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    Chapter 16   
 Myocardial Telocytes: A New Player 
in Electric Circuitry of the Heart                     

     Winston     Shim      

    Abstract     The heart is an electrically conducting organ with networked bioelectric 
currents that transverse a large segment of interstitial space interspersed with the 
muscular parenchyma. Non-excitable connective cells in the interstitial space con-
tributed importantly to many structural, biochemical, and physiological activities of 
cardiac homeostasis. However, contribution of interstitial cells in the cardiac niche 
has long been neglected. Telocyte is recently recognized as a distinct class of inter-
stitial cell that resides in a wide array of tissues including in the epicardium, myo-
cardium, and endocardium of the heart. They are increasingly described to conduct 
ionic currents that may have signifi cant implications in bioelectric signaling. In this 
review, we highlight the signifi cance of telocytes in such connectivity and conduc-
tivity within the interstitial bioelectric network in tissue homeostasis.  

16.1        Background 

 All living cells and tissues are believed to be interlinked via bioelectric signaling 
mediated by ionic fl ow, electric fi elds, and voltage gradients to maintain intercon-
nectivity [ 1 ]. The ability to maintain such bioelectric gradients across multidimen-
sional networked cellular entities has important implications in health and disease 
state. Maintenance of bioelectric signaling, beyond electrical conduction per se, via 
differential resting membrane potentials among living cells, in particular, by non- 
excitable cells in the interstitial space has been highlighted to play important roles 
in developmental embryogenesis, tissue morphogenesis, and organ regeneration [ 2 ]. 
Indeed, gradients of membrane potentials within tissue niche are believed to direct 
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stem cell proliferation and differentiation [ 3 ] that could have far-reaching but often 
underappreciated infl uence on cellular physiology. 

 The heart is an electrically conducting organ whereby known players in the 
parenchyma and interstitial space bridge the bioelectric gradients by electrotonic 
conductivity and electrical circuitry that are interconnected through connexins and 
gap junction and via other hitherto poorly studied intercellular adaptors/connectors. 
Non-excitable connective cells in the interstitial space contributed importantly to 
many structural, biochemical, and physiological activities of cardiac homeostasis. 
Heterocellular electrotonic coupling between interstitial cells such as fi broblasts, 
endothelial cells, smooth muscle cells, stem cells, and cardiomyocytes is only 
beginning to be recognized. In fact, in situ membrane connectivity of fi broblasts 
that juxtaposed cardiomyocytes is clearly evidenced in studies involving dye trans-
fer experiments in sinoatrial node that signals their direct participation in physiolog-
ical and perhaps pathological processes of electrical conduction in the heart [ 4 ]. The 
ability of cardiac fi broblasts to act as a bridge between conducting cardiomyocytes 
has been widely demonstrated in various coupling experiments [ 5 ,  6 ]. 

 Telocytes are recently described interstitial cells with exceptionally long cellular 
processes found within cardiac parenchyma of the epicardium, myocardium, and 
endocardium that are believed to mainly act as structural supporting and nursing 
cells in the heart [ 7 – 9 ]. Despite their implicated intermediary role in the electrical 
activities of cardiac rhythm [ 7 ] and atrial fi brillation [ 10 ], very limited is known 
about the electrophysiological property of cardiac telocytes. We recently reported 
that human atrial and ventricular telocytes responded to H 2 S by attenuating TGF- 
β1- stimulated KCa1.1/Kv1.1 and Kir2.1 gene expression. However, the presence of 
competent K +  channels in telocytes and their implications in myocardial physiopa-
thology remain largely unexplored. Human myometrial telocytes have been reported 
to express calcium-dependent hyperpolarization-activated chloride inward current 
[ 11 ], and SK3 outward potassium rectifi er channels were reported in uterine telo-
cytes [ 12 ]. Furthermore, transient outward potassium current that exhibited 
pacemaker- like activity was reportedly present in gastrointestinal telocytes [ 13 ], 
and hyperpolarization-activated cyclic nucleotide-gated (HCN) channel was found 
in telocytes of murine gastric antrum [ 14 ]. In this review, we highlight the signifi -
cance of telocytes in such connectivity and conductivity within the interstitial bio-
electric network in cellular homeostasis.  

