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    Chapter 19   
 Electrophysiological Features of Telocytes                     

     Daniel     Dumitru     Banciu    ,     Adela     Banciu    , and     Beatrice     Mihaela     Radu    

    Abstract     Telocytes (TCs) are interstitial cells described in multiple structures, 
including the gastrointestinal tract, respiratory tract, urinary tract, uterus, and heart. 
Several studies have indicated the possibility that TCs are involved in the pacemaker 
potential in these organs. It is supposed that TCs are interacting with the neighboring 
muscular cells and their network contributes to the initiation and propagation of the 
electrical potentials. In order to understand the contribution of TCs to various excit-
ability mechanisms, it is necessary to analyze the plasma membrane proteins (e.g., 
ion channels) functionally expressed in these cells. So far, potassium, calcium, and 
chloride currents, but not sodium currents, have been described in TCs in primary 
cell culture from different tissues. Moreover, TCs have been described as sensors for 
mechanical stimuli (e.g., contraction, extension, etc.). In conclusion, TCs might play 
an essential role in gastrointestinal peristalsis, in respiration, in pregnant uterus con-
traction, or in miction, but further highlighting studies are necessary to understand 
the molecular mechanisms and the cell-cell interactions by which TCs contribute to 
the tissue excitability and pacemaker potentials initiation/propagation.  

19.1        Introduction 

 Telocytes (TCs) have been described in a variety of tissues/organs, including the 
gastrointestinal tract (colon, small intestine, etc.), urinary tract (urethra, prostate, 
etc.), respiratory tract (lungs, trachea, esophagus, etc.), skeletal muscle, heart, liver, 
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kidney, skin, eye, etc. [ 1 – 16 ]. Extensive immunohistochemical and electron micros-
copy studies have been conducted on TCs, but their unique features and dynamic 
changes in cell culture limited the in vitro electrophysiological analysis [ 17 ,  18 ]. In 
the last years, several patch-clamp studies have been done on TCs in order to identify 
the ion channels functionally expressed in these cells and to understand their possible 
contribution to pacemaker potentials. In this chapter will be presented the most 
recent in vitro electrophysiological studies conducted on TCs from different tissues 
and the current conclusions based on these studies. At the end of the chapter are dis-
cussed some open questions concerning the role played by TCs in the various organs.  

19.2     Which Ion Channels Are Functionally Expressed 
in Telocytes? 

 Interstitial cells (IC), interstitial cells of Cajal (ICC), interstitial Cajal-like cells 
(ICLC), and telocytes (TC) were studied in terms of ion channels in a manner which 
highlights the functions of these cells (Table  19.1 ). Their distribution in different 
tissues infl uenced the evaluation of potential roles played by these cells. It can be 
assumed that the existence of long extensions, the cell motility, and the ability to 
develop gap junctions with neighboring cells infl uence the type of ion channels 
expressed and their degree of activation and local functions.

19.2.1       Potassium Currents 

 Voltage-sensitive potassium channels K v 7.5 are involved in the excitation of the 
interstitial cells of Cajal (ICC) associated with the myenteric plexus but not with 
those associated with the submuscular plexus of the colon [ 19 ]. Immunohistochemical 
and qRT-PCR characterization revealed the presence of K v 7.5 channels in the 
colonic ICC. Carbachol, a muscarinic acetylcholine receptor agonist, inhibited the 
potassium currents, indicating a cholinergic-dependent activation of the voltage- 
sensitive potassium channels. Moreover, XE991, a specifi c Kv7 channel blocker, 
was able to abolish completely the potassium currents [ 19 ]. These currents are very 
similar to the inwardly rectifying maxi-chloride currents that were previously 
described in the ICC associated with the mouse myenteric plexus from the small 
intestine [ 29 ]. Generally, the M-current is carried through heteromeric Kv7.2 and 
Kv7.3, Kv7.3 and Kv7.5, or Kv7.4 and Kv7.5, but in the case of colonic ICC, the 
current seems to be carried exclusively through homomeric Kv7.5 channels [ 19 , 
 30 – 32 ]. By contrast to the myocytes, the ICC in the prostate are characterized by the 
absence of sensitive outward potassium currents [ 20 ]. Hyperpolarization-activated 
cyclic nucleotide currents (HCN) have been also described in mouse colonic ICC, 
but only HCN1 and HCN3 channel transcripts were detected [ 24 ]. 

