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    Chapter 4   
 DNA Barcoding of Medicinal Plants                     

     Swati     Srivastava    ,       Sanchita    ,     Mili     Bhargava    , and     Ashok     Sharma    

    Abstract     DNA barcoding is a useful technique for diversity analysis whereby a 
standardized region of DNA is used for the identifi cation of a species or a taxo-
nomic group of organisms. These standard regions used for identifi cation are called 
the DNA barcode. These are small sequences of the entire genome. In plants, DNA 
barcoding has application in phylogenetic analysis, authentication, inter- and intra-
specifi c diversity, classifi cation into wild and cultivated genotypes, the study of 
phylogeographical patterns, and in the detection of adulteration. The barcode loci, 
i.e . , the DNA regions used for the identifi cation are able to discriminate the closely 
related species and identify new cryptic species as well. Depending on the taxon and 
complexity of the species, different barcode loci are used for the purpose. In ani-
mals, the universal DNA barcode, i.e., mitochondrial cytochrome c oxidase I (COI) 
gene is used for species discrimination. However, this gene cannot be used for 
plants due to its limited divergence. Thus, its use is limited only to some algae. 
Efforts are going on to fi nd suitable universal barcode loci for plants. Since the last 
decades, matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA, and 18S-rRNA candidate 
regions are being used as DNA barcodes in plants. The article provides an overview 
of the use of these candidate regions through different approaches which have 
gained importance due to the challenges in DNA barcoding of plants. The develop-
ment of multilocus and tiered approaches along with the new frontier areas for 
application of this technique has been analyzed in detail.  
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  Abbreviations 

   BOLD    Barcode of Life Data Systems   
  CBOL    Consortium for the Barcode of Life   
  iBOL    International Barcode of Life Project   
  WHO    World Health Organization   

4.1         Introduction 

 Medicinal herbs have been used in Indian medicinal systems since ancient times. 
Currently, authentication of medicinal plants is a big issue. Trading of medicinal 
plants and its products worldwide is estimated at around US$60 billion, and an 
annual turnover of Ayurvedic medicine in the international market is about Rs. 3500 
crores (US$813 million) (Biswas and Biswas  2014 ). According to the World Health 
Organization’s (WHO) guidelines, authenticity, purity, and safety are important 
aspects of standardization and evaluation of traditional medicines. Due to commer-
cialization and increased demand of Ayurvedic herbs, safety, quality, and assurance 
are big issues (Chan  2003 ). Taxonomists are busy in naming and annotating the 
huge number of organisms constituting the biodiversity. A large variety of species 
are measured annually. However, there still remains an enormous diverseness to be 
explored. The current scenario of extinction and conservation rates of biodiversity 
is also a serious concern (Costello et al.  2013 ). 

 In the last decade, DNA sequences are being extensively used in the biological 
process analysis such as phylogenetic analysis of organism identifi cation. Among 
various approaches, the DNA barcoding was proposed to overcome the problems 
faced in the traditional taxonomy (Hebert et al.  2003a ,  b ). This approach has suc-
ceeded in the identifi cation of already existing as well as unknown species. In this 
technique, a standard region of DNA known as “DNA barcode” is used for the 
biodiversity analyses. Different regions of DNA are used as markers for DNA bar-
coding. Two main characteristics of a good marker are its universality and high 
resolution (Hollingsworth et al.  2011 ). The universality of any region refers to the 
applicability of the chosen DNA barcode to a large number of organisms. High- 
resolution ability implies that the markers must discriminate the closely related spe-
cies. For effi cient discriminatory power, a marker must show high interspecifi c and 
low intraspecifi c divergence. This distinction between inter- and intraspecifi c dis-
tances is known as the “DNA barcoding gap.” The DNA barcoding is a widely used 
technique for quick and accurate identifi cation of species (Bhargava and Sharma 
 2013 ). COI (cytochrome oxidase I) is the universal barcode marker in animals 
(Hebert et al.  2003a ). However for plants, it has remained elusive (Li et al.  2015 ; 
Kress and Erickson  2008 ). COI has shown a good success rate in animals but in 
plants, due to limited divergence, it cannot be used. There has been much debate 
about the regions to be used as barcodes for plants (Hollingsworth et al.  2011 ). 
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Presently, DNA barcodes work on the standard gene of any locus as well as in whole 
chloroplast genome in plants. Although different kinds of genome-based strategies 
are developed for the identifi cation, DNA barcoding is the most powerful tool. 
Approximately 300,000 plant species are available worldwide. The identifi cation 
and classifi cation of such a vast range of plants may be a diffi cult task for taxono-
mists. DNA barcoding helps in a rapid and accurate identifi cation of plant species 
(Costion et al.  2011 ). DNA-based methods are more suitable as compared to pro-
teins and RNAs because DNA is available in all the tissues of the organisms is more 
stable, and remains unaffected by external factors. The species discrimination in 
plants is diffi cult because of a higher level of gene tree paraphyly (Fazekas et al. 
 2008 ). matK, rbcL, trnH-psbA, ITS, trnL-F, 5S-rRNA, and 18S-rRNA are majorly 
used markers for plants with regard to their discrimination capacity (Table  4.1 ). 
Cowan and Fay ( 2012 ) have described the major challenges associated with DNA 
barcoding of plants. However, the studies on plant barcoding are increasing consis-
tently due to its capability of identifying the unknown samples. A general concept 
of the formation of DNA barcode has been explained in Fig.  4.1 .

4.2         History of DNA Barcoding and Success Stories 

 Two international initiatives are operating for the DNA barcoding analyses, viz., the 
International Barcode of Life project (iBOL) and Consortium for the Barcode of 
Life (CBOL). iBOL is the biggest biodiversity genomics initiative ever undertaken. 
Its mission is to maintain and update the barcode reference library, Barcode of Life 

   Table 4.1    Major candidate regions used for DNA barcoding of plants   

 Gene  Location/genome  Type 

 No. of GenBank 
accessions 
(plants) 

 No. of GenBank 
species (plants) 

 matK a   Plastid  Protein coding  ~61,172  ~33,089 
 rbcL a   Plastid  Protein coding  ~86,806  ~38,164 
 rpoB a   Plastid  Protein coding  ~8328  ~4399 
 rpoC1 a   Plastid  Protein coding  ~8650  ~4787 
 trnH- 
psbA a  

 Plastid  IGS  ~15,304  ~4912 

 atpF-H a   Plastid  IGS  ~370  ~295 
 psbK-I a   Plastid  IGS  ~3223  ~1789 
 trnL-F  Plastid  Intron + IGS  ~16,608  ~7344 
 5S rRNA  Nuclear  Structural RNA  ~9954  ~2290 
 18S 
rRNA 

 Nuclear  Structural RNA  ~40,291  ~20,150 

 ITS  Nuclear  Transcribed 
spacers+5.8S rRNA 

 ~179,520  ~70,085 

   a CBOL proposed seven candidate barcodes  
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Data systems (BOLD), and further establishment as a robust resource for animal, 
plant, and fungal DNA barcodes (Ratnasingham and Hebert  2007 ). The work of the 
iBOL association is carried out by its constituent nodes, comprised of many coun-
ties grouped into separate operating teams. On the other hand, CBOL established in 
2004 is functioning for DNA barcoding as a world methodology for the identifi ca-
tion of plants and animals of earth’s biodiversity. As far as the application of the 
technique is concerned, recently its usefulness has been explored in forensic botany 
to resolve the legal questions. Plant identifi cations at crime scenes are important in 
the criminal investigations. Every environment has a unique combination of pollens, 
suggesting the type of place where the crime took place. To overcome the problem 
related to ancient forensic botany, DNA barcoding could be a promising technique 
in several cases (Ward et al.  2005 ,  2009 ; Tsai et al.  2006 ,  2008 ; Ferri et al.  2009 ).  

