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Preface

This book contains the proceedings of the Forum “Math-for-Industry” 2015 held at
the Institute of Mathematics for Industry, Kyushu University, October 26–30, 2015,
for which the unifying theme was “The Role and Importance of Mathematics in
Innovation”. Selected papers presented at the forum are collected here.

Innovation is in fact the cornerstone of creativity in all human endeavors. It
involves “seeing” things from an entirely new, sometimes quite elementary, per-
spective. Innovation in mathematics is the bread and butter of mathematical cre-
ativity. Historical examples of mathematical innovation that have had profound and
lasting impacts on the subsequent development of mathematics include the loga-
rithm, complex numbers, non-Euclidean geometry, and calculus. Equally important
is innovation in the performance of mathematics which can be disarmingly simple
but have profound consequences. Examples include adding zero, multiplication by
one, and seeing a new interpretation that simplifies matters. This book illustrates
two different types of key roles that mathematics plays in supporting innovation in
science, technology, and daily life:

(1) Needs-based. Once a need or an opportunity for innovation has been identi-
fied, the subsequent experimentation and/or lateral thinking utilizes mathe-
matics to assist with sorting through the possibilities and putting matters on a
more rigorous foundation. An example is the development of Wi-Fi.

(2) Idea-based. After an idea for an innovation has materialized, mathematical
models of the possible implementations play a key role. An example is the
design of the next model of an automobile that exploits recent developments in
materials and technology. Being able to innovate comes from experiencing
and understanding how innovation occurs in mathematics, science, and
technology.

The contents of this volume report on productive and successful interaction
between industry and mathematicians, as well as on the cross-fertilization and
collaboration that occurred. The book contains excellent examples of the roles of
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mathematics in innovation and, thereby, the importance and relevance of the
concept Mathematics_FOR_Industry.

We would like to thank the participants of the forum, especially the members
of the Scientific Board of the Forum. Without their cooperation and support, we
would never have experienced the great excitement and success of the forum.
Moreover, we would like to express our deep appreciation for the great help of the
conference secretaries during the preparation and organization of the forum, and to
Chiemi Furutani for the proceedings.

Fukuoka, Japan Yasuhide Fukumoto
April 2016 On behalf of

The Organizing Committee of the Forum “Math-for-Industry” 2015
and

The Editorial Committee of the Proceedings
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Human Choice and Good Choice

Takayuki Osogami

Abstract The choice made by humans is known to depend on available alternatives
in rather complex but systematic ways. There has been a significant amount of work
on choice models for modeling such human choice. Most of the existing choice
models, particularly those in the class of random utility models, however, cannot
represent one of the typical phenomena of human choice, known as the attraction
effect. Here, we review recent development of choice models that can be trained to
learn the attraction effect and other typical phenomena of human choice from the
data of the choice made by humans. We also discuss possible extensions of such
work on choice models, which suggest potential directions of future research.

Keywords Choice models · Attraction effect · Boltzmann machines · Sequential
decision making

1 Introduction

The choice made by humans is often biased or shows complex dependencies on the
context where the choice is made. An illustrative example is given by Ariely [2],
where students were asked to choose a way to subscribe a magazine from two or
three options. Majority of the students liked the subscription to the online edition
(Option Online) better than the (more expensive) subscription to both online and
print editions (Option Both), when only these two options were available. However,
when another option of the subscription to the print edition (Option Print) was also
available at the same price as Option Both, the majority of the students liked Option
Both the best among the three options.

The phenomenon shown by Ariely [2] is known as the attraction effect and is
considered to be one of the phenomena that appear in human choice in a robust and
significant manner [23]. In the example, the preference between Option Both and
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2 T. Osogami

Option Online depends on whether Option Print is also available as an alternative.
In particular, Option Print acts as a decoy and increases the relative attractiveness
of Option Both, because the online edition comes for free once the print edition is
selected.

Although the attraction effect is well understood and is exploited by the practi-
tioners of marketing, the research on modeling and learning such phenomena from
the data of human choice is only recently addressed in the literature. In fact, despite
the long history of research on choice models [13, 35], most of the choice mod-
els, in particular those fall into the class of random utility models, cannot represent
the attraction effect [23]. In the literature of Psychology, researchers have proposed
sequential samplingmodels, whichmimic the cognitive process of the humanmaking
a choice [22]. Examples of the sequential sampling models include the decision field
theory (DFT) [6, 24] and the leaky competing accumulator model [37, 38]. Roe et
al. provide intuitive arguments as to why the DFT can represent the attraction effect
and other typical phenomena of human choice, giving numerical examples where
the DFT can represent these phenomena [24]. However, learning is not the focus of
the research in Psychology, and there has been no significant study of learning the
parameters of sequential sampling models from the data of human choice.

Here, we review recent development in the research on modeling and learning
human choice, particularly those models that can represent and learn the attraction
effect and other typical phenomena of human choice. We will also discuss how such
choice models can be exploited for providing good services to humans or for making
good decisions.

2 Modeling Human Choice

A model of choice is expected to give the probability of choosing each item from a
given set of choices. LetI be the set of items that can constitute a choice set. Given
a choice set, X ⊆ I , a choice model should give the probability of selecting each
item in the choice set: p(A|X ) for each A ∈ X .

An item is characterized by a vector of features. Let vA be the feature vector of
item A ∈ I . Each element of a feature vector may be a raw attribute that is explicitly
specified in the description of a product, such as the price and the speed. A feature
vector may be a vector that is given by a nonlinear transformation of a vector of such
raw attributes: vA = ψ(aA), where aA is the vector of raw attributes of A.

The necessity of a nonlinear transformation can be understood by considering the
standard choice model of the multinomial logit model (MLM), which is also known
as the conditional logit model. In an MLM, the choice probability is given by

p(A|X ) = exp(w�vA)∑

X∈X
exp(w�vX )

, (1)
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where w is a vector of the weights on the features. Here, w�vA can be understood as
the attractiveness of A, and the choice probability is proportional to the exponentiated
attractiveness. The nonlinear transformation, ψ , should be designed in a way that
the attractiveness becomes linear with respect to the features. A popular practice is
transformation to a binary vector of features, where each element of the binary vector
denotes whether the value of a particular attribute is in a particular range [3, 7, 34].
Although such transformation to a binary vector is often hand-crafted, one could use
systematic approaches such as locality sensitive hashing [1].

In the MLM, the ratio between the choice probabilities of two items, A and B, is
independent of other alternatives. That is, we have

p(A|X )

p(B|X )
= p(A|Y )

p(B|Y )
(2)

as long as A, B ∈ X ∩ Y . Much of the research on choice models has been
addressed to break this independence from irrelevant alternatives (IIA) [23], because
the choice models having the property of IIA cannot represent the attraction effect
and other typical phenomena of human choice.

Many of the choice models investigated in the literature fall into the class of
random utility models [35]. Here, each item, A, is assumed to have a random utility,
UA. The probability of choosing A from X is given by the probability that UA is
larger than the random utility of any other items in X :

p(A|X ) = Pr(UA > UX ,∀X ∈ X \ {A}). (3)

The random utility model reduces to the MLM when UX = w�vX + εX for each
item X , where εX is an extreme value distribution that is independent of each other
[15].

Random utility models must satisfy the principle of regularity [23], which states
that the probability of choosing a particular item cannot be increased by adding
alternatives:

p(A|X ) ≥ p(A|Y ) ifX ⊂ Y (4)

for A ∈ X . This implies that the random utility models cannot represent the attrac-
tion effect, where adding a decoy, D, into a choice set,X , increases the probability
of choosing an item, A, that dominates D:

p(A|X ) < p(A|X ∪ {D}). (5)

Although the majorities of the choice models studied in the literature [35] fall into
the class of randomutilitymodels, researchers have studied the choicemodels outside
this class. These include the decision field theory (DFT) [6, 24], the leaky competing
accumulator model [37, 38], other sequential sampling models [22], and Bayesian
choice models [27]. These models are not necessarily bounded by the regularity
principle and have been shown numerically to represent the attraction effect and
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other typical phenomena of human choice. The focus of this line of research is in the
models and the interpretation of those models, and there has been little attempt to
learn the parameters of those models from the data of human choice. For example,
the hierarchical Bayesian model of Shenoy and Yu [27] might be trainable, but they
do not discuss ways to train their model. In their experiments, they manually set the
parameters of their model and show that the trained model represents three typical
phenomena of human choice (the similarity effect, the compromise effect, and the
attraction effect) in particular cases.

Recent work has investigated the choice models that can be trained to learn the
typical phenomena of human choice from data [16, 17, 20, 32]. Osogami and Kat-
suki study a hierarchical Bayesian choice model with the concept of the visibility
of items [16]. They also propose learning algorithms based on Gibbs sampling and
approximate maximum a posteriori estimation and show that their choice model can
be trained to learn the attraction effect using the experimental data of Ariely [2],
which we have discussed in the beginning of this article. Takahashi and Morimura
study a choice model of a Bayesian decision maker, who makes choices based on
the posterior distribution of a Gaussian process after regression [32]. They esti-
mate the parameters of a Gaussian process through convex optimization and show
that their choice model can be trained to well represent the experimental data of
Kivetz et al. [11], which involves the compromise effect (the phenomenon that
humans tend to choose intermediate alternatives) [36]. In the following, we review
the choice models studied by Otsuka and Osogami [17, 20].

Otsuka and Osogami propose a choice model, which they refer to as a deep
choice model [17, 20]. The deep choice model is based on a restricted Boltzmann
machine (RBM) and can be trained in a way that the log likelihood of given data
is increased [12]. In [17], a special case of the deep choice model (an RBM choice
model) is trained to learn the data of human choice about transportation means [4],
which involves a phenomenon similar to the attraction effect. In [20], the deep choice
model is trained based on an artificial dataset generated based on a scenario called a
digit choice task, where a hypothetical agent chooses an image from a given set of
images of handwritten digits from the MNIST dataset.1 In the digit choice task of
[20], the choice made by the hypothetical agent is designed to involve the attraction
effect. That is, the deep choice model addresses two complexities in human choice.
The first is the complex dependency of the human choice on available alternatives,
and the second is the complex information that humans process to make a choice.

Figure1 shows the architecture of the deep choice model studied in [20]. The
deep choice model primarily consists of the stacked denoising autoencoder (SDA)
[39] and the RBM [10, 29].

The SDA is a particular model of deep learning [26] and extracts features from
images. An image from the MNIST dataset is in the gray scale and has the size of
28 × 28 bits, so that each image can be represented with a real vector of 784 dimen-
sions. In [20], the SDA is used to extract real-valued features of 500 dimensions,
which are then scaled and rounded into a binary vector of 500 dimensions. Let vA be

1http://yann.lecun.com/exdb/mnist/index.html.

http://yann.lecun.com/exdb/mnist/index.html
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Fig. 1 A deep choice model studied in [20]. The integer in each rectangle represents the number
of nodes in the corresponding layer, and L denotes the number of hidden nodes

the binary feature vector of an image, A. In [20], the feature vector of a choice set,
X , is defined as the average vector of the binary feature vectors of the items inX :

vX ≡ 1

|X |
∑

X∈X
vX , (6)

which is not necessarily binary.
In [20], the RBM is used to define the choice probability on the basis of the feature

vector of a choice set,X , and the binary feature vector of each item, X ∈ X . As is
shown in Fig. 1, the RBM in the deep choice model consists of three parts of nodes.
One part represents the choice set (choice-set nodes), and another part represents the
selected item (selected-item nodes). These two parts constitute the visible layer of
the RBM. Between the two parts of the visible layer, there is a layer of hidden nodes.
The nodes in one layer are connected to the nodes in the other layer, but there are no
connections within each layer. LetW be the matrix of the weight of the connections
between the choice-set nodes and hidden nodes. Let U be the matrix of the weight
between the selected-item nodes and hidden nodes. Let bhid be the vector of the bias
for the hidden nodes. Let bout be the vector of the bias for the selected-item nodes.

The energy of the RBM in the deep choice model is then defined as

E(vX ,h, vA) ≡ −v�
X Wh − h� UvA − b�

hid h − b�
out vA, (7)

where vX and vA are the values of the nodes in the visible layer, and h denotes the
values of the hidden nodes.

In the deep choice model [20], the choice probability is then defined as

p(A|X ) = exp(−F(X , A))
∑

X∈X
exp(−F(X , X))

, (8)
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where

F(X , A) ≡ − log
∑

h̃

exp(−E(vX , h̃, vA)) (9)

denotes the corresponding free energy, where the summation with respect to h̃ is
over all of the possible configurations of the values of the hidden nodes.

Observe the similarities and the differences between the MLM (1) and the deep
choice model (8). In the deep choice model, the feature vector of the choice set can
affect what feature vector of an item makes the free energy of the RBM low, which
in turn makes the relative choice probabilities of the items depend on the choice
set. In particular, the deep choice model can break the regularity principle (4) and
is shown to represent the attraction effect and other typical phenomena of human
choice [17]. The hidden nodes of the deep choice model play the role of representing
the particular dependency between the features of the items that are (un)likely to be
selected.

3 Beyond Choice Models

Some of the choice models that we have seen allow us to make a prediction about
what items are likely to be selected (or what features make an item more likely to be
selected), depending on the choice set. The deep choice model illustrated in Fig. 1
motivates a more flexible model of giving choice probabilities over items, depending
on various contexts (see Fig. 2). A choice set is an example of a context, but a context
may be a sequence of the choice sets that are presented to a person, or a sequence of
the choices that the person have made. The basic idea of the deep choice model can
be used to model such choices that depend on the sequential context as long as the
context is represented by a vector of a finite dimension.

When the sequential context is unbounded, however, a natural approach is to
use a model that extends the Boltzmann machine to a stochastic process or a
model of time-series data. The prior work has investigated such extensions of the
Boltzmann machine in various ways. These include the spiking Boltzmann

Fig. 2 A model of giving
choice probabilities
depending on the context
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(a) (b)

Fig. 3 a The dynamic Boltzmann machine unfolded through time [18]. b The dynamic Boltzmann
machine [19]

machine [9], the temporal restricted Boltzmann machine [30], the temporal recurrent
restricted Boltzmann machine [31], the factored conditional restricted Boltzmann
machine [33], and the dynamic Boltzmann machine (DyBM) [18, 19].

Among these extensions of the Boltzmann machine, the DyBM has the partic-
ularly attractive property that its parameters can be trained to maximize the log
likelihood of given sequential data through stochastic gradient methods under suit-
able assumptions. Figure3a shows the DyBM when it is unfolded through time in
a way that it corresponds the model of Fig. 2. In Fig. 3a, each column represents a
pattern of time-series data at one moment. The right-most column represents the next
pattern to be generated, and the probability distribution over the patterns depends on
the preceding patterns (i.e., the context). It has been shown in [18] that the model in
Fig. 3a is equivalent to the DyBM shown in Fig. 3b, where a node (or a neuron) is
connected to another via a first-in-first-out (FIFO) queue, and each node holds the
memory in the form of eligibility traces for storing some statistics of the preceding
patterns (i.e., the context).

4 Toward Making Good Choices

While the objective of learning the parameters of the deep choice model [20] is to
maximize the likelihood of given data of choice, the prior work has investigated
ways to learn good policies of making decisions or choosing actions, depending on
the context (i.e., the state or the history of prior actions and observations) for the
models with the architecture shown in Fig. 2 [8, 21, 25]. In such prior work, the free
energy is used to model the Q-function, or the state-action value function, which
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represents the cumulative reward that can be obtained over a period of interest by
taking a particular action from a particular state (or context). That is, their goal is
to find the optimal policy for sequential decision- making, where an agent seeks to
maximize the cumulative reward by sequentially choosing actions, depending on the
outcomes of preceding actions. Besides the energy-based approaches of [8, 21, 25],
the prior work has investigated various approaches of reinforcement learning [40] or
planning [14] with (partially observable) Markov decision processes for sequential
decision- making.

The techniques of sequential decision-making have been applied to actively learn-
ing the preferences of individuals, or preference elicitation [5], which are closely
related to the parameters of a choice model. Indeed, when we interact with indi-
viduals in a sequential manner, we can learn the preferences of the individuals, or
the parameters of their choice models, during the interaction to adapt our actions in
consideration of their preferences. During interaction, we can take actions that are
targeted primarily to collect informative observations or primarily to provide good
services immediately or in the future. This interaction can be considered as sequen-
tial decision- making, where we select appropriate actions in sequence to achieve a
long-term goal of providing good personalized services.

In our preliminary work, we apply an algorithm for sequential decision-making
[28] to sequentially learn the parameters of a choice model for a person who we are
interacting with. Specifically, our goal is to understand the preferences of a potential
customer (here referred to as a user) about life-insurance. We ask questions to the
user, where a question consists of a set of multiple life-insurance products. The user
then answers the question by selecting one from the choice set. Here,we consider four
attributes of a life-insurance product: the amount of monthly premium, the amount
of total premium, the amount of coverage, and the amount of refund (in the case the
user is alive after the period of coverage). We vary the values of these attributes to
maximally elicit the preferences of the user.

We conducted an experiment of asking five questions to each user. The cost of
responding to the five questions is sufficiently low, and 97% of the users responded
to all of the five questions. We evaluated the quality of the questions optimized
through sequential decision making by predicting the users’ response to the fifth
question from the users’ preferences that were estimated on the basis of the first four
questions and responses to them. The area under the ROC curve was improved from
0.59 to 0.75 by our approach.
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On 3D Scanning Technologies
for Respiratory Mask Design

Dmitry Nikolayevich Znamenskiy

Abstract Within the Philips Research project a handheld, 3D face scanner has been
developed to address the needs of CPAPmask design for Philips Respironics business
unit. The scanner is based on the structure light technology proposed in [10], which is
claimed to be motion robust, i.e. in typical conditions with shaky hands and moving
objects, the scanner delivers sub-millimetre accurate 3D face models, suitable for the
CPAP mask design applications. In this article we derive an analytic expression for
the accuracy of the structured light scanner, where the lateral and axial measurement
errors as a function of the hardware parameters and the object position and velocity.
The analytic formulas can contribute to better understanding the motion invariant
structured light technology and creates a room for the scanner specifications.

Keywords Apnoea · 3D scanning · CPAP

1 Introduction

Apnea Philips makes respiratory masks for patients with Obstructive Sleep Apnoea
syndrome (OSA). OSA is a sleep disorder when people frequently stop breathing
during the night due to closure of the upper airway, so people partially wake up many
times during the night, which causes continual sleepiness during the day and other
health disorders, see [1]. Sleep studies [2] show that 6–7% of western population
suffer from at least a mild form of apnoea, where almost 85% of the cases remains
undiagnosed and untreated. Male gender, age, overweight, low muscle tone and
snoring can increase the likelihood of apnoea up to 40%.

Mask Design Since 1980, sleep apnoea is effectively treated [3] (but not cured)
by providing positive air pressure which prevents the upper airway from obstruction.
The positive air pressure (CPAP or Bi-PAP) is generated by a pump and delivered by
means of a tube and a facial mask to a patient. As the patient is expected to sleep with
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the mask every might, the mask should ultimately fit the patient’s face. If mask does
not fit the face, a patient can get red marks where the mask contact is to tense, or air
leaks where the mask contact is too loose. The air leaks reduce the efficiency of the
therapy and, if the mask is leaking towards an eye, it can cause an eye inflammation.
About 40%of the patients stopwith the treatment, due of problemswith themask [4].

Studying the facial dimensions of the average apnoea patient is a critical task in
the making of small lightweight masks which would perfectly fit the patient.

While it is possible to find the average facial dimensions in various anthropomet-
ric surveys, e.g. like [5], the manual anthropometric measurements are often inaccu-
rate, see [7], and the majority of studies does not address the specific subgroup and
ethnicities of the OSA population. Moreover, the knowledge of the average facial
dimensions is often not sufficient, as not only dimensions but also the face shape
significantly varies per population group.