D.D. Banciu et al.
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 ICC’s presence was previously described in the atrial and ventricular myocar-
dium [ 33 ,  34 ]. In order to understand the role played by TCs in heart contractility, a 
detailed analysis of the existing potassium currents was done. In atrial and ventricu-
lar TCs have been evidenced large conductance Ca 2+ -activated potassium currents 
(BK Ca ) and inwardly rectifying potassium currents (Kir), by applying paxilline and 
naringenin, or Ba 2+ , respectively. However, in these cells neither potassium outward 
currents nor the ATP-sensitive potassium currents have been identifi ed by applying 
4-aminopyridine, or pinacidil, respectively [ 21 ]. The presence of small-conductance 
calcium-activated potassium channels (SK Ca ) was also confi rmed in human uterine 
TCs; their mRNA levels were signifi cantly lower in pregnant myometrium com-
pared to nonpregnant myometrium; and SK activators were suggested to reduce 
contractility in human myometrium [ 23 ].  

19.2.2     Calcium Currents 

 Voltage-gated L-type calcium channels were evidenced in the urinary bladder based 
on nifedipine and Bay K 8644 response [ 26 ], prostate based on nifedipine response 
[ 20 ], and myometrium [ 27 ] based on TCs. These channels have different roles in 
other cell types. Voltage-gated L-type calcium channels are involved in heart auto-
maticity [ 35 – 38 ]. TCs were identifi ed in the heart [ 39 ], and it is possible that these 
cells possess such properties. Changes in urinary bladder function are made by 
streptozotocin-induced diabetes [ 40 ] and hypercholesterolemia [ 41 ] via voltage- 
gated L-type calcium channels. This may correlate with the involvement of these 
channels in cellular electrical automatism, in a manner relatively independent of 
tissue. TCs have the ability to achieve gap junctions with surrounding cells, and 
linking these issues may explain the existence of this automatism on the tissue. 
Androgens induce intracellular calcium increase via voltage-gated L-type calcium 
channels in prostate cancer cells [ 42 ]. This could explain the involvement of these 
channels in cell growth and multiplication. By extension, it is important to verify if 
these channels are involved in the cellular growth and multiplication in physiologi-
cal conditions. 

 Voltage-gated L-type calcium channels are involved in augmentation of sponta-
neous uterine contractility in pregnant rat modulated by protease-activated receptor 
2 [ 43 ]. This modulation of rhythmic contractions can be extrapolated that is impor-
tant at TC level and not just at tissue and organ levels, due to long cell extensions 
that are infl uenced by mechanical forces and due to gap junctions of TCs. Voltage- 
gated L-type calcium channels are modulated by alpha5beta1 integrin-fi bronectin 
interactions, with a role in myogenic tone and vascular wall remodeling [ 44 ]. 
Modulation of L-type Ca 2+  channels by hypoxia [ 45 ] can create a logical link in the 
pathophysiological mechanism, explaining the importance of these channels at TC 
in the muscle tissue under the infl uence promoting automatism, but also on the 
 tissue by integrating interactions between TCs and muscle cells, and achieving feed-

19 Electrophysiological Features of Telocytes
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back loops that include various other factors such as the vascular factors and 
humoral factors consecutively. 