4.3     Status of DNA Barcoding of Medicinal Plants 

 Adulteration is a major problem in the herbal plant material market. Therefore, 
authentication and standardization is the prerequisite to minimize the unfair trade. 
According to the World Health Organization (WHO) total international seasoning, 
the drug market is calculated as US$62 billion and is anticipated to grow to the 
extent of US$5 trillion by the year 2050. The total available barcodes represent 
363,584 sequences from 50,039 species. The criteria of DNA barcoding, i.e., mini-
mum sequence length of 500 bp and more than three organisms per single species 
have been convincing by 13,761 species (Sarwat and Yamdagni  2015 ). However, 
most of these (98 %) are animal species. In January 2009, iBOL started with the 
target to collect barcodes for 5 million species in fi rst 5 years. The scientists from 

  Fig. 4.1    Schematic representation of the formation of DNA barcodes       
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25 countries have contributed to this initiative (Hajibabaei et al.  2006 ). The DNA 
barcoding project has the goal of the reference library development that might pro-
vide data even for very low taxonomic level with short and specifi c DNA fragments. 
The major efforts are underway for barcoding of medicinal and aromatic plants 
worldwide (Cowan and Fay  2012 ; Elliott and Jonathan  2014 ). However, very little 
work has been reported for barcoding of Indian medicinal plants. India carries 
7–8 % of world biodiversity with excessive resources of medicinal plants (45,500 
approx.). Out of those, 8,000 plant species are of medicative worth, and 960 species 
are considered in a trade. Out of that, 178 species have a yearly consumption of 
more than 100 metric tons (Aneesh et al.  2009 ; Efferth and Greten  2012 ). The 
demand of the medicinal plants at industrial level is higher due to its global growth 
within the herbal industries. Thus, the Indian market is a center of herbs with the 
calculable trade of US$140 million annually. The botanical and natural ingredients 
export worldwide was more or less US$33 billion throughout 2010, and it was 
expected to reach US$93 billion by 2015 according to the December 2011 bulletin 
of Market News Service. The export of Indian medicinal plants and their products 
is estimated to be about $0.2 billion. In addition to the international trade, there is a 
considerable volume of international exchange of medicinal plants in India with a 
turnover of $1.6–$1.8 billion (Mishra et al.  2015 ). Total world seasoning herbal 
market is of the scale of $60 billion yearly with India’s contribution of 2.5 %. Thus, 
in spite of having an extensive heritage of Ayurvedic literature and a good variety of 
medicinal plant species, India is still struggling with the potential market demand 
(Mishra et al.  2015 ). For increasing the India’s share in the global herbal market, the 
improvement in quality control, standardization, scientifi c ways of production, and 
analysis of business products is necessary. The standardized mass produce of herbal 
products tested scientifi cally would not only maintain the effi cacy of the herbals but 
also offers a competing edge to other medicines. China is presently leading the 
efforts on DNA barcoding of medicinal plants and has developed the database of 
DNA barcodes (Lou et al.  2010 ). Some reports are also available for DNA barcod-
ing of Indian medicinal plants (Parveen et al.  2012 ; Ghosh et al.  2013 ). Due to 
importance and demand of herbal raw materials and products, the herbal industry 
suffers from substitution and adulteration of medicinal plants with its closely related 
species. Adulteration and mixing cause major changes in formulation and are also 
considered as illegal practices. The effi cacy of any drugs/herbal product decreases 
when the herb is adulterated, and sometimes it could be lethal if it is substituted with 
toxic adulterants. The correct formulation is important for the medicinal herb to be 
effective. The main source of income of herbalist is the trading of medicinal plants. 
The economic constraints might offer an incentive for herbalists to substitute rare 
ingredients with cheaper and a lot of pronto offered species. Due to the illegal over-
trading of medicinal plants, many plant species have become endangered in India. 
Therefore, to avoid these practices, some identifi cation tags are required to detect 
plant materials. DNA barcoding is a useful tool for the discrimination of raw materi-
als of medicinal plants.  
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4.4     Different Approaches of DNA Barcoding in Plants 

 Due to the complexity of DNA barcoding in plants, may it be amplifi cation, sequenc-
ing, or a signifi cant “barcoding gap,” the technique has demanded ample attention 
toward the improvement of the methodology of the identifi cation process. Thus, 
approaches like combining multiple barcodes at the totally different taxonomic 
group or multiple combinations of barcodes in a tiered fashion, such as a particular 
combination of one taxonomic group followed by a more robust combination at the 
next level, have recently gained importance. These approaches are mentioned below 
to introduce to the readers with the current methods in DNA barcoding in plants. 

