used to simulate multi-protein systems be
fast. Most of the models used in simulating multi-protein systems are based on
continuous intermolecular potentials like the Lennard–Jones potential. Simulations
based on continuous potentials proceed by solving Newton equations at a uniformly
spaced time intervals. They have an algorithm complexity of O(Nlog N), where N is
the number of particles in the system. The big-O notation describes how the per-
formance or complexity (referring to the number of operations) required to run an
algorithm depends on the number of particles in the system. Therefore, the required
computational time for continuous MD simulations increases dramatically with the
number of beads in the system, limiting their application to relatively small systems.

Discontinuous molecular dynamics (DMD) simulations can be used to investi-
gate large systems efficiently with moderate computational resources. DMD sim-
ulations were designed to be applicable to systems that interact via discontinuous
potentials (square-well/square-shoulder and hard-sphere). They proceed by ana-
lytically calculating the next collision time. Several papers [26–28] describe the
details of DMD simulations. The algorithm complexity of DMD simulations is O
(Nlog N). (One paper by Paul [29] even claims a realization of the DMD method
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with an algorithm complexity of O(1).) The enhanced algorithm complexity of
DMD simulations compared to continuous MD simulations make them suitable for
the investigation of long-time processes like spontaneous formation of amyloid
structure, which are still challenging for continuous MD simulations.

This work reports our effort to develop a coarse-grained protein model that can
be used to study protein–protein interactions in multi-protein systems via DMD
simulations. We deploy a two-bead-per-residue protein model: one bead for the
backbone and the other for the sidechain. The parameters of our protein model are
obtained by coarse-graining atomistic simulation results for backbone–backbone,
backbone–sidechain, and sidechain–sidechain interactions in explicit water. The
rest of the paper is organized as follows. Section 2 describes the protein model in
detail; Sect. 3 describes the atomistic and DMD simulations; Sect. 4 discusses the
analysis leading to the final choice of model parameters; and Sect. 5 summarizes
the current status of the model.

2 Model Description

We deploy a two-bead-per-residue protein model to represent the 20 natural amino
acid residues. Since computational efficiency was a major consideration here, we
tried to minimize the number of beads in the system and at the same time represent
the chemical heterogeneity of the individual amino acid residues. Although a
one-bead-per-residue model minimizes the number of beads in the system, we
found that it made it harder to represent the difference among the various types of
amino acid residue in DMD simulations. Protein models with more than two beads
per residue do a good job of representing the chemical heterogeneity of the 20
residues (see, e.g., our protein model, PRIME20 [16]), but this increases the
required computational resources. The two-bead-per-residue model is a good
compromise for large proteins.

The 18 amino acid residues except glycine and proline are represented by two
beads: one bead at the position of the C-a atom to represent the backbone entity and
the other at the sidechain center of mass to represent the sidechain entity. Glycine
and proline residues are represented solely by a single bead at the positions of their
C-a atoms because either they do not have a sidechain or the sidechain is closely
linked with the backbone. Figure 1 shows a schematic of the two-bead model for
alanine.

The potential energy of the system is the sum of the intermolecular potential
energy, intramolecular potential energy, and virtual bond energy for all the beads in
the system (Eq. 1).

Utotal ¼
X

UinterðrÞþ
X

UintraðrÞþ
X

UbondðrÞ ð1Þ
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The intermolecular bead–bead interactions are represented by a single square
well or single square shoulder potential as given in Eq. (2):

UinterðrÞ ¼ 1; r� r1
UinterðrÞ ¼ �; r1\r\r2
UinterðrÞ ¼ 0; r� r2

8<
: ð2Þ

where r is the bead–bead distance, r1 and r2 are geometric parameters, and e is the
energetic parameter. The geometric and energetic parameters (r1, r2, and e) are
derived from the potentials of mean force (PMFs) of sidechain–sidechain, side-
chain–backbone, and backbone–backbone pairs from atomistic simulations in
explicit water solvent as discussed in Sect. 4. A single square-well potential (e < 0)
indicates that the two entities attract each other in explicit water; a single
square-shoulder potential (e > 0) indicates that these two entities repel each other in
explicit water; and a hard-sphere potential (e = 0) indicates that the two entities just
have an excluded volume interaction in water. The effect of water is taken into
account in the parameters because the PMFs were obtained from the pair’s inter-
actions in explicit water solvent.