 Voltage-gated T-type calcium channels (Cav3.1 and Cav3.2 subunits) were evi-
denced in the urinary bladder [ 26 ], prostate [ 20 ], and myometrium [ 27 ] on cultured 
TC and tissue strips. These channels play various roles in the smooth muscle wall 
of the blood vessels. Cav3.1 has a role on the blood vessel relaxation in an 
NO-dependent manner [ 46 ] and can induce myogenic constriction in the mesen-
teric vessels [ 47 ] and hypoxia-dependent pulmonary vasoconstriction [ 48 ]. These 
dual behaviors and the dependence on hypoxia may be extrapolated to myome-
trium, emphasizing the role of TC in uterus development and growth under hypoxic 
conditions, or even in birth control. Cav3.2 has a role in the relaxation of coronary 
vascular smooth muscles [ 49 ] and augmented contractility during oxidative stress 
[ 50 ]. Cav3.2 functions of myometrium TCs may be involved in fetal growth vascu-
lar adaptation. 

 Intracellular Ca 2+  concentration is an important excitability regulator in ICC, and 
besides the L-type and T-type calcium channels, the sodium-calcium exchanger 
(NCX3) contributes to the calcium homeostasis in the rat bladder [ 51 ].  

19.2.3     Chloride Currents 

 Human myometrial TCs have been described to present calcium-dependent 
hyperpolarization- activated chloride inward currents [ 9 ]. Ca 2+ -activated Cl −  channels 
on ICC were highlighted indirectly by chloride concentration modulation [ 52 ] and 
subsequently by response to CdCl 2  and CsCl [ 9 ] and response to nifl umic acid [ 20 ].  

19.2.4     Sodium Currents 

 Electrophysiological studies on the human myometrium failed to prove the pres-
ence of Na +  currents in TCs [ 9 ,  22 ].   

19.3     Are Telocytes Involved in the Pacemaker Activity? 

 Different types of cells, including ICC/TCs, can induce these changes through 
intracellular mediators, dynamic changes of ionic concentrations, or other local 
stimulating factors and can contribute to the existence of spontaneous electrical 
activity in various areas associated with initiation/propagation of pacemaker activi-
ties (Table  19.2 ).

D.D. Banciu et al.
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19.3.1       Role of Telocytes in the Pacemaker Activity of Internal 
Cavitary Organs 

 ICC-like cells isolated from the urethra [ 58 ,  59 ], bladder [ 62 ], prostate [ 63 ],  corpus 
cavernosum  [ 64 ], small intestine [ 56 ], embryonic intestine [ 55 ], Fallopian tube [ 60 ], 
and myometrium [ 61 ] present rhythmic fi ring activities acting also as neuromodula-
tors [ 65 ]. These cells which act as pacemakers can modulate the activities of muscu-
lar, nervous, or secretory systems. In ICC from the guinea pig prostate, the spontaneous 
transient depolarizations are initiated with the opening of a small number of Ca 2+ -
activated Cl −  channels followed by a small membrane depolarization which triggers 
the calcium infl ux through T-type calcium channels, and furthermore the summation 
of calcium transients would manifest in the pacemaker potential that opens L-type 
calcium channels in ICC and their neighboring smooth muscle cells [ 20 ]. 

 Patch-clamp experiments using cultured ICC from Balb/C mice urinary bladder 
revealed that these cells act as pacemaker, presenting individual spikes and bursting 
potentials similar to those observed in intact bladder tissues [ 53 ]. These spontane-
ous electrical potentials were inhibited by nifedipine (L-type voltage-gated calcium 
channel blocker) suggesting the involvement of these types of calcium channels 
[ 53 ]. Another study conducted on the rat bladder shows that spontaneous calcium 
activity is not infl uenced by L-type Ca 2+  channels but rather by the T-type calcium 
channels [ 66 ]. The carbachol-induced calcium oscillations were blocked by atro-
pine (a muscarinic receptor antagonist) [ 53 ,  54 ]. These fi ndings suggested the pos-
sible role of voltage-gated calcium channels and muscarinic receptors in generating 
the pacemaker behavior in bladder ICC. 