3D Scanning with structured light The respiratory mask design can consider-
ably benefit form 3D scanning surveys, like [6], which collect data over the complete
facial surface. While the 3D scanning technologies already became almost a com-
modity, it is hardly possible to find a commercial 3D camera for fast, robust and
mobile data collection: a lightweight handheld device with acquisition time of less
than a second, motion robust yet giving sub-millimetre accurate measurements. It
was expected that the sub-millimetre scanner accuracy being comparable with the
amplitude of the skin defects will result in sufficiently accurate average faces for
meaningful mask design. Thus within Philips Research a new 3D face scanning
technology was proposed, see [10] which could potentially meet the required speci-
fications. Among different scanning methods [8], the so-called structured light was
chosen.

Structured light method is based on the projection of a known pattern with a
projector on a scene, and capturing of the resulting image with a camera of the scene.
The camera is laterally displaced with respect to projector on the distance called the
baseline. Similar to a stereo-camera, the systemworks on the basis of disparity as the
camera captures laterally displaced codeswhere the amount of displacement depends
on the distance to the object, see Fig. 1. Further the required depth resolution was

Fig. 1 a Triangulation principle, b a schematic of the structured light principle
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gained using the sub-pixel accurate edge codes [9] and the motion invariance was
achieved by alternating the polarity of the projected code images and using the edge
addressing based on binary codes,where the position of decoded edges can be tracked
from frame to frame, see [10]. The article is further structured as follows: In the next
section we will present the main result. Then in Sect. 3 we will give an outline of
the proof. Section4 shows an application of the accuracy formulas to an example
3D scanner configuration. Section5 describes embodiments of the structured light
technology in Philips products. Appendix addresses the missing details.

2 Structured Light Accuracy

In order to better understand the potential of the technology and find the optimal
scanner configuration, we invested time in derivation of an analytic expression for
the accuracy of the scanner as a function of the hardware parameters and the object
position and velocity. The scanner errors can be then translated to the accuracy of
the average face computed over a collection of scans.

Consider the scanner and object optical system parameters: h-pixel size, Z0—
focusing distance, A—camera aperture size, fc- camera focal length, Nr—sensor
signal to noise ratio in percent of the camera dynamic range, Fs—frame rate,
Cexp ≤ 1—camera sensor image integration duty cycle, Z—distance to object, B—
baseline between the camera and projector, Vx—relative lateral object velocity, Vz—
relative object axial velocity, Tr—visible object texture intensity gradient in percent
of dynamic range, see Fig. 2.

Proposition The lateral scanner error EX and the axial scanner error EZ can be
expressed as

EX ≈ E · Z
fc

, EZ ≈ E · Z2

B · fc
,

where E is the total system error which can be decomposed in the systematic and
stochastic error

Fig. 2 Geometric parameters and camera blur
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E = Ē + En, Ē ≈ Tr · VX · fc
2Fs · Z R, |̄En| ≤ Nr · 3n

2
R

where n ∼ N (0, 1) is the Gaussian random variable and R is the system blur radius

R = h + A fc
|Z − Z0|
Z · Z0

+ |VZ | · B · fc · Cexp

Fs · Z2
,

when the following two assumptions are satisfied:
(a) there are bounds on the relative lateral object speed VX and relative axial object
speed VZ

|VZ | � A
|Z − Z0|2Fs · Z

Z0 · B , |VX | � A
|Z − Z0|

Z0
+ |VZ | · B

2Fs · Z ,

(b) the local texture gradient is not larger than the inverse of the system blur radius,
i.e. Tr ≤ R−1.

3 Sketch of the Proof

The proof presented in this section is not rigorous/complete from the mathematical
point of view, therefore we call it a ‘sketch of the proof’. Below, we consider the
projection and acquisition of the signal binary edge signal as the tracking of edges
between the subsequent code frames is beyond the scope of the Proposition. The
proof of the Proposition includes: (a) modelling of the optical system, (b) modelling
of the camera signal, (c)modelling of the edge error and (d) application of themodels.

Modelling of the optical system Below, we consider two Lemmas. The first one
gives the relations between the real-world object localization error (object speed)
versus the edge localization error (edge speed) on the camera sensor.

Lemma 1 When ΔZ � Z and Mc ≈ fc, the object localization lateral error EX ,
depth error EZ , lateral object velocity VX and axial object velocity VZ are related
to the edge localization error E and to the edge speed v on the camera sensor via
the following equations:

EX ≈ E · Z
fc

, VX ≈ vx · Z
fc

, vx ≈ VX · fc
Z

, (a)

EZ ≈ E · Z2

B · fc
, VZ ≈ vz · Z2

B · fc
, vz ≈ VZ · B · fc

Z2
, (b)

ΔZ ≈ Δr · Z2

B · Mp
. (c)
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where vx and vz are the lateral edge speeds on the sensor caused respectively by the
lateral and the axial object velocities.

The proof of lemma is given in appendix.
In the second lemma we give expression for the blur radius on the camera sensor

as the function of the system parameters.

Lemma 2 When ΔZ � Z, Mc ≈ fc and fc � Z0, the object appears blurred on
the sensor with the blur radius

R = h + A fc
|Z − Z0|
Z · Z0

+ |VZ | · B · fc · Cexp

Fs · Z2
,

Observe that the condition of the lemma is practically satisfied as for a typical small
camera we have fc equal to few mm, while Z and Z0 are about tens of centimetres
The proof of lemma is given in appendix.

Modelling of the edge signal Consider 1D camera sensor signal I (s), s ∈ R

which is sampled in the direction parallel to the baseline between the camera and
the projector. We model I (s) as the product of projected code signal S(s) and the
texture reflectivity T (s), plus noise

I (s) = S(s) · T (s) + σ · n(s),

where n(s) ∼ N (0, 1) is the Gaussian random variable. Assume that the ideal edge
position, at the absence of motion, texture crosstalk and noise is at s = 0 and that
neighbouring pixel positions are at s = h, s = −h, where 2h is the distance between
any two pixels on the sensor. At the absence of ambient light, object motion and
sharply in the focus, the projected code signal can be modelled as

S(s) = 1(s ≥ 0),

where 1 is the indicator function. In practical conditions, when the signal is super-
imposed over the ambient light S0, and edge is acquired blurred with radius R, we
model the signal S(s) as

S(s) = a · s + 0.5 + S0, a = R−1.

If object is moving in axial direction, the acquired signal appears displaced with
speed vz

S(s + vzt) = a · (s + vz · t) + 0.5 + S0.

Note that the above model can be considered valid until

0 ≤ S(s + vzt) ≤ 1. (1)
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We address the texture crosstalk effect with the simple linear model of the reflectivity

T (s) = c · s + d,

where c, d are parameters such that T (s) ∈ [0, 255]. If an object is moving in lateral
direction, the acquired texture appear displaced with speed vx

T (s + vx · t) = c · (s + vx t) + d.

Combining the above edge and the camera model we have

I (s, t) = S(s + vz · t) · T (s + vx · t) + σ · n(s).

= (
a · (s + vz · t) + 0.5 + S0

) · (
c · (s + vx t) + d

) + Nrd · n(s),
(2)

with Nr = σ/d.
Modelling of the edge error As we mentioned in the introduction we consider

a coded light scheme where for every binary image pattern at time t we also project
a negative of it at time −t . The edge signal in the positive-phase and negative-phase
camera images can be modelled as

I+(s, t) = S(s − vz · t) · T (s − vx · t) + σ · n+(s)

I−(s,−t) = S(−(s + vz · t)) · T (s + vx · t) + σ · n−(s)
(3)

where in the negative-phase camera images the edge signal is inverted while the
texture signal stays the same. In order to cancel the effect of the unknown ambient
light and minimize the influence of the local reflectivity on the exact position of the
edge we normalize it as

In(s, t) = I+(s, t) − I−(s,−t)

I+(s, t) + I−(s,−t)
. (4)

The sub-pixel accurate observed edge position, i.e. edge error E , can be found by
means of a linear interpolation of the normalized signal between the pixel positions
s = h and s = −h

E = h · In(−h, t) + In(h, t)

In(−h, t) − In(h, t)
, (5)

see Fig. 3. Note, that the above approximation can be considered accurate until the
estimated edge is located inside the pixel range

− h < E < h. (6)
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Fig. 3 Computation of the
edge position E

Application of the modelsObserve that, due of Lemma1, it is sufficient to prove
under conditions of the Proposition that

Ē ≈ R
c · vx · t

d
, (7)

with t = 1/(2Fs), and that

|En| = |E − Ē | ≤ R
3Nr · |n|

2
(8)

We prove first (7) and then (8). The first step towards this is the following lemma.

Lemma 3 For E defined in (5) holds

E = h · I+(−h, t) · I+(h, t) − I−(−h,−t) · I−(h,−t)

I+(−h, t) · I−(h,−t) − I−(−h,−t) · I+(h, t)
. (9)

Proof The proof is quite straightforward. Substitute (4) in (5).

Let Ipp, Imp, Ipm and Imm denote I+(h, t), I−(h,−t), I+(−h, t) and I−(−h,−t)
without noise, i.e.

Ipp = S(h − vzt)T (h − vx t)

Ipm = S(−h − vzt)T (−h − vx t)

Imp = S(−h − vzt)T (h + vx t)

Imm = S(h − vzt)T (−h + vx t)

(10)

Below we define the systematic edge error which will be used to prove (7) and (8).

Ē = h · Ipm Ipp − Imm Imp

Ipm Imp − Imm Ipp
. (11)

Let us make some change of variables

μ = vz · t, ν = vx · t, β = d/c = T−1
r .
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The following lemma is then used to reduce Ē

Lemma 4

(a) Ipm Ipp − Imm Imp = 4d2Trν(1 − a2h2 − 2aμ + a2μ2)

(b) Ipm Imp − Imm Ipp = h · 4d2(a − a2μ

+ T 2
r (ν − ah2 − 2aμν − aν2 + a2h2(μ + ν) + a2μ2ν + a2μν2)

)

(12)

Proof Theproof is quite straightforward, but tediuos: use the suggested above change
of variables and substitute (10) on the left-hand side of the lemma to get the expres-
sions after simplification.

It follows from Lemma4 that

Ē = Trν(1 − a2h2 − 2aμ + a2μ2)

(a − a2μ + T 2
r (ν − ah2 − 2aμν − aν2 + a2h2(μ + ν) + a2μ2ν + a2μν2)

≈ Trν

a
= R

c · vx · t
d

,

under assumptions of the Propositionwhich gives (7). In order to prove (8) we have to
compare (9) and (11). The following Lemma compares respectively the nominators
and denominators in (9) and (11).

Lemma 5 Under assumptions of the Proposition we have

(
I+(−h, t) · I+(h, t) − I−(−h,−t) · I−(h,−t)

) − (
ppm ppp − pmm pmp

) ≈ 2dσ · n1,

and, similarly,

(
I+(−h, t) · I−(h,−t) − I−(−h,−t) · I+(h, t)

) − (
ppm pmp − pmm ppp

) ≈ 2dσ · n2,

where n1, n2 are normal distributed random variables with variances at most 1.

The proof of Lemma4 is given in the appendix. It follows then from Lemma5 that

E ≈ h
4d2Trν + 2dσ · n1
h · 4d2a + 2dσ · n2 = h

2dTrν + σ · n1
h · 2da + σ · n2 .

In order to proceed with proving (8) we need another lemma.

Lemma 6 Let n1, n2 ∼ N (0, 1) are normal distributed random variables. Under
condition n1, n2 � A, B and A/B ≤ h, there exist normal distributed random vari-
able n3 ∼ N (0, 1) such that,

∣∣∣
A + σ1 · n1

h · B + σ1 · n2 − A

B

∣∣∣ ≤ 3σ1 · |n3|
B

.
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We apply Lemmas4 and 6 with
A = 2dTrν,

B = 2da,

to get (8):

|En| = |E − Ē | ≈
∣∣∣h · ppm ppp − pmm pmp + 2dσ · n1

ppm pmp − pmm ppp + 2dσ · n2 − h · ppm ppp − pmm pmp

ppm pmp − pmm ppp

∣∣∣

|En| ≤ 3σ · |n3|
2d · a ≈ R

3Nr · |n3|
2

,

with Nr = σ/d, which completes the proof of the Proposition. �

4 Simulations

Consider, as example, a 3D scanner model with the following optical and system
parameters. The camera sensor pixel size is 6 × 10−6 [m] which gives half of the
distance between the pixels h = 3 × 10−6 [m]. The camera has the focal length fc =
0.008 [m], F—number 2.5 and therefore the aperture A = fc/2.5 = 0.0032 [m]. The
camera is focused at distance Z0 = 0.4 [m], and the active
range of the scanner is 0.3 [m]< Z < 0.7 [m]. The magnification of the cam-
era Mc = Z0· fc

Z0− fc
≈ fc = 0.008 [m]. Further we assume that the reflectivity change

between the neighbouring pixels is 10%. Hence Tr/ (2h)=0.1 and Tr = 0.05/h ≈
1.7 × 104 [m]. The typical sensor SNR can be taken as Nr = 1% at the focusing
distance Z0 = 0.4 [m], and it grows as fourth power of distance to the object (a mul-
tiplication of the second power decay of projected intensity and second power decay
of reflected intensity), which gives Nr = (0.7/0.4)41% ≈ 9.3% at Z = 0.7 [m] and
Nr = (0.3/0.4)41% ≈ 0.3% at Z = 0.3 [m]. Take the baseline between the camera
and projector B = 0.07 [m]. The camera frame rate is Fs = 60 [s−1] and duty cycle
50%, which gives the temporal image integration time of 120−1 [s−1]. Below we
have applied the Proposition to make the level plot for the position error as a func-
tion of the lateral and axial object velocities. The set of first plots show the lateral
and axial errors when the object is in focus at distance Z0 = 0.4 [m]. One can see
that the stochastic error variance is negligible (Fig. 4).

The second set of the plots shows the lateral and axial errors when the object is at
distance Z = 0.5 [m]. The stochastic error variance for axial error is aboutmillimetre
and cannot be ignored anymore (Fig. 5).
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Fig. 4 Contour plots for scanning distance of 0.4m

Fig. 5 Contour plots for scanning distance of 0.5m
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Fig. 6 a Scanner evaluation on the translation stage, b captured 3D image for different velocities,
c artefacts at the maximal velocity

5 Realization in Products

On the practical side the new 3D scanning technologies were realized in a handheld
3D scanner Fig. 7a. The robustness of the scanner to the object motion was evaluated
in a series of experiments where a manikin head was scanned while it was moving
with certain velocity. The exact axial velocitywas controlled bymeans of a translation
stage, see Fig. 6. The 3D scans created with the scanner have sub-millimetre errors
while the relative subject motion has the lateral and axial velocity of 5 and 20cm/s
respectively. Philips used 3D scanners to measure the OSA patients in Japan and
design a special mask for Japanese OSA population, see Fig. 7b.

Acknowledgments The authors are grateful to Philips Respironics for providing a challenging
topic of research, and to colleagues Ruud Vlutters and Karl van Bree who are co-authors of the
motion invariant structured light principle [10].

Appendix

Proof of Lemma 1. Consider the left sketch on Fig. 2. From the similarity of triangles
in the figure one can derive that

ΔX

Z
= Δs

Mc
(13)

ΔZ

ΔX
= Z + ΔZ

B
(14)
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Fig. 7 a Philips internal 3D scanner,b a special version of PhilipsWispmask produced for Japanese
market

The first one for Mc ≈ fc implies

ΔX = Δs · Z
Mc

≈ Δs · Z
fc

, (15)

and

Δs = ΔX · Mc

Z
≈ X fc

Z
(16)

Thus, if the object is displaced in the lateral directionwe have point (a) of the Lemma:
The combination of the (14) and (15) implies

ΔZ = Δs · Z · (Z + Z)

B · Mc
(17)

If we assume that ΔZ � Z , and Mc ≈ fc we can approximate

ΔZ ≈ Δs · Z2

B · fc
, Δs ≈ ΔZ · B · fc

Z2
, (18)

which implies points (b) and (c) of the Lemma. Thus, if the object is moving in
the axial direction we have point (a) of the Lemma. The proof of point (c) can be
obtained by flipping the camera and the projector sides. �

Proof of Lemma2. We model the blur radius as the sum of the pixel blur, the
optical blur and the motion blur.
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R = Rh + Ro + Rm .

We assume the pixel blur equal to h, i.e. Rh = h. Consider first the optical blur.
Suppose than the camera is focused at distance Z0. Then we have from the lens
equation

1

Z0
+ 1

Mc
= 1

fc

Hence

Mc = Z0 · fc
Z0 − fc

.

If the object is located at distance Z , then the image is focused at distance

M
′
c = Z · fc

Z − fc
.

Then the object appears blurred on the sensor with the blur radius:

Ro = A

M ′
c

|M ′
c − Mc| = A fc

|Z − Z0|
Z(Z0 − fc)

≈ A fc
|Z − Z0|
Z · Z0

,

since fc � Z0. Consider the motion blur part. When the object is moving in the axial
direction it causes the acquired edge move in laterally on the sensor, and the edge
displacement Rm is equal to the absolute edge velocity |vz| times the exposure time
Texp:

Rm = vz · Texp ≈ |VZ | · B · fc · Cexp

Z2 · Fs
,

where we apply Lemma1, and where Texp = Cexp/Fs �
Proof of Lemma5. It follows from thedefinitions of I+(h, t), I−(h,−t), I+(−h, t),

I−(−h,−t) and Ipp, Imp, Ipm , Imm , and from the independence of n+(h), n+(−h),

n−(h)n−(−h) that

(
(I+(−h, t) · I+(h, t) − I−(−h,−t) · I−(h,−t)

) − (
Ipm Ipp − Imm Imp

)

= Ipmσ · n+(h) + Ippσ · n+(−h) + Immσ · n−(h) − Impσ · n−(−h)

=
√
I 2pm + I 2pp + I 2mm + I 2mpσ · n1,

≈
√
4a2c2R2β2σ · n1 = 2d · σ · n1,

for some n1 ∼ N (0, 1). Similarly we get the second statement of the lemma. �
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Proof of Lemma 6.

∣∣∣
A + σ1 · n1

h · B + σ1 · n2 − A

B

∣∣∣ ≈
∣∣∣
A

B

(
1 + σ1 · n1

A

)(
1 − σ1 · n2

h · B
)

− A

B

∣∣∣

≈ A

B

(σ1 · n1
A

− σ1 · n2
h · B

)
≤ 2σ1 · |n3|

B
,

for some n3 ∼ N (0, 1). �
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Abstract We study the break down of bone metabolism, using mathematical mod-
eling. The principal part of this model is composed of two pathways of maturation,
that is, from pre-osteoblast to osteoblast and from pre-osteoclast to osteoclast. There
is also a pathway of acceleration to the formation of pre-osteoclast by pre-osteoblast.
This pathway is evoked by a cytokine, called RANKL. Experimental data, on the
other hand, suggest a differentiation annihilation factor to the maturation pathways
above. Total mathematical modeling on these positive and negative feedback loops
induces an insight, how the dynamical equilibrium of this metabolism breaks down,
via mathematical analysis and numerical simulations. Then in vivo experiments are
proposed to confirm actual existence of the above factor, together with the evaluation
of medical manipulations.
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1 Introduction

Biological phenomena are maintained through metabolism. Usually, this process
is under the dynamical equilibrium. For example, bone metabolism is achieved
under the balance of two kinds of cells, osteoblast and osteoclast, associated with
bone formation and bone resorption, respectively. Break down of this balance,
therefore, makes the individual unstable, and sometimes causes diseases, that is,
osteopetrosis and osteoporosis if osteoblast dominates osteoclast and if osteoclast
dominates osteoblast, respectively.