4.4.1     Single-Locus Approach 

 Due to the differences in the effi ciency of barcoding markers in discriminating 
plants of different families, individual markers have been comparatively evaluated 
in a number of families (Gao et al.  2010a ,  b ; Hollingsworth et al.  2009 ; Li et al. 
 2012 ; Muellner et al.  2011 ; Pettengill and Neel  2010 ). matK is the nearest plant 
analogue to COI, the animal DNA barcode. It typically provides high resolution, 
leading to good species identifi cation as a result of its speedily evolving coding 
fragment among the plastid genome (Lahaye et al.  2008 ). However, the disadvan-
tage of this barcode marker is due to unavailability of universal primer sets for all 
taxa. It creates a problem in PCR resulting in low PCR amplifi cation particularly in 
non-angiosperms (Kress and Ericsson  2007 ; CBOL Plant Working Group  2009 ). As 
compared to matK, the barcode marker rbcL (ribulose-1,5-bisphosphate carboxyl-
ase/oxygenase large subunit) is easy to amplify and sequence. It is an important 
candidate for plant DNA barcoding even though its discriminatory power is not as 
good as matK. matK and rbcL have been suggested to be the core DNA barcodes for 
plants (Hollingsworth et al.  2009 ). Other than these, the plastid intergenic spacer 
trnH-psbA is also used as a supplementary DNA barcode. It has higher species dis-
crimination success and variable intergenic spacers in plants (CBOL Plant Working 
Group  2009 ; Liu et al.  2012a ,  b ). The main focus related to this locus includes the 
high frequency of mononucleotide repeats that cause simplex reads (Devey et al. 
 2009 ) and thus hamper the recovery of bidirectional sequences. Another common 
event encountered during this region is the microinversion. Microinversions in 
trnH-psbA have been studied in various angiosperms (Whitlock et al.  2010 ). Thus, 
the advanced design of trnH-psbA makes it tough to use as a barcode (Storchova 
and Olson  2007 ; Hao et al.  2010 ). However, the additional characters for species 
discrimination are provided by uncorrected microinversions (Jeanson et al.  2011 ). 
Although demonstrated a positive impact on species, discrimination by manually 
correcting inverted sequences has been demonstrated (Whitlock et al.  2010 ). A 
comprehensive analysis of the utility of trnH-psbA and its mixture has been studied 
(Pang et al.  2012 ). Many researchers have been concerned with the utilization of 
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nuclear internal transcribed spacer (ITS) region in the form of the standard barcode 
and have recommended one of the core barcodes for seed plants (Li et al.  2015 ). 
Subsequent to this study, part of this region, ITS2 was also suggested to be a novel 
barcode for both plants and animals (China Plant BOL Group  2011 ; Yao et al.  2010 ; 
Chen et al.  2010 ). On the basis of its performance in phylogenetic studies (Baldwin 
 1992 ), resolving power of ITS was not underestimated; however, the following 
three major problems were encountered in its use. 

4.4.1.1     Sequencing 

 One of the main limitations for nuclear ITS is its recovery, since the amplifi cation 
and sequencing are diffi cult for this region (Kress et al.  2005 ). An alternative to it is 
the use of ITS2 that is less complicated to work with due to the small length of target 
fragment which makes amplifi cation and sequencing easier.  

4.4.1.2     Paralogous Gene Copies 

 Nuclear ITS fragment is available in multiple copies in the cells. Concerted evolu-
tion of multiple copies leads to divergence co-occurring in the individuals (Alvarez 
and Wendel  2003 ; Bailey et al.  2003 ). This can lead to rendering the sequences 
unreadable resulting in messy sequences. This paralogy phenomenon may lead to 
misidentifi cation of samples because depending upon the variant sequence, the spe-
cies will be identifi ed subsequently. However, the identifi cation of region, compared 
to other markers, is not compromise due to the availability of paralogous copies 
(Hollingsworth et al.  2011 ).  

4.4.1.3     Fungal Contamination 

 The fungal ITS regions represent similarity with their plant correspondent. The 
primers considered for amplifi cation as well as sequencing are very similar. Thus, 
the fungal DNAs are amplifi ed by accident in several cases, particularly for the 
plants containing fungal endophytes. This can lead to misidentifi cation of samples. 
Therefore, no matter the quantity of primer sets obtainable for this explicit barcode 
region, amplifi cation and sequencing have been hard for numerous samples 
(Gonzalez et al.  2009 ).   
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4.4.2     Alternate Regions as DNA Barcodes 

 Besides the core plastid markers (matK, rbcL), the supplementary trnH-psbA, and 
ITS regions, there are other plastid protein-coding genes (rpoB, rpoC1), plastid 
intergenic spacers (atpF-H, psbK-I), and low-copy number genes being tested for 
identifi cation in several families (Pillon et al.  2013 ).  

4.4.3     Multilocus Approach 

 The multilocus approach is an adequate method for DNA barcoding of plants with 
good discrimination success (Kress and Erickson  2007 ; Fazekas et al.  2008 ; 
Newmaster et al.  2008 ; CBOL Plant Working Group  2009 ). The practice of using 
multiple barcodes has emerged in view of the unsatisfactory performance by indi-
vidual loci. The high discrimination-related results could be obtained through com-
bining the universality, discriminatory power, and amplifi cation success of each 
locus. Multilocus combinations also promote high clade support values in 
monophyly- based identifi cation of samples as in the case of Nyssaceae (Wang et al. 
 2012 ). Any plant barcode can be a combination of two or more locus. One of them 
may be a conservative coding region like rbcL and the other, a rapidly evolving 
noncoding region. The noncoding trnL intron and trnL-F intergenic spacer (IGS) 
are recommended for situations involving extremely degraded tissue (Taberlet et al. 
 2007 ). In bryophytes, the power of this region has been tested (Quandt et al.  2004 ; 
Stech et al.  2013 ). Thus, trnL-F and trnL regions were further used successfully for 
distinguishing the mysterious aquatic fern gametophyte (Li et al.  2009 ). Even a 
project on two-locus DNA barcode for plants (matK + rbcL) has been proposed by 
the CBOL Plant Working Group ( 2009 ). In some cases, the combination of three 
loci has failed to improve the discrimination better than two-locus barcodes in few 
cases (Wang et al.  2012 ). To avoid expenses of using a three loci combination for 
large data sets, the two-locus barcode was accepted as the standard barcode for land 
plants (CBOL  2009 ). In the case of two-locus, the preserved coding loci align well 
with the taxa of a community sample to determine deep phylogenetic branches. The 
hypervariable region of the DNA barcodes can align with ease in the subclades of 
closely related species (Kress et al.  2009 ). The complementation of rbcL gene and 
the noncoding trnH-psbA spacer region has been demonstrated (Fazekas et al. 
 2008 ). In contrast to CBOL, they suggested the use of more than two regions 
because of the decreased discrimination identifi ed in barcoding analyses with three 
or more regions. This concept would also be benefi cial when some of the loci recov-
ered are of bad quality. Another effi cient work using rbcL in combination with trnL-
 F for ferns has also been demonstrated and shown great potential for species 
discrimination (de Groot et al.  2011 ). The composition vector (CV) approach (Qi 
et al.  2004 ) has been described as an effi cient method for analyzing rRNA data sets. 
The changed CV methodology incorporates an adjustable weighted algorithmic 
program for the vector distance as per the magnitude relation of sequence length 
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found between a pair of taxa within the candidate genes. Recently, changed CV 
approach has been applied for studying huge multigene datasets for plant DNA 
barcoding (Li et al.  2012 ).  