The intramolecular bead–bead non-bonded interactions consider excluded vol-
ume effects only. The hard-sphere potential is used to describe the intramolecular
bead–bead non-bonded interactions (Eq. 3).

UintraðrÞ ¼ 1; r� 0:8r1
UintraðrÞ ¼ 0; r[ 0:8r1

�
ð3Þ

where r is the bead–bead distance and r1 is the geometric parameter in Eq. (2). The
geometric parameters could, in principle, be obtained from the volumes of the
individual beads, but to simplify the process, we choose to use 0.8r1 as the geo-
metric parameter. We found that this selection avoids overlap between beads in a
protein and works well with the virtual bond setting, which is described in the next
paragraph.

Fig. 1 Schematic of the
two-bead-per-residue model.
One bead is at Ca, and the
other is at the center of mass
of the sidechain
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We deploy virtual bead–bead bonds to maintain the protein in its native state.
The virtual bond potential is a double hard wall (Eq. 4).

UbondðrÞ ¼ 1; r�ð1� dÞr
UbondðrÞ ¼ 0; ð1� dÞr\r\ð1þ dÞr
UbondðrÞ ¼ 1; r�ð1þ dÞr

8<
: ð4Þ

where r is the bead–bead distance, r is an equilibrium bead–bead distance obtained
from the native state of the protein, and d is the flexibility factor. Figure 2 shows a
schematic describing the virtual bonds. The native state of a protein is its naturally
folded structure. Here, we use the structure of a protein in the Protein Data Bank
(PDB) as its native state. The virtual bonds can be divided into two categories
depending on the indices of the connected beads along the amino acid sequence.
The “local” category includes virtual bonds between beads whose index difference
is less than four. They are used to maintain the protein local secondary structure.
The other category (non-local) includes virtual bonds between beads far away from
each other along the amino acid sequence. These bonds are used to maintain the
tertiary and quaternary structures of a protein. Section 4.2 discusses the choice of
the virtual bonds in detail.

3 Simulation Details

3.1 Atomistic Simulation

We conducted atomistic simulations to obtain the geometric and energetic param-
eters for the coarse-grained beads in the two-bead-per-residue model; these
parameters are then used in the DMD simulations. The sidechain and backbone
entities were generated from amino acid residues. Glycine and proline entities were
generated by capping their N and C terminals with an acetyl group and an N-methyl

Fig. 2 Schematic describing
virtual bonds. The circles with
solid borders are backbone
beads, and the circles with
dash-line borders are
sidechain beads. The virtual
bonds connect these beads to
keep the protein in its native
state
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amide group. These caps prevent the two entities from associating with others
through their N or C termini. The glycine entity was also used as the backbone
entity because it is an amino acid without a sidechain. Sidechain entities were
generated by detaching the sidechain of an amino acid residue from its backbone
and replacing the CB atom with an H atom. Two sidechain or backbone entities
were placed in a 3.0 � 3.0 � 3.0 nm3 box filled with water molecules at a density
of 1.0 g/nm3. The initial entity–entity distance was at least 1.0 nm to avoid any
artificial association. The GROMOS54a7 force field [7] was used to describe the
sidechain and backbone entity, and the SPC model [30] was deployed to describe
the water molecules since it is recommended for use with the GROMOS force field.
Figure 3 shows the initial configuration of a glycine–glycine pair in a water box.

For each system, a 1-ns isothermal–isobaric ensemble (NPT, T = 300 K,
P = 1 bar) MD simulation with a 1-fs time step was conducted after energy min-
imization to let the system reach the equilibrated density and potential energy.
Then, a 100-ns canonical ensemble (NVT, T = 300 K) MD simulation with a 2-fs
time step was conducted to collect data every 500 fs. The 12-6 Lennard–Jones
interactions were treated with a 1.0-nm cutoff, and the electrostatic interactions
were treated with particle mesh Ewald sum [31]. No bonds were constrained to their
equilibrium length during the 1-ns NPT MD simulation. The bonds to the hydrogen
atoms were constrained to their equilibrium length using LINCS algorithm [32]
during the 100-ns NVT MD simulation. The desired temperature was maintained
using the v-rescale algorithm [33], and the desired pressure was maintained using
the Parrinello–Rahman algorithm [34]. The MD simulations and energy mini-
mization were conducted using GROMACS-4.6.5 [35].