Maturation pathways of osteoblast and osteoclast are now recognized as fol-
lows [2, 6]. First, osteoblast and osteoclast are formed by differentiations of pre-
osteoblast and pre-osteoclast, respectively. Here, hematopoiesis stem cell matu-
rates to pre-cell of pre-osteoclast. Then there occurs proliferation of these pre-
cells. There is also an acceleration in the differentiation of the above pre-cell to
pre-osteoclast, from the pre-osteoblast through a cytokine, called RANKL. In the
process of differentiation, finally, pre-osteoclasts form a cluster, called an MN
osteoclast, and this cluster matures to a PN osteoclast. Recent experimental data,
however, strongly suggest the production of differentiation annihilation factor (DAF)
by MN osteoclast. This DAF annihilates both maturations, from pre-osteoblast to
osteoblast and from MN osteoclast to PN osteoclast as illustrated in Fig. 1.

Fig. 1 Two pathways of maturation and three feedback loops
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Mathematical models have been used to describe many biological phenomena
[4, 5]. Here we examine the above hypothesis of DAF using mathematical modeling.
We apply twomethods for this purpose, that is, multi-scale modeling and break down
of dynamical equilibrium, to predict what should be observed in experimental data
and also to evaluate the drug effect.

2 Mathematical Analysis

Here we formulate the above feedback loops as a system of ordinary differen-
tial equations, pick up dynamical equilibria, and study their break down. First,
we apply multi-scale modeling. The event is on the tissue level, where each
cell is regarded as a point, and the densities of four kinds of cells are counted,
that is, pre-osteoblast, osteoblast, pre-osteoclast, and osteoclast. Here we iden-
tify pre-osteoclast and MN osteoclast, while DAF is on the molecular level. We
assume three functions of DAF, that is, production by MN osteoclast, decay by
itself, and annihilation of two pathway of differentiation, from pre-osteoblast to
osteoblast and pre-osteoclast to osteoclast. These effects on the molecular level are
modeled as functional relations. Then dynamical equilibrium is formulated, and
dependence on the parameters is examined in connectionwith its break down. Finally,
transit to osteoporosis is suggested by mathematical analysis and numerical simula-
tions at the occasion of break down of dynamical equilibrium.

2.1 Multi-scale Modeling

Densities of the four kinds of cells are defined on tissue level. Hence, pre-osteoblast,
osteoblast, pre-osteoclast, and osteoclast are denoted by X1, X2, X3, and X4, respec-
tively. Then it holds that

dX1

dt
= −�1X1 + m1 (1)

dX2

dt
= �1X1 (2)

dX3

dt
= −�2X3 + m2 (3)

dX4

dt
= �2X3 (4)

where m1 and m2 denote the amounts of supply per unit time of pre-osteoblast
and pre-osteoclast, respectively, and �1 and �2 denote the rates of differentiations,
from pre-osteoblast to osteoblast and from pre-osteoclast to osteoclast, respectively.
These differentiations are annihilated by a factor, which we call DAF. It lies on the
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molecular level, produced by MN osteoclast, identified with pre-osteoclast. Hence
DAF density, denoted by X5, is subject to

dX5

dt
= γ X3 − δX5 (5)

where γ and δ denote the rates of production and self-inhibition, respectively, which
are assumed to be positive constants. We call (1)–(5) the top-down model totally.

Positive and negative feedback loops, on the other hand, arise in the molecular
level. Below, a, b, c, d, e, f , g, and h denote positive constants. First, pre-osteoblast
accelerates the production of pre-osteoclast through the activation of RANKL, which
is identified with the pre-osteoblast in this model. Thus we take

m2 = m2(X1) = aX1 + b. (6)

Since DAF annihilates the maturations of osteoblast and osteoclast, we assume

�1 = �1(X5) = c

dX5 + e
(7)

�2 = �2(X5) = f

gX5 + h
. (8)

We call (6)–(8) the bottom-upmodel totally, under the agreement thatm1 is a positive
constant. The precise forms of the bottom-up model, however, are not essential. For
the moment it is sufficient to assume the strict convexity of the continuous mapping
x ∈ [0,∞) �→ ϕ(x) ∈ (0,∞), where

ϕ(x) = m2

(
m1

�1(x)

)
· 1

�2(x)
. (9)

In fact we have

ϕ(x) = 1

f

(am1

c
(dx + e) + b

)
(gx + h)

in the case of (6)–(8).

2.2 Dynamical Equilibrium and Break Down

From the above description, dynamical equilibrium in bone metabolism is formu-
lated by

dX1

dt
= dX3

dt
= dX5

dt
= 0
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which is equivalent to

�1X1 = m1, �2X3 = m2, γ X3 = δX5. (10)

System of equations (10) is reduced to

δ

γ
X5 = ϕ(X5) (11)

and then the other variables are determined by

X1 = m1

�1(X5)
, X3 = ϕ(X5). (12)

From the strict convexity of y = ϕ(x) > 0, x ≥ 0, there is a critical value λ > 0
of λ = δ/γ concerning the number of solutions to (11). This number is acutally 2, 1,
and 0, according to λ > λ, λ = λ, and 0 < λ < λ, respectively. Assume λ > λ, let
X+
5 = X+

5 (λ) > X−
5 = X−

5 (λ) > 0 be the solutions to (11), and put

X±
1 = m1

�1(X
±
5 )

, X±
3 = ϕ(X±

5 ).

Then we obtain linearly nondegenerate equilibria of the system (1), (3), and (5), that
is,

(X±
1 , X±

3 , X±
5 ) = (X±

1 (λ), X±
3 (λ), X±

5 (λ)).

Dynamics of this system around (X±
1 , X±

3 , X±
5 ), on the other hand, is reduced to that

of
dX5

dt
= γ X3 − δX5 ≈ γ ϕ(X5) − δX5 (13)

around X5 = X±
5 .

By the strict convexity of y = ϕ(x) > 0, x ≥ 0, therefore, the only stable dynam-
ical equilibrium arises when λ > λ, that is,

(X1, X3, X5) = (X−
1 (λ), X−

3 (λ), X−
5 (λ)).

Then the other variables (X2, X4) = (X2(t), X4(t)) exhibit linear growth for t large.
This dynamical equilibrium (X−

1 , X−
3 , X−

5 ) = (X−
1 (λ), X−

3 (λ), X−
5 (λ)) breaks

down as λ decreases below λ. At this occasion it arises the increase of the value
X−
5 (λ). Although limλ↓λ X

−
5 (λ) exists, its increasing rate becomes extremely high if

the malignancy proceeds on time.
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2.3 Near from Dynamical Equilibrium

A natural question is what happens if the dynamical equilibrium breaks down. To
approach this problem we introduce the notion of near from dynamical equilibrium.
Herewe assume thatm1, γ , and δ are positive constants,m2 = m2(X1), �1 = �1(X5),
and �2 = �2(X5), with the strict convexity of y = ϕ(x) > 0, x ≥ 0, defined by (9).
Then we say that the solution (X1, X2, X3, X4, X5) to (1)–(5) lies on near from
dynamical equilibrium if it is in the region where the approximation

X1 ≈ m1

�1(X5)
, X3 ≈ ϕ(X5) (14)

is valid, recalling (12).
This is the region where the dynamics of (X1, X2, X3, X4) is controlled by that

of X5. In particular, it holds that

dX4

dX2
= �2X3

�1X1
≈ �2(X5)

m1
· ϕ(X5) = 1

m1
· m2

(
m1

�1(X5)

)

and hence

d

dt

(
dX4

dX2

)
≈ ψ ′(X5)

dX5

dt
, ψ(x) = 1

m1
· m2

(
m1

�1(x)

)
. (15)

From the positive and negative feedback loops underlying this model, it holds that
ψ ′(x) > 0, x ≥ 0.We can actually confirm this property for the case of (6)–(8). Rela-
tion (15) means that the break down of dynamical equilibrium, near from dynamical
equilibrium, arises in accordance with the velocity of DAF density. More precisely,
this break down leads to osteoporosis and osteopetrosis in the cases of dX5

dt > 0 and
dX5
dt < 0, respectively.
Even in the case of λ > λ, the orbit can stay around the unstable dynamical

equilibrium (X+
1 (λ), X+

3 (λ), X+
5 (λ)) a relatively long time [1, 3]. Since this is the

region near fromdynamical equilibrium, such transient experiencemay cause serious
damage to the individual, although the variables

(X1, X3, X5) = (X1(t), X3(t), X5(t))

eventually approach the stable dynamical equilibrium (X−
1 (λ), X−

3 (λ), X−
5 (λ)) as

t ↑ +∞.
A numerical example is shown in Fig. 2. It deals with the bottom-upmodel (6)–(8)

with a = 1, b = 1, c = 1, d = 1, e = 3, f = 10, g = 1, and h = 1.Herewe takeλ =
δ
γ

= 10 to obtain two solutions to (11), denoted by X+
5 (λ) = 4 and X−

5 (λ) = 1. The

unstable dynamical equilibrium is detected as (X+
1 (λ), X+

3 (λ), X+
5 (λ)) = (7, 4, 4).

We can see that the Morse index of this unstable equilibrium is 1, and hence it is
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Fig. 2 Dynamics near unstable dynamical equilibrium

associatedwith a stablemanifold of codimension 1. Consequently, generic orbit stays
near this unstable equilibrium in a relatively long time.

In this example we take X1(0) = 7(1 + 0.01), X3(0) = 4(1 + 0.01), X5(0) =
4(1 + 0.01), X2(0) = 0, X4(0) = 0 as an initial value near from this unstable dynam-
ical equilibrium. Numerical simulation shows that the orbit stays still around there at
t = 100. Then dX5

dt > 0 is kept, and consequently, we observe saturation of X2 after
t ≥ 60, recalling (15). Here, increase of X5 is due to that of the supply of X3, which
matures to X4, and therefore, X2 relatively saturates in spite of the two pathways of
annihilation by X5.

3 Biological Discussion

Having collected experimental data suggesting the existence of DAF, we are sus-
pecting a protein to cast this factor. For in vivo experiments, here we examine more
on this hypothesis from the theoretical point of view.

3.1 Near from Dynamical Equilibrium, Revisited

The orbit stays near from dynamical equilibrium at least initially if the initial value
is taken there. Then, as we have mentioned, even transient saturation of either X2 or
X4 takes an important clinical role.
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At the break down of dynamical equilibrium the value X5 takes X
+
5 (λ) = X−

5 (λ),
denoted by X∗

5 . Since it holds that γ ϕ(X∗
5) − δX∗

5 > 0 for λ = δ
γ

< λ, we have
dX5
dt > 0 near this point, recalling (13). Hence break down of dynamical equilibrium
occurs with the saturation of osteoblast by (15), which will be a driving force to
osteoporosis.

Another near from dynamical equilibrium is achieved around the unstable dynam-
ical equilibrium (X+

1 (λ), X+
3 (λ), X+

5 (λ)) forλ > λ. Then the conditions dX5
dt > 0 and

dX5
dt < 0 arise initially if X5(0) > X+

5 (λ) and X5(0) < X+
5 (λ), respectively. Such ini-

tial dynamics that X5(0) is close to X+
5 (λ) may occur often if 0 < λ − λ � 1. In

other words, if bone metabolism is close to the break down of dynamical equilib-
rium and the concentration of DAF becomes higher in some reason, saturation is
induced to the production of either osteoblast or osteoclast, associated with increase
and decrease of DAF, respectively.

3.2 DAF Knock Down

To identify the cell molecule casting DAF, knockdown technique may be used. Here
we specify what should be observed under this operation, modifying the bottom-up
model (6)–(8).We take threemodifications, cutting the effects of annihilation, that is,
annihilation of differentiation of pre-osteoblast to osteoblast, that of pre-osteoclast
to osteoclast, and both. We thus obtain three bottom-up models, that is,

m2 = aX1 + b, �1 = c, �2 = f

gX5 + h
, (16)

m2 = aX1 + b, �1 = c

dX5 + e
, �2 = f, (17)

and
m2 = aX1 + b, �1 = c, �2 = f. (18)

Their dynamical equilibria are reduced to

λX5 = 1

f

(am1

c
+ b

)
(gX5 + h), (19)

λX5 = 1

f

(am1

c
(dX5 + e) + b

)
, (20)

λX5 = 1

f

(am1

c
+ b

)
, (21)

with λ = δ
γ
.
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In the first and second cases of (19) and (20), there is λ > 0 such that the unique
solution X5 = X5(λ) exists for λ > λ, while there is no solution for 0 < λ ≤ λ. This
unique solution is stable and the break down of dynamical equilibrium arises with
limλ↓λ X5(λ) = +∞. This property has a strong contrast with that of the original
model, (6)–(8). Then it is easy to suspect that saturation of X2 and X4 arises at this
occasion in models (16) and (17), respectively. In the third case, finally, there is a
unique stable dynamical equilibrium for any λ > 0.

Break down of dynamical equilibrium may be caused several ways. Increase of a
or b in (6) may be achieved by injecting RANKL. This technique is standard in cell
biology. Since (11) takes the form

δ f

γ
X5 =

(am1

c
(dX5 + e) + b

)
(gX5 + h) (22)

we can create a break down of dynamical equilibrium by making a or b large. Since
X2 saturates at this occasion, osteoporosis will be observed for wild type, which will
not appear to the control, knockdownmice of DAF. In fact, the functionψ(x) defined
by (15) is constant and any solution will approach the unique dynamical equilibrium
in the case of (21).

3.3 Medical Insights

We can present several medical insights based on the argument above. First, break
down of dynamical equilibrium may be predicted by the increase of DAF. Second,
the recovery of dynamical equilibrium plays an essential role against both diseases,
osteopetrosis and osteoporosis. Since (22), good manipulations are increase of δ, f ,
c and decrease of γ , a, m1, d, e, b, g, h. Generally, inhibition of DAF or that of
differentiation to pre-osteoblast and pre-osteoclast are efficient to recover dynamical
equilibrium. Third, rapid increase of DAF density can be a trigger of osteopetrosis
or osteoporosis.

4 Conclusion

We have studied the role of DAF, supposed to be a key molecule in bone metabolism,
using mathematical modeling. Two factors are adopted, multi-scale modeling and
dynamical equilibrium. The notion of near fromdynamical equilibrium is introduced,
which is realized around the unstable dynamical equilibria and also at the moment
of break down of dynamical equilibrium. There, saturation of one of the antagonists,
osteoblast or osteoclast, arises, in accordance with the variation of the key molecule.
Several suggestions, predictions, and evaluations are obtained theoretically to in



34 T. Suzuki et al.

vivo experiments and medical manipulations. Consequently, mathematical methods
applicable to other problems in cell biology are established.
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Abstract Honey bees are vital to the production of many foods which need to be
pollinated by insects. Yet in many parts of the world honey bee colonies are in decline.
A crucial contributor to hive well-being is the health, productivity and longevity of
its foragers. When forager numbers are depleted due to stressors in the colony, such
as disease or malnutrition, or in the environment, such as pesticides, this causes
a reduction in the amount of food (nectar and pollen) that can be collected and a
reduction of the colony’s capacity to raise brood (eggs, larvae and pupae) to produce
new adult bees. We use a set of differential equation models to explore the effect
on the hive of high forager death rates. We track the population of brood; hive bees
who work inside the hive; foragers who bring back food to the hive; and stored food.
Using data from experimental research we devised functions that described the effect
of the age that bees first become foragers on their success and lifespan as foragers. In
particular, we examine what happens when bees become foragers at a comparatively
young age and how this can lead to a sudden rapid decline of adult bees and the death
of the colony.
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1 Section Heading

Growing crops for food is arguably the oldest human industry. Food crops need to
be pollinated to produce fruit or seed, either for consumption or to sow for the next
crop. Cereals such as rice, wheat and maize are pollinated by wind, but almost all
other crops require insects to transfer pollen from one flower to another to set the
seed. Honey bees (Apis mellifera) are the most important pollinators of commercial
crops and so the survival and health of honey bee colonies is vital for food security
worldwide.

Individual honey bees only survive as part of a colony or hive, usually of several
thousand bees. Bees in each colony collectively gather food and raise brood (that is,
eggs, larvae and pupae) from eggs laid by a single queen [19]. Labour in the colony
is self-organised in response to pheromonal and behavioural cues that are generated
by interactions between adult bees, brood and food. In a commercial apiary, if all the
bees in a hive die or abandon the colony, this leads to a financial loss to the apiarist
who must either establish a new colony or suffer the loss of productive capacity.

In the last decade or more, the rate of honey bee colony failure has increased
significantly and the number of commercial colonies has declined, particularly in
the USA but also in Europe and Japan [11]. Colony failure includes overwintering
losses in cold climates and loss due to diseases, pesticide exposure or the Varroamite
[11, 18]. One of the more puzzling types of colony loss is where previous healthy
hives are found abandoned by adult bees, still containing stored food and dead brood,
but with few or no adult bee, and few dead bees [16]. There may be no obvious cause
for this very rapid depopulation of the hive. This phenomenon has become known
as colony collapse disorder (CCD). It usually occurs in late spring or early summer,
just as hives have emerged from their winter hibernation and are reaching their peak
summer numbers.

There is now general agreement among bee biologists that there are many causes
of CCD and these can include anything which puts a hive under stress, including
diseases, parasites, pesticide use in the hive environment, apicultural practices such
as keeping large number of hives close together or poor nutrition, due, for example
to the hive foraging from a single type of plant including agricultural monocultures
such as almond orchards or canola crops [2, 5]. All of these put stress on the hive but
the presence of these stressors alone does not explain the mechanism of the sudden
depopulation that hives experience in CCD.

In this paper, we use mathematical models for the population of adult bees, brood
and food in the hive to explore the hypothesis that the mechanism that drives CCD
is sustained high death rates of foragers which causes adult bee numbers to become
depleted and leads to hive death.

Our hypothesis that high forager death rates drive hive collapse depends crucially
on the population dynamics of the hive. All eggs in the hive are laid by a single
queen bee. After 3 days a egg hatches into a larvae which is fed and cared for by
worker bees in the hive. The larvae pupates after 9 days and 12 days later the adult
bee emerges from pupation. Young adult bees remain in the hive, caring for brood
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and for the queen, storing food that is brought back by foragers and doing other
in-hive work. Older bees become foragers and leave the hive to gather nectar and
pollen to supply the colony with food. Foragers are exposed to many hazards in the
environment outside the hive and, as foraging itself is a metabolically expensive and
risky activity, forager lifespan is generally less than 7 days from the time a bee starts
to forage [17]. If a forager is diseased or malnourished, then her lifespan is likely to
be shorter than that of a healthy forager in the same environment.

The transition from hive bee to forager is controlled by social feedback. If there
are many foragers, then hive bees tend not to become foragers; if there are few
foragers, however, then older hive bees will become foragers. This social inhibition
is mediated by the pheromone ethyl oleate, which is produced by foragers [9]. Food
shortages also stimulate hive bees to become foragers [14]. This, potentially enables
a hive to survive a temporary shortage of food when food storage returns to normal
levels within a few days.

It is well known that large hives raise a higher proportion of eggs to adulthood [1].
Larger populations of hive bees and foragers can give more care and find more food
for larvae and other brood. When food is short, however, hive bees cannibalise some
larvae and eggs to feed older larvae. Hence food shortages also reduce the number
of brood raised to adults.

We will construct two differential equation models that represent the interactions
between hive bees, foragers, food and brood. The first model can easily be analysed
to show the bifurcation behaviour of the system and, in particular, what happens to
the steady-state solutions as forager death rates increase. The second model takes
into account the effect of the age that bees first become foragers on forager recruit-
ment, survival and efficacy. This second model cannot be easily analysed, except
numerically, but produces the rapid collapse of hive populations that is observed by
apiarists.

2 A Basic Model for the Dynamics of Food, Brood,
and Hive Bee and Forager Populations

We use a system of four differential equations to model the interactions illustrated in
Fig. 1. In the model, we will only consider uncapped brood, that is, eggs and larvae.
When a larva pupates, the hive bees cap the cell in the brood comb which the pupa
occupies with a wax cap. When the adult bee emerges from pupation she chews
through the cap. The pupae or capped brood are not represented explicitly in the
model, but their presence is modelled by a delay between uncapped brood going into
pupation and emerging as adults 12 days later.