 Although, electrophysiological recordings on TCs from human myometrium 
failed to prove the presence of Na +  currents [ 9 ,  22 ], studies on transgenic mice have 
proved that longitudinal contractions of the uterus depend on a KIT signaling path-
way of ICC-like cells [ 67 ]. On the other hand, the spontaneous electrical activity 
recorded on the ICC urinary bladder, small intestine, or urethra is based on intracel-
lular calcium changes [ 53 – 59 ]. 

 Calcium imaging on urethra ICC suggests that PKA, RyR, IP3R, and NCX are 
involved in ICC pacemaker activity [ 58 ,  59 ,  65 ]. The pacemaker activity in small 
intestine ICC is modulated through 5-HT 3  and 5-HT 4  receptors, chloride channels, 
Ca 2+ -ATPase from the endoplasmic reticulum, phospholipase A, phospholipase C, 
phospholipase D, and TRPC3 [ 56 ,  57 ]. Calcium imaging studies on embryonic 
mouse intestinal ICC showed the role of L-type voltage-gated calcium channels in 
rhythmic electric activities [ 55 ]. These results revealed that the pacemaker mecha-
nism is more complex and needs to be studied in an integrated manner. Calcium 
imaging studies on embryonic mouse intestinal ICC showed the role of L-type 
voltage- gated calcium channels in rhythmic electric activities [ 55 ]. In human myo-
metrium and Fallopian tubes, Cajal-like cells/TC present spontaneous electric activ-
ity without a rhythmical pattern [ 60 ,  61 ]. 

 ICC have been proposed to be the pacemaker cells in the gastrointestinal tract. In 
the small intestine, ICC associated with the myenteric plexus are generating slow 
waves that contribute to the rhythmic muscle contractions in the proximal intestine 
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[ 68 ]. In the colon, ICC associated with the submuscular plexus contribute to slow 
waves in canine, rat, mouse, and human [ 69 – 73 ], while ICC associated with the 
myenteric plexus do not contribute to slow waves in rat and mouse but generate 
rhythmic transient depolarizations of low and variable frequency as a result of 
L-type calcium channels activation [ 72 ,  73 ]. In the colon, ICC associated with 
myenteric plexus and intramuscular plexus are cooperating for the generation of 
pacemaker activity, and their excitability is regulated by the cholinergic inhibition 
of K v 7.5 channels [ 19 ]. Hyperpolarization-activated cyclic nucleotide currents from 
mouse colonic ICC are tonically activated by basal cAMP production and partici-
pate in the regulation of the pacemaker activity [ 24 ].  

19.3.2     Role of Telocytes in the Pacemaker Activity of the Heart 

 Cav3.1 plays a role in sinoatrial node automaticity [ 74 ] and atrioventricular node 
automaticity [ 75 ]. Extrapolation of Cav3.1 involvement in TC automatism or in tis-
sues containing TC automatism requires further investigations. Cardiac TCs have 
been suggested to be implicated in cardiac rhythm and atrial fi brillation [ 76 ,  77 ]. 

 Sodium-calcium exchanger is involved in the pacemaker activity of the sinoatrial 
node [ 78 ] and in the overactive bladder in transgenic mice overexpressing NCX1.3 
[ 79 ]. It is assumed that the activity of NCX on TC is modulated by ionic concentra-
tions, by gap junctions, and telepods length that can develop the pacemaker func-
tionality of a tissue rather than of individual and independent cells. 

 Ca 2+ -activated Cl −  channels are found in many cell types and have different roles, 
among them being cardiac rhythmic depolarization, modulation of smooth muscle 
contraction, and taste receptor modulation. Their role is unknown in TCs, but the abil-
ity of these cells to have long extensions, gap junctions, and an increased dynamic of 
telepods apparently without stimulus creates opportunities for studying TC behavior 
under the infl uence of Ca 2+ -activated Cl −  channels. TC feature to have a rhythmic elec-
trical activity could be attributed to these channels. In vivo gap junctions between TC 
and adjacent cells could explain TC calcium dynamics changes in the presence of 
neighboring muscle cells and also the lack of in vivo electric automatism in the absence 
of gap junctions. Further studies are needed to assess the role of Ca 2+ -activated Cl −  
channels in TCs and their possible modulatory effect on chemoreceptors.   