16.2     Telocyte: A New Player Within Interstitial Network 

 The seminary work by Popescu and colleagues in the last decade has identifi ed and 
established telocyte as a distinct cellular entity, separate from fi broblasts [ 15 ] in the 
interstitial space of many organs, including the heart [ 16 ], bladder [ 17 ], lungs [ 18 ], 
and skeletal muscle [ 19 ]. Such telocytes are intimately contacting parenchymal tis-
sues within the organs and are implicated in electrical conduction beyond their tra-
ditional structural supporting role in the myocardial system due to their close 
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proximity to nerve endings, cardiomyocytes [ 20 ], and pulmonary veins [ 10 ] in 
which atrial arrhythmias often originated in recurrent atrial fi brillation [ 21 ,  22 ]. 

 Telocytes have previously been described as interstitial Cajal-like cells (ICLC) 
and were found in atrial and ventricular myocardium [ 23 ,  24 ] though very little was 
known of their function. Recently, telocytes have been increasingly recognized to 
participate beyond their passive supporting role but instead may play physiological 
diverse functions in the heart [ 25 – 27 ]. Telocytes have exceptionally long (10–
1,000 μm), moniliform cellular processes named telopodes with intervening podoms 
and podomers that act as long-range cellular connector that transverses a vast inter-
stitial network connecting different segments of the heart [ 28 ] including those of the 
epicardium [ 7 ,  29 ], myocardium [ 8 ,  26 ], and endocardium [ 9 ]. Their close proxim-
ity with cardiac progenitors and cardiomyocytes is believed to be important in the 
repair and regeneration of infarcted myocardium [ 7 ]. However, the mechanisms 
involving in such interactions are poorly understood. 

 The fact that telocytes were found widely in the developing and adult heart [ 16 , 
 26 ] suggests that they are likely to have bioelectric modulatory function in their 
membrane potentials and capacitance due to their varying size and length in an adap-
tation towards microenvironment within cardiac niche. The extensive intercellular 
networks encompassed by telocytes with their long telopodes have been postulated 
to carry electrical signals and/or currents via intracellular cytoskeletal structures, 
perhaps in conjunction with transmitting electrical signals via gap junctions such as 
connexins that have been identifi ed in a wide range of tissues [ 30 ,  31 ]. This uncon-
ventional concept is in congruent with the observed ionic species and specialized ion 
channels reported in telocytes found in a wide range of tissues. Indeed, telocytes 
were recently shown to exhibit voltage-gated ion channels whereby ion conductance 
characteristics of BKca and IKir currents were reported by our group [ 32 ] and ICaT 
by others [ 11 ,  33 ]. This supports that they may carry functional ionic currents that are 
likely contributing to important cellular cues and signaling within the interstitial net-
work and in their electrical interaction with cardiomyocytes. 

16.2.1     Telocyte: Physical Connector Bridging Electrotonic 
Conductivity 

 Human myocardial telocytes are clearly distinguishable from atrial or ventricular 
fi broblasts in culture whereby their characteristic long telopodes [ 27 ] with inter-
sperse podomers and podoms that are often in contact with fi broblasts and other 
telocytes [ 34 ]. Consistent with distinctive telocyte identity [ 16 ,  26 ,  35 ], human telo-
cytes express CD34, c-Kit, and PDGFR-β markers (Fig.  16.1 )

   We recently reported that the presence of inter-networking cardiac telocytes in 
the interstitial space improved myocardial strain post-myocardial transplantation of 
human-induced pluripotent stem cell (iPSC)-derived mesenchymal stem cells 
(iMSCs) into the infarcted myocardium [ 36 ]. Our results are consistent with the 
purported role of telocytes in mediating cardiac parenchymal and interstitial 
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 interactions in promoting tissue repair [ 27 ]. Furthermore, we observed that myocar-
dial telocytes intertwined with transplanted cardiac progenitors in the infarcted 
regions that coincided with increased angiogenesis [ 37 ] that is in agreement with 
benefi cial effect of telocyte transplantation in recovering cardiac function [ 38 ]. The 
feasibility of long-range interaction between telocytes to maintain electrotonic con-
ductivity within the cardiac niche cannot be discounted as the network of mechani-
cal and biological interconnectivity from infarcted segment to other remote healthy 
segments of the myocardium was evidenced (Fig.  16.2 ) by close association of 
exogenously transplanted telocytes with resident telocytes [ 36 ,  37 ].