The independent variable in the model is time t, measured in days. The dependent
variables are f representing stored food within the hive, B, the number of uncapped
brood items, H, the number of hive bees and F, the number of foragers. This model
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Fig. 1 A flow chart showing processes and interactions in the honey bee colony that are represented
in the model. The grey arrow and labelling on the right-hand side of the chart describe death of bees
during transition to foraging which is included in the extended model with age dependence but not
in the basic model

was first presented in [8] and is based on a simpler model that represented foragers
and hive bees only [7].

2.1 Model Equations

Food is collected by foragers and consumed by foragers, hive bees and brood. The
difference between the rate of food collection and food consumption gives the rate
of accumulation or depletion of stored food f :

df

dt
= cF − (γBB + γHH + γFF). (1)

Here c is the weight of food in grams collected per forager per day and γB, γH and
γF are the average weight of food consumed per day by each brood item, hive bee
or forager, respectively. For ease of analysis, we assume that all adult bees consume
the same amount of food on average, so we set γH = γF = γA. Hence

df

dt
= cF − γBB − γA(H + F). (2)

In the model we include only brood that survives to adulthood. These brood items
are a proportion of the total number of eggs laid by the queen and we model their
rate of pupation as a linear rate proportional to the number of uncapped brood items.
Hence

dB

dt
= L S(H, f ) − φB, (3)
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where L is the laying rate of the queen in number of eggs per day, φ is the rate of
pupation in brood numbers per day where 1/φ is the time that a brood item spends as
uncapped brood, which is known to be 9 days hence φ = 1/9. The function S(H, f )
gives the proportion of eggs that survive to become adult bees. This will depend on
the number of hive bees and the amount of stored food, particularly when stored food
levels are low. We model S(H, f ) as follows:

S(H, f ) = f 2

f 2 + b2

H

H + ν
(4)

where the parameters b and ν determine how quickly S(H, f ) approaches one as f
andH increase, respectively. The function S(H, f ) saturates both with respect to food
f and also with respect to hive bee numbers H. Clearly, the number of brood that is
raised to adulthood cannot continue to increase indefinitely as food stocks and hive
bee numbers increase. There is a maximum number of brood that a hive can raise
and this maximum is determined by the queen’s laying rate L. We assume that the
proportion of brood raised increases linearly with the number of hive bees when H
is low, but that the dependence on food stores is sigmoidal, due to the need for hive
bees to spend more time finding food inside the hive when stored food f is very low.

Hive bees emerge τ days after they become pupae. Bees leave the hive bee class
to become foragers. Generally speaking, the hive is a very safe environment with
low adult bee mortality, so we do not include death of hive bees in the model. We
model the change of hive bee population as

dH

dt
= φB(t − τ) − R(H,F, f )H (5)

where the functionR(H,F, f ) governs the recruitment rate of hive bees to the forager
class. This rate is determined both by the proportion of foragers in the colony and
by the availability of food stores. We model the recruitment function as

R(H,F, f ) = αmin + αmax

(
b2

b2 + f 2

)
− σ

(
F

F + H

)
(6)

where αmin is the rate that hive bees become foragers when there are no foragers but
plenty of food in the hive, αmax determines the strength of the effect that low food
stores have on forager recruitment and σ governs the effect of social inhibition on
recruitment. If stored food is plentiful, then recruitment essentially does not depend
on food at all, but only on the proportion of foragers to the total number of adult bees
in the hive. If this proportion is high, bees are inhibited from becoming foragers and
the rate of recruitment is low. Conversely, if there is a very low proportion of foragers
among the adult bees of the hive, then inhibition is weak and recruitment is high.
The constant αmin is the rate of recruitment when there is plentiful stored food but
no foragers. The constant αmax governs the effect of food shortage on recruitment.
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Foragers are recruited from the hive bee class and die at a linear rate:

dF

dt
= R(H,F, f )H − μF. (7)

Here the first term models recruitment and the second term represents forager death
where μ is the forager death rate.

2.2 Results from the Basic Model

Figure 2 shows how the population of a model colony evolves for different forager
death rates. When the death rate is low, with μ = 0.1 (so 10 % of foragers are lost
each day), the hive has a large population of both adult bees and brood, and food
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Fig. 2 Results from the basic model. Population and stored food as a function of time for different
values of forager death rate μ. Food is represented by the solid curve, brood by the dotted curve, hive
bees by the dot-dash curve and foragers by the dashed curve. Parameter values are L = 2000, φ =
1/9, ν = 5000, σ = 0.75, αmax = 0.25, αmin = 0.25, b = 500, c = 0.1, γA = 0.007, γB = 0.018
and τ = 12. See [8] for a justification of these values. Initially all simulations had 20,000 hive bees,
10,000 foragers and no brood or food. For a μ = 0.1, b μ = 0.2, c μ = 0.43 and d μ = 0.55. Note
that the vertical scale on c and d is different to that on a and b
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stores increase without bound. Such a hive is in an ideal state for honey production
as well as providing many pollinators to the surrounding area.

A higher death rate, μ = 0.2, produces a hive with a smaller number of adult bees,
although the brood population is not affected very much which suggests that the hive
raises a similar number of adult bees, but that adult bees have a shorter lifespan. Food
continues to increase but not as rapidly as when μ = 0.1.

When death rates become highly elevated, then food stores in the model colony
do not grow. When μ = 0.43 the population of adult bees is very low compared
to when μ = 0.1 and, in fact, there are now fewer hive bees than uncapped brood.
Nevertheless, the hive remains viable.

When μ is raised further, however, the hive collapses. The model shows an expo-
nential decline in both adult bee and brood numbers and within 250 days, its popu-
lation has dropped below 1000 adults, which is approximately the lowest number of
bees a hive needs to survive. At the same time, about 500 g of stored food remains
in the hive, even after the bees are nearly all dead.

Equations 2–7 can be solved analytically at steady state to obtain a bifurcation
diagram with steady-state solutions as a function of forager death rate μ as shown in
Fig. 3. When food grows unboundedly we ignore Eq. 2 and assume f → ∞ in 3–7.
The weight of residual stored food was calculated numerically when bee numbers
are zero at steady state.
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Fig. 3 Steady-state solutions as a function of forager death rate μ. Food is represented by the solid
curve, brood by the dotted curve, hive bees by the dot-dash curve and foragers by the dashed curve.
Parameter values are the same as in Fig. 2. The vertical lines at μ = 0.402 and μ = 0.462 separate
the plot into regions with qualitatively different solution behaviour
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When μ is low, that is μ < 0.402 for this parameter set, food grows unboundedly.
As μ increases within this range, the number of adult bees drops significantly while
brood numbers are less sensitive to forager death rate.

For 0.402 < μ < 0.462, stored food does not grow unboundedly but has a finite
steady state. At μ ≈ 0.402 the solution curves for adult bee and brood popula-
tions have a slope discontinuity in the bifurcation diagram which suggests that the
processes that govern the steady-state values have changed. In particular, it suggests
that stored food determines the bee populations when f remains finite. In this regime,
increasing μ affects both adult bee and brood populations to the same degree, unlike
in the case where f is unbounded where adult bee populations are much more sensitive
to changes in μ than brood populations.

When μ > 0.462 then bee populations go to zero as t → ∞. However, by numer-
ically solving Eqs. 2–7 it is evident that stored food is not zero even when bee pop-
ulations are arbitrarily close to zero. This can be seen in Fig. 3. This result is in
agreement with observations of hives that experience CCD as apiarists report that
collapsed hives do have food stores remaining, so that starvation is clearly not the
sole cause of CCD.

The results from the basic model demonstrate that high forager death rates, on
their own can lead to the death of a colony. However, this model predicts that the
decline of the colony will be slow, rather than the rapid decline observed in real
colonies that experience CCD. This suggests that there is an important aspect of
collapsing colony behaviour that is missing from the basic model.

3 Model Incorporating the Effects of Forager Age

Foraging is a task that is physically and cognitively demanding for the individual bee.
Her wing muscles must be strong and well developed to carry her perhaps kilometres
from the hive; she must be able to navigate accurately and successfully through the
environment outside the hive; and she must be able to locate and recognise suitable
sources of nectar and pollen and exploit them efficiently. When adult bees emerge
from pupation, their brains and wing muscles are not yet mature and the time that
each bee spends as a hive bee allows her to mature sufficiently to become a successful
forager. It is well known that bees that become foragers when they are too young die
sooner and do not forager as effectively as bees that become foragers at a later age
[15, 20].

In the basic model, the length of time that a hive bee spends in the hive before
she becomes a forager or, alternatively, her age at commencement of foraging a is
the reciprocal the recruitment function R(H,F, f ):

a = 1

R(H,F, f )
. (8)
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Recent experiments by Perry and coworkers [12] have determined the effect of
the age of commencement of foraging a on the number of foraging trips a forager
makes each day and forager death rate. These researchers also observed that bees
which started to become foragers at a young age, often did not make a successful
transition to foraging. As part of the transition to foraging, hive bees undertake several
exploratory flights outside the hive, for a total of approximately 30 min. Bees that
started to make this transition too young were likely not to survive this exploratory
phase and so successful transition to foraging was also age dependent.

We extended the model to include the effects of age of commencement of foraging
[12]. In the extended model, forager death rate is given by μ = mr M(a) where M(a)
is the forager death rate, dependent on a the age that a bee commences foraging and
mr is the ratio of the death rate in a stressed hive to the death rate in a healthy hive.
We made the rate of food collection c dependent on a so that c = cTN(a) where cT
is the weight of food in grams that is collected in each foraging trip and N(a) is the
average number of foraging trips made per day by a bee who commences foraging
at age a. We also introduced function T(a) which gave the proportion of hive bees
that successfully made the transition to foraging, so that bees left the hive bee class
at a rate R(H,F, f )H but arrived in the foraging class at a rate T(a)R(H,F, f )H.

The extended model consists of four differential equations and one algebraic
equation:

df

dt
= cTN(a)F − (γBB + γHH + γFF) (9)

dB

dt
= L

f 2

f 2 + b2

H

H + ν
− φB (10)

dH

dt
= φB(t − τ) − R(H,F, f )H (11)

dF

dt
= T(a)R(H,F, f )H − mrM(a)F (12)

a = 1

R(H,F, f )
(13)

where R(H,F, f ) is given by Eq. 6 as before. Plots of the three functions N(a),
M(a) and T(a) are shown in Fig. 4. The functions N(a) and M(a) model data points
which are shown in Fig. 4 (although they are not statistically fitted to this data),
but T(a) is modelled based on qualitative observations. Note that these equations
are essentially the same as Eqs. 2–6, except that they include the functions N(a),
M(a) and T(a). Fundamentally, these functions are dependent on the recruitment
function R(H,F, f ) = 1/a and so the differential equations above could be written
as functions of f , B, H and F only. However, the age a that foragers commence
foraging is an important biological quantity. Writing these equations in terms of a
and including Eq. 13 is not only neater, but also conveys the biological importance
of these additional functions, N(a), M(a) and T(a) more clearly.
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Fig. 4 Plots of the functions
dependent on age of
commencement of foraging
a in the extended model. a
N(a), the average numbers
of trips per day; b M(a) the
death rate as a function of a;
c T(a) the proportion of hive
bees that successfully make
the transition to foragers
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3.1 Results of the Extended Model

Figure 5 shows how model populations and stored food change as a function of time
for various values of mr in the extended model.

For sufficiently low values of mr , food increases unboundedly. The age of com-
mencement of foraging is more than 20 days for a healthy hive and drops as mr

declines. As in the basic model, as death rates increase with increasing mr the num-
ber of adult bees declines, but brood numbers are not significantly affected.

When mr = 1.91, stored food does not increase without bound, although the
populations of brood, hive bees and foragers appear to stabilise and there is no evident
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Fig. 5 Solutions of the extended model showing the changes in brood, hive bee and forager pop-
ulations, stored food and the age of commencement of foraging as a function of time for different
values of mr . Food is represented by the thin solid curve, brood by the dotted curve, hive bees by the
dot-dash curve, foragers by the dashed curve and age of commencement of foraging is represented
by the thick solid line. Parameter values and initial conditions are the same as in Fig. 2. The functions
N(a), M(a) and T(a) are as shown in Fig. 4. a mr = 1; b mr = 1.6; c mr = 1.91; d mr = 2.0. Note
that the vertical scale on c and d is different to that on a and b

collapse. However, when mr = 2, the populations, which initially look similar to
those when mr = 1.91 for t < 70 days collapse rapidly in 30 days from about 12,000
adult bees to no foragers and only hive bees that are less than 2 days old and so unable
to make the transition to foragers. Stored food declines monotonically after about
t = 20.

The effect of increasing death rates on the age of adult bees can be seen explicitly
in the extended model. As mr increases from 1 to 1.6, to 1.91 the age at steady state
when hive bees become foragers decreases from 23 to 13 to 9 days. Bees will have
a shorter lifespan as foragers when mr is higher, as well as starting to forage at a
younger age.

These results suggest that the dependence of forager lifespan and efficacy on the
age that a bee first starts to forage is crucial in CCD. As foragers die, social inhibition
is reduced and so hive bees become foragers more rapidly and hence at a younger
age. Younger foragers have shorter lifespans and bees who become foragers when
they are younger than 10 days old, make fewer foraging trips on average as their
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Fig. 6 Plot showing the approximate steady-state population of adult bees as a function of mr .
The steady-state population presented is calculated numerically by solving the extended model
Eqs. 10–13 with the same initial conditions and parameter values used in Fig. 2 and taking the
population values at t = 1000 as an approximation for the steady-state value. The slope discontinuity
at mr ≈ 1.4 is due to the slope discontinuity in T(a) which is illustrated in Fig. 4

age of commencement of foraging declines. This poor rate of food collection has
an effect on stored food and as this decreases, it starts to have an impact on brood
raising via S(H, f ) (Eq. 4) and also promotes an increased rate of recruitment via
R(H,F, f ) (Eq. 6). Eventually, stimulated by very low food stores, hive bees are
becoming foragers and leaving the hive as soon as possible and dying rapidly either
during or after transition to foraging as they do not have the maturity to survive long
outside the hive. This leads to a colony with some residual food stores, a low level
of brood and comparatively few remaining adult bees which is what is observed in
CCD.

Numerical solutions to the extended model show that forager age and adult bee
populations at the steady state that corresponds to a viable colony, decline as mr gets
larger (Fig. 6). When mr reaches a critical value, the solution for a viable colony
population no longer exists and the colony will collapse as t → ∞. The numerical
solution shown in Fig. 6 suggests that there is a bifurcation where the steady state
corresponding to a viable population is lost.

Figure 5 suggests that when this collapse occurs it is driven by a slow decline in
food stores which slowly increases the rate of recruitment, and consequent loss, of
foragers as the recruitment rate increases as stored food becomes scarce. To further
explore the effect of stored food on the steady state, we took f as fixed and analytically
calculated the steady-state values of B, F, H and a as a function of mr for different
fixed values of f . This effectively produced a bifurcation diagram with a series of
bifurcation curves shown in Fig. 7. When f is very low, the solution curves have a fold
bifurcation with two stable steady states, one that corresponds to a viable population
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Fig. 7 A bifurcation diagram showing a series of solution curves, each for a different fixed value
of f , between f = 100 and f = 700. The bifurcation parameter is mr and the age of commencement
of foraging is used as the measure of the solution

and one that corresponds to a collapsed colony. Once f is greater than about 550,
then there is no fold and the only steady state corresponds to a viable population.

For mr = m∗
r , a fixed value of mr , both the age of commencement of foraging and

the populations of adult bees will decrease at steady state as f decreases. There is
a critical value of f , fcrit such that when f = fcrit , the upper bifurcation point on the
solution curve is at mr = m∗

r . When f > fcrit then the steady state that corresponds to
a viable colony exists, but when f < fcrit then there is only one steady state and this
corresponds to a collapsed colony. Thus if f is declining very slowly then the colony
populations will decline slowly until f = fcrit when the population will collapse.

This brief, qualitative discussion suggests the possibility of a need for a more com-
prehensive and rigorous analysis to determine the factors that govern the existence
and timing of population collapses in the extended model.

4 Conclusions and Opportunities from Mathematical
Models for CCD

The models presented here support the hypothesis that sustained high forager death
rates, along with the decreased forager survival and efficacy with decreasing age,
leads to CCD. This has yet to be tested in the field, but forager loss is a mechanism
that is consistent with our understanding that CCD has many causes, each of which
produce stress in the hive [3]. Pesticide use, for example, clearly causes increased
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forager mortality directly but also indirectly as sublethal effects reduce the quality
of the foraging force [6] and increase susceptibility to disease [13]. Diseases in the
hive, also contribute to forager mortality, both directly through death due to disease
and because foragers that are diseased will tend to have less energy and may be
cognitively compromised and so will make fewer foraging trips and may become
lost more easily [10]. Likewise, malnourished foragers are likely to collect less food
and have a shorter lifespan than healthy bees. Therefore, although the mechanism
of CCD proposed in this model is quite specific, the underlying causes of CCD can
be very diverse and still produce the same sustained high forager death rate that we
hypothesise leads to CCD [3].

Once we understand the mechanism of CCD then we can explore possible solu-
tions. The model suggests different data from hives that can be monitored to identify
colonies that are vulnerable to collapse. One clear result from both models is that
adult bee numbers are much more sensitive to forager loss than brood numbers and so
apiarists should monitor adult bee numbers rather than brood numbers to determine
colony health and vulnerability to CCD.

Models also allow us to explore different ways to prevent vulnerable colonies
from collapsing. One very simple potential approach to rescue collapsing colonies is
in-hive feeding where food is put directly into the hive. This is easy to incorporate into
the models. With in-hive feeding, the equation for f in the extended model becomes

df

dt
= cTN(a)F − (γBB + γHH + γFF) + C (14)

where C is the rate, in grams/day, that food is put into the hive. Figure 8 shows how
feeding the colony even quite small amounts (60 g of food per day) enables it to
survive. In an apicultural setting, hives can be fed for a short time, until forager
mortality is reduced and the hive is able to maintain a viable population without
feeding. Although there are costs associated with in-hive feeding these are likely to
be less than the costs of replacing collapsed colonies.

Finally, demographic models for honey bee colonies, such as these, can be used as
platforms to develop more complicated models that explicitly incorporate the effect
of disease [4]. Many diseases and parasites including the Varroa mite affect bees
differently at different stages of their life cycle. Demographic models for honey bee
colonies, offer the potential to explore disease dynamics and prevention strategies
more closely.

Mathematical modelling will never replace field studies of honey bee health and
behaviour. However, models are a valuable complement to experimental studies,
particularly for exploring hypotheses and predicting the outcomes of complex inter-
actions within honey bee colonies. Models can show what are the likely consequences
of colony behaviours and help experimental researchers to focus their efforts on the
most important processes in colony dynamics. Together modellers and experimental
researchers can ensure that research into honey bee health, which profoundly impacts
food production and therefore food security, is both timely and effective.
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Fig. 8 Plots showing the effect of in-hive feeding. Food is represented by the thin solid curve,
brood by the dotted curve, hive bees by the dot-dash curve, foragers by the dashed curve and age
of commencement of foraging is represented by the thick solid line. For both plots mr = 2. Plot a
is the same simulation as in Fig. 5d showing hive collapse. Plot b is exactly the same simulation
but with in-hive feeding (Eq. 14), with C = 60. All parameter values and initial conditions are the
same as Fig. 5
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Zeta Function Associated with the
Representation of the Braid Group

Kentaro Okamoto

Abstract There is a well-known zeta function of theZ-dynamical system generated
by an element of the symmetric group. By considering this zeta function as a model,
we construct a new zeta function of an element of the braid group. In this article, we
show that the Alexander polynomial which is the most classical polynomial invariant
of knots can be expressed in terms of this braid zeta function. Furthermore, we show
that the zeta function associated with the tensor product representation β⊗r

n,q can be
expressed by somebraid zeta function for the case of special braidswhose closures are
isotopic to certain torus knots. Moreover, we introduce the zeta function associated
with the Jones representation which is defined by using the R-matrix satisfying the
Yang–Baxter equation. Then, we calculate this zeta function for n = 3 and show the
relation between the Alexander polynomial and the Jones polynomial.