4.4.4     Tiered Approach 

 Combining barcode markers for discriminating species is robust and has high sup-
port values. A newer approach for combining the barcode, known as the tiered 
approach, is also evolving. Although vigorous efforts are going on to fi nd suitable 
universal loci for plants, and there may be one in future, but relying on a single locus 
for plants will still be a bad choice. This is because of hybridization and introgres-
sion observed in some group of plants. Therefore, rather depending on maternally 
inherited genes, using a combination of both coding and noncoding regions in a 
stepwise manner will be the favorable and logical approach. It permits an unknown 
sample to be allotted at a taxon level, where a successful pair of primers can be 
targeted. Among a small group of taxa, the samples are aligned fi rst followed by 
fi nal assignment. In a specifi c taxonomic group, only a few studies have tested this 
methodology (Newmaster et al.  2006 ; Xiang et al.  2011 ). The fi rst tier coding 
region, common in plants, has been used for differentiation at a defi nite taxonomic 
level, followed by a lot of variable second tier coding or noncoding region at the 
species level. Alignments at fi rst tier (coding regions) would decrease the problem 
of aligning more divergent genera using noncoding regions at the second tier. So, 
under a common fi rst tier sequence, the dataset will be properly organized to per-
form well at the next level of resolution. The method also preserves the effi ciency 
of the previous multilocus approach since the complement regions for a group can 
still be used in this method. The rbcL has been considered as a primary tier barcode 
(Newmaster et al.  2006 ). Although it is the most identifi ed plastid coding region in 
GenBank, covering a majority of groups and thus can work as a platform for com-
parison of different plastid genes. rbcL was analyzed to see how well it resolves 
congeneric species. This marker might be used for resolving congeneric species 
(85 % cases), so it should be used as the core fi rst tier locus, followed by a choice of 
a secondary locus at the second tier. The method, therefore, provides fl exibility in 
the choice of the next locus after a standard common region is used at a particular 
level. Similarly, this approach has been supported by Xiang et al. ( 2011 ) and also 
recommended that the use of matK at the generic level with further resolution at the 
second tier needs to be explored with a suitable second tier locus.   

4.5     Bioinformatics Approaches 

 Bioinformatics play an important role in DNA barcoding analyses. The DNA bar-
coding processes depend on the availability of information in the form of data. If the 
data are available for query, we can use bioinformatics tools for the analysis of 
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barcode data. After the collection of corresponding query sequences, sequence anal-
ysis and phylogenetic construction are performed. Sequence analysis basically 
involves the query and reference dataset sequence alignments. Some of the MSA 
programs ClustalW, T-Coffee, and MUSCLE, etc. are used for sequence analysis. In 
silico innovation approaches for DNA barcoding have been developed on the basis 
of compensatory base changes (CBCs) (Wolf et al.  2005 ), operational taxonomic 
units (OTUs) (Slabbinck et al.  2008 ), DNA metabarcoding (Riaz et al.  2011 ), locus- 
specifi c tools (Liu et al.  2011 ), tool for representing barcode symbology (Liu et al. 
 2012a ,  b ), neural network techniques (Zhang et al.  2008 ), machine learning (Zhang 
et al.  2012a ,  b ), data mining (Bertolazzi et al.  2009 ), composition vector (Kuksa and 
Pavlovic  2009 ), etc. The available software and tools analyzing the barcode data are 
given below (Table  4.2 ).

   Table 4.2    Different software and tools used for DNA barcoding   

 Categories of software and 
tools  Name of software and tools  References 

 Alignment-free and character 
based 

 BRONX (Barcode Recognition 
Obtained with Nucleotide 
eXposés) 

 Little ( 2011 ), Zhang et al. 
( 2008 ), and Bertolazzi 
et al. ( 2009 ) 

 BPSI (Back Propagation Species 
Identifi cation) 
 BLOG (Barcoding with LOGic 
formulas) 

 psbA-trnH based  PTIGS-Idit  Liu et al. ( 2011 ) 
 Distance based  TaxI  Steinke et al. ( 2005 ) 
 Character based  CAOS (Characteristic Attribute 

Organization System) 
 Sarkar et al. ( 2008 ) 

 Oligonucleotide frequency 
based 

 Oligonucleotide Frequency 
Barcode Generator (OFBG) 

 Tyagi et al. ( 2010 ) 

 Simultaneous sequence and 
structure alignment 

 4SALE  Seibel et al. ( 2006 ) 

 CBC detection  CBCAnalyzer  Wolf et al. ( 2005 ) 
 OTU clustering and annotation  jMOTU and taxonerator  Jones et al. ( 2011 ) and 

Kumar et al. ( 2011 )  CLOTU 
 Identifi cation of new barcode 
markers and associated PCR 
primers 

 ecoPrimers  Riaz et al. ( 2011 ) 

 Analysis of discrimination 
capacity of individual markers 

 TaxonGap  Slabbinck et al. ( 2008 ) 

 DNA barcoding based on 
Bayesian phylogenetics 

 Statistical Assignment Package 
(SAP) 

 Lou et al. ( 2010 ) 

 Analysis of resultant data  OTUbase  Beck et al. ( 2011 ), Brown 
et al. ( 2012 ) and Little 
( 2010 ) 

 SPIDER (SPecies IDentity and 
Evolution in R) 
 Barcode Quality Index (B) 
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4.6        Limitations 

4.6.1     The Absence of Universal Barcode and Selection 
of Appropriate Barcode Region 

 In DNA barcoding, the universality of the barcode is still a big problem. It is diffi -
cult to attain the universality of barcode due to the insuffi cient information of 
genetic variation in the less-studied taxonomic group. This problem is majorly 
found in plants as compared to animals. The differentiation and identifi cation of 
species relying on interspecifi c variation among DNA sequences are due to the reso-
lution capability of a barcode. Thus, there is a challenge in defi ning a good quality 
barcode consisting of a small and variable DNA sequence fl anked by conserved 
regions (Hebert et al.  2003b ; Moritz and Cicero  2004 ; Rubinoff et al.  2006a ; Ficetola 
et al.  2010 ). The most important task of DNA barcoding is the identifi cation of uni-
versal primers amplifying fragments with high resolution. However, it has been 
argued that a single short fragment will be suffi cient to discriminate the organism at 
species level identifi cation (Ficetola et al.  2010 ; Rubinoff et al.  2006a ; Moritz and 
Cicero  2004 ). The single-locus DNA barcodes lack adequate variation in the closely 
connected taxonomic group, so for the identifi cation of plants, no loci are available 
(Li et al.  2015 ).  

