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Abstract In this paper, we present a new finite difference scheme for solving
incompressible, steady stokes equations in discontinuous domains. While solving
two phase Stokes equations, across some interfaces, there are discontinuities in the
pressure, viscosity and velocity. Since, these jump conditions are coupled together,
it is difficult to discretise and solve the system of equations accurately. We apply the
augmented approach introduced by Li et al. (Int J Numer Meth. Fluids 44:33-53,
2004) to decouple these jump conditions. A new finite difference method is then
developed and presented to solve the resulting augmented system of Stokes
equations. Points of intersection of grid lines and the interface are used as a node in
the finite difference stencil and jump conditions are then used to determine the
values at these intersection points. Numerical solutions are compared with the
corresponding analytical solutions and those of the augmented immersed interface
method. The method is found to be second order accurate for almost all the vari-
ables in the infinity norm.

Keywords Finite difference - HOC scheme - Immersed interface - Level set
method - Stokes equations

1 Introduction

The incompressible, two phase Stokes equations with discontinuities in the vis-
cosity and with singular source terms are often encountered in many practical
applications in CFD. Over the last few decades, there has been an ongoing quest for
new numerical methods to solve fluid problems with interfaces. Most of the
numerical works on such problems involved mainly the use of immersed boundary
(IBM) [1] or immersed interface (IIM) methods [2] on Cartesian grids. In the
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present work, a new immersed interface finite difference scheme, based on
Cartesian coordinates, is presented for solving Stokes equations with arbitrary
immersed interfaces in two dimensions. The originality of the scheme lies in the use
of additional values at interfacial points (points at which grid lines intersect the
interface) as nodes in finite difference stencil, which allows straightforward use of
the standard finite difference approximations. Jump conditions of the variable and
flux are then used to determine these interfacial values.

The paper is arranged as follows. Section 2 deals with mathematical formulation
which covers governing equations, jump conditions and their discretisation pro-
cedure. Section 3 deals with the numerical results and Sect. 4 with the conclusion.

2 Mathematical Formulation

2.1 Governing Equations and the Jump Conditions

Assume that Q is a domain in R* and T is an arbitrary piecewise smooth curve in Q
as shown in Fig. la. Level set formulation introduced by Osher and Sethian [3] is
used to represent the interface I'. Square domain consists of the union of two
sub-domains Q" and Q~ separated by a closed interface I'. Two dimensional steady
Stokes equations can be represented as

Vp = pAu+ G+ /F(s)é(x—X(s))ds7 xeQ, (1)
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Fig. 1 a Uniform cartesian grid in two-dimensions with interface /" separating the whole domain
into two separate sub domains © and Q*. b Geometry at an irregular point (x;y;) and its normal
projection (x,, ¥,) on I; (&#) is the local coordinate system aligned with I” at (x,, y,)
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Vu=0, xeQ, (2)

where u = (u, v) denotes the velocity vector, p denotes the pressure, F(s) is the
singular source term, G(x) denotes the bounded force which may be discontinuous
across I' as well when T is parameterized by s. The viscosity p is supposed as a
piecewise constant

_Jut, I'>0
K=Y u, r<o

Assume T € C2, Fl(s) e C!, and Fz(s) € C! where Fl(s) =F(s) -n and
F>(s) = F(s); n is the normal and t is tangential to the interface, respectively. Jump
conditions across I' can be written as.

@]:2{;{2—”%] + Fy, (3)

Bﬂ [G-n]Jr%f;ZJrZ{u;;(u-n)} (4)
{ug—z-r} + {ug—z-n} +F, =0, (5)
[UA - u] = 0. (6)

Balancing force along the n-axis at I' gives us the jump condition (3) while the
balancing forces along the t-axis at ' gives the jump condition (5). Applying the
divergence operator to Eq. (1) gives jump condition (4) while the last jump con-
dition (6) is derived from incompressibility condition V - u = 0.

Since, these jump conditions are coupled together, it is difficult to discretise and
solve the system of equations accurately. We therefore apply the augmented
approach introduced by Li et al. in 2007 [4] to decouple these jump conditions.
Jumps ([pu](s), [uvl(s)) = ([uu](s), [puvl(s)) are introduced as two augmented
variables so that these jump conditions can be decoupled. Denote

q=(q.02)" = ([ [7)"

Let p, u and v denote the solutions of the system of Eqgs. (1)~(2). Then, the
variables iu,v, p and q satisfy the following set of equations:
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Ap=V- G
bl =F1 25 x )
[%] —% Zaa—;z(q n)+[G - nj
A =p, — Gy,
] = q1, [gﬂ] (}4—%%) sin0—<—-1:> cos 0, ®)
AV =p, — G,

Here, 0 denotes the angle between x-axis and n-axis. These jump conditions are
derived and explained in detail in [4]. It is worth mentioning that this system of
partial differential equations is an elliptic system in which we have to solve all the
equations simultaneously. If q is known to us, pressure jump conditions can be
calculated. Hence pressure Eq. (7) can be solved independently. After solving for
the pressure, u and v can be solved from the Egs. (8) and (9) respectively.

