
Branch and Bound Algorithm for Vertex
Bisection Minimization Problem

Pallavi Jain, Gur Saran and Kamal Srivastava

Abstract Vertex Bisection Minimization problem (VBMP) consists of partitioning
the vertex set V of a graph G = (V, E) into two sets B and B′ where Bj j ¼ jV j=2b c
such that its vertex width (VW) is minimized. Vertex width is defined as the number
of vertices in B which are adjacent to at least one vertex in B′. It is an NP-complete
problem in general but polynomially solvable for trees and hypercubes. VBMP has
applications in fault tolerance and is related to the complexity of sending messages
to processors in interconnection networks via vertex disjoint paths. In this paper, we
propose a branch and bound algorithm for VBMP which uses a greedy heuristic to
determine upper bound for the vertex width. We have devised a strategy to obtain
lower bounds on the vertex width of partial solutions. A tree pruning procedure
which reduces the size of search tree is also incorporated into the algorithm. This
algorithm has been experimented on selected benchmark graphs. Results indicate
that except for five of the selected graphs, the algorithm is able to, run through the
search tree very fast.

Keywords Vertex bisection � Branch and bound � Vertex width � NP-complete �
Graph layout

1 Introduction

Vertex Bisection Minimization problem (VBMP) consists of partitioning a vertex
set of a connected graph G = (V, E), |V| = n, into two sets B and B′ where
Bj j ¼ n=2b c such that vertex width (VW) is minimized where vertex width is

P. Jain (&) � G. Saran � K. Srivastava
Department of Mathematics, Faculty of Science, Dayalbagh Educational Institute, Agra, India
e-mail: pallavijain.t.cms@gmail.com

G. Saran
e-mail: gursaran@dei.ac.in

K. Srivastava
e-mail: kamal.sri@dei.ac.in

© Springer Science+Business Media Singapore 2016
R.K. Choudhary et al. (eds.), Advanced Computing and Communication Technologies,
Advances in Intelligent Systems and Computing 452,
DOI 10.1007/978-981-10-1023-1_2

17

defined as the number of vertices in B which are adjacent to at least one vertex in B′.
Formally, for a partition P = (B,B′), its vertex width is VW(G,P) = |{u 2 B: 9 v 2 B′
Λ (u,v) 2 E(G)}|. VBMP is to find a partition P* such that VW(G,P*) = min8partitionP
VW(G,P). This problem has been treated as a graph layout problem by Diaz et al.
[1]. VBMP is relevant to fault tolerance and is related to the complexity of sending
messages to processors in interconnection networks via vertex disjoint paths [1].
NP-completeness of VBMP for general graphs is proved by Brandes and Fleischer
[2] but it is shown to be polynomially solvable for trees and hypercubes. In spite of
its practical applications, this problem remains almost unstudied so far. However,
Fraire et al. [3] recently proposed two Integer Linear Programming (ILP) models
and a branch and bound (B&B) algorithm for VBMP. They observed that ILP2 is
the most promising method. In B&B, they have not used or provided any approach
for determining the lower bound of the partial solutions. Their implementation also
does not include any procedure for tree pruning. Therefore, it turns out to be an
enumerative technique which is able to solve only 2 instances of graphs out of 108
instanced tested by them.

In this paper, we present a comprehensive B&B algorithm for VBMP. In order to
generate an initial upper bound, a greedy heuristic has been designed (Sect. 4).
A good heuristic which gives solution close to the optimal solution is always
preferred as it is responsible for fathoming nodes at each level of the search tree in
the B&B algorithm. We have also devised a strategy for finding lower bound of
nodes representing partial solutions (defined in Sect. 3) at each level of the tree.
Besides this, a procedure for tree pruning which helps to discard a large number of
nodes in the search tree has also been designed (Sect. 5). The search tree is explored
using depth first strategy. The proposed B&B algorithm (BBVBMP) is simulated
on a large number of graphs including Small graphs, grids, trees and
Harwell-Boeing graphs [3] and the algorithm is able to run through the search tree
very fast except for Grid6×6, Grid7×7, bcspwr01, bcspwr02 and bcsstk1. We have
also compared BBVBMP with ILP2 (Sect. 6). Conclusion is presented in Sect. 7.