19.4     What’s Next? 

19.4.1     TCs Are Sensitive to Stimuli That Modulate Membrane 
Fluidity 

 It was evidenced that TC uterine motility can be modulated by mechanical stimuli 
via optical tweezer [ 28 ]. Blocking the voltage-gated T-type calcium channels, which 
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have a degree of mechanosensitivity, decreases this optical modulation by means of 
mechanical forces. Channels that have a degree of mechanosensitivity are sensitive 
to external mechanical stimulation but also to changes in membrane fl uidity. 
Imatinib, a tyrosine kinase inhibitor that can be used in treating patients with chronic 
myeloid leukemia, may alter membrane fl uidity through alteration of lipid metabo-
lism [ 80 ]. Imatinib can decrease spontaneous contractile activity in guinea pig mod-
els and in human nonpregnant myometrium [ 81 ,  82 ]. Moreover, any change in the 
concentration of steroid hormones can cause changes in membrane fl uidity and 
infl uence the functionality of mechanosensitive-like ion channels. 

 Future studies should focus on cell-cell communication and to explore the infl u-
ence exerted on TC function by the surrounding myocytes through various factors 
that might affect membrane fl uidity. Our hypothesis is that TCs could be involved in 
the stimulation of muscle development where mechanical stress is elevated (e.g., 
uterine musculature). Besides the uterus, TCs may represent a mechanical sensor 
that contributes to the pacemaker activity in the heart, gastrointestinal tract, or uri-
nary tract.  

19.4.2     Hormonal Regulation of TCs: Role in Birth Delivery 

 We hypothesize the TCs involvement in a feedback loop control of uterus that trig-
gers the contraction initiation in birth delivery. The plasticity of the uterine muscu-
lature in pregnancy [ 83 ] might be under the infl uence of TCs that can modulate the 
activity of the surrounding myocytes. Rhythmic muscular activities are associated 
to signifi cant vascular changes in the uterus involving endocrine and humoral fac-
tors release that could be detected by TCs. 

 The increase in placental volume and the level of secreted steroid hormones can 
modulate the cellular membrane fl uidity [ 84 ,  85 ] and subsequently the activity of 
TCs, the function of myocytes, the frequency and force of contractions, and fi nally 
the endocrine feedback loop leading to fetal expulsion. These hypotheses should be 
tested in future studies on the interactions of TCs with surrounding cells in a such 
manner that can integrate mechanical and hormonal modulation with the therapeu-
tic purpose of preventing the premature birth.  

19.4.3     Integrating Information About TCs 

 There is a lack of comprehensive knowledge on the ion channels functionally 
expressed in TCs due to the variety of experimental approaches, including species, 
age differences, and methodology of analysis (in vitro and in vivo studies, staining 
on living and fi xed tissue, presence or absence of neighboring cells, etc.). An impor-
tant limitation in clinical studies is represented by the reduced number of samples 
from patients. 
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 The studies conducted so far led to the hypothesis that TCs play a role in intercel-
lular communication. However, the role of TCs in tissue excitability and pacemaker 
activity is still unclear. Therefore, it is imperative to connect all the information 
available on TCs and to understand their physiological role and their involvement in 
a variety of pathological conditions (e.g., psoriasis, myocardial infarction, focal 
lymphocytic sialadenitis, preeclampsia, ulcerative colitis, etc.) [ 86 – 90 ]. In conclu-
sion, it is a great challenge to explain how TCs with distinct protein expression 
profi les (e.g., ion channels) from different tissues are correlated with similar func-
tions, morphology, and dynamics of these cells.      
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