3.2 DMD Simulation

We conducted DMD simulations to test and scale the parameters obtained from
atomistic simulations. The DMD simulations were conducted in the NVT ensemble

Fig. 3 Glycine–glycine pair
in a 3.0 � 3.0 � 3.0 nm3

box. Glycine molecules are
represented in a VDW view,
and water molecules are
represented in CPK model
view l. C atom green, N atom
blue, O atom red, and H atom
white
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using code developed in our group. For single-protein systems, the protein was
placed in the center of a 10 � 10 � 10 nm3 box. The temperature of the system
was maintained at 1.0 using the Andersen thermostat [36]. For multi-protein sys-
tems, 50 lysozyme proteins were placed at random positions in a 40 � 40 � 40
nm3 box (1.38 lM) using Packmol [37]. The initial protein–protein distance was at
least 7 nm to avoid any artificial association. Figure 4 shows the initial configu-
ration for 50 lysozyme proteins.

4 Parameter Development

4.1 Intermolecular Interaction

We use a pair of glycine (G) entities to illustrate how we get geometric and
energetic parameters (r1, r2, and e) from atomistic simulation results (Fig. 5). The
radial distribution functions between the centers of mass of two glycine entities
(Fig. 5a) were obtained from the MD simulation. Boltzmann inversion [38] was
used to calculate the PMF (Fig. 5b). There are several ways to select the geometric
and energetic parameter from a continuous potential [39, 40]. Here, we choose the
geometric parameter r1 to be one root where the PMF = 0 (Fig. 5b) and the
energetic parameter e to be the lowest value of the PMF. Here, we choose r2 to be
where g(r) reaches the range of 1.0 ± 0.1. This method may result in a small
energy perturbation (−0.1 kBT when g(r) = 1.1 and 0.1 kBT when g(r) = 0.9) but
avoids the possibility of having an artificially large well/shoulder width when the
PMF approaches zero slowly. The geometric parameter r1 for the square-shoulder
is where the PMF starts to increase rapidly, and the energetic parameter e is the

Fig. 4 The initial
configurations of 50
lysozymes in a
40 � 40 � 40 nm3 box
(1.38 lM)
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value of PMF at r1. The geometric parameter r2 for the square-shoulder is deter-
mined in the same manner as for the square-well. If the value of the PMF is always
between −0.1 and 0.1 kBT, we deploy a hard-sphere potential for the bead–bead
interaction. The geometric parameter r1 is selected in the same way as that for the
square-shoulder.

It is of interest to ask whether or not the parameters (r1, r2, and e) of the 210
pairs are physically meaningful and if they bias toward certain conformations. The
value of the parameter r1 reflects how close the two entities can approach each
other in water solvent. The majority of bead–bead pairs have r1 in the range of
0.33–0.45 nm, which is quite close to the size of the heavy atoms in the entities.
These entities should be able to contact with each other directly in water solvent.
Only five pairs have r1 larger than 0.45 nm: arginine (R)–arginine (R), arginine
(R)–lysine (K), glutamic acid (E)–glutamic acid (E), tryptophan (W)–tryptophan
(W), and tryptophan (W)–tyrosine (Y).

The value of parameter r2 reflects how far apart the two entity beads can be and
still influence each other. The values of r2 for the 210 pairs range from 0.55 to
1.0 nm. This wide range illustrates the chemical dissimilarities among the 18
sidechain entities. The values of r2 for the hydrophilic and charged pairs (such as
0.85 nm for the asparagine–asparagine pair and 1.0 nm for the lysine–lysine pair)
are generally larger than those for the hydrophobic pairs (0.55 nm for the valine–
valine pair). This is expected because the former two are controlled by electrostatic
interactions, which decrease much more slowly as a function of distance than the
van der Waals interactions which control the hydrophobic associations.

The value of the energetic parameter e reflects whether the two entities attract or
repel each other. We first consider charged sidechain entities. The pairs of sidechain
entities with the same sign charge have positive e (a repulsive force), and the pairs
with opposite sign charge have negative e (an attractive force). Our atomistic MD

Fig. 5 a Radial distribution functions and b potential of mean force (PMF) and square-well
potential for a G–G pair. The geometric (r1 and r2) and energetic (e) parameters for the
square-well potential were obtained from discretizing the PMF of entity pairs in atomistic
simulations
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simulations successfully capture how these charged entities interact with each other.
Histidine (H) has a pKa similar to 7.0, so its net charge is quite weak. Therefore, we do
not find a strong repulsive force between H and the negatively charged sidechains.
Instead, we find a weak attraction, probably due the effect of water molecules.