Keywords Zeta function · Braid group · Representation theory · Knot theory

1 Introduction

Let Sn be the symmetric group acting on the finite set X := {1, 2, . . . , n}. Then, for
any permutation σ ∈ Sn , the Z-dynamical zeta function of σ is defined as

ζ(s, σ ) := exp

{ ∞∑

m=1

|Fix(σm)|
m

sm
}
, (1)

where Fix(σm) is the set of fixed points defined as follows:

Fix(σm) := {x ∈ X | σmx = x}. (2)
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Example 1 When σ = (1)(2, 3) ∈ S3, we can compute the set Fix(σm) as follows.

Fix(σm) =
{

{1, 2, 3} (m ≡ 0 mod 2),

{1} (m ≡ 1 mod 2).

Then, we have

ζ(s, σ ) = exp

{ ∞∑

m=1

3

2m
s2m +

∞∑

m=1

1

2m − 1
s2m−1

}

= exp

{ ∞∑

m=1

2

2m
s2m +

∞∑

k=1

1

k
sk

}

= exp

{
log (1 − s2)−1 + log(1 − s)−1

}

= 1

(1 − s2)(1 − s)
.

In [9], the following interesting properties are shownbyKim,KoyamaandKurokawa.

Proposition 1 ([9, Proposition 1]) For any permutation σ ∈ Sn, the Z-dynamical
zeta function ζ(s, σ ) has the following properties.

(1) Let Cycle(σ ) be the set of primitive cycles of σ , and l(P) be the length of cycle
P ∈ Cycle(σ ). Then, ζ(s, σ ) has the Euler product:

ζ(s, σ ) =
∏

P∈Cycle(σ )

1

1 − sl(P)
. (3)

(2) Let pn : Sn −→ GLn(Z) be the permutation representation. Then, ζ(s, σ ) has
the determinant expression:

ζ(s, σ ) = det(In − pn(σ )s)−1. (4)

(3) ζ(s, σ ) satisfies the functional equation:

ζ(s, σ ) = sgn(σ )(−s)−nζ(1/s, σ ), (5)

where sgn : Sn −→ {±1} is the signature of the permutation.

(4) ζ(e−s, σ ) satisfies an analogue of the Riemann hypothesis: i.e. all poles of
ζ(e−s, σ ) satisfy

Re(s) = 0. (6)



Zeta Function Associated with the Representation of the Braid Group 53

Example 2 When σ = (1)(2, 3) ∈ S3, the set of primitive cycles of σ is {(1), (2, 3)},
and the length of (1) and (2, 3) are 1 and 2 respectively. Then we have the Euler
product of ζ(s, σ ) as follow.

ζ(s, σ ) = 1

(1 − s2)(1 − s)
. (7)

From (7), we obtain the following functional equation.

ζ(1/s, σ ) = 1

(1 − 1/s)(1 − 1/s2)
= s3

(1 − s)(1 − s2)
= s3ζ(s, σ ).

On the other hand, using the following permutation matrix

p3((1)(2, 3)) =
⎛

⎝
1 0 0
0 0 1
0 1 0

⎞

⎠ ,

we have the following determinant expression.

det(I3 − p3((1)(2, 3))s) = (1 − s)(1 − s2) = ζ(s, σ )−1.

Furthermore, all poles of ζ(e−s, σ ) satisfy

|e−s | = e−Re(s) = 1.

Then Re(s) = 0 and this is the analogue of the Riemann hypothesis.

Remark that the residue of ζ(s, σ ) at s = 1 gives us only the information of the
length of σ . If σ is a primitive cycle in itself, we can calculate the residue as follows:

Res
s=1

ζ(s, σ ) = lim
s→1

(s − 1)(1 − sn)−1 = −1

n
. (8)

Our goal is to generalize such properties to the case of the braid group. Consequently,
we generalize ζ(s, σ ) to the zeta function of a braid by using theBurau representation
of the braid group. As an application the (nonnormalized) Alexander polynomial
ΔK (q) which is the famous knot invariant can be expressed by the residue of this
new zeta function. This is analogous to the fact that the residue of the Dedekind
zeta function at s = 1 has invariants of an algebraic field such as the class number,
discriminant and regulator.
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2 Preliminary

We recall the notations and settings on the braid group briefly. We refer to [3, 8] and
[13] for more details. Let Bn be the n-string Artin braid group. It is known that Bn

has the following presentation:

Bn := 〈σi (1 ≤ i ≤ n − 1) | σiσ j = σ jσi (|i − j | ≥ 2),
σiσi+1σi = σi+1σiσi+1 (1 ≤ i ≤ n − 2)

〉.

The generator σi can be identified with the crossing between the i th and (i + 1)-st
strands as Fig. 1 (see [3, Theorem1.8]), and the multiplication implies that the braid
obtained by attaching the generators from the top to the bottom.

Moreover we define the closure of the braid by connecting upper ends and lower
ends (Fig. 2). The closure of σ is denoted by σ̂ .

Next, we define the torus type braid. For a coprime pair (n,m) ∈ N × Z, we
denote

σn,m := (σ1σ2 · · · σn−1)
m ∈ Bn. (9)

Then the closure of σn,m is isotopic to the torus knot T (n,m). The torus knot is a
special kind of knot that lies on the surface of an (unknotted) torus in R

3. Since
B1 is trivial, we assume that the number of strands n is larger than 1. For example,
σ̂ 3
1 = T (2, 3) is known as the trefoil knot (Fig. 3).
Let βn,q be the Burau representation, which is defined by

βn,q(σi ) := Ii−1 ⊕
(
1 − q 1
q 0

)
⊕ In−i−1 ∈ GLn(Λ). (10)

Fig. 1 Generator σi

Fig. 2 The closure of a
braid σ
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Fig. 3 Trefoil knot
T (2, 3) = σ̂ 3

1

Here Λ := Z[q±1] (the ring of Laurent polynomials over Z), and q is a complex
parameter. Hence, we can define the braid zeta function of σ ∈ Bn by the determinant
expression.

Definition 1 We define the zeta function of σ ∈ Bn as below:

ζ(s, σ ;βn,q) = det(In − βn,q(σ )s)−1. (11)

3 Main Results

We now can state the main results.

Theorem 1 (1) For σ ∈ Bn, the zeta function associated with the Burau represen-
tation ζ(s, σ ;βn,q) satisfies the functional equation:

ζ(s, σ ;βn,q) = sgnq(σ
−1)(−s)−nζ(1/s, σ−1;βn,q). (12)

Here sgnq(σ ) := det(βn,q(σ )).
(2) If σ̂ is a knot, the residue of ζ(s, σ ;βn,q) at s = 1 is given as follows:

Res
s=1

ζ(s, σ ;βn,q) = − 1

[n]q Δσ̂ (q)−1. (13)

Here Δσ̂ (q) is the Alexander polynomial of a knot σ̂ , and [n]q is the q-integer
defined by

[n]q := 1 − qn

1 − q
. (14)

(3) Assume that q is a point of the unit circle on the complex plane, in other words,
q is expressed by eiθ (θ ∈ R), and that the argument of q satisfies |θ | < 2π/n. Then
for any σ ∈ Bn, the braid zeta function of σ satisfies an analogue of Riemann
hypothesis: all poles of ζ(e−s, σ ;βn,q) satisfy

Re(s) = 0. (15)
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Example 3 We compute the zeta function of the braid σ = σ1σ
−1
2 σ1σ

−1
2 ∈ B3. From

the definition, we have

ζ(s, σ ;β3,q) = 1

(1 − s)(1 − (q2 − 2q + 1 − 2q−1 + q−2)s + s2)
= ζ(s, σ−1;β3,q).

Then we can calculate the functional equation as follows.

ζ(1/s, σ ;β3,q) = 1

(1 − 1/s)(1 − (q2 − 2q + 1 − 2q−1 + q−2)1/s + 1/s2)

= −s3

(1 − s)(1 − (q2 − 2q + 1 − 2q−1 + q−2)s + s2)

= (−s3)ζ(s, σ−1;β3,q).

The residue of ζ(s, σ ;β3,q) at s = 1 can be written by

Res
s=1

ζ(s, σ ;β3,q ) = − 1

1 − q2 + 2q + 2q−1 − q−2 = − 1

(1 + q + q2)(−1 + 3q−1 − q−2)
.

Here −1 + 3q−1 − q−2 is the (nonnormalized) Alexander polynomial of σ̂ . The
nontrivial poles of ζ(e−s, σ ;β3,q) satisfy

1 − (q2 − 2q + 1 − 2q−1 + q−2)e−s + e−2s = 0.

Then we have the following equation:

es + e−s = q2 − 2q + 1 − 2q−1 + q−2.

Since q = eiθ , we have

es + e−s

2
= cos 2θ − 2 cos θ + 1

2
. (16)

If θ satisfy the condition − 2π
3 < θ < 2π

3 , the right-hand side of (16) belongs to the
interval (−1, 1). Then, es is the element of {z ∈ C | |z| = 1}. In other words, the real
part of s is equal to 0.

Remark that ζ(s, σ ;βn,q) does not have the Euler product expression, however,
Theorem1 is analogous to Proposition1.

If σ is the torus type braid, we can calculate the zeta function explicitly. More-
over, we obtain the formula of the zeta function associated with the tensor product
representation β⊗r

n,q of the torus type braid.
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Theorem 2 (1) For a coprime pair (n,m), we obtain the following formula:

ζ(s, σn,m;βn,q) = 1 − qms

(1 − s)(1 − qnmsn)
. (17)

(2)We choose n ∈ Z≥2,m ∈ Z, r ∈ N such that the pair (n, r ! · m) is coprime. Then
we have

ζ(s, σn,m;β⊗r
n,q) = Kn,m,r (s, q) ·

r∏

l=1

ζ(s, σn,lm;βn,q)
br,l,n . (18)

Here

ζ(s, σ ;β⊗r
n,q) := det(Inr − β⊗r

n,q(σ )s)−1, (19)

Kn,m,r (s, q) :=
r∏

l=1

(
1 − s

1 − qlms

)ar,l+br,l,n

, (20)

and ar,l := (r
l

)
(−1)l , br,l,n := (r

l

)
(n−1)l−(−1)l

n .

Example 4 The zeta function of the torus type braid σ3,1 = σ1σ2 ∈ B3 can be calcu-
lated as

ζ(s, σ3,1;β3,q) = 1 − qs

(1 − s)(1 − q3s3)
.

By computing the Kronecker tensor product β3,q(σ3,1) ⊗ β3,q(σ3,1), we calculate
ζ(s, σ3,1;β⊗2

3,q) as follows.

ζ(s, σ3,1;β⊗2
3,q) = 1

(1 − s)(1 − q2s)2(1 + qs + q2s2)2(1 + q2s + q4s2)

= (1 − s)2

(1 − q2s)2
· (1 − qs)2

(1 − s)2(1 − q3s3)2
· 1 − q2s

(1 − s)(1 − q6s3)

= K3,1,2(s, q) · ζ(s, σ3,1;β3,q)
2 · ζ(s, σ3,2;β3,q).

By Theorem2, we obtain the following corollary.

Corollary 1 (1) The Alexander polynomial of the torus knot T (n,m) is given by

ΔT (n,m)(q) = (1 − q)(1 − qnm)

(1 − qn)(1 − qm)
= [nm]q

[n]q [m]q . (21)

(2)We choose n ∈ Z≥2,m ∈ Z, r ∈ N such that the pair (n, r ! · m) is coprime. Then
we have
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Res
s=1

ζ(s, σn,m;β⊗r
n,q) = − 1

[n]nr−1

q

r∏

l=1

1

(1 − qlm)ar,l+br,l,nΔT (n,lm)(q)br,l,n
. (22)

Proof (1) By using the formula (17), we can calculate the residue of ζ(s, σn,m;βn,q)

as follows.

Res
s=1

ζ(s, σn,m;βn,q) = − lim
s→1

1 − qms

1 − qnms
= − [m]q

[nm]q .

Then, from the Theorem1 (2), we have the formula (21).
(2) The number of [n]q is calculated by

r∑

l=1

br,l,n =
r∑

l=0

br,l,n = 1

n

r∑

l=0

(
r

l

)
(n − 1)l − 1

n

r∑

l=0

(
r

l

)
(−1)l

= 1

n
(1 + (n − 1))r

= nr−1.

Hence the formula (22) follows from Theorem1 (2).

4 Zeta Function and Jones Polynomial

In this section, we introduce the relation between the zeta function and the Jones
polynomial. Let χn,q be the Jones representation, which is defined by

χn,q(σi ) := I⊗(i−1)
2 ⊗ R ⊗ I⊗(n−i−1)

2 ∈ GL2n (Λ). (23)

Here R is

R :=

⎛

⎜⎜⎝

1
0 q
1 1 − q

1

⎞

⎟⎟⎠ . (24)

R is called R-matrix and is one of the solutions of Yang-Baxter equation.

Definition 2 For σ ∈ Bn we define the zeta function associated with the Jones
representation as below.

ζ(s, σ ;χn,q) := det(I2n − χn,q(σ )s)−1. (25)

Moreover we define the deformation zeta function as follows.

ζt (s, σ ;χn,q) := det(I2n − χn,q(σ ) · μ⊗n
t s)−1. (26)
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Here μt is

μt :=
(
1 0
0 t

)
. (27)

Then, the Jones polynomial Jσ̂ (q) can be expressed by using the zeta function as
follows.

d

ds
log ζq(s, σ ;χn,q)

∣∣∣∣
s=0

= tr(χn,q(σ ) · μ⊗n
q ) = q

1
2 (n−ε(σ )−1)(1 + q)Jσ̂ (q). (28)

Here ε(σ ) is the exponent sum of σ defined by

ε(σ ) =
r∑

k=1

ek,

if σ can be expressed by σ = σ
e1
i1

· · · σ er
ir
. For instance, for any 3-braid σ ∈ B3, the

deformation zeta function (26) is expressed by the zeta function associated with the
Burau representation.

ζt (s, σ ;χ3,q) = ζ(ts, σ ;β3,q)ζ(t2s, σ ;β3,q)

(1 − s)(1 − t3s)
. (29)

Moreover, under the condition of Theorem1 (3), we obtain the following generating
function expression which converges when the absolute value of s is smaller than 1.

ζ(s, σ ;βn,q) = exp

{ ∞∑

m=1

trβn,q(σ
m)

m
sm

}
. (30)

Then, computing the logarithmic derivation of (30), we have

d

ds
log ζ(s, σ ;βn,q)

∣∣∣∣
s=0

= trβn,q(σ ). (31)

From (29) and (31), we obtain the following.

d

ds
log ζt (s, σ ;χ3,q)

∣∣∣∣
s=0

= 1 + t3 + (t + t2) tr β3,q(σ ). (32)

By (28) and (32), for any 3-braid σ ∈ B3 we have

Jσ̂ (q) = q
1
2 ε(σ )(q−1 + q − 1 + tr β3,q(σ )). (33)

Furthermore if σ̂ is a knot, calculating the residue of ζq(s, σ ;χ3,q) at s = 1/q and
s = 1/q2, we also have the following relation by using Theorem1 (2) and (29).
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Res
s=1/q

ζq(s, σ ;χ3,q) = − ζ(q, σ ;β3,q)

q[3]qΔσ̂ (q)(1 − 1/q)(1 − q2)
= ζ(q, σ ;β3,q)

(1 − q)2[3]q !Δσ̂ (q)
,

(34)

Res
s=1/q2

ζq(s, σ ;χ3,q) = − ζ(1/q, σ ;β3,q)

q2(1 − 1/q2)(1 − q)[3]qΔσ̂ (q)
= ζ(1/q, σ ;β3,q)

(1 − q)2[3]q !Δσ̂ (q)
.

(35)
Here [n]q ! is known as the q-factorial by [n]q ! := [n]q · [n − 1]q · · · [1]q .

Unfortunately, for n > 3,we have no simplifications of formula of the deformation
zeta function (26). It is important and interesting problem to compute (26) in terms of
topological representation such as the Burau representation. Furthermore, it is also
meaningful to express the formula of colored Jones polynomial ([14]) by using the
zeta functions. Thus, the formula of the Jones polynomial which is written by the
Burau representation is expected to bring a new prospect for the zeta function and
the volume conjecture([12]).
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Fast, Scalable, and Energy-Efficient Parallel
Breadth-First Search

Yuichiro Yasui and Katsuki Fujisawa

Abstract The breadth-first search (BFS) is one of the most centric processing in
graph theory. In this paper, we presented a fast, scalable, and energy-efficient BFS for
a nonuniform memory access (NUMA)-based system, in which the NUMA archi-
tecture was carefully considered. Our implementation achieved performance rates
of 175 billion edges per second for Kronecker graph with 233 vertices and 237 edges
on two racks of a SGI UV 2000 system with 1,280 threads and the fastest entries
for a shared-memory system in the June 2014 and November 2014 Graph500 lists.
It also produced the most energy-efficient entries in the first and second (small data
category) and third, fourth, fifth, and sixth (big data category) Green Graph500 lists
on a 4-socket Intel Xeon E5-4640 system.

Keywords Graph algorithm · NUMA-aware computing · Graph500 benchmark

1 Introduction

The breadth-first search (BFS) is one of the most important and fundamental graph
algorithm. It can be used to obtain certain properties about the connections between
the nodes in a given graph. BFS is not only used as a stand-alone, but also works as a
subroutine in applications that determine the maximum flow [6, 7], connected com-
ponents [5], graph centrality [3, 8], clustering [10]. Theoretically, the well-known
algorithm of BFS [5] that uses the FIFO (First-first First-in) queue, has a linear
complexity of O(n + m), where n = |V | is the number of vertices and m = |E | is
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the number of edges in a given graph G = (V, E). This is optimal for theoretical
purposes, but there is an actual need for efficient graph processing for large-scale
real-world networks. Theoretical complexity analysis alone is not sufficient, because
large-scale BFS computations require a significant amount of memory to enablemul-
tiple memory accesses over a wide memory space. In this paper, we discuss efficient
graph traversal algorithms, in which the nonuniformmemory access (NUMA) archi-
tecture was carefully considered.

Table1 lists the BFS performances of related work and our implementations in
terms of traversed edges per second (TEPS) and TEPS per watt (TEPS/W). Our latest
implementation achieves a performance of over 40 GTEPS for Kronecker graph
with SCALE 27 on a 4-socket NUMA system (such as with four CPU sockets). An
alternative implementation achieves 174 GTEPS for Kronecker graph with SCALE
34 on a shared-memory SGI UV 2000 supercomputer based on a cache coherent
(cc)-NUMA architecture with 1,280 threads (two UV 2000 racks), shown in Table2.
In addition, our implementations achieved the fastest entries for a shared-memory

Table 1 TEPS and TEPS/W scores on 4-socket Intel Xeon servers

Year Reference CPU #Cores SCALE EF TEPS
(G)

TEPS/W
(M)

2010 Graph500 [17] Intel Xeon
E5-4640 × 4

32 27 16 0.1 0.20

2010 Agarwal
et al. [1]

Intel Xeon
7500 × 4

32 20 64 1.3 –

2012 Beamer
et al. [2]

Intel Xeon
E7-8870 × 4

40 28 16 5.1 –

2013 Yasui
et al. [21]

Intel Xeon
E5-4640 × 4

32 26 16 11.2 17.39

2014 Yasui
et al. [22]

Intel Xeon
E5-4640 × 4

32 27 16 29.0 45.43

2015 Yasui
et al. [23]

Intel Xeon
E5-4640 × 4

32 27 16 41.8 87.12

Table 2 TEPS score and scalability (weak scaling) on SGI UV2000

SCALE EF #CPUs #Cores TEPS (G) Speedup

26 16 1 10 7.7 1.00×
27 16 2 20 15.3 1.98×
28 16 4 40 24.2 3.13×
29 16 8 80 42.1 5.46×
30 16 16 160 59.4 7.69×
31 16 32 320 94.8 12.28×
32 16 64 640 131.4 17.02×
33 16 128 1280 174.7 22.63×
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Fig. 1 Our achievements of the Green Graph500 benchmark. a 1st (June 2013). b 2nd (Nov. 2013).
c 3rd (June 2014). d 4th (Nov. 2014). e 5th (July 2015). f 6th (Nov. 2015)

single-node system in the June 2014, November 2014, July 2015, and November
2015 Graph500 lists.