2 Branch and Bound Algorithm

Branch and Bound Algorithm (B&B) is an exact combinatorial approach. It gen-
erates and explores the entire set of solutions to the problem by examining a search
tree. It starts by generating an initial solution using some heuristic, or randomly,
whose objective function value serves as upper bound of the optimal value. During
the search process, it finds a lower bound at each node of the search tree. If this lower
bound is greater than or equal to the upper bound then this node is fathomed because
it guarantees that this node cannot result in a better solution. When exploration
reaches a leaf node, it computes the objective function value of the corresponding
solution and updates the upper bound if necessary. The B&B algorithm stops when
all the nodes have been explored (either branched or fathomed), and returns the

18 P. Jain et al.

optimal solution to the problem [4]. B&B is an important class of algorithms and has
been applied to a diversity of problems [4, 5, 6, 7].

In the context of VBMP, the search tree starts at the root which is an empty set.
The tree branches into n=2d eþ 1 nodes from the root where each node is a sin-
gleton consisting of vertices from 1 to n=2d eþ 1 each. This forms level 1 of the
search tree. At level 2, each node of level 1 is branched into nodes which now
contain two vertices. Thus number of vertices in the nodes of level i+1 is one more
than those at level i. Finally, level n=2b c consists of leaves each containing n=2b c
vertices. In order to avoid duplicate nodes at each level, a pruning procedure is used
which is described in Sect. 5. The tree is explored using depth first search strategy.

3 Lower Bound for Partial Solutions

Each node of the B&B tree represents a set S � V. This set will eventually be
extended to a collection G of sets such that each B in G gives vertex bisection (B, V
\B). We will refer to the set S itself as a partial solution hereafter. The set of adjacent
vertices (neighbors) of u2V is denoted by N(u) = {v 2 V: uv 2 E}. The procedure
Compute_lowerbound(S) (Fig. 1) is based on identifying those vertices of S whose
neighbors cannot all be accommodated in B. In this strategy, number of vertices for
which all the neighbors cannot be included in set B is identified.

Proposition 1 |count [P| in the procedure Compute_lowerbound(S) gives a
lower bound for a node S.

Proof In the procedure, count is the set of vertices whose all the neighbors cannot
be included in the solution generated by S at the lower level of the search tree
because the number of adjacent vertices is more than n=2b c � Sj j. Therefore, |count|
number of vertices will always contribute to the vertex width of the partition
generated by S. It is clear that in order to minimize the contribution of a vertex to
the vertex width, it is required to place all the adjacent vertices in the same partition

Fig. 1 Procedure for
computing lower bound

Branch and Bound Algorithm for Vertex Bisection … 19

either in B or B′. Thus to accomplish this, for each vertex v2S\count = A, N(v) is
placed in S to give C and the number of vertices in S whose all the neighbors cannot
be included in C are counted (Steps 6–7). Since P (Steps 8–9) records the smallest
subset of S\count of which not all neighbors can be accommodated in B, |count [
P| represents the smallest number of elements of S whose neighbors cannot all be
included in the complete set B. Hence, minimum number of vertices which will
contribute to the vertex width have been considered which provides a lower bound
guaranteeing that the solution generated by expanding the partial solution S will
always give the vertex width greater than this lower bound. □

4 Initial Upper Bound

We have designed a greedy heuristic to generate a solution which can give a close
upper bound for the vertex bisection minimization problem. Pseudocode for this
heuristic is presented in Fig. 2.

5 Tree Pruning

In this section, we describe the method of branching a node along with tree pruning.
We have adopted two strategies for tree pruning.

1. The main idea for pruning is that at each level of tree, all those nodes are
discarded which give duplicate nodes at this level or will give duplicate nodes in

Fig. 2 Pseudocode of heuristic H1

20 P. Jain et al.

further branching at lower levels. Procedure Branch&Prune(Node) outlines the
method for branching a node in the search tree without duplicate nodes (Fig. 3).
Let the node to be branched be represented by an array Node representing the
partial solution S. Now only those vertices v2V are considered for which v >
p where p = max{w2Node}. Let this set of vertices be represented by R. If the
number of vertices having identifiers greater than R[i] is more than
n=2b c � Node[R i½ �f gj j, then Node is branched into Node[{R[i]} otherwise it
is not branched (Steps 3–6). In this manner the initial node is branched into
n=2d e nodes 1,2,…, n=2d eþ 1 each with a single different vertex. It may be
noted that in VBMP maximum number of possible different leaves is n

n=2b cC.
2. A node is fathomed if lower bound (lb) ≥ upper bound (UB).

Proposition 2 Procedure Branch&Prune(Node) (Fig. 3) eliminates the duplicate
nodes of the same level of the search tree and the nodes which will give duplicate
nodes in further branching.