We further examine the values of parameter e for the other entity pairs. Two
pairs, glycine–aspartic acid and glycine–proline, have a positive e, which may be
due to their different influences on the structure of water molecules. The other pairs
have a negative e, whose value depends on the chemistries of the entities and their
individual effects on the structure of surrounding water molecules. For instance, the
value of e for the valine–valine pair is −1.44 kBT, and that for the serine–serine pair
is only −0.61 kBT, consistent with the fact that hydrophobic substances associate
more stably than hydrophilic substances in water. The glutamic acid–cysteine and
lysine–tryptophan pairs have much lower e than the others. The former may be due
to an interaction between the S atoms and the charged group, and the latter may be
due to a charged-group-p conjugation.

Twenty entity pairs (Table 1) have a hard-sphere potential because their inter-
actions are judged to be very weak based on the criterion stated above. Some of
these may be due to the different hydrophilicities of the entities (such as the
sidechains of valine and aspartic acid). Some of these may be due to the effect of
water molecules. Consider for instance, the glycine–serine sidechain pair. The
serine sidechain has a hydroxyl group, which should be able to associate with the
oxygen atom on glycine; however, these two entities can also form hydrogen bonds
with water molecules. The water molecules around the two entities may make the
glycine–serine sidechain association energetically comparable to the non-associated
state. This weak interaction reminds us of the importance of taking the effect of
water molecules into account when considering protein–protein interactions.

4.2 Virtual Bond

An ideal set of virtual bonds should be able to maintain the protein in its native
state, while maximizing the timescale per simulation step. We investigated how this
goal could be achieved by tuning the types of virtual bonds and the flexibility factor
d in Eq. (4). Table 2 lists the choice of virtual bond types and the values of d for

Table 1 The entity pairs that
have a hard-sphere potential

G-S T-R S-H R-I

V-D T-H D-Q E-I

V-R S-R D-L Y-Y

V-E S-K D-I Y-W

T-D S-E D-M W-W
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three sets used for lysozyme and for myoglobin. These are labeled as “rigid,”
“moderate,” and “loose” based on d. The number of virtual bonds in the “loose”
category is greater than that in the “moderate” category which is itself greater than
that in the “rigid” category.

We select lysozyme (PDB ID: 193L) as our first test protein to evaluate the
ability of these three virtual bond sets to maintain the protein in its native state.
Lysozyme was chosen as our first test case because it is relatively small and rigid.
The virtual bond set’s ability to maintain the protein in its native state was measured
using the root mean square deviation (RMSD) of all beads from the lysozyme
native state conformation during a DMD simulation of 200 million collisions. As
shown in Fig. 6, the small RMSD fluctations (0.15–0.30 nm for the rigid set, 0.18–
0.30 nm for the moderate set, and 0.15–0.25 nm for the loose set) indicate that all
three sets work well at maintaining lysozyme in its native structure. Interestingly,

Table 2 Three virtual bond sets. CA[i] means the ith backbone bead, and CB[i] means the ith
sidechain bead

Local Non-local

Bond types d Bond types d

Rigid

CA[i]–CA[i + 1]
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.05 CA[i]–CA[i + 10]
CA[i]–CA[i + 20] (i = i + 2)a

CB[i]–CB[i + 10]
disulfide bonds

0.05

Moderate

CA[i]–CA[i + 1]
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.12 CA[i]–CA[i + 10] (i = i + 2)
CA[i]–CA[i + 20] (i = 2, i = i + 4)b

CA[i]–CA[i + 40] (i = i + 8)
CA[i]–CA[i + 80] (i = i + 16)
CB[i]–CB[i + 10] (i = i + 4)
CB[i]–CB[i + 20] (i = 2, i = i + 4)
disulfide bonds

0.05

Loose

CA[i]–CA[i + 1],
CA[i]–CA[i + 2]
CA[i]–CA[i + 3]
CB[i]–CA[i]
CB[i]–CA[i − 1]
CB[i]–CA[i + 1]

