
Safety Validation of an Embedded
Real-Time System at Hardware-Software
Integration Test Environment

Gracy Philip and Meenakshi D’Souza

Abstract As the complexity and functionality of embedded software is increasing
steadily, ensuring that their behavior is safe is of primary concern. We propose a
Safety Validation Method (SVM) that is used to monitor divergence in safe
behavior during integration testing of an embedded system. The proposed monitor
observes both application and system level parameters. It can capture effect of
potential unsafe scenarios inadvertently created during testing that could recur
during actual operation. We present a case study involving the safety validation of
advanced fly-by-wire flight control system where the use of the SVM revealed
safety critical failures during integration testing.

Keywords Safety validation � Embedded software � Verification � Testing �
Monitors

1 Introduction

As the functionality of safety critical systems built these days is complex, safety
validation has become a critical part of system development. Powerful cross
development environments containing automatic code generators and testing tools
are available these days. Commercial of the shelf hardware and software have also
become part of systems being developed. In such a development scenario, visibility
into the full system has decreased while complexity of the system has increased.
Central focus of this paper is on safety assurance of an embedded real-time safety
critical system.

G. Philip (&)
CEMILAC, DRDO, Bangalore 560037, India
e-mail: gracy.philip@cemilac.drdo.in

M. D’Souza
IIIT, Hosur Road, Bangalore 560100, India
e-mail: meenakshi@iiitb.ac.in

© Springer Science+Business Media Singapore 2016
R.K. Choudhary et al. (eds.), Advanced Computing and Communication Technologies,
Advances in Intelligent Systems and Computing 452,
DOI 10.1007/978-981-10-1023-1_5

51



Most of the complex functionality of safety critical systems is implemented
using software embedded in the system. However, safety is not considered to be a
software property alone, it has to be defined at system level [1]. There are two
aspects of safety: one is safety critical functionality, failure to achieve it will impact
safety. Second aspect is platform-related, introduced by digital implementation in
an embedded systems environment, which were not relevant in earlier electro
mechanical environment.

Typically there are four main levels of testing: low level testing, software
integration testing, hardware software integration testing, systems integration test-
ing. In all these levels, requirement based testing is emphasized because this
strategy has been found to be most effective for revealing errors [2]. Each level
carries out both normal mode and robustness tests. Each level has its own granu-
larity for fault simulation and result analysis to identify faults. A major lacuna with
this compartmentalized testing strategy is that expected results are generated and
results are analyzed at that level only, against test objectives at that level. Testing at
these discrete levels fail to provide any concrete evidence about safety. Individual
test results cannot be stitched together to get a clear picture on system safety. End
result is that even after successful tests at all levels with adequate coverage; there
can be faults left, hampering system safety.

We propose a safety validation method (SVM) that deploys a safety monitor to
expose the vulnerabilities hampering safety. Such a monitor is developed using
existing validation environments used for requirements level testing as per
D0-178B [2]. There is no extra load on the system under test. We illustrate the
working of such a safety validation using a case study involving safety assurance of
a flight control system. As per [3], run time verification that deals with the appli-
cation of formal verification techniques that allow checking whether a run of a
system under scrutiny satisfies or violates a given correctness property. Our SVM
combines run-time verification with testing in the integration testing environment,
with safety criteria as the correctness property.

The paper is organized as follows: Sect. 2 describes the current safety assurance
process followed by proposed SVM. Section 3 describes our case study in which
the proposed method is applied towards safety validation of digital fly-by-wire
flight control system of a modern fighter aircraft. Related work is presented in
Sects. 4 and 5 concludes the paper.

2 Safety Assurance and Validation

In this section, we summarize the state-of-the-art processes followed during the
development and life cycle of a safety critical system to ensure that it is safe. The
term “safety” includes all aspects of software that generically mean that “nothing
bad (in terms of behavior of the system) will happen”. Current safety assurance
methods are based on several stringent development processes and independent
verification and validation methods as per DO-178B.