Figure1 show certificates that our implementations are highly energy-efficient,
achieving first position in the small data category of the first and second and the big
data category of the third, fourth, and fifth, and sixth Green Graph500 lists.

2 Preliminaries

2.1 Graph500 and Green Graph500 Benchmarks

The Graph500 benchmark1 is designed to measure computational performance for
applications that require an irregular memory access pattern. It is based on a score of
the traversed edges per second (TEPS), which is computed by a generated edge list
and an output of BFS [17]. The Green Graph500 benchmark2 is designed to measure
the energy efficiency of a computer in terms of TEPS per Watt [11]. These lists have
been updated biannually since their introduction in 2010. Both benchmarks must
perform the following steps:

1. Generation. This step generates the edge list of the Kronecker graph [16] with
2scale vertices and 2scale · edge f actor edges by scale times the Kronecker prod-

1Graph500 benchmark: http://www.graph500.org.
2Green Graph500 benchmark: http://green.graph500.org.

http://www.graph500.org
http://green.graph500.org
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ucts of an initiator matrix

(
0.57 0.19
0.19 0.10

)
, where the scale and the edgefactor are

input parameters.
2. Construction (timed). This step constructs the graph representation from the

edge list obtained in Step 1.
3. BFS iterations (timed). This step executes 64BFSs fromdifferent source vertices

and computes the median TEPS score from 64 TEPS scores.

2.2 Parallel Breadth-First Search

At first, we assume that the input of a BFS is a graph G = (V, E) consisting of a
set of vertices V and a set of edges E . A BFS explores the various edges spanning
all other vertices v ∈ V \{s} from the source vertex s ∈ V in a given graph G, and
outputs the predecessor map π , which is a map from each vertex v to its parent.
When the predecessor map π(v) points to only one parent for each vertex v ∈ V ,
it represents a tree with the root vertex s ∈ V . In addition, the predecessor map of
source vertex π(s) points itself to s.

The well-known textbook algorithm for breadth-first search is not suitable for
parallelism, which uses the FIFO (First-first First-in) queue. Therefore, we use
Algorithm1, utilizes two queues: current queue CQ and next queue NQ, called level-
synchronized breadth-first search. In this algorithm, we assume that an input graph
G = (V, AF ) based on an adjacency vertex list AF represents a directed graph,
where an adjacency list AF (v) contains the adjacency vertices w of outgoing edges
(v, w) ∈ E for each vertex v ∈ V . If an input graph is undirected, it uses (v, w) and
(w, v) edges instead of (v, w) ∈ E edges. This algorithm starts with the current queue

Table 3 Number of edges traversed by each traversal direction in a BFS of Kronecker graph with
SCALE 26 and edgefactor 16

Level Top–down m F Bottom–up m B Direction-optimizing
(best case)
min(m F , m B)

0 2 2,103,840,895 2

1 66,206 1,766,587,029 66,206

2 346,918,235 52,677,691 52,677,691

3 1,727,195,615 12,820,854 12,820,854

4 29,557,400 103,184 103,184

5 82,357 21,467 21,467

6 221 21,240 227

Total 2,103,820,036 3,936,072,360 65,689,631

Ratio 100.00% 187.09% 3.12%



Fast, Scalable, and Energy-Efficient Parallel Breadth-First Search 65

CQ as the source s. At each level k, this algorithm finds unvisited adjacency vertices
AF (v), v ∈ CQ that are connected to the current queue CQ, and appends them to the
next frontier NQ for level k + 1. After the edge traversal, NQ becomes the current
queue CQ for the next level. When the frontier is empty, the algorithm terminates.
Finally, this algorithm requires atomic operations for a consistency in themost deeply
loop, which called the same number of edges. It will be the performance bottleneck,
because of it guaranteed high cost in general.

Algorithm 1: Level-synchronized Breadth-first search

Input : Digraph G = (V, AF ), vertex s.
Data : current queue CQ, next queue NQ,

and visited vertices VS.
Output: predecessor π(v), ∀v ∈ V .

1 π(v) ←⊥, ∀v ∈ V \{s}
2 π(s) ← s
3 VS ← {s}
4 CQ ← {s}
5 NQ ← ∅;
6 while CQ �= ∅ do
7 NQ ← Top–down(G,CQ,VS, π)

8 swap(CQ,NQ)

9 Procedure Top–down(G,CQ,VS, π )
10 NQ ← ∅
11 for v ∈ CQ in parallel do
12 for w ∈ AF (v) do
13 if w /∈ VS atomic then
14 π(w) ← v
15 VS ← VS ∪ {w}
16 NQ ← NQ ∪ {w}

17 return NQ

Beamer et al. [2] proposed a direction-optimizing algorithm for breadth-first
search (Algorithm2) that reduces the number of edges explored. Similar to Algo-
rithm1, this algorithm performs a traversal procedure (lines 7–10) and swaps of NQ
and CQ (line 7) at each level. This algorithm has two different traversal directions:
Top–down and Bottom–up, chooses one from these directions by the size of current
queue

∣∣degG v, v ∈ CQ
∣∣. The former traverses the next queue NQ from the current

queue CQ, whereas the latter finds the frontier CQ from all unvisited vertices V \VS
as candidate neighbors. Table3 describes how the traversal direction is determined
for the top–down and bottom–up approaches (line 7). The traversal direction moves
from the top–down to the bottom–up in the growing phase |CQ| < |NQ|, and returns
from the bottom–up to the top–down in the shrinking phase |CQ| ≥ |NQ|. The com-
putational complexities are O(m) for the top–down direction and O(m · diamG) for
the bottom–up direction,wherem is the number of edges and diamG is the diameter of
the given graph. The direction-optimizing algorithm that combines these algorithms
has O(m · diamG) complexity, however, it works well experimentally.
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Algorithm 2: Direction-optimizing Breadth-first search

Input : Digraph G = (V, AF , AB), vertex s.
Data : frontier queue CQ, next queue NQ,

and visited vertices VS.
Output: Predecessor map π(v), ∀v ∈ V .

1 π(v) ←⊥, ∀v ∈ V \{s}
2 π(s) ← s
3 VS ← {s}
4 CQ ← {s}
5 NQ ← ∅
6 while CQ �= ∅ do
7 if use_TopDown(G,CQ,NQ,VS) then
8 NQ ← Top–down(G,CQ,VS, π)

9 else
10 NQ ← Bottom–up(G,CQ,VS, π)

11 swap(CQ,NQ)

12 Procedure Bottom–up(G,CQ,VS, π )
13 NQ ← ∅
14 for w ∈ V \ VS in parallel do
15 for v ∈ AB(w) do
16 if v ∈ CQ then
17 π(w) ← v
18 VS ← VS ∪ {w}
19 NQ ← NQ ∪ {w}
20 break

21 return NQ

3 NUMA-Aware Programming with ULIBC

Current systems are designed based on the NUMA architecture. On such NUMA
and cc-NUMA systems, each processor has a local memory, and these connect to
one another via an interconnect, such as the Intel QPI, AMDHyperTransport, or SGI
NUMAlink 6, shown in Fig. 3b as an example. A thread running on a processor core
can access a local memory faster than access remote (nonlocal) memory on a NUMA
system. The performance of BFS depends on the speed of memory access, because
the complexity ofmemory accesses is greater than that of computation. Therefore, the
NUMA-aware speedups effect to improve the performance of breadth-first search.
Table4 lists used NUMA systems in this paper.

We investigate the characteristics of NUMA system in terms of memory band-
width using the STREAM benchmark and the Thread Affinity Interface of Intel
compiler. If a binary is built by the Intel compiler, it controls the pinning of running
threads to logical cores using KMP_AFFINITY environment value. We called this
the CPU affinity. Two affinity strategies scatter and compact are available on Intel
Thread Affinity Interface. Each thread is assigned by the affinity strategy and the

Table 4 NUMA systems

System CPU name (LLC
size)

Sockets × Cores
× SMT

RAM Compiler

SB4 Xeon E5-4640
(20.0MB)

4 × 16 × 2 512.0GB ICC-15.0.1

UV2000 Xeon E5-4650 v2
(25.0MB)

256 × 10 × 1 64.0 TB ICC-14.0.0
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Table 5 Number of “Sockets × Physical-Cores × SMT” for each CPU affinity on SB4 (4-socket
8-core server

CPU Affinity Number of threads

1 2 4 8 16 32 64

Compact 1 × 1 × 1 1 × 1 × 2 1 × 2 × 2 1 × 4 × 2 1 × 8 × 2 2 × 8 × 2 4 × 8 × 2

Scatter 1 × 1 × 1 2 × 1 × 1 4 × 1 × 1 4 × 2 × 1 4 × 4 × 1 4 × 8 × 1 4 × 8 × 2

number of threads, shown in Table5. In this table, we describe the thread place-
ment on SB4 in terms of the number of sockets, physical-cores on a socket, and
SMT (Simultaneous Multithreading) on a physical-core. Compact assigns the thread
n + 1 to a free thread context as close as possible to the thread context where the
n thread was placed. Scatter distributes the threads as evenly as possible across the
entire system.

Figure2 plots amemorybandwidth for each affinity type, versus number of threads
using the TRIADoperation of the STREAMbenchmark. The TRIADoperation com-
putes a ← b + r · c using three vectors a,b, c ∈ Rn with n elements, whose element
holds double precision floating point number (8 bytes). This figure shows the boxplot
ofmemory bandwidth inGB/s (giga bytes per second) for the arraywith range 1GB to
8GB that indicates (minimum, first quartile, median, third quartile, and maximum).
First, this figure shows that scatter and compact are more stable than the default
caused the performance degradation at four threads and larger. If the affinity settings
are not enabled, a parallel computation cannot elicit high performance on a NUMA
system. Second, the scatter is larger than the compact in case of same number of
threads used. It means the memory bandwidth depends on the number of sockets
used. Therefore, the local memory access can access using a memory bus indepen-
dently, because a NUMA system consists of pairs of CPU sockets and local memory.
Finally, we observed that the bandwidth also depends on the number of physical-
cores in the compact affinity. However, it is not as strong as the number of sockets,

Fig. 2 Box plot of
bandwidths GB/s by using
the TRIAD operation of the
STREAM benchmark with
the array size as between 1 to
8GB, versus number of
threads for each CPU
affinity. Each line connects
median GB/s score
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because it is small for the performance gap between 8 threads (4 physical-cores)
and 16 threads (8 physical-cores). This shows that a single-thread implementation
cannot elicit memory bandwidth. From these results, we considered the placements
of running threads and referenced data to improve the performance on a NUMA
system.

Figure3a shows bandwidths between two NUMA nodes on SB4 using the
numactl command. We specified the placement of running threads and referenced
data by the ––cpunodebind option for CPU binding and the ––membind option
for Memory binding of numactl command. From this result, the local memory
access (24GB/s) is approximately 8 times faster than the remote memory access
(2.9–3.4GB/s). In addition, we described the obtained bandwidths in a punch figure
of SB4, shown in Fig. 3a.

In this section, we propose a general management approach for processor and
memory affinities on a NUMA system. Previous work includes; the Portable Hard-
ware Locality (hwloc) [4], the Likwid [18], Thread Affinity Interface of Intel com-
piler [13], and OpenUH compiler [12]. However, we cannot find a library for obtain-
ing the position of each running thread, such as the CPU socket index, physical-core
index in each CPU socket, or thread index in each physical-core. We have developed
a management library for processor and memory affinities, called ULIBC. ULIBC
supports many operating systems (although we have only confirmed Linux, Solaris,
and AIX) and is available at

https://bitbucket.org/yuichiro_yasui/ulibc.

ULIBC provides an “MPI rank”-like index, starting at zero, for each CPU socket,
each physical core in each CPU socket, and each thread in each physical core, which
are available for the corresponding process, respectively. We have already applied
ULIBC to graph algorithms for the shortest path problem [20], BFS [14, 15, 21–23],
and mathematical optimization problems [9].
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4 NUMA-Aware Breadth-First Search

We proposed some efficient algorithms and implementations in terms of two strate-
gies; (a) reducing the number of scanning edges like as the direction-optimizing
algorithm and (b) improving the locality of memory access. Table6 shows our algo-
rithms and implementations BD13 [21], ISC14 [22], HPCS15 [23] based on their.
The TEPS scores obtained for Kronecker graph with SCALE 27 on SB4. Reference
is published at the Graph500 Benchmark. Dir. Opt. means the result that are obtained
by Beamer et al. The entire speedup is 8.33 (= 42.5

5.1 ) times faster than that of the origi-
nal direction-optimizing algorithm. We focused the NUMA-aware partitioned graph
representation and the sorting for adjacency list and vertex index.

4.1 NUMA-Aware Partitioned Graph Representation

OurNUMA-optimized algorithms that are based onBeamer et al.’s direction optimiz-
ing algorithm [2], use the 1-D partitioning for sets of vertices and edges to improve
the access to local memory [21–23]. Each sets of partial vertices Vk and edges Ek

on the kth NUMA node is defined by

Vk =
{

v j | j ∈
[n

�
· k,

n

�
· (k + 1)

)}
,

Ek = {(v, w) | ((v, w) ∈ E) ∧ (v ∈ V ) ∧ (w ∈ Vk)}
(1)

where n is the number of vertices and the divisor � is set to the number of NUMA
nodes (CPU sockets). Our implementations used partial adjacency lists AF

k (v), v ∈ V
for the top–down direction and AB

k (w), w ∈ Vk for the bottom–up direction on the
k-th NUMA node as follows:

Table 6 Implementation and algorithms and data structure used

Algorithms
reference

Reference
[17]

NUMA-BFS
[1]

Dir. Opt.
[2]

BD13
[21]

ISC14
[22]

HPCS15
[23]

Level sync. BFS × ×
Direction
optimizing

× × × ×

(a) NUMA-aware
Graph

× × × ×

(a) Adjacency list
sorting

× ×

(b) Vertex index
sorting

×
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AF
k (v) = {w | (v, w) ∈ Ek} , v ∈ V,

AB
k (w) = {v | (v, w) ∈ Ek} , w ∈ Vk .

(2)

As before, theworking spacesNQ,VS, andπ inAlgorithms1 and 2 are partitioned
into NQk , VSk , and πk by using corresponding partial vertices Vk and are allocated
to the local memory on the k-th NUMA node with the memory pinned. In contrast
with the NQ, VS, and π , the current queue CQ are duplicated into CQk , which
are allocated to the local memory on the k-th NUMA node. Therefore, the swap
procedure in Algorithms1 and 2 constructs each CQk from all partial NQk . This
operation requires all-to-all communication the same as the all-gather.

4.2 Adjacency List Sorting

The bottom–up procedure checks that each unvisited vertex connects to the frontier
vertices that are included in the current queue. Therefore, the number of loops at the
bottom–up procedure depends on the order of each adjacency list for each unvisited
vertex. It is difficult to obtain the optimal ordering for the adjacency vertex list, and
we use the heuristic that constructs an adjacency vertex list A(v) of each vertex v ∈ V ,
which is sorted by by the out-degree. Table7 shows a comparison of the number of
traversed edges for each level in the top–down and the bottom–up for each order;
Descending order and Ascending order. The table shows that most traversed edges
were concentrated in Level-2 and that the number of traversed edges is affected by
each order.

We investigate the breakdown of the vertex finding for each adjacency order
shown in Table8. First, the table shows that the number of zero-degree vertices is
half the total number of vertices, and almost of vertices are found in the bottom–up
excluding them. Second, the difference of the order effects a position in adjacency

Table 7 Number of traversed edges in a BFS for Kronecker Graph with SCALE 27

Level Descending order Ascending order

Top–down Bottom–up Hybrid Bottom–up Hybrid

0 22 4,223,250,243 22 4,223,039,317 22

1 239,930 3,258,645,723 239,930 4,063,345,725 239,930

2 1,040,268,126 83,878,899 83,878,899 848,743,124 848,743,124

3 3,145,608,885 19,616,130 19,616,130 19,935,737 19,935,737

4 37,007,608 139,606 139,606 139,868 139,868

5 98,339 41,846 41,846 41,846 41,846

6 260 41,586 260 41,586 260

Total 4,223,223,170 7,585,614,033 103,916,693 9,155,287,203 869,100,787

% 100% 179.6% 2.5% 216.8% 20.6%



Fast, Scalable, and Energy-Efficient Parallel Breadth-First Search 71

Table 8 Breakdown of the vertex finding in a BFS of Kronecker graph with SCALE 27

Descending order Ascending order

Isolated vertices 71,140,085 53.00% 71,140,085 53.00%

Top–down 215,070 0.16% 215,070 0.16%

Bottom–up (1st) 60,462,127 45.05% 25,489,401 18.99%

Bottom–up (2nd
or later)

2,358,918 1.76% 37,331,644 27.81%

list. The number of vertices that are found in the first position using the descending
order, is more than twice larger compared with the ascending order. In particular,
when using descending order, we can estimate that a BFS requires the almost of
CPU time in bottom–up at the first vertex of adjacency list. The descending order
improved the performance of the direction-optimizing algorithm as 2.66 (= 29.0

10.9 from
Table6) times for Kronecker graph with SCALE 27, reducing the unnecessary edge
traversals.

4.3 Vertex Index Sorting

We propose a vertex index sorting technique to improve the locality of accessing
working spaces VS in the Top–down and CQ in the Bottom–up (mainly), which
is similar to that in [19]. The current queue CQ at the Bottom–up is implemented
by the bitmap structure, which represents the set for each vertex as one bit. If the
corresponding vertices are in a set, the bit is 0; otherwise, the bit is 1. Because the
number of accesses of each element is equal to the in-degree degin

G of corresponding
vertex v ∈ V , if the elements frequently used are located closely in amemory, a cache
memory works well. At the first of the graph construction, our technique constructs
new vertex indices {0, 1, ..., n − 1} as follows:

deginG(v0) ≥ deginG(v1) ≥ ... ≥ deginG(vn−1). (3)

Kronecker graphs, which are used in the Graph500 benchmark, have a power-law
degree distribution. Figure4a, b represent the numbers of accesses for the visited ver-
tices VS in Top–down and the current queue CQ in Bottom–up of each BFS required
by Direction-optimizing [2] and our implementation applied vertex index sorting.
These obtained by the average of 64 BFSs for Kronecker graph with SCALE 20.
Our new algorithm drastically improves the locality of vertex access from irregular
memory accesses in BFS. Applying our vertex index sorting, the access frequency
distribution for each vertex in a BFS is similar to the degree distribution of input
graph. Table6 shows that our new algorithm is 1.47 (= 42.5

29.0 ) times faster than our
previous work.
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Fig. 4 Access frequency of vertex traversal for Kronecker graph with SCALE 20. a Previous work.
b This paper and degrees

4.4 Numerical Results on 4-Socket Xeon System

Figure5a compares theBFSperformance of our three implementations forKronecker
graph on the SB4 system with 64 threads. These results obtained by varied with
problem size SCALE and constant edgefactor 16,which determine graph size as 2scale

vertices and 2scale · edgefactor edges. All implementations can solve up to SCALE
29. They reaches the peak at SCALE 26 or 27 and suffers performance degradation
for large SCALEs 28 and 29. Figure5b compares the strong scaling performance of
our three implementations for Kronecker graph with SCALE 27 on the SB4 system.
These results obtained by varied with the number of threads. All implementations
obtained approximately same performance in terms of the parallelization efficiency.
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Fig. 6 Weak scaling with
SCALE 26 per CPU socket
on UV 2000
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4.5 Numerical Results on SGI UV 2000

Figure6 shown theweak scaling performance of ourHPCS15 implementation,which
collects TEPS scores with fixed problem size as SCALE 26 per socket. From this
figure, the HPCS15 reaches the peak at SCALE 32 on one UV2000 rack with 640
cores, and suffers performance degradation for 2 racks. Therefore, we developed
HPCS15+ to improve the scalability of HPCS15, which uses the backward graph AB

instead of the forward graph AF to reduce an inefficient all-gather operation with
small elements (and also a memory requirement) in swap procedure at Top–down
likes as [1]. The HPCS15+ scales up to 1,280 threads and achieves 174.704 GTEPS
for SCALE 34 shown in this figure.