2.2 Discretisation Procedure

Consider a uniform cartesian grid [a, b] X [c, d] in the whole domain as shown in
Fig. 1a. The grid points are denoted by (x;, y;) for 0 <i < m, 0 < j < n. These grid
points are categorised into two classes: regular and irregular grid points. A grid
point is classified as irregular if the finite difference stencil resulting from the
corresponding derivatives intersects I'. Otherwise; it is termed as a regular grid
point.

For regular grid points, finite difference approximations of arbitrary order,
derived from a Taylor series expansion can be directly used. We use a Higher Order
Compact (HOC) finite difference scheme proposed by kalita et al. [5] for dis-
cretisation. The idea is to use the original partial differential equation to substitute
the leading truncation error terms in the finite difference equation. We begin by
considering a general poisson equation Vu = f in variable u and forcing function f
defined on the whole domain. For example, HOC finite difference formulation at a

regular point (x;, y;) for % can be written as
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0%u dx* (O°f
e = Oy (@‘ 5x25y2“”’) 1o

Here, 8x” and 8y” denote the standard central difference approximations
respectively. The jump conditions across the interface can be written as

W=u"—u =C (11)
e] =u —u; =o, [uy] = u”+ —u, =4 (12)
with [.] denoting the jump, the superscripts “+” and “—” represent the variables in

the Q" and Q" regions respectively. Since the jump conditions are usually defined
in normal (&-axis) or tangential (n-axis) direction of the interface, we introduce local
coordinates (&, n) aligned with the interface at (X, Y) (see Fig. 1b), as

&= (x—xy)cos0+ (y—y,)sin0,
n=—(x—2x,)sin0+ (y — y,) cos 0,

where 0 is the angle between +ve x-axis and the normal direction. Transforming the
jump condition on u through local coordinate system and then differentiating it with
respect to x and y yields

[uy] = [ug] cos 0 — [uy,] sin 0 (13)
[uy] = [ug] sin 0 + [u,] cos 0 (14)

Since, Taylor series expansion, which provides the platform for finite difference
approximations, is not valid for non-smooth functions, standard approximations fail
to yield correct numerical solutions near the interface. Hence, a new modified finite
difference is developed to discretise the governing equation at irregular points. We
use standard central difference formulas including interfacial points (points at which
grid lines intersect the interface) nodes in the stencil. The two jump conditions are
then used to determine the values at these interfacial points at a desired order of
accuracy. We consider a dimension by dimension splitting approach for dis-
cretization. We will only derive the one dimensional formula on the segment
[Xi-1, Xis2] X {yj}. Other cases are duplication. For example, consider the situation
shown in Fig. 2.

For the irregular grid point “x;” depicted in Fig. 2, we discretise the derivative
using the nodes x;—;, X; and the interfacial point x as

82M U —up Uil

Xy —X; dx
e (15)
2 2
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Fig. 2 Schematic diagram of general uniform grid stencil on the segment [x;—;, x;,.2] X {y;} with
an interface /" located at point x, between irregular nodes x; and x;,;

Second order accurate one sided finite difference formula for u using three
points on the left side of I" can be written as

_ dx(dx—&—de;)u’ — (dx—i—dx;)zui—l— (dx;)zu,-_l (16)
= dxdx; (dx+ dx;)

Similarly expression for u" can be written as

. _ fdx(dechix;)uJr + (derdx;r)zuiH — (dx;r)zu”z

u
* dxdx; (dx+dx;)

(17)

Substituting the values of u, and u into Eq. (13), we get an equation in two
unknowns u* and u”. The first jump condition Eq. (11) is the second equation in
variables u™ and u”. This system of two equations in two unknown variables can be
easily solved analytically to find initial values of u* and u™. These values can be
substituted in the approximation given in Eq. (16). It is worth mentioning that we
have considered the quantities u;—, u;, u;,; and u;,, as constants in our system of
equations. The reason is that, the initial guess is normally set equal to zero at all grid
nodes. These values are updated at every iteration and the numerical solution is
iterated till it converges towards the correct solution.