52 G. Philip and M. D’Souza



2.1 Safety Validation Method

Typically, hardware software integration testing is the phase in which requirements
are validated. In this phase, software is installed in the platform and the integrated
system is tested for meeting its requirements. Such a testing involves normal
behavior of the system and fault mode behavior. In normal mode testing, a tester
focuses on creating test cases to validate each requirement towards checking if the
latter has been implemented properly. Fault mode testing is conducted by simu-
lating the faults. This way, adequate coverage is achieved for safety critical soft-
ware, as mandated by various standards [2].

While such an exhaustive integration testing validates individual requirements,
it might fail to capture safety violations that occur at the system level. A tester who
focuses on validating one particular requirement may ignore the system level
behaviors, some of which could violate safety.

We propose a Safety Validation Method (SVM) to address this issue and capture
unsafe behavior of the system during the integration testing phase. In our SVM,
safety parameters are extracted through system safety and software safety analysis
as shown in the Fig. 1. Figure 1 also describes the SVM, details of which are given
in the subsequent sections. Behaviors violating safety are found automatically in
real time by observing the values of the parameters as the application executes in
the test environment.

Software 
Safety
Analysis

PSV Criteria 
Identification

S/w req, analysis 
design, code & 
low level
verification 

System 
Requirements 
Analysis

System Safety 
Analysis

ASV Criteria 
Identification

Safety 
validation

HILS 
testing

Safety 
Certification

Fig. 1 Safety validation method

Safety Validation of an Embedded Real-Time System … 53



2.2 Safety Validation Types

Safety validation can be categorized into two types based on the aspects of safety
that are being addressed: Application domain aware safety validation, and platform
(system) aware safety validation.

Application-Aware Safety Validation

Application aware Safety Validation (ASV) takes care of safety captured as a part
of the overall system functionality. Parameters to be monitored here include all
application level data that capture the behavior of the system as running in the
system simulated environment. System parameters indicating safety are to be
arrived based on system specification analysis along with preliminary system safety
analysis. System safety analysis brings out inter dependent sub-systems and their
boundaries for achieving system functionality in a safe manner.

Platform-Aware Safety Validation

Platform aware Safety Validation (PSV) takes care of safety interpreted as a
non-functional requirement. PSV validates additional hazards brought into the
system due to digital implementation like channel failures, watchdog time out,
unexpected exceptions and interrupts etc. Safety Monitor captures ASV and PSV
parameters in real time, while HSI test scripts are run for normal and robustness test
cases.

3 Case Study: Flight Control System

We now present a case study of safety validation of a digital fly-by-wire Flight
Control System (FCS) using the SVM integrated with an existing test environment.
Using the SVM, unexpected system failures could be captured, which would have
occurred during flight operations if left undetected.

3.1 Overview of FCS

The FCS (refer to [4] for an example) is a quadruplex digital fly-by-wire system, it
has four identical processing channels and quadruplex input sensors. All four
channels process control laws for flight control with identical inputs. Channels
work in frames-synchronous manner. FCS is designed to tolerate up to two critical
failures. It is interfaced with one air data system per channel and has to control four
primary actuators and two secondary actuators. It takes inputs from various sensors
from pilot stick and other cockpit interfaces. It also gives out data for pilot displays,
crash data recorder and get U home system.

54 G. Philip and M. D’Souza



The FCS has four identical computing channels; identical software is loaded in
each channel. All the six actuators will continue to receive commands even in the
case of failure of any two of the channels. Even when there is quadruplex redun-
dancy available for hardware there is no redundancy in case of software, towards
minimizing complexity in design and validation. So it is essential that the software
is almost 100 % fault free, towards safe and reliable flight control. The FCS soft-
ware is written in Ada programming language with SPARK Ada as the coding
standard. Control laws were designed in Matlab [5] and Simulink [6] and converted
into Ada programming language using Beacon code generator [7].