5 Conclusion

In this paper, we described efficient breadth-first algorithms for the large scale net-
works on a single NUMA system, which adapted by NUMA-aware graph represen-
tation [21], and the sorting techniques for adjacency list and vertex index [22, 23].
Our HPCS15 achieved over 40 GTEPS on the 4-way Intel Xeon server. This result
is the most power-efficient entries in the June 2014, November 2014, July 2015,
and November 2015 Green Graph500 lists. Finally, we showed that our HPCS15+
scales up to 1,280 threads, and achieves 174 GTEPS on two racks of the UV 2000
systemwith 1,280 threads. This result is the fastest entry for a shared-memory single-
node system in the November 2014 and July 2015, and November 2015 list of the
Graph500 benchmark.
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Basic Research for the Patient-Specific
Surgery Support System—An Identification
Algorithm of the Mesentery Using
3D Medical Images

Kazushi Ahara, Munemura Suzuki, Yoshitaka Masutani
and Takuya Ueda

Abstract Currently, laparoscopic surgery has widely been accepted as a major
option for the treatment of abdominal diseases such as gallbladder stone, gastric
cancer, and colon cancer. Preoperative anatomical assessment is crucial for laparo-
scopic surgery. Anatomically, the digestive tract is covered with a bilayered thin-
membranous tissue called ‘mesentery’ and the arteries and veins courses within
the mesentery. Although preoperative anatomical information of mesentery will add
clinical information, current imaging modalities cannot visualize mesentery because
of its limits of spatial resolution of medical imaging. In this study, combining the
anatomical features of the mesentery and data such as an interrelation between the
mesentery and the surrounding organs obtained with empirical laws of physicians, we
propose technology to reproduce geometrically a shape of the mesentery, of which
describing is impossible from 3D medical images. Rendering and visualizing the
structure of mesentery from the data of preoperative medical images is expected in
clinical medicine.
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1 Introduction

Recently mathematicians have contributed to medical researchers in Japan. As impor-
tance of mathematical approach in medical fields is recognized, many mathemati-
cal collaborative projects with medical researches are adopted. Such mathematical
approach in medical field is called medical mathematics. One of the main themes
in medical mathematics is the research of modeling and simulation of PDE (dif-
fusion equation). Another theme is analyzing medical images and visualization of
anatomical structures of organs.

The purpose of this study is to establish the method to visualize 3 dimensional
morphology of the mesentery, a membrane in the abdomen, which is invisible with
current imaging modalities.

We propose a method to estimate the normal vector field which meets the various
requirements for anatomical constraint. Then we approximate and render the image
of the smooth surface of membrane using interpolation technique.

2 Anatomical Features of the Mesentery

The mesentery is a membranous anatomical structure, that covers aero digastric tract
such as the stomach, the colon, and the small intestine. The colon and the small intes-
tine do not float within the abdominal cavity. Figure 1 shows the abdominal cavity,
cutting most of the small intestine to explain the structure. The small intestine is
wrapped and hanging from the dorsal wall of the abdominal cavity by a membranous
tissue called mesentery (Fig. 2left).

The left upper figure of Fig. 2 shows the cross sectional image of the abdomen. The
colon is also wrapped by the membrane. The ascending (* in Fig. 1) and descending

Fig. 1 The scheme of
abdominal cavity, ascending
colon (*), transverse colon
(T), descending colon (+),
and sigmoid colon (S)
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Fig. 2 The cross section of the abdominal cavity and the illustration of the relationship between
colon, artery, and mesentery (left), and CT scan image (right)

(+ in Fig. 1) colon attached to the posterior wall of the abdomen (Fig. 2left). But the
transverse colon (T in Fig. 1) and sigmoid colon (S in Fig. 1) are hung like the small
intestine (the membranous structure that hangs transverse colon and sigmoid colon
are called transverse mesocolon and sigmoid mesocolon, respectively).

Arteries and veins that perfuse to the colon and intestine run inside the mesentery.
Although the membranous structure of the mesentery is hard to be visualized on med-
ical imaging such as X-ray computed tomography (CT) because of its limit of spatial
resolution and contrast resolution, the arteries and veins that runs inside the mesen-
tery is usually visualized on medical imaging. Although the shape of mesentery is
not directly visualized on medical imaging, experienced medical doctors recognized
the shape of the mesentery using these anatomical constrains in their images.

3 Importance of 3D Rendering of the Mesentery

In recent years, much interest is focused on minimally invasive surgeries with an
advance in medical technology. Traditionally, a surgeon widely opens the abdomen
for the operation of colon cancer. The surgeons directly see the organs and recognize
the anatomical structures. However, this open surgery leaves large surgical scars after
surgery.

The laparoscopic surgery is developed as one of minimally invasive surgeries. In
contrast to traditional open surgery, it only requires small incision and leaves small
scars (Fig. 3). The surgeons insert devices through the hole in order to perform sur-
gical operations. As they observe the abdominal organs through the inserted camera
(Fig. 3 laparoscope), their vision is limited. Moreover, as they perform operation indi-
rectly using dedicated devices, they follow the procedure with low haptic feedback
[1, 2]. Therefore the laparoscopic surgery requires much experience and training. If
we obtain the whole shape of the mesentery before surgery, it helps planning for safe
operation and it is useful to education for less-experienced surgeons.
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Fig. 3 Surgical apparatus
configuration at a
laparoscopic surgery

In this study, combining the anatomical features of the mesentery and data such
as interrelation between the mesentery and the surrounding organs obtained with
empirical laws of physicians, we propose technology to reproduce geometrically a
shape of the mesentery, which is hard to reconstruct from the medical images.

4 Identification of Mesentery from Point Group

The idea of our work is very simple. If a veteran knows the position of the mesentery,
we may ask him where it is in the medical images. We prepare a viewer of CT scan
images. We ask a doctor to look at images and to make dots (or lines) at positions
where the mesentery is. If we have big mass of coordinate data of points on the
mesentery, we may determine it as a surface and we can render its image (Fig. 4).

It is not a brand new technology how to construct a surface in the 3D-space R3

from a family of discrete point data. For a given point group in the 3D-space, we
can connect a point with its neighbors by edges. If it looks like a polyhedron, it is a
rough position of the answer surface. This method sounds rather good, but if points
are scattered randomly, we cannot suppose any surface at all. Though the mesentery
is a thin tissue, it may not be easy to suppose the shape of the surface. Indeed, the
mesentery may bend or may be folded complicatedly and we need more structural
data in a point group.

Let {xi } (n = 1, . . . , N ) be the point group that a doctor gives. If we have a set of
unit normal vectors {ni } (n = 1, . . . , N ) of the mesentery at each point, then it get
easier to suppose a shape of it. That is, we want to find a function f such that the
zero point set of f contains each xi and that the gradient vector of f is parallel to ni
at xi . Using Radial Basis Functions (RBF) method, we explain the way we obtain f
from data {xi } and {ni }. Here RBF method is a representation method of a surface
interpolator. See [3, 4]. This method is also applied in visualization of curved thin
slab. See [5],

We fix a small constant ε > 0. Let xN+i = xi + εni and x2N+i = xi − εni for
n = 1, 2, . . . , N . Let the coordinate of xi be (xi yi zi )T (n = 1, 2, . . . , 3N ). Let
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Fig. 4 A pipeline for the mesentery shape inference. Point group by manual input yields smooth
surface

si be scalars given by si = 0, sN+i = 1, s2N+i = −1 for n = 1, 2, . . . , N (Fig. 5).
Assume that a function f (x) = f (x, y, z) is given by the following:

f (x) =
3N∑

i=1

λiφ(|x − xi |) + c1 + c2x + c3y + c4z, (1)

where λi ’s and c j ’s are constants and we want to determine these constants such
that f (xi ) = si . The function φ(r) is called a basis function, and in our case we set
φ(r) = r . This is a system of a linear equations for λi ’s and c j ’s, but the solution is
not unique. We add conditions as follows. This additional condition guarantees that
f (x) belongs to the Beppo-Levi space on R3.

3N∑

i=1

λi =
3N∑

i=1

λi xi =
3N∑

i=1

λi yi =
3N∑

i=1

λi zi = 0. (2)

Adding the system of the Eq. (2) to f (xi ) = si , we have a unique solution for λi ’s
and c j ’s (in case that xi are in general positions).

The remaining problem is how to obtain the unit normal vectors {ni }. Here we
introduce a mathematical formulation of our work. We need transform anatomical
knowledge of the mesentery into a mathematical structure of a surface. We do not
need any advanced mathematics, but we have to know both of mathematics and
anatomy. The local structure of the mesentery consists of two thin membranes, (that
is, twofolded films pasted together). Here we assume that the mesentery is one
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Fig. 5 Control point configuration for RBF reconstruction of implicit function f(x) representing a
surface f(x) = 0. A point with a normal yields 3 control points for f(x) = +1, 0 and −1

smoothly embedded surface in 3D-space. This is the first assumption. We suppose
that the mesentery is homeomorphic to a 2-disk. That is, the surface has no genus in
it. Of course we cannot prove mathematically that the mesentery has no genus, but
observing establishing process of the mesentery through one’s childhood, we know
that most of the mesentery is a simple disk. This is the second assumption. If the
mesentery is a disk, its boundary is an embedded circle. Half of the boundary meets
colon. This is the third assumption. The remaining part of the boundary meets arteries,
a big blood vessel. This is the fourth assumption. There are some vessels which are
put between two thin membranes and we can see these vessels in medical images.
We may refer the shape of such vessels. (In the sequel we omit this assumption for
simplicity.)

Figure 6 is a conceptual diagram of the mesentery, under the above conditions
from 1 to 4. Of course the colon must be a tube-shaped organ and the arteries are
3D lines and the mesentery is 3D surface. This is a figure in which we simplify the
situations.

Figure 7 is a sample of point groups. The outline polylines with dots are in the
colon. From this image, we recognize that these points are decorated in a certain

Fig. 6 Mesentery shape
example with surrounding
anatomical structures. The
mesentery ends at the colon
and the blood vessels
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Fig. 7 A point group
example. Several points in
the same category are
connected

surface in 3D-space. Point group is a set of dots and a medical specialist put dots
on the CT scan images. We ask the doctor to classify these dots by the following
criterion. It is easy for specialists make this classification. Type 0 points are points
on the center line of the colon. From the assumption, these points are on the exterior
boundary of the mesentery. Type 1 points are points near the colon. In the neighbors
of the colon, there are some characteristic arteries named the marginal artery, and
we assume that the points of this type is on the arteries. Type 2 and 3 points are on
(and near) the main artery. (The superior mesenteric artery to the ileocolic artery, and
the superior rectal artery to the inferior mesenteric artery.) These are on the interior
boundary of the mesentery. Type 4 points are other points on the mesentery. See
Fig. 8.

If we have the classification in the point data, we add edges (from a point to a
point) with a geometric restriction which is derived from the anatomical criterion.
Indeed, points of type 0 are arranged in a row (on a curve in the 3D-space) and we
make a polyline. See Fig. 7. In the same way, points of type 1, 2, 3 are configured on

Fig. 8 Anatomical classification of point group into 5 categories
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Fig. 9 Graph structure and inferred normals from point group (left), and reconstructed surface with
control points and normals as cones (right)

a curve in the 3D-space respectively. Points of type 4 are distributed almost over a
surface, and we connect points with their neighbors. In general we have a piecewise
linear embedded surface in the 3D-space. Two points contained in different types may
be near to each other. We connect these points with consideration for geometrical
criterion. Using these estimated edges, we determine the normal vectors for each
point. See Fig. 9.

5 Observation and Conclusion

Hereafter, we make observation about the method.
First, we explain difference between our approach and the one in [5]. In our

method, there is no way of using the gradient of intensity in the medical images to
determine the normal vectors of the surface. Because the mesentery is a membrane,
we have to configure the surface from data of point group (or line group) using
interpolation method. Moreover, the mesentery is homeomorphic to a disk with
a boundary, we need another scheme in order to cut out the outside part of the
mesentery.

It is interesting to discuss which basis function φ(r) is the best one in RBF method.
There is no explicit data on this problem, but according to our observation there is
less difference in resulting images if we use various basis functions. The precise
observation about the relationship between the basis function and the resulting images
is a future problem.
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We have a problem what is a ‘good’ result. That is, it is a problem what is a
measure which is provided in order to test the quality for the rendered surface. This
is an important but difficult problem. Because goodness of the rendered image may
not be precision of its shape but usefulness for surgeons. Under the circumstances
visual assessment is one of the most realistic solution. This is visual estimation by
doctors from the anatomical viewpoint. This is a future problem.

We have a mathematical problem of what is the minimum number of points in order
to provide a good result. Generally if we have many points data on the mesentery, it
is easy to interpolate the surface. This is an open problem.

In this paper, we do not provide a concrete method to estimate the normal vector
field. There are some ways of estimation on the normal vectors from the data of
neighborhood points. The authors are preparing another paper in which they discuss
the estimation in the view of mathematics and information technology.

As seen in Fig. 8, there looks some arteries in the mesentery. If we get the position
of these arteries automatically from the medical images, it is very helpful to determine
the position of the mesentery. This also is a future problem.

We have other problems in interpolation. We assume that the points of type 0,
1, 2, and 3 are configured in a row, that is, a 3D curve. But indeed, the colon and
the arteries may have complicated shapes and the point set of each type is not in a
row. See an example in Fig. 10. In this situation we need an optimization scheme
for identification of a space curve. After we obtain the normal vectors, it is not
straightforward to determine the orientation of the surface of the mesentery. Here
we have another orientation optimization problem.

In the viewpoint of user interface, we have other problems. We have to take care
of a human error within the input data of the point group. We suppose that a doctor
uses viewer software to draw dots on medical images. Clicking mouse button is
influenced by hand trembling. We need to develop a perturbation optimization of
identification of the surface. There is a problem of the density optimization of the
point group. If the shape of the mesentery is complicated, for example, is folded or
bends, then the density of points must be thick. But medical specialists do not know
the proper density to determine a shape of the surface. Thus we need to estimate the
density properness of point group. We are developing a system with user interface
which allows medical specialists to know this properness of the point group.

In a plan for the future, we will make an investigation into the usefulness of this
method in the cites of clinical medicine. Rendering and visualizing the structure of

Fig. 10 Ambiguity in shape
identification from point
group. Four points may yield
several shapes including
these two
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the mesentery from the data of preoperative medical images is expected in clinical
medicine, in order to make a plan in preparation of operations for surgeons and to
train themselves for the technique of surgery.
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Using Process Algebra to Design Better
Protocols

Peter Höfner

Abstract Protocol design, development and standardisation still follow the lines of
rough consensus and running code. This approach yields fast and impressive results
in a sense that protocols are actually implemented and shipped, but comes at a price:
protocol specifications, which are mainly written in natural languages without pre-
senting a formal specification, are (excessively) long, ambiguous, underspecified and
erroneous. These shortcomings are neither new nor surprising, and well documented.
It is the purpose of this paper to provide further evidence that formal methods in gen-
eral and process algebras in particular can overcome these problems. They provide
powerful tools that help to analyse and evaluate protocols, already during the design
phase. To illustrate this claim, I report how a combination of pen-and-paper analy-
sis, model checking and interactive theorem proving has helped to perform a formal
analysis of the Ad hoc On-Demand Vector (AODV) routing protocol.

Keywords Process algebra · (Routing) Protocol ·Wireless mesh network · Formal
specification · Verification · AODV

1 The Need for Better Protocols

Despite the maturity of formal description languages and formal methods for analysing
them, the description of real protocols is still overwhelmingly informal. The consequences
of informal protocol description drag down industrial productivity and impede research
progress. Pamela Zave [45]

In computing, protocols are omnipresent: examples reach from internet communi-
cation protocols, such as the Simple Mail Transfer Protocol (SMTP) [22, 33] and
the Transmission Control Protocol (TCP) [34], via cryptographic protocols, such
Kerberos [27] and the MD5 Message-Digest Algorithm [37], and routing proto-
cols, such the Border Gateway Protocol (BGP) [36] and the Ad hoc On-Demand
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Vector (AODV) protocol [31], to multimedia protocols, such as the Session Initia-
tion Protocol (SIP) [38].

Due to this omnipresence, protocols should satisfy a few important properties:
(a) Specifications should be given in a way that they are easy to understand and
implement. (b) Specifications have to support cross-vendor interaction, meaning if
the same protocol is implemented by different vendors, these implementations should
be compatible—different implementations of the same standard should be able to
cooperate. (c) Finally, protocols should, of course, be correct.

Many of the protocols standardised today, however, fail to satisfy at least one of
these properties. This is mainly because of the state of the art in protocol design and
development.

Protocols are Broken

There is a stunning number of protocols that have been standardised, but do not work
as expected.

For example, Miskovic and Knightly showed that many routing protocols based
on the IEEE 802.11s standard [19], proprietary protocols such as those developed
by Motorola,1 Cisco2 and others, as well as research routing protocols such as
AODV-ST [35] and HOVER [25] are likely to establish non-optimal routes. This
leads not only to an overhead in network traffic, but also to significant delays in
packet delivery [26].

In [14] van Glabbeek et al. analysed AODV and proved that this routing protocol
is not a priori loop free, i.e. data packets could be send through the network without
ever reaching the intended destination. They argue that loop freedom hinges on
non-evident assumptions to be made when resolving ambiguities occurring in the
standard.

Zave showed that some disruptions in the ring structure of the Chord protocol
cannot be repaired by the Chord ring-maintenance protocol as specified in [41]3 and
[42]; hence the protocol is provable incorrect. In fact she stated that no published
version of Chord is correct; however, “by selecting the right pseudocode from several
papers, incorporating the right hints from the text of another paper, and fixing small
flaws revealed by analysis, it is possible to come up with a ‘best’ version that may
be correct” [46].

The Border Gateway Protocol (BGP), which is designed to exchange routing
and reachability information between internet service providers (ISPs), is the last
protocol to be mentioned. Varadhan, Govindan and Estrin showed that this protocol
does not necessarily converge, and could persistently oscillate [43]. That means that
nodes can change persistently the information about routes, although the network is
assumed to be static.

1http://www.wi-fiplanet.com/news/article.php/3600221.
2http://www.mikrotik.com/.
3This paper won the 2011 SIGCOMM Test-of-Time Award.

http://www.wi-fiplanet.com/news/article.php/3600221
http://www.mikrotik.com/
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Designing Protocols: State of The Art

As shown, many protocols do not behave as expected. The question that arises is why
does this happen. Is not it possible to correctly specify a protocol and test/prove fun-
damental properties before implementation and deployment? This paper illustrates
that this is possible. It is, however, my belief that the state of the art of design-
ing protocols—rough consensus and running code—is one of the problems, if the
process is implemented as described below.

“[IETF’s] working groups make decisions through a ‘rough consensus’ process.
IETF consensus does not require that all participants agree although this is, of course,
preferred. In general, the dominant viewof theworkinggroup shall prevail. (However,
‘dominance’ is not to be determined on the basis of volume or persistence, but rather
a more general sense of agreement). Consensus can be determined by a show of
hands, humming, or any other means on which the WG agrees (by rough consensus,
of course). Note that 51%of theworking group does not qualify as ‘rough consensus’
and 99% is better than rough. It is up to the Chair to determine if rough consensus
has been reached” [6].