   The decreased density of telocytes early post infarct (from 4 to 30 days) and their 
subsequent transplantation that decreased infarct size and improved cardiac func-
tion suggest physiological benefi ts of their present in the heart [ 38 ,  39 ]. Interestingly, 
such disappearance of telocytes coincides with the window of arrhythmogenic epi-
sodes often acutely experienced post-MI. In addition, heart failure patients experi-
enced more than twofold decrease in the numbers of telocytes in the myocardium 
that coincided with remodeling of collagenous extracellular matrix in the cardiac 
niche [ 40 ] that is known to be a fertile substrate for pro-arrhythmogenic events [ 41 ]. 
Therefore, it may be tempting to surmise that loss of cardiac telocytes may compro-
mise the three-dimensional spatial interconnectivity and perhaps conductivity of a 
continuous bioelectric gradient between the interstitial and parenchymal junctions 
within the myocardium that may further precipitate the electrical imbalance during 
post-MI period. 

 Heterocellular coupling of fi broblasts with cardiomyocytes in culture has been 
well documented to support wave propagation as far as 300 um through electrotonic 
interaction possibly via connexin43 (C×43) and C×45, though with major local 

  Fig. 16.1    Identifi cation and characterization of myocardial telocytes in culture. Cells with 
extended telopodes that stained positive for CD34, c-kit, and PDGF-α that are characteristics of 
telocytes were patched with glass pipette in a whole-cell confi guration for electrophysiology study 
(Images adapted from Sheng et al. [ 32 ])       
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 conduction delays that may have implication in arrhythmias [ 5 ]. Similarly, telocytes 
are known to express C×43 [ 42 ] that may support electrotonic conduction and exert 
infl uence on cardiac arrhythmia. Therefore, more focused studies on coupling 
experiments between cardiomyocytes and telocytes for electrical interaction and 
integration within cardiac syncytium are warranted. 

 The elegant electron microscopy works provided by Popescu and colleagues 
attest to the possible existent of heterocellular coupling between telocytes and car-
diomyocytes within myocardium. Indeed, beyond paracrine communication through 
telocytes released vesicles [ 43 ], direct heterocellular connection and coupling 
between telocytes and cardiomyocytes have been demonstrated previously such that 
atypical junctions formed by macromolecular complexes and nanopillars were 
observed between telopodes and sarcolemmal processes of cardiomyocytes [ 25 ]. 
This is in addition to the reported direct junctional connection between telocytes 
and cardiac progenitors [ 7 ,  9 ], between telocytes and cardiac stem cells via adherens 
junctions, puncta adherentia, and stromal synapses [ 44 ], and the existence of close 
apposition of telopodes against intercalated disks of cardiac muscle [ 22 ]. 
Collectively, these evidences support possible electrophysiological role of telocytes 
within the spatial architecture of cardiac syncytium. 

 Consistent with their intermediary function and role as bridging connector, a 
comprehensive proteomic analysis of cultured telocytes revealed that up to 4 % of 
cellular proteins were of cell junction components, thus affi rming their key role in 
intercellular signaling and communication [ 15 ]. Tight adherens junctions were 
recently confi rmed to exist between telopodes of telocytes in the myocardium [ 45 ], 

a b
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  Fig. 16.2    Interconnected myocardial telocytes in infarcted murine myocardium showing connec-
tivity of telocytes in the networked interstitial space in close proximity to cardiac progenitor cells 
and intact cardiac muscle fi bers (Images adapted from Ja et al. [ 37 ] ( top panel ) and Miao et al. [ 36 ] 
( bottom panel ))       
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and specifi c junctional contacts were noted between telocytes and cardiomyocytes 
and between telocytes and other interstitial cells [ 28 ] in the myocardium supporting 
their extended connectivity that is structurally supportive of probable electrotonic 
conductivity. Whether such connectivity is present or changed throughout develop-
mental phase and disease stage or differs between species and exists within other 
tissues that experience distinct mechanical stress than the myocardium is largely 
unknown. 