4.6.2     Error Found in DNA Barcoding when Mitochondrial 
Sequences Are Used 

 DNA barcoding faced limitation due to the presence of the same copy of a gene of 
interest in the mitochondrial genome because of heteroplasmy in mtDNA, bacterial 
infection biasing, nuclear integration, and introgression in mtDNA. The duplication 
of a gene, i.e., if a portion of cytochrome oxidase I (COI) are duplicated in a given 
species, typical PCR may amplify these fragments. Thus, it will not be clear whether 
the paralogous copy had diverged from duplication of COI (Campbell and Barker 
 1999 ; Song et al.  2008 ). The heteroplasmy is the combination of more than one type 
of mitochondrial genome in a species. The overestimation of the quantity of distinc-
tive species in barcoding results due to occurrence of co-amplifi cation in divergent 
heteroplasmic copies of mtDNA (Rubinoff et al.  2006b ; Song et al.  2008 ; Fišer 
Pečnikar and Buzan  2014 ; Magnacca and Brown  2010 ; Moulton et al.  2010 ; 
Valentini et al.  2009 ; Acs et al.  2010 ; Hurst and Jiggins  2005 ). The bacterial infec-
tion found in mtDNA due to the maternally inherited symbionts can cause linkage 
disequilibrium, and each individual becomes infected with such symbionts. These 
symbionts among closely connected species break the species barrier by conjuga-
tion followed by selective sweep leading to the identical mtDNA sequences in dif-
ferent species (Song et al.  2008 ; Whitworth et al.  2007 ). The nuclear integration of 
mtDNA creates error for barcoding. Nuclear mitochondrial pseudogenes (numts) 

4 DNA Barcoding of Medicinal Plants



108

are a nonfunctional duplication of mtDNA in the nucleus and occur in the major 
clades of eukaryotes. The presence of numts in the nuclear region creates a problem 
in DNA barcode data library construction and species identifi cation. The potential 
existence of COI numts causes a major problem to DNA barcoding (Bensasson 
et al.  2001 ; Richly and Leister  2004 ; Song et al.  2008 ; Zhang and Hewitt  1996 ). The 
introgression in mtDNA also creates a problem for barcoding. Introgression is the 
process of transfer of a gene from one species into the gene pool of other species 
through recurrent backcrossing of an interspecifi c hybrid with one among its par-
ents. It causes confusion in species boundaries between evolutionary lineages (phy-
logenies) that might commonly be divergent (Rubinoff  2006 ). In meta-analysis of 
phylogenetic studies, it was found that over 20 % of the studies lineages present 
problem due to mtDNA introgression (Ballard and Whitlock  2004 ; Fišer Pečnikar 
and Buzan  2014 ; Rubinoff  2006 ; Valentini et al.  2009 ; Vences et al.  2005 ; Acs et al. 
 2010 ; Hurst and Jiggins  2005 ; Machado and Hey  2003 ). There are limitations of 
using mtDNA in infer species boundaries with the retention of ancestral polymor-
phism, male-biased gene fl ow, and selection on any mtDNA nucleotide (the whole 
genome is one linkage group). The introgression along with hybridization and 
paralogy results in the transfer of mtDNA gene copies to the nucleus (Hebert et al. 
 2004 ; Ballard and Whitlock,  2004 ; Bensasson et al.  2001 ). These factors in mtDNA 
create a problem for both animal and plant DNA barcoding.  

4.6.3     Lack of Comprehensive Reference Database 

 DNA barcoding is affected due to incomplete a priori identifi cation of specimen in 
the reference database. The confl ictions are created in data assessment; different 
laboratories work on the same taxa and explain different nomenclatures of the same 
species through morphological identifi cation (Becker et al.  2011 ; Collins and 
Cruickshank  2013 ). If the reference database is not comprehensive, it will create 
misidentifi cation of the taxa (Meyer and Paulay  2005 ; Valentini et al.  2009 ). DNA 
barcoding faces limitations when the selected individual represents to every taxon 
within the reference database. The unknown specimen taken from undescribed bio-
diversity causes problems in the identifi cation (Fišer Pečnikar and Buzan  2014 ; 
Rubinoff  2006 ). The reference sequences from taxonomically verifi ed specimen 
lead to the validity of DNA barcoding. In the absence of the reference data, DNA 
barcoding will face limitations and challenges (Ajmal et al.  2014 ). DNA barcoding 
will also face diffi culty when the query sequence lacks its target in the reference 
database. Therefore, the barcoding-based identifi cation of the query at the species 
level fails (Nielsen and Matz  2006 ; Virgilio et al.  2010 ). The reference sequences 
are verifi ed from voucher specimen that is documented by experienced taxonomists. 
Due to lack of reference database, there will be no authentic library for recently 
identifi ed query sequences. As a result, there will be a large quantity of legacy data 
in the form of sequences that are available in GenBank. These will not be used as a 
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barcode. Thus, DNA barcoding does not improve the speed of cataloging the life on 
earth (Taylor and Harris  2012 ; Peterson et al.  2007 ).  

4.6.4     Lack of Statistical Solution 

 DNA barcoding is a useful tool for the identifi cation of unknown species. For this 
methodology, the threshold values providing a distinction between intraspecifi c and 
interspecifi c variation values are required. If the unknown sequence differs from the 
nearest reference sequence by a variation above the threshold, the organism contain-
ing the sequences will belong to a specifi c species, suggesting its classifi cation 
needs additional investigation. The wide range of overlap between intra- and inter-
specifi c divergence values creates major problems. These overlaps seem compara-
tively restricted and far from the respective average values. Thus, only the mean 
values for intra- and interspecifi c comparisons of closely connected sibling species 
are required (Desalle  2006 ; Hebert et al.  2003a ; Prendini  2005 ; Rubinoff  2006 ; 
Taylor and Harris  2012 ; Valentini et al.  2009 ; Vences et al.  2005 ; Casiraghi et al. 
 2010 ; Frézal and Leblois  2008 ). The use of a different threshold considering the 
tenfold rule (gap corresponds to a generic ten times the value of intraspecifi c diver-
gence) has been proposed. This law has been extensively criticized (Meyer and 
Paulay  2005 ; Moritz and Cicero  2004 ; Matz and Nielsen  2005 ; Nielsen and Matz 
 2006 ; Valentini et al.  2009 ). To overcome this diffi culty, currently it is predicted that 
the interspecifi c sequence divergence should increase to the threshold of 2 or 3 % 
dissimilarity. This threshold has been set on the basis of experimental proof obser-
vation of sequence variations among congeneric species (Hebert et al.  2003b ). This 
approach might be simple to neglect the inconclusive or inaccurate results. Thus, 
there is a requirement of for statistical strategies when a sampled query sequence is 
the same as the specifi c database sequence to proof a species assignment of the 
query (Nielsen and Matz  2006 ). The strong assumptions based on the population 
genetics of the analyzed species revealed the statistical uncertainty in DNA barcod-
ing (Nielsen and Matz  2006 ). The unrealistic assumption of excellent sequence 
identity at intraspecies level is abandoned. Thus, with not creating population 
genetic assumptions, the DNA barcoding is not possible (Acs et al.  2010 ; Hickerson 
et al.  2006 ). It has been observed that with robust population subdivision within 
species, the species assignment might fail due to the underlying demographics that 
have not been modeled capably. Another case is sequence sampled from a sub- 
population with no gene fl ow with any of the population listed in the database. The 
DNA barcoding statistical methods which are used here do not categorize the query 
sequence as a member of the parental species, even though taxonomists would iden-
tify it as belonging to it. So, DNA barcoding might fail as a result of the unrecogni-
tion of taxonomical units corresponding to a population that is reproductively 
isolated and additionally if centered on a range of nucleotide changes (K) as a sta-
tistics within the hypothesis-based mostly approach. Nielsen and Matz ( 2006 ) have 
urged that a procedure that examines a number of nucleotide changes only between 
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a query sequence and its best match within the information match in the database is 
not optimal. During this series for DNA barcoding, two ways, K-test and Bayesian 
check, are developed from a perspective of applied mathematics genetics. The per-
formance of K-test faces drawback if some species were missing from the informa-
tion and such behavior might lead to incorrect assignment of queries derived from 
these “unrecorded species.” On the other hand, Bayesian theorem is used as an 
advantage upon the K- test in terms of accuracy and ability to face the negligence 
with more than one sequence per species in the database. However, this methodol-
ogy is also with diffi culties of signifi cant phylogenetic assumptions and species 
level assumptions which are not always correct. Therefore, the convenience of a full 
Bayesian theorem might not eliminate the necessity for illation procedures with 
controlled frequentist (hypothesis-based) properties (Nielsen and Matz  2006 ). Still, 
DNA barcoding faces the problem to check the clear hypothesis meaning alternative 
of inappropriate or suboptimal analytical technique because of confusion on the 
objectives of the study.  