3.2 Platform-Aware Safety Validation of FCS

We now summarize the testing efforts that were undertaken for FCS. Testability
was one of the main design features. Various levels of testing were planned with
different test teams—unit testing, software-software integration testing, non-real
time testing of control law packages, hardware-software integration testing, systems
of system integration testing, pilot-in-loop testing and aircraft integration testing.

Each level of testing had its own objectives and coverage criteria and criterion
for pass or fail of the test was limited to analysis at that level. A platform aware
safety validation was designed at hardware software integration test level to validate
system behaviors in terms of parameters that can be monitored. Criteria for passing
a test were amended to include a no fault reply based on SVM along with the
specified criteria.

3.3 Integration of PSV in Test Environment of FCS

During integration testing, the software is loaded as a part of the system that runs on
an embedded platform containing all the required hardware. Sensor inputs and
actuator outputs are simulated as in real-life conditions. Such a test environment is
called Hardware Software Integration Test Environment (HSITE). HSITE is cap-
able of fault simulation, and can access all processor and memory variables, along
with sensors, actuators, flight control panel, air-data system and display system. It
also has the capability to temporarily halt the embedded system processor and read
any registers and memory variables.

Test script language provided by the HSITE enables writing of test cases and
procedures. Test scripts are written corresponding to each requirement, test inputs
generated and passed to the System under Test (SUT) and outputs are recorded. The
following psuedocode provides details of how PSV was integrated with HSITE for
FCS.

Safety Validation of an Embedded Real-Time System … 55



for requirements i = 1 to n do
{
power on rest of the system and initialize system parameters 
for test scripts j=1 to m do { // PSV monitoring 

initialize PSV & clear fault records 
run test scripts for each j 
compare results with expected output 

read PSV and fault records & compare results with expected output 
}

}

Our platform aware SVM was implemented using the scripting language pro-
vided by the HSITE. Our SVM was able to configure, initialize and load the test
scripts, record test outputs and simultaneously track all parameters to be monitored.
The validation method was implemented once and designed to work as a
stand-alone entity with several test scripts being run one after the other for vali-
dating their respective requirements. The monitor had features to clear all faults of
the previous run and verify the integrity of each build.

The recorded data in the environment gives vital clues for analysis. The fol-
lowing embedded processor and system interrupts were monitored automatically for
FCS: watch dog timer status, frame timer, arithmetic faults, floating point, con-
straint fault, events and machine fault, Mil bus interrupt, RS422 interrupt, real-time
extensions, channels status, average and peak frame time.

3.3.1 Analysis of Results

Our safety validation revealed unexpected exceptions and interrupts which were not
handled. We describe computing channel failures detection in detail as it is a
safety-critical failure and later resulted in adding new requirements to the FCS.

Analysis of the data provided by SVM helped to observe a channel failure while
conducting testing to prove some other requirement (whose test case passed) and
this lead to a detailed analysis. The monitor recorded repeated occurrence of real
time extension interrupt 74 leading to computing channel failure while running test
scripts for proving requirements. As per design this interrupt was expected only
when the frame time exceeds 12.5 ms causing the watch dog to time out. But on
checking the frame recorded in the monitor it was found that none of the real time
frames exceeded the 12.5 ms limit. Consequently, it was understood that triggering
of real time overrun was spurious. This resulted in a new requirement to be added—
the new one specified a method to distinguish between spurious and real interrupts,
with the understanding that if an interrupt is real it will get repeated. For further
analysis a derived requirements got added. The SVM could capture deviations in
SUT configurations due to patches left behind by testers used for fault simulation. It
also helped to capture peak execution time under multiple simulated failure
conditions.