Special cases might arise when there is a scarcity of irregular points or when the
grid point coincides with the interfacial point. In the former case, one can use a first
order accurate formula for «, or u that will only involve u; and uj,; as nodes in
the stencil. In the latter case, the grid point may be considered lying in either Q*-
region or Q -region and the modified difference scheme can be employed.

3 Results and Discussion

Two numerical examples are presented to check the efficiency of our methodology.
Level set function ¢ is given as ¢ = x> + y> — 1 and the analytical solution is
known under different situations. Denote by L° and L%, infinity norm of error at all

the grid nodes for pressure and velocity, respectively and L° = (#)
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Example 1 We start with an example where the velocity is smooth and pressure,
viscosity are discontinuous at the interface. The exact solution of pressure and
velocity is given by

(0, I'<0
P=1, r>o

u=y+y"—1), (xy)€Q, v=-xF+y"—1), (x,y) €.

and the viscosity W is

_J05, I'<o
= { 1, I'>0

The normal and tangential force density components can be calculated from the
jump conditions as F; = —1 and F, = —1. The external forcing term G is given by
G = (—4y, 4x) outside and G = (—8y, 8x) inside I'.

Table 1 shows the grid refinement analysis of the error infinity norm of our
computed results and compares the respective orders of accuracies with the results
of Li et al. [4]. Second order accuracy is reported by our numerical simulations for
both pressure and velocities, which are comparable to those reported by Ref. [4].

Example 2 In the second example, the quantities u, v and p are kept unchanged
inside the interface but they are all set equal to zero outside. The velocity is now
discontinuous and force density components are Fy=-1 and F, =-2. The
external forcing term G is given value zero outside I

We compare our computed results for both pressure and velocity with Le et al.
[4] in Table 2. One can see from the table that our computed error infinity norm, for
both pressure and velocity, is better than those of Le et al. [4]. Least square fit line
of the absolute errors in log-log plots in Fig. 3 shows second order accuracy of our
scheme, for both pressure and velocity.

Table 1 Grid refinement analysis and comparison of orders of accuracy of the present scheme
with those of Li et al. [4]

N Present scheme [4]

L error p-order | L° error u-order | p-order | u-order
32 |3.6271 x 107 3.3283 x 10~°
64 9.0124 X 107 |2.0090 |2.2846 x 107* 2.0065 |1.4353 |1.9242
128 22372 x107* 2.0140 |[2.1124 x 107* 1.9716 |1.6883 |2.1367
256 5.0814 X 107> |2.1386 |5.2241 X 107> 2.0518 |1.8183 |2.2635
512 [1.2421 x107° 2.0326 1.3024 X 107 |2.0042 |1.8541 |1.7155
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Table 2 Grid refinement analysis and comparison of infinity error norms of the computed results
of the present scheme with those of Li et al. [4]

N Present scheme [4]
LXerror L;*error L error LXerror
32 [3.8533 x 1072 40338 x 107> 8.4430 x 1073 3.4549 x 1073
64 69871 X 107* |9.5724 x 107* 2.8405 x 107* 8.8800 X 107+
128 |2.5818 x 107* |2.3942 x 107* 8.0952 X 107* | 2.2666 x 107
256 |6.2649 x 1073 5.8108 X 1073 2.5417 X 1072 47693 X 107°
512 | 1.4171 X 107 | 1.3448 x 107> 5.8083 X 1073 1.4086 X 1073
Fig. 3 Linear regression 2
analysis using log-log scale o
for both pressure and velocity. \\\
Negative of slopes of these ol c A
regression lines show order of = N Yo,
w b N i)
accuracy = e OO0 *x
= 20, By, @
8 ol ’a,;‘ 2R, 8
25,0 B
% T2\
_51....1....1....|....\Fl
15 1.8 21 24 27
log,o(N)

4 Conclusion

In this paper, we present a new finite difference scheme for Stokes flows in domains
with discontinuities due to the presence of immersed circular interfaces. Augmented
approach developed by Li et al. [4] is employed to decouple the jump conditions of
pressure and velocity. Recently developed HOC scheme is then used for discreti-
sation at the points away from the interface which produces least third order
accuracy on a compact stencil. A new modified finite difference scheme is devel-
oped and implemented at irregular points. Interfacial points (points where interface
intersects the grid lines) are used as nodes in the finite difference stencil and jump
conditions across the interface are used to determine the values at these interfacial
points. Studies confirm that our scheme has overall second order of accuracy and it
produces better results than the augmented immersed interface method. However,
order of accuracy can be increased further by involving more number of grid nodes
in the finite difference stencil used at irregular points. As stokes flow represents a
two-phase flow, through the two numerical experiments presented in the current
study, our scheme can be easily extended to solve multiphase flows with both fixed
and moving boundaries.
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