 Besides their interconnectivity through gap junctions and adherens junctions, it is 
believed that telocytes could connect with cardiomyocytes through recently described 
intercellular nanotubes that directly link these heterogeneous cells together. Such 
connectivity has been reported in coupling experiments between fi broblasts and car-
diomyocytes [ 46 ]. In fact, intercellular tunneling nanotubes ranging from 50 to 
200 nm in length, perhaps in conjunction with connexin junctional proteins, may 
impart electrical signals between fi broblasts and cardiomyocytes via activation of 
voltage-gated calcium channels [ 47 ] and exchange of mitochondria [ 48 ]. Such inter-
actions may partake in arrhythmogenesis as density-dependent biphasic infl uence of 
fi broblasts on conduction velocity and upstroke velocity through partial depolariza-
tion of cardiomyocytes has been previously observed [ 49 ]. Interestingly, such hetero-
cellular connections between fi broblasts and cardiomyocytes are reminiscent of 
telopodes of telocytes in contacting neighboring cells in a three-dimensional cardiac 
niche. Nevertheless, feasibility of interstitial telocytes acting as intervening electro-
tonic bridge between conducting cardiomyocytes has largely been neglected thus far. 
Intriguingly, the ratio of cardiomyocytes to telocytes in rat myocardium was reported 
to be 70:1 [ 42 ], which was similar to ratiometric density reported between cardio-
myocytes and fi broblasts that were observed to exert infl uence on arrhythmogenic 
events in heterocellular coupling experiments [ 49 ]. 

 Despite the mounting evidence suggesting heterocellular connectivity between 
telocytes and cardiomyocytes, it is unclear if telocytes are possibly acting in the 
overall electrical circuitry as passive insulating bystander or active conducting 
player. Transfection of gap junction proteins and voltage-gated ion channels into 
telocytes in coupling experiments with cardiomyocytes would be of crucial interest 
to further elucidate such connectivity in establishing bioelectric gradient and their 
importance in maintaining cardiac electrical homeostasis, at least spatially within a 
localized interstitial to myocardial niche.  

16.2.2     Telocyte: Gated Ion Channels and Function 

 To date, voltage-gated ion channels are increasingly being recognized in telocytes 
isolated from a wide range of tissues. In the human myometrium, patch-clamp 
recordings revealed a calcium-dependent hyperpolarization-activated chloride 
inward current but absence of L-type calcium channels, which was postulated to 
modulate myometrial smooth muscle contractions [ 11 ]. Furthermore, uterine telo-
cytes have been reported to express mibefradil-sensitive T-type calcium channels 
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that is responsive to near-infrared low-level laser stimulation [ 50 ] that may be 
important in bioelectric signaling for modulating cellular behaviors during preg-
nancy and labor [ 45 ]. Furthermore, telocytes expressing calcium-activated chloride 
channels and inwardly rectifying chloride channels in gastrointestinal tract have 
been identifi ed to mediate gut motility [ 51 ,  52 ]. Moreover, transient outward potas-
sium current that mediated pacemaker-like activity was noted in gastrointestinal 
telocytes [ 13 ]. In addition, ionic currents were previously reported in telocytes 
whereby small conductance potassium SK3 channels in human myometrium [ 12 ] 
and in murine bladder [ 53 ] may be key to regulating muscular excitability and con-
tractility. In addition, calcium-activated potassium channels in guinea pigs that 
regulate repolarization of stomach [ 54 ] and hyperpolarization-activated cyclic 
nucleotide-gated (HCN) channel of murine gastric antrum were identifi ed [ 14 ]. 

 We recently presented evidence of human ventricular and atrial telocytes that 
express large conductance Ca 2+ -activated K +  current (BK Ca ) and inwardly rectifying 
K +  current (IK ir ) currents (Fig.  16.3 ) in a TGF-beta1-dependent manner indicating 
their importance in cardiac electrophysiology or electrotonic interactions in cardiac 
fi brosis [ 32 ]. We recorded and characterized ion currents in single telocytes with 
long telopodes using conventional whole-cell voltage clamp setup. Paxilline 
(a  specifi c BK Ca  inhibitor)-sensitive and naringenin-responsive (a specifi c BK Ca  
opener) currents were detected, confi rming the presence of BK Ca  currents in atrial 
and  ventricular telocytes. Furthermore, it was found that 4-aminopyridine-insensitive 