4.6.5     Limitation of Distance-Based and Tree-Building Method 
Used in DNA Barcoding 

 In some reports, it is noted that DNA barcoding fails in the form of taxonomic 
approach because it does not recover correct species tree (Hebert and Gregory  2005 ; 
Will and Rubinoff  2004 ; Rubinoff et al.  2006a ). Some criticism has arisen due to 
distance-based and character-based methods. Some reports have mentioned that the 
distance-based method should not be used for DNA barcoding, as it is a phenetic 
measure and is not appropriate for species identifi cation (Casiraghi et al.  2010 ; 
Desalle  2006 ; Meyer and Paulay  2005 ). In the distance-based method, NJ tree acts 
as a standard part of the procedure for DNA barcoding (Casiraghi et al.  2010 ; 
Collins and Cruickshank  2013 ). But, there is a good documentation about the poor 
performance of NJ trees on the basis of trial and error and theoretical (Collins and 
Cruickshank  2013 ; Little  2011 ; Meier et al.  2006 ; Virgilio et al.  2010 ; Zhang et al. 
 2012b ). The inappropriate use of NJ trees for identifi cation can decrease the effec-
tiveness of DNA barcoding. This will ensue either mtDNA paraphyly or misidenti-
fi cation of species independently. The NJ trees do not seem to be resolved by 
exploitation the other tree inference ways (Desalle  2006 ; Desalle  2007 ; DeSalle 
et al.  2005 ; Lowenstein et al.  2009 ; Rubinoff et al.  2006a ; Taylor and Harris  2012 ; 
Austerlitz et al.  2009 ; Collins and Cruickshank  2013 ; Kerr et al.  2009 ; Little  2011 ; 
Little and Stevenson  2007 ; Lowenstein et al.  2009 ; Srivathsan and Meier  2012 ; 
Virgilio et al.  2010 ; Zhang et al.  2012b ; Collins et al.  2012 ; Collins and Cruickshank 
 2013 ; Will et al.  2005 ). On the other hand, the character-based methodology are 
used to identify the nucleotide combinations (Collins and Cruickshank  2013 ). The 
character-based methodology have failed to break into the most stream of DNA 
barcoding (Savolainen et al.  2005 ). However, currently, DNA barcoding via 
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tree-based approach did not stop at distance vs. character based approach. Avoiding 
any tree- building analysis due to its impression of inferring phylogenies and rela-
tionships with single-gene tree is well known as a problem of phylogenetics (DeSalle 
et al.  2005 ; Taylor and Harris  2012 ). Generally, the phylogenetic technique has been 
proposed as a data analysis in order to overcome the limitations of the threshold-
based methodology in DNA barcoding. However, the application of these threshold-
based approaches leads to some problem in a study on the relationship between 
DNA barcoding and molecular phylogeny. DNA barcoding is not a phylogenetic 
reconstruction. Still, these methods are being used along with the debate in phylog-
eny and identifi cation in the area of DNA barcoding (Casiraghi et al.  2010 ; Moritz 
and Cicero  2004 ; Vogler and Monaghan  2007 ). The bootstrap resampling can fur-
ther decrease the already low identifi cation success rates associated with NJ trees 
(Brown et al.  2012 ; Collins and Cruickshank  2013 ; Fujita et al.  2012 ; Meyer and 
Paulay  2005 ; Monaghan et al.  2009 ; Puillandre et al.  2012 ; Virgilio et al.  2012 ; 
Zhang et al.  2012a ). The use of bootstrap resampling in DNA barcoding studies cre-
ates confusion between species discovery and specimen identifi cation. Bootstrapping 
in this situation also helps in addressing the problem with NJ trees, such as taxon-
order bias and tied trees (Lowenstein et al.  2009 ; Meier et al.  2008 ). Use of boot-
strap value as a cutoff for correct identifi cation severely compromises the effi cacy 
of a reference library and exacerbates the previously outlined weaknesses of using 
tree-based methods in general (Collins et al.  2012 ; Collins and Cruickshank  2013 ; 
Zhang et al.  2012b ).  

4.6.6     Limitation in Available Bioinformatics Tools 
and Algorithm 

 The biases occurred in methods used for the original cohort of DNA barcoding are 
being replicated by various studies and assisted by the analytical tools obtainable 
from the BOLD. A character-based tool, i.e., BLOG, has been made along with 
BOLD. But, presently it is available only on the Barcode of Life Data Portal (BDP) 
instead of various BOLD websites. The current popular methods could be a product 
of routine instead of wise selection. This means a systematic appraisal of taxa has 
not been capitalized by the barcoding movement. For DNA barcoding, easy-to-han-
dle tools are required for species discrimination and identifi cation. These tools use 
pairwise global alignment or alignment-free and automated selection of data parti-
tions of an alignable group of samples (CBOL Plant Working Group  2009 ; Chu 
et al.  2009 ; Kress et al.  2009 ; Kuksa and Pavlovic  2009 ; Hollingsworth et al.  2011 ). 
Microinversions are common in noncoding regions leading to multiple groupings of 
samples.  
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4.6.7     Absence of Effective Bioinformatics Pipeline for DNA 
Barcoding 

 DNA barcoding is being used to recognize and identify the unknown species. Thus, 
despite its present limitations, the barcoding method provides a pipeline for the 
survey of biodiversity, a crucial task for prioritizing conservation efforts, given the 
present extinction crisis (Taylor and Harris  2012 ; Valentini et al.  2009 ). As men-
tioned earlier, there is a huge amount of sequence information stored in GenBank 
for which there are no voucher specimens, excluding this sequence from use as a 
barcode. During the DNA establishment of a barcoding reference library, there will 
be different unsampled taxa varying the depth of sample coverage for some mark-
ers. So, it is necessary to develop the bioinformatics framework having the access to 
select the sets of samples, directly comparable for a given set of markers. The inte-
gration of analytical approaches into a single easy-to-use workfl ow is required to 
provide comparable bioinformatics support for multi-marker barcoding in animals 
and plants (Hollingsworth et al.  2011 ; Bhargava and Sharma  2013 ).   