0.25 CA[i]–CA[i + 10] (i = i + 2),
CA[i]–CA[i + 20] (i = 2, i = i + 4),
CA[i]–CA[i + 40] (i = i + 8)
CA[i]–CA[i + 80] (i = i + 16)
CB[i]–CB[i + 10] (i = i + 4)
CB[i]–CB[i + 20] (i = 2, i = i + 4)
disulfide bonds
CA[i]–CA[i + 120](i = i + 16)(myoglobin)

0.12 (lysozyme)
0.1 (myoglobin)

The value of dr is limited to be less than 0.1 nm
ai = i + n means that this type of virtual bonds is set for beads i, i + n, i + 2n…
bi = n means this type of virtual bonds starts from nth bead
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the “loose” set works as well as the other two even though its d is much higher than
the other two.

The “loose” virtual bond set works best at maximizing the simulation timescale
per million collisions. As listed in Table 3, a simulation of 50 lysozymes shows that
for a 100-million-collision simulation, the simulation-reduced time achieved with
the “loose” virtual bond set is 1.4 times that with the “moderate” virtual bond set
and 3.3 times that with the “rigid” virtual bond set. DMD simulations of complex
molecules such as proteins spend more than 90 % of the simulation time in colli-
sions between the bonded beads, indicating that the timescale of a DMD simulation
heavily depends on the bond flexibility. A “loose” virtual bond set allows the
simulation to advance much faster than a “rigid” one. However, the “loose” set may
also increase the risk that the protein will deform. This risk should be taken into
account when selecting proper virtual bonds.

We then tested the performance of these three virtual bond settings for a more
flexible protein: myoglobin (PDB ID: 1YMB). The RMSD of myoglobin well
illustrates the importance of choosing the virtual bond types and flexibility factor
more carefully. The “rigid” and “moderate” virtual bond sets for myoglobin are the

Fig. 6 Root mean square
deviation (RMSD) of all
beads in a lysozyme during a
2-billion-collision DMD
simulation

Table 3 Simulation time
advanced by a
100-million-collision DMD
simulation of 50 lysozymes

Reduced time

Rigid 619

Moderate 1457

Loose 2072
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same as for lysozyme. As shown in Fig. 7, the RMSDs with these two virtual bond
sets fluctuate from 0.15 to 0.5 nm (rigid) and 0.2 to 0.5 nm (moderate). The large
RMSD fluctuations indicate that we need to select virtual bonds carefully. We thus
set a “loose” set for myoglobin, which has a new type of virtual bond: CA[i]−CA
[i + 120] (i = i + 16) because myoglobin is larger than lysozyme. In this set, the
value of d for the local virtual bonds is chosen to be 0.25; however, unlike our
choice for lysozyme, we set the non-local d to be 0.10 instead of 0.12. As shown in
Fig. 7, the increase in the number of “non-local” virtual bonds improves the ability
of the model to hold myoglobin in its native state (0.25 < RMSD < 0.3 nm).

The comparison among the three virtual bond sets shows the importance of the
non-local virtual bonds in maintaining the protein in its native state. A protein
usually keeps its tertiary and quaternary structures with the help of non-bonded
intramolecular interactions such as hydrogen bonds and hydrophobic associations,
which are not considered in the current version of our model. All the virtual bonds
that connect the beads whose index difference is less than four are there to maintain
the bonds, angles, and dihedral angles between the beads. They work well at
maintaining the local secondary structure of a protein but have little influence on the
tertiary and quaternary structures of the protein. Thus, the model depends on the
non-local virtual bonds between beads that are far away in the sequence to hold
different regions of a protein together. The selection of “non-local” virtual bonds is
still an art. Using the virtual bonds that connect the beads whose index difference is
10, 20, 40, 80…, up to the total number of the beads in the protein, works well. The
value of d for the “non-local” virtual bonds should be less than that for the “local”

Fig. 7 RMSD of all beads in
myoglobin during a
2-billion-collision DMD
simulation
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ones due to their large equilibrated bond length. Although the total number of
“non-local” virtual bonds is much less than that for “local” virtual bonds, the
non-local bonds are very important as they greatly enhance the ability of a protein
to stay in its native state. For instance, having six virtual bonds between CA[i] and
CA[i + 120] results in a decrease of the RMSD of myoglobin from around 0.2–
0.5 nm (rigid and moderate) to 0.25–0.3 nm (loose) (Fig. 7). Such a strategy
could be useful for the simulation of other complex systems.