56 G. Philip and M. D’Souza



4 Related Work

Several researchers and practitioners working with safety critical systems have
emphasized the need for exclusive practices, techniques and tools for safety anal-
ysis and assurance [8, 9, 1, 10]. In [11] the authors identify safety assurance
parameters and techniques to be used throughout the development life cycle and
elaborate on the need for independent verification and validation in all phases of the
development life cycle. In [11], safety analysis of automated requirement models
and their validation is discussed. The work presented here can be thought of as one
concrete realization towards safety assurance at the integration testing phase. The
proposed SVM not only provides safety assurance during requirements validation
but can be continuously used in the later phases of development including safety
assurance of incremental releases.

There is a large body of work on run-time verification [3] in the formal verifi-
cation community. Our work is a case study in run-time verification but doesn’t use
any formal methods. We just do system level run-time testing, with specifications
being given without using any formal notations. In [8] requirements based safety
validation that takes an approach inclusive of both static and dynamic analyses for
safety assurance is presented. Safety validation follows the requirements based
dynamic analysis and testing. Here, we do automatic monitoring of all safety critical
parameters, as a part of existing validation environment, combining run-time ver-
ification [3] and requirements based testing [8].

5 Conclusion and Future Work

The safety validation method is used for monitoring safety aspects of the system in
the system integration and simulation environment, to analyze and perfect the
system before its actual operational use. The case study involving application of
safety validation to an FCS proved the concept of system aware safety validation,
and its ability to catch safety critical errors in real time embedded environment. It
was a partial implementation for platform aware SVM, where application aware
safety parameters were not monitored. We are currently extending the safety val-
idation to track all application aware parameters. We are also devising metrics to
measure the efficiency of the safety validation.

References

1. Nancy, G.: Leveson. Systems Thinking Applied to Safety. MIT Press, Engineering a Safer
World (2012)

2. RTCA Software Considerations in Airborne Systems and Equipment Certification DO-178B
(1992)

Safety Validation of an Embedded Real-Time System … 57



3. Leucker, M., Schallhart, C.: A brief account of run time verification. J. Logic Algebraic
Program. 78, 293–303 (2009)

4. Official website of Tejas. http://www.tejas.gov.in/technology/fly_by_wire.html
5. Matlab. http://www.mathworks/in/products/matlab/
6. Simulink. http://www.mathworks.in/products/simulink/
7. Beacon coder. http://www.adi.com/products/b4s
8. Bhansali, P.V.: Software safety: current status and future directions. ACM SIGSOFT Softw.

Eng. Notes 30(1) (2005)
9. Hunter, B.: Assuring separation of safety and non-safety related systems. In: Proceedings of

11th Australian Workshop on Safety Critical Systems and Software (SCS) (2006)
10. Leveson, N., Alfaro, L., Alvarado, C., Brown, M., Hunt, E.B., Jaffe, M., Joslyn, S., Pinnel, D.,

Reese, J., Samarziya, J., Sandys, S., Shaw, A., Zabinsky, Z.: Demonstration of a Safety
Analysis on a Complex System. Presented at the Software Engineering Laboratory Workshop,
NASA Goddard (1997)

11. Modugno, F., Leveson, N., Reese, J.D., Partridge, K., Sandys, S.D.: Integrated Safety
Analysis of Requirements Specifications, in Requirements Engineering (1997)

58 G. Philip and M. D’Souza

http://www.tejas.gov.in/technology/fly_by_wire.html
http://www.mathworks/in/products/matlab/
http://www.mathworks.in/products/simulink/
http://www.adi.com/products/b4s

	5 Safety Validation of an Embedded Real-Time System at Hardware-Software Integration Test Environment
	Abstract
	1 Introduction
	2 Safety Assurance and Validation
	2.1 Safety Validation Method
	2.2 Safety Validation Types

	3 Case Study: Flight Control System
	3.1 Overview of FCS
	3.2 Platform-Aware Safety Validation of FCS
	3.3 Integration of PSV in Test Environment of FCS
	3.3.1 Analysis of Results


	4 Related Work
	5 Conclusion and Future Work
	References