Atrial

Ventricular

Control (+/–)-naringenin Paxilline

500 ms
90mV

–40mV

200

100

0

–100

–200

200

100

0

–100

–200

C
ur

re
nt

 (
pA

)

–40 mV

–120 mV
9 s

60 mV

Atrial
Control

0 20–20–40–60–80–100–110 60400 20–20–40–60–80–100–110 6040

Control
PinacidilPinacidil

Ventricular

Voltage (mV)Voltage (mV)

Atrial

mV

pA
/p

F mV

pA
/p

F

8

6

4

2

0

–2
–120 –100 –80 –60 –40 –20 0 –120 –100 –80 –60 –40 –20 0

–4

–8

–6

8

6

4

2

0

–2

–4

–8

–6

Ventricular

ControlControl
Ba2+Ba2+

20 mM K+20 mM K+

120 mV
2 s

0 mV
40 mV

Atrial

Ventricular

Control 4-AP

2 pA/pF

100 ms

500 ms
90mV

–40mV

  Fig. 16.3    Patch-clamp electrophysiology of atrial and ventricular telocytes. Both outward and 
inward potassium currents consistent with BKca and IKir were detected in the voltage-clamped 
cells (Images adapted from Sheng et al. [ 32 ])       
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and pinacidil (K ATP -specifi c channel enhancer)-unresponsive currents were present, 
indicating the respective absence of transient outward currents (I to ) and ATP- sensitive 
K current (K ATP ) in myocardial telocytes. Nevertheless, inwardly rectifying K +  cur-
rents that were attenuated by Ba 2+  ion coupled with strongly spiking current ampli-
tude in the presence of 20 mM K +  bath solution were elicited in depolarizing telocytes, 
indicating the presence of IK ir  inward currents. The close proximity of telocytes to 
cardiac fi broblasts and cardiomyocytes suggests a probable role in facilitating mech-
ano-electrical coupling of the heart. Consistently, calcium-releasing stores, such as 
caveolae, sarcoplasmic reticulum, and mitochondria that are typical of voltage-
responsive cells, are present in telocytes [ 31 ]. Nevertheless, it is unclear if cellular 
resistance and capacitance of telocytes and resting membrane potentials would be 
suffi cient to depolarize the heterocellularly coupled cardiomyocytes.

   Human atrial fi broblasts are known to express a range of potassium channels that 
are important in proliferation and myofi broblast transformation Importantly, it is 
currently unclear the implications of greater potassium channel responsiveness 
observed in the atrial telocytes as compared to ventricular telocytes when stimulated 
with TGF-β1, a major mediator of myocardial fi brosis [ 32 ]. Although such dichot-
omy of cellular physiology coincided with the more robust fi brotic response of atrial 
fi broblasts as compared to ventricular fi broblasts in myocardial fi brosis [ 55 ,  56 ], it 
is unclear if the differential expression of such ion channels in atrial and ventricular 
telocytes has functional signifi cance in cellular proliferation and overall interstitial 
conductivity or fi brotic response. 

 Telocytes are increasingly being recognized to carry ionic currents that may have 
important implications in behavioral response of local tissue niche. It is unclear if 
telocytes may exhibit regional-specifi c property in different organs. Experimental 
evidence supports the presence of functionally competent BK Ca  and IK ir  channels, 
but not I to  and K ATP  channels, in cardiac atrial and ventricular telocytes. It is unknown 
if telocytes could assume a different phenotype in different conditions such as those 
observed conversion of fi broblasts to myofi broblasts that may affect different cel-
lular physiologies (e.g., smooth muscle actin expression [ 32 ]) that exerts distinct 
impact on the myocardial milieu.   

16.3     Conclusion 

 There are mounting evidence that support functional present of a wide array of ion 
channels in telocytes found in various tissues. These channels are reported to contrib-
ute to telocyte electrophysiology but may also have other bioelectrical and mechanical 
signifi cance in the tissue niche. Illustrating how these diverse ion channels contribute 
to function already well recognized in telocytes in mechanical supporting, topograph-
ical nursing, long-range sensing, microvesicle releasing, repair signaling, cytokine 
secreting, and immune system modulating would unveil a comprehensive road map of 
bioelectric traffi c crisscrossing the intercellular highways of networked interstitial 
sphere in communicating with the parenchyma to sustain tissue homeostasis.     
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