4.3 Energetic Parameter Adjustment

The values of the force field parameters need to be adjusted to ensure that the
coarse-grained model gives reasonable results in comparison with experiment.
Tables 4, 5, and 6 show the values of r1, r2 and e obtained from the PMFs for the
210 bead-bead pairs. Here, we select the osmotic second virial coefficient (B22) of
lysozyme as the reference property because it well represents the strength of
lysozyme–lysozyme interactions in a solution. Lenhoff and his colleagues [41–44]
measured B22 for lysozyme in a variety of solutions. Lysozyme is expected to have
a positive B22 in water because it is positively charged. Their data indicate that B22

of lysozyme in water at pH 7 is around 5 � 10−4 mol ml/g2.
We use Eq. (5) to calculate B22 from radial distribution functions g(r) of the

center of mass of lysozymes obtained from DMD simulations of our system of 50
lysozymes.

B22 ¼ � 2p
M2

wNA

Z1

0

g rð Þ � 1ð Þr2dr ð5Þ

where Mw is the molecular weight of the protein, NA is the Avogadro constant, and
g(r) is the radial distribution function. We then compare the simulation value of B22

to the experimental one; a simulation value of B22 larger than the experimental one
would imply that the force field overestimates the attraction among proteins, while a
simulation value of B22 smaller than the experimental one would imply that the
force field overestimates the repulsion among proteins.

The energetic parameters are adjusted so that the value of B22 obtained from
simulations approaches the experimental value. Ideally, all the geometric and
energetic parameters should be adjusted individually, but this would require mas-
sive data which are not achievable now. Alternatively, if we fix the interaction
ranges of the 210 pairs, i.e., the geometric parameters r1 and r2, and keep the ratio
of the energetic parameters for any two pairs unchanged, we can adjust all the
energetic parameters by multiplying them by a single factor f. This helps us to
narrow the difference between the simulation and experiment results for B22.
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The reduced temperature T* is set to 1.0 when tuning the factor. For each f, the
average value of B22 was obtained from three independent DMD simulations
starting from different initial configurations. These simulations lasted for 120–170
billion steps with a total reduced time s of around 1 � 106.

We find that f needs to be small in order to get our value of B22 to be close to
experimental value. The value of B22 is 1.9 ± 0.83 � 10−4 mol ml/g2 when
f = 0.15 and increases to 7.1 ± 3.18 � 10−4 mol ml/g2 when f = 0.10. These
values are close to the value obtained experimentally (5 � 10−4 mol ml/g2). We
chose to set f = 0.10 as the scale factor because the simulation results for B22 with
f = 0.1 straddle the experimental value. It is not surprising to find such a small
f value. There are two possible reasons for the need for such drastic rescaling. First,
coarse-graining smooths the free energy surface and makes it easier for proteins to
aggregate. Second, the current coarse-graining method may not be able to address
the effect of water molecules near the proteins well. Stark et al. [25] also found that
they needed to drastically rescale the energetic parameters of the MARTINI force
field [45] to match the experimental value for B22 of lysozyme. The necessity of
scaling parameters to match experiment results was also observed for ionic liquids
[46]. A possible reason for such necessity is that the current models use an additive
two-body interaction system, which is an approximation to the many-body inter-
actions. Parameter scaling may be an effective way to attenuate the error brought by
the different interaction systems.

5 Conclusion

We have developed a discontinuous potential two-bead-per-residue protein model
so that we can conduct DMD simulations to investigate protein–protein interactions
in a multi-protein system. The current model focuses on proteins that are in their
native states. We derive the intermolecular bead–bead interactions from the
potential of mean force obtained from atomistic simulations. Examination of the
geometric and energetic parameters shows that these parameters are physically
meaningful. We also developed strategies to set the types and flexibility of the
virtual bonds to constrain the proteins in their native state while maximizing the
simulation timescale. Comparison of a variety of virtual bond sets illustrates that
high bond flexibility (the loose set) improves the DMD simulation performance.
We also scale the energetic parameters of our model to match experimental results
on the osmotic second virial coefficient of lysozyme. We are using this model to
investigate the formation of the corona of proteins that forms around a nanoparticle.
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