Proof In Step 1, only those vertices v are considered for which v > max{w2Node}
because the combination with the smaller ones is already present in their sibling
nodes. Thus all the duplicate nodes at a level are eliminated. In Step 3, let v be the
vertex considered for the branching. The set P consists of all those vertices w such
that w > v. If Pj j � n=2b c � Node[R i½ �f gj j then it guarantees that this node will
branch into at least one distinct node, otherwise, at any level Node will include a
vertex whose identifier is less than max{w2Node} which will result into a duplicate
node at that level as this combination has already been taken. Hence the result
follows. □

6 Computational Experiments

This section describes the computational experiments performed to test the effi-
ciency of our B&B algorithm. The algorithm has been implemented in C++ and the
experiments are conducted on a Dual Xeon workstation with 12 GB RAM. The
experiments have been conducted on four sets of instances: grids, trees, small
graphs and harwell-boeing (HB) graphs [3]. The maximum time for the grid, tree
and small instances was set to 5 min. while for HB instances time limit is 1 h as in

Fig. 3 Procedure for
branching a tree

Branch and Bound Algorithm for Vertex Bisection … 21

[3]. Table 1 compares ILP2 and BBVBMP in terms of number of optimal solutions
obtained and the CPU time.

For Grid6×6 and Grid7×7, tree was not explored completely. In HB graphs, the
tree was explored completely only for can24. For the other graphs the tree was not
explored completely in the specified time. Therefore, we cannot guarantee the
optimality of result in these cases. Table 1 shows that BBVBMP outperforms ILP2
in terms of both the number of optimal solutions and CPU time.

7 Conclusion

An exact procedure based on B&B algorithm for vertex bisection minimization
problem is developed in this paper. We have proposed a strategy for finding lower
bound at each level of the tree and also a strategy for tree pruning. These strategies
allow us to explore a smaller portion of the search tree. We have proposed a
strategy for obtaining upper bound which is able to achieve optimal results for a
large number of standard graphs for which experiments have been performed. It has
been clearly shown that BBVBMP outperforms the state-of-art exact method for
VBMP.

References

1. Diaz, J., Petit, J., Serna, M.: A survey of graph layout problems. ACM Comput. Surv. 34, 313–
356 (2002)

2. Brandes, U., Fleischer, D.: Vertex bisection is hard, too. J. Graph Algorithms Appl. 13, 119–
131 (2009)

3. Fraire, H., David, J., Villanueva, T., Garcia, N.C., Barbosa, J.J.G., Angel, E.R. del, Rojas, Y.G.:
Exact methods for the vertex bisection problem. Recent Adv. Hybrid Approaches Des. Intell.
Syst. Stud. Comput Intell. 547, 567–577 (2014)

4. Marti, R., Pantrigo, J.J., Duarte, A., Pardo, E.G.: Branch and bound for the cutwidth
minimization problem. Comput. Oper. Res. 40, 137–149 (2014)

Table 1 Comparison between ILP2 and BBVBMP

Instances Grids Small Trees HB Total

Number of instances 5 84 15 4 108

CPU (s) ILP2 907.021 1598.902 73.198 14402.21 16981.33

BBVBMP 120 16.63095 19.9 10802 10958.53

Number of optimal
solutions

ILP2 2 69 15 0 86

BBVBMP 3 84 15 1 103

Percentage of optimal
solutions (%)

ILP2 40 82.1429 100 0 79.6296

BBVBMP 60 100 100 25 95.37

22 P. Jain et al.

5. McCreesh, C., Prosser, P.: A parallel branch and bound algorithm for the maximum labelled
clique problem. Optim. Lett. 9, 949–960 (2015)

6. Vlachou, A., Christos, D., Kjetil, N., Yannis, K.: Branch-and-bound algorithm for reverse
top-k queries. In: Proceedings of the ACM SIGMOD International Conference on Management
of Data, pp. 481–492. ACM Press, New York (2013)

7. Delling, D., Fleischman, D., Goldberg, A.V., Razenshteyn, I., Werneck, R.F.: An exact
combinatorial algorithm for minimum graph bisection. Math. Program. 153, 417–458 (2015)

Branch and Bound Algorithm for Vertex Bisection … 23

	2 Branch and Bound Algorithm for Vertex Bisection Minimization Problem
	Abstract
	1 Introduction
	2 Branch and Bound Algorithm
	3 Lower Bound for Partial Solutions
	4 Initial Upper Bound
	5 Tree Pruning
	6 Computational Experiments
	7 Conclusion
	References