4.7     Successful Uses of DNA Barcoding in Medicinal Plants 

 In many studies from 2003 to 2016, the results of DNA barcoding can provide accu-
rate identifi cation of many medicinal plant materials that are not morphologically 
distinguishable. DNA barcoding has found its applications in several areas like 
forensic science, biosecurity (Armstrong and Ball  2005 ), tracing of illegal trading 
of organisms (Galimberti et al.  2014 ), and pharmaceutical and herbal industries, 
among others (Gantait et al.,  2014 ). When there is an insuffi cient morphological or 
anatomical data for the identifi cation of a sample, a stretch of DNA sequence might 
be helpful in identifying a species. Samples with multiple fragments can now pro-
vide multiple species identifi cation, giving a clear picture of habitat that offers a 
critical clue to the investigators (Ferri et al.  2015 ). DNA barcoding works with dif-
ferent identifi cation fi elds and gives more accurate results of medicinal plant identi-
fi cation, i.e., DNA barcode identifi cation with chemical analysis (Palhares et al. 
 2015 ) and next-generation sequencing (Shokralla et al.  2014 ). The plant materials 
are frequently encountered in criminal investigations but often overlooked as poten-
tial evidence. A forensic investigation that seeks to match evidence to a particular 
plant would require an updated database of samples. This requires the collection 
and genotyping of many samples from or near the crime scene. The law enforce-
ment offi cers and attorneys are not very much familiar with the science of botany. 
So, the important plant-based evidence is often overlooked. Development of a 
robust DNA barcode database with highly authenticated sequence information will 
greatly contribute to the future of forensic botany (Ferri et al.  2009 ). Hallucinogenic 
compounds are pharmacological agents banned in most of the states or countries. 
They cause changes in perception, thought, emotion, and consciousness. Such kind 
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   Table 4.3    List of available DNA barcodes of medicinal plants   

 S.N.  Species  Family 
 DNA barcode 
region  Reference 

 1.   Acanthopanacis 
cortex  

 Araliaceae  ITS2  Han et al. ( 2016a ) 

 2.   Acanthopanacis 
cortex  

 Araliaceae  ITS2  Zhao et al. ( 2015 ) 

 3.   Aconitum   Ranunculaceae  psbA-trnH  He et al. ( 2010 ) 
 4.   Acori Tatarinowii 

Rhizoma  
 Araceae  ITS2  Han et al. ( 2016a ) 

 5.   Andrographis 
paniculata  

 Acanthaceae  rbcL  Osathanunkul et al. 
( 2016 ) 

 6.   Andrographis 
paniculata  

 Acanthaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 7.   Angelica  spp.  Apiaceae  matK, 
rbcL,ITS, 
ITS2, 
psbA-trnH 

 Yuan et al. ( 2015 ) and 
Techen et al. ( 2014 ) 

 8.   Astragalus  spp.  Fabaceae  matK, rbcL, 
ITS 

 Xiao et al. ( 2011 ) and 
Techen et al. ( 2014 ) 

 9.   Boerhavia  spp.  Nyctaginaceae  ITS, ITS2,  Selvaraj et al. ( 2012 ) 
and Techen et al. ( 2014 ) 

 10.   Brugmansia ,  Datura   Solanaceae  ITS2  Wu et al. ( 2015 ) 
 11.   Bupleuri radix   Apiaceae  ITS2  Han et al. ( 2016a ) 
 12.   Butea superb   Fabaceae  matK  Wiriyakarun et al. 

( 2013 ) 
 13.   Cassia  species  Fabaceae  rbcL  Sheth and Thaker 

( 2015 ) 
 14.   Centella asiatica   Apiaceae  ITS2, rpoC1, 

trnH-psbA 
 Aziz et al. ( 2015 ) 

 15.   Citrus  spp.  Rutaceae  matk  Penjor et al. ( 2013 ) 
 16.   Cleome   Cleomaceae  matK, rbcL, 

ITS1 
 Tamboli et al. ( 2016 ) 

 17.   Clinacanthus nutans   Acanthaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 18.   Cosmos caudatus   Asteraceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 19.   Cymbidium   Orchidaceae  ITS2  Sharma et al. ( 2012 ) 
 20.   Cynanchum 

auriculatum  
 Apocynaceae  trnL-F  Han et al. ( 2016b ) 

 21.   Cynanchum wilfordii   Asclepiadaceae  trnL-F  Han et al. ( 2016b ) 
 22.   Dalbergiae 

Odoriferae  Lignum 
 Fabaceae  ITS2  Han et al. ( 2016a ) 

 23.   Dendrobium  spp.  Orchidaceae  psbA-trnH  Yao et al. ( 2009 ) 

(continued)

of plants producing hallucinogens has been detected using DNA barcoding tech-
nique in some of the forensic studies (Murphy and Bola  2013 ; Ogata et al.  2013 ). 
Various DNA barcodes available in medicinal plants till date are listed below 
(Table  4.3 ).
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Table 4.3 (continued)

 S.N.  Species  Family 
 DNA barcode 
region  Reference 

 24.   Dipsacus  spp.  Caprifoliaceae  ITS  Vickruck et al. ( 2011 ) 
and Techen et al. ( 2014 ) 

 25.   Gentiana   Gentianaceae  matK + ITS  Liu et al. ( 2016a ) 
 26.   Ginseng  genus  Araliaceae  matK, rbcL, 

ITS, 
psbA-trnH, 

 Dong et al. ( 2014 ), 

 rpoB, rpoC1, 
ITS2 

 Wallace et al. ( 2012 ) 
and Liu et al. ( 2016b ) 

 27.   Ginseng radix   Araliaceae  ITS2  Han et al. ( 2016b ) 
 28.   Hedyotis diffusa  

Willd. 
 Rubiaceae  ITS  Sun et al. ( 2011 ) 

 29.   Hypericum  spp.  Hypericaceae  ITS  Newmaster et al. ( 2013 ) 
 30.   Illicium   Schisandraceae  ITS + 

trnH-psbA 
 Zhang et al. ( 2015a ) 

 31.   Inulae fl os   Compositae  ITS2  Han et al. ( 2016b ) 
 32.   Justicia gendarussa   Acanthaceae  ITS2, rpoC1, 

trnH-psbA 
 Aziz et al. ( 2015 ) 

 33.   Lonicera  spp.  Caprifoliaceae  matK, rbcL, 
ITS, 
psbA-trnH, 
trnL-F 

 Techen et al. ( 2014 ) 

 34.   Lonicerae japonicae  
Flos 

 Caprifoliaceae  ITS2  Han et al. ( 2016b ) 

 35.   Meconopsis  spp.  Papaveraceae  ITS  Techen et al. ( 2014 ) 
 36.   Mentha aquatica  L.  Lamiaceae  rbcL, matK, 

trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 37.   Mentha spicata  L.  Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 38.   Mucuna collettii   Fabaceae  matK  Wiriyakarun et al. 
( 2013 ) 

 39.   Murraya koenigii   Rutaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 40.   Ochradenus  spp.  Resedaceae  ITS, rpoB, 
rpoC1 

 Techen et al. ( 2014 ) 

 41.   Ocimum gratissimum   Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 42.   Ocimum basilicum  L.  Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

(continued)
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Table 4.3 (continued)

 S.N.  Species  Family 
 DNA barcode 
region  Reference 

 43.   Ocimum tenuifl orum  
L. 

 Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 44.   Origanum 
heracleoticum  L. 

 Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 45.   Origanum majorana  
L. 

 Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 46.   Orthosiphon 
stamineus  

 Lamiaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 47.   Paris  spp.  Melanthiaceae  ITS2  Zhu et al. ( 2010 ) 
 48.   Persicaria odorata   Polygonaceae  ITS2, rpoC1, 

trnH-psbA 
 Aziz et al. ( 2015 ) 

 49.   Phyllanthus niruri   Phyllanthaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 50.   Phyllanthus  spp.  Phyllanthaceae  psbA-trnH  Srirama et al. ( 2010 ) 
 51.   Pinelliae Tuber ,  Araceae  matK, rbcL  Moon et al. ( 2016 ) 

  Arisaematis Rhizoma  
 52.   Piper betel   Piperaceae  ITS2, rpoC1, 

trnH-psbA 
 Aziz et al. ( 2015 ) 

 53.   Piper sarmentosum   Piperaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 54.   Plectranthus asirensis   Lamiaceae  rps16, rpoB  Al-Qurainy et al. ( 2014 ) 
 55.   Polygonum 

multifl orum  
 Polygonaceae  trnL-F  Han et al. ( 2016a ) 

 56.   Pueraria candollei   Fabaceae  matK  Wiriyakarun et al. 
( 2013 ) 

 57.   Radix Astragali   Fabaceae  ITS  Zheng et al. ( 2014 ) 
 58.   Radix Rubi Parvifolii   Gentianaceae  ITS2  Han et al. ( 2016b ) 
 59.   Rehmannia  spp.  ITS  Techen et al. ( 2014 ) 
 60.   Rhodiola   Crassulaceae  ITS  Zhang et al. ( 2015b ) 
 61.   Rhododendron   Ericaceae  psbA-trnH  Chen et al. ( 2012 ) 
 62.   Rhododendron  spp.  Ericaceae  matK, 

rbcL,ITS, 
ITS2, 
psbA-trnH 

 Yan et al. ( 2015 ), Chen 
et al. ( 2012 ) and Tsai 
et al. ( 2012 ) 

 63.   Rhubarb   Polygonaceae  matK  Xu et al. ( 2013 ) 
 64.   Rosmarinus offi cinalis  

L. 
 Lamiaceae  rbcL, matK, 

trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 65.   Rubus  spp.  Rosaceae  ITS, 
psbA-trnH, 
trnL-F 

 Newmaster et al. ( 2013 ) 

(continued)
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Table 4.3 (continued)

 S.N.  Species  Family 
 DNA barcode 
region  Reference 

 66.   Ruta  spp.  Rutaceae  ITS, rpoB, 
rpoC1 

 Al-Qurainy et al. ( 2011 ) 

 67.   Sabia  spp.  Sabiaceae  matK, rbcL, 
psbA-trnH 

 Techen et al. ( 2014 ) 

 68.   Salvia divinorum   Lamiaceae  trnL  Murphy and Bola 
( 2013 ) 

 69.   Salvia offi cinalis  L.  Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 70.   Salvia rutilans   Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 71.   Salvia sclarea   Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 72.   Salvia uliginosa   Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 73.   Sambucus chinensis   Acanthaceae  ITS2, rpoC1, 
trnH-psbA 

 Aziz et al. ( 2015 ) 

 74.   Isatis indigotica   Cruciferae  ITS2  Chen et al. ( 2014 ) 
 75.   Scutellaria 

baicalensis  
 Lamiaceae  psbA-trnH  Guo et al. ( 2011 ) 

 76   Scutellaria  spp.  Lamiaceae  matK, rbcL, 
psbA-trnH 

 Techen et al. ( 2014 ) 

 77.   Senna  spp.  Fabaceae  psbA-trnH  Pansa Monkheang 
( 2011 ) 

 78.   Smilax  spp.  Smilacaceae  psbA-trnH  Techen et al. ( 2014 ) 
 79.   Solanum  spp.  Solanaceae  matK, rbcL, 

ITS, 
psbA-trnH, 
trnL-F 

 Zhang et al. ( 2013 ) and 
Techen et al. ( 2014 ) 

 80.   Thymus vulgaris  L.  Lamiaceae  rbcL, matK, 
trnH-psbA, 
rpoB 

 De Mattia et al. ( 2011 ) 

 81.   Tulipa edulis   Liliaceae  matK  Ma et al. ( 2014 ) 
 82.   Uncaria   Rubiaceae  ITS2  Zhang et al. ( 2015c ) 
 83.   Uyghur   Apiaceae  ITS2  Fan et al. ( 2015 ) 
 84.   Vitex  spp.  Lamiaceae  matK  Phoolcharoen and 

Sukrong ( 2013 ) 
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4.8        Conclusions 

 Over the past 12 years, DNA barcoding has been attracting a lot of interest all over 
the world. Researchers working in this fi eld are busy in fi nding a more superior and 
desirable universal DNA barcode for an effi cient conservation of the biodiversity. 
Since a major problem of barcoding lies in the case of plants, the research carried 
out so far in this area has been reviewed including the futuristic approaches. In the 
present chapter, various candidate markers used in plants and a number of barcod-
ing reports have been summarized. Although the CBOL proposed seven candidate 
barcodes belonging to the plastid region, the proposed supplementary loci, i.e., 
nuclear- transcribed spacer regions ITS1 and ITS2, have a number of GenBank sub-
missions of their respective sequences owing to its easy amplifi cation due to high 
copy number. rbcL and matK (both plastid genes) come next followed by 18S rRNA 
(nuclear structural RNA), trnL-F (intron + IGS), and trnH-psbA (IGS), respectively. 
Since higher substitution rates are observed in plant nuclear genes than plastid 
genes, ITS is more in use and also acts as a supplementary marker. But once the 
choice of the locus is made, the approach of single-locus, multilocus, or tiered needs 
consideration. Based on the literature review, it can be inferred that multilocus and 
tiered approaches resulted in higher success rates than the single-locus approach if 
proper combinations of loci and selection of loci for each tier are done carefully.     
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