In practice this usually means that somebody first creates a draft of a specification
in natural language, such as English. This draft often contains an excellent idea and
deep insights on how to tackle a specific problem, e.g. using sequence numbers
to ensure loop freedom. This draft is then discussed by the working group and
changes are applied to the textual draft. As soon as rough consensus on the (natural
language) specification is reached and as soon as there are at least two ‘running’
implementations, the protocol is declared to be standardised. Using this approach
the IETF hadmajor successes, such as the development and the deployment of DHCP
(Dynamic Host Configuration Protocol), DNS (Domain Name System) and BGP.4

These successes suggest that the use of natural languages for protocol descriptions
without presenting a formal specification seems to be advantageous: everybody can
easily read, understand and comment on the specification, and hence, the protocol is
easy to implement. However, looking at contemporary protocol developments more
closely, it turns out that natural languages are no proper specification languages at
all. They may be easy to understand, but this comes at a price.

• Specifications are (excessively) long. The description of the Session Initiation
Protocol (SIP) [38], for example, is 268 pages long (and is not even self-contained);
the IEEE Std 802.11TM-2012 [20] standard, which contains a set of media access
control (MAC) and physical layer (PHY) specifications for wireless networks, is
2,793 pages long.
The sheer length of these specifications makes it nearly impossible to read and
understand the full specification.

• Specifications are ambiguous and underspecified. It is hard—maybe impossible—
to write precise and unambiguous specifications using natural languages only.
Ambiguities in the Ad hoc On-Demand Vector (AODV) protocol [31], for

4A list of IETF’s successes and failures can be found at http://trac.tools.ietf.org/misc/outcomes/.

http://trac.tools.ietf.org/misc/outcomes/
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example, yielded five open-source implementations to behave in incompatible
ways, although all following the standard closely [14].

• Protocols are neither formally analysed nor verified.The lack of an (unambiguous)
formal specification makes a formal analysis impossible. Traditional approaches
to analyse protocols are simulation and test-bed experiments. While these are
important and valid methods for protocol evaluation, they have limitations with
regards to guaranteeing basic protocol correctness properties. Experimental eval-
uation is resource intensive and time-consuming, and, even after a very long time
of evaluation, only a finite set of scenarios can be considered—usually, no general
guarantee can be given. This problem is illustrated by Miskovic’s and Knightly’s
discovery of limitations in AODV-like protocols (see above) that have been under
intense scrutiny over many years [26].

Better Protocols are Needed, Now!

These shortcomings are neither new nor surprising, and documented in several
research papers, e.g. [45] or [39, Chap.9]. I believe that many problems could be
avoided if formal protocol descriptions would accompany the textual specification,
already in the design phase, before rough consensus is reached. By this, different
readings of the draft, or underspecification can easily be avoided. Another reason
why formal methods should be used already during the design phase is that protocols
are not deployed in a lab: as soon as protocols are shipped, deployed and in (regular)
use, it is nearly impossible to replace them. A classic example is BGP, which is
erroneous (see above), but runs at the backbone of the Internet since 1994.

It is the purpose of the remainder of this paper to provide further evidence that for-
mal methods in general and process algebras in particular can overcome these prob-
lems. Formal methods are mathematical approaches used to formally reason about
software and hardware systems. They are used from formalising systems’ require-
ments, specifications and designs, through programming concepts and programming
languages, to implementation. They are also used to relate different formalisations:
for example, refinement can be used to show that an implementation ‘follows’ a
formal specification. Formal methods are indispensable for software and protocol
engineering, especially when safety, security or correctness is considered.

In the area of protocol development they provide powerful tools that help to
analyse and evaluate protocols, already during the design phase. I will illustrate this
by a formal analysis of AODV [31], a routing protocol currently standardised by the
IETF MANET working group. I will report how a combination of pen-and-paper
analysis, model checking and interactive theorem proving has helped to carry out
the analysis. This case study shows (again) that formal methods are mature enough
to support protocol design from the beginning. It is my belief that the use of formal
methods could have found and prevented limitations in AODV-like protocols as
reported in [26].
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2 Formal Specification Languages

Formal specification languages and analysis techniques are now able to capture the
full syntax and semantics of reasonably rich protocols. They are an indispensable
augmentation to natural language, both for specification and analysis.

Even when formal analysis is not the final aim, the use of formal languages is
useful: they are unambiguous, reduce significantly the number ofmisunderstandings,
and clarify the overall structure. By this, they almost always avoid underspecification.
Obviously, formal specification languages cannot prevent errors a priori, but theywill
make them less likely, and since they are unambiguous they do not allow different
readings of a draft or a standard. If no formal analysis is required, it does not really
matter which formalism is used. The choice of formal specification languages is
numerous: it ranges from timed automata, which offer tool support by model check-
ing (e.g. [8]), via the inductive approach, which offers interactive theorem proving
support [30], to algebraic characterisations such as semirings (e.g. [15]) and process
algebra (e.g. [10]). For our case study (see below), process algebra was chosen as
specification language. It has the advantage that it is closely related to programming
languages, and hence specifications are easy to understand by network researchers
and software engineers as well, not only by theoreticians.

The Process Algebra AWN

The process algebra AWN (Algebra for Wireless Networks) [10] was initially devel-
oped forwireless networks such asAODV, and has therefore in-built support for node
mobility, broadcast/multicast communication etc. However, AWN allows modelling
any type of communicating concurrent processes, and can be used for a wide range
of networks and protocols, e.g. [12].

The syntax of the AWN language, depicted in Table1 and described below, is
simple and reads much like a programming language, but it is implementation inde-
pendent and has all the required ingredients to be able to formally reason about
protocol and network properties, and to provide mathematically rigorous proofs.

AWN is a variant of standard process algebras [2, 3, 17, 24], extendedwith a local
broadcast mechanism and a conditional unicast operator—allowing error handling
in response to failed communications—and incorporating data structures.

InAWN, a protocol running in a (wireless) network ismodelled as parallel compo-
sition of network nodes. On each node several processesmay run in parallel. Network
nodes communicate with their direct neighbours—those nodes that are currently in
transmission range—using either broadcast, unicast, or an iterative unicast/multicast
(called groupcast).

The basic components of process expressions are given in the first part of Table1.

A process name X comes with a defining equation X (var1, . . . ,varn)
def= p, where

p is a process expression, and thevari are data variablesmaintained by process X . A
named process is similar to a procedure or a function: if it is called, data expressions
expi are filled in for the variables vari . The process p + q models choice: it may
act either as p or as q, depending on which of the two is able to act at all. In a context
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Table 1 Syntax of the process algebra AWN

Basic primitives of (node level) sequential process expressions

X (exp1, . . . , expn) Process name with arguments

p + q Choice between processes p and q

[ϕ]p Conditional process

[[var := exp]]p Assignment followed by process p

broadcast(ms).p Broadcast ms followed by p

groupcast(dests,ms).p Iterative unicast or multicast to all destinations dests

unicast(dest,ms).p � q Unicast ms to dest ;
if successful proceed with p; otherwise with q

send(ms).p Synchronously transmit ms to parallel process on
same node

receive(msg).p Receive a message

deliver(d).p Deliver d to application layer

Some advanced sequential process expressions

[ϕ]p + [¬ϕ]q Deterministic choice with test

X (n)
def= [[n := n + 1]] X (n) Example of a loop

Parallel process expressions

ξ, p Process with valuation

P 〈〈 Q Parallel processes on the same node

where both are able to act, a nondeterministic decision is made. The expression [ϕ]p
is a conditional process—an if-statement—if the Boolean expression ϕ evaluates to
true then the process acts like p, it deadlocks otherwise.5

The process algebra also features (arbitrary) data structures. An update to a vari-
able var is performed using the assignment var := exp, where exp is a data expres-
sion of the same type as var. The process [[var := exp]]p acts as p, but under the
constraint that the value of the variable var is now exp.

AWN always provides data types for node identifiers, sets of node identifiers, and
messages; variables of these types are used to model the transmission of messages,
and are denoted by dest , dests and ms, respectively. The process broadcast(ms).p
broadcasts (the data value bound to the expression) ms to all nodes in the network
within transmission range of the sender, and subsequently acts as p; the process
groupcast(dests,ms).p transmits ms to all destinations within transmission range
that are also listed in the setdests, andproceeds as p. Both expressionsbroadcast and
groupcast continue as p, independently whether the transmission (to some nodes)
was successful. In contrast to this,unicast(dest,ms).p � q tries to send themessage
ms to the sole destination dest; if successful it continues to act as p and otherwise

5In case ϕ contains free variables, values to these variables are chosen nondeterministically in a
way that satisfies ϕ, if possible.
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as q.6 It models an abstraction of an acknowledgment-of-receipt mechanism that
is typical for unicast communication but absent in broadcast communication, and
implemented inwireless standards such as IEEE802.11.All thesemechanismsmodel
internode message sending; for intranode communication the process send(ms).p is
used. This action can only take place if another process is able to receive themessage.

The process receive(msg).p is able to receive any message m; it then proceeds
as p under the constraint that the variable msg is updated to m. The message m
can stem from another node (broadcast/groupcast/unicast), from the same node
(send), or from an application layer process. The latter is modelled by the process
receive(newpkt(d, dip)).p, where newpkt generates a message containing data
d to be sent from the application layer, and the intended destination address dip.
Data is delivered to the application layer by the process deliver(d).p.

It is straightforward to model a protocol (running on one node) using these basic
process expressions. I will show a snippet of the AODV protocol in the next section.
Other well-known programming constructs, such as if-then-else or loops can easily
built from them; two examples are given in the second block of Table 1.

Processes running on the same node, can be combined as P 〈〈 Q. Here, P and
Q are valuated processes, meaning that they are either a process expression p built
from the syntax presented above and equipped with a valuation function ξ, which
specifies values of variables maintained by p, or a parallel process itself.

In the full process algebra [10], parallel processes (processes describing the behav-
iour of a single network node) are combined into an expression modelling the entire
network, including information about the transmission ranges of all nodes. Since
we concentrate on modelling aspects, these details do not matter—the presented
constructs are sufficient to describe protocols on the level of nodes.

The intuition of the syntax of AWN should be clear for anybody writing protocol
specifications. However, to formally reason about protocols a formal semantics is
required: AWN, as many other process algebras, is equipped with an operational
semantics [10]. It describes a model’s behaviour in terms of its execution. As a
consequence, many desired properties, such as correctness and safety can often be
verified by constructing proofs from these logical statements. An example that for-
mally describes intranode communication is given by the rule

P
receive(msg)−−−−−−→ P ′ Q

send(msg)−−−−−→ Q′

P 〈〈 Q τ−→ P ′ 〈〈 Q′
.

This semantical rule states that if the process Q is able to send a message msg
and, at the same time, process P is able to receive the same message, then both
processes will execute their actions (send/receive); the resulting internal action is
called τ .

6The unicast is unsuccessful if the destination dest is out of transmission range of the sender.
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The main purpose of this paper is to illustrate that process algebras can be used
to model and analyse reasonably rich protocols. Hence we abstain from a detailed
presentation of the operational semantics.

3 Case Study: The AODV Routing Protocol

Together with my colleagues R. van Glabbeek, M. Portmann, W.L. Tan, A. McIver
andA. Fehnker, I used the process algebraAWN to obtain the first rigorous formalisa-
tion of the specification ofAd hocOn-DemandVector (AODV) routing protocol [31].
Based on the formalisation, a careful analysis of the protocol was performed, using
pen-and-paper analysis in [10, 13], the proof assistant Isabelle/HOL [28] in [4, 5],
and the model checker Uppaal [1, 23] in [9, 18].

The Protocol

AODV is a reactive protocol, meaning that routes are established on demand when
needed. A route from a source node s to a destination node d is a sequence of nodes
[s, n1, . . . , nk, d], where n1, . . . , nk are intermediate nodes located on a particular
path from s to d. The intuition of AODV is best illustrated by a small example,
depicted in Fig. 1. The network topology is given in Fig. 1a, where an edge between
two nodes indicate that the nodes are within transmission range. In the example
node s tries to send data packets to node d, but s does not yet have information about
a route to d.

Node s initiates a route discovery mechanism by broadcasting a route request
(RREQ) message, which is received by all neighbours in transmission range, nodes
a and b in the example. Nodes receiving a RREQ message that do not know a route
to the intended destination d rebroadcast the message. By this the RREQ message
floods the network (cf. Fig. 1b). If one of the intermediate nodes has established a
route to d before, it directly sends a route reply back towards the originator s. When
a node forwards a RREQ message, it updates its routing table and adds a ‘reverse
route’ entry to s, indicating via which next hop the node s can be reached, and other
information about the route.
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Fig. 1 AODV by example [13]. a Network topology. b Request floods the network. c Route reply
is sent back
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Fig. 2 Excerpt of AWN specification for AODV: cases for handling a RREQ message [13]

Once the first RREQ message is received by the destination node d—we assume
it stems from a—the destination node also adds a reverse route entry in its routing
table, indicating that node s can be reached via node a. It then responds by sending
a route reply (RREP) message addressed to node s to node a. In contrast to RREQ
messages, RREPmessages are unicast. Node a receives the RREPmessage; it creates
a ‘forward route’ entry to d in its routing table and forwards the message to the next
hop along the established reverse route. The RREP message will finally reach the
originator of the RREQ message, and the route discovery process is completed and
a route from s to d has been established—data packets can start to flow.

In the event of link failures, AODV uses route error (RERR) messages to inform
affected nodes.

Formal Analysis

In contrast to the ambiguous de facto standard specification of AODV [31], which
is written in English prose and about 35 pages long, the created AWN model is
precise, yet very readable and consists only of roughly 200 lines. The model reflects
precisely the intention of AODV and accurately captures all core aspects of the
protocol specification, excluding all aspects of time. An excerpt, which shows the
essential parts for handling a RREQmessage, is given in Fig. 2. The full specification
as well as a detailed explanation can be found in [13]. As the semantics of AWN is
completely unambiguous, specifying a protocol in such a framework enforces total
precision and obviously removes any ambiguity.

An analysis of this specification revealed that under a plausible interpretation of
the original specification of AODV,7 the protocol admits routing loops [14]; this is
in direct contradiction with popular belief, the promises of the AODV standard, and

7As common, text placed between /* and */ are comments and not part of AWN.
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the main paper on AODV [32] (with over 12,000 citations). However, we showed
loop freedom of AODV under a subtly different interpretation of the original spec-
ification [13]. Our analysis, which I will report on in the remainder of this section,
considered also route correctness, packet delivery, route optimality and other proper-
ties of the routing protocol. It has been carried out by pen-and-paper, with the proof
assistant Isabelle/HOL [28], and with the model checker Uppaal [1, 23].

• Using the formal semantics of AWN, we verified properties of AODV that can be
expressed as invariants by pen-and-paper. Invariants are statements that hold at
all times when the protocol is executed. The most important invariants were route
correctness and loop freedom.
The term route correctnessmeans that all routing table entries stored at a node are
entirely based on information on routes to other nodes that is currently valid or
was valid at some point in the past. In case of AODV, this property is not hard to
prove, but already shows the power of formal methods, since a formal proof can
be provided [13].
Loop freedom is a critical property for any routing protocol, but it is particu-
larly relevant and challenging for wireless networks, since the underlying network
topology can change constantly. Garcia-Luna-Aceves describes a loop as follows:
“A routing-table loop is a path specified in the nodes’ routing tables at a particular
point in time that visits the same nodemore than once before reaching the intended
destination” [11]. Packets caught in a routing loop can quickly saturate the links
and can decrease the overall network performance. To the best of our knowledge
we are the first to give a complete and detailed proof of loop freedom [13]. The
proof of loop freedom builds on another 30 invariants that needed to be proven
before loop freedom could be verified.

• Providing a pen-and-paper proof of loop freedom was a major step in the under-
standing of AODV, but the proof itself is about 20 pages long. To add credibility
and confidence we mechanised the proof in the theorem prover Isabelle/HOL
[4, 5].
Isabelle [29] is a generic interactive theorem prover based on a small logical
core to ease logical correctness. The main application area is the formalisation of
mathematical proofs and in particular formal verification. The most widespread
instance of Isabelle nowadays is Isabelle/HOL [28], which provides a higher-order
logic (HOL) theorem proving environment that is ready to use for big applica-
tions. Examples for such applications are the projects L4.verified and Flyspec.
L4.verified used Isabelle/HOL to prove formal functional correctness of the seL4
microkernel, a small, 3rd generation high-performance microkernel with about
8,700 lines of C code [21]. Flyspec derived a formal proof of the Kepler con-
jecture on dense sphere packings using the Isabelle/HOL and HOL Light proof
assistants [16].
While the hand-written process-algebraic proof of loop freedom of AODV was
already very formal, the implication that transfers statements about nodes to state-
ments about networks involves coarser reasoning over execution sequences. The
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mechanised proof clarifies this aspect by explicitly stating the assumptions made
of other nodes. It consists of about 400 lemmas.
Besides the added confidence that comes with having even the smallest details
fastidiously checked by a machine, the real advantage in encoding model, proof,
and framework in an interactive theorem prover is that they can then be analysed
and manipulated (semi-)automatically.
In [4] we showed how protocol variants, such as different readings of the textual
standard or proposed improvements of the standard can quickly be analysed. Vari-
ants often only differ in minor details, most proofs stay the same or can be adapted
automatically: an interactive theorem prover tries to ‘replay’ the original proof
and, in case of a failure, it points at all proof steps that are no longer valid.8 One
only has to concentrate on these failures. This avoids the tedious, time-consuming,
and error-prone manual chore of establishing which steps remain valid for each
invariant, especially for long proofs.

• Model checking is in particular useful to discover protocol limitations and to
develop improved variants; in our setting it can be seen as a diagnostic tool that
complements the other verification techniques. Model checking is limited to net-
works of small size—due to state space explosion—and hence cannot verify prop-
erties for all networks, in contrast to the invariant proofs mentioned above that
cover all topology.
Based on our AWN specification we developed a model of AODV for the Uppaal
model checker [9]. We checked important properties, such as route correctness
and route optimality, against all topologies of up to 5 nodes, which also included
dynamic topologies with one link going up or down. In the case a property does not
hold, Uppaal produces evidence for the fault in the form of a ‘counter-example’
summarising the circumstances leading to it. Such diagnostic information provides
insights into the cause and correction of these failures. For some problematic and
undesired behaviour of AODV, automatically found by Uppaal, we provided fixes
in form of improvements of AODV, which then were (semi-)automatically verified
by Isabelle/HOL.
Analysing small topologies often yields new insights, as does simulation, but the
network sizes are far from realistic and quantitative information is not included.
Statistical model checking [40, 44] can combine the systematic methodology of
‘classical’ model checking with the ability to analyse quantitative properties and
realistic scenarios.9 Using statistical model checking, we showed that quantitative
reasoning is now feasible—for example we analysed the extent of establishing
non-optimal routes—and illustrated that properties can be checked for networks
of up to 100 nodes—of course an exhaustive search is not possible here.

8Reference [4] proves loop freedom for four variants of AODV, in average only one invariant needed
major changes; and a few others needed systematic adaptions, such as changes of data types.
9SMC-Uppaal, the Statistical extension of Uppaal (release 4.1.11) [7] accepts the same input as
standard Uppaal; the creation of a new model was not required.
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4 Looking Ahead

In this paper, I have illustrated that formal specification languages and analysis
techniques are now able to capture the full syntax and semantics of reasonably rich
protocols. The use of formal methods in general and the use of process algebras in
particular can be split into three layers (cf. Fig. 3): (a) the (syntax of the) formal
description language, (b) its semantics, and (c) tools for analysing a protocol, based
on the syntax and the semantics. Although it would be favourable if everybody
would understand all three layers, this is wishful thinking: most likely only trained
experts working in the area of formal methods will understand the full spectrum. But,
for specifying a protocol in a precise and unambiguous manner, which also avoids
underspecification, this is not necessary. To achieve this goal, only the syntax together
with a good intuition about its semantics is required—neither a full understanding
of the formal semantics nor of the formal analysis tools is needed.

I believe that state-of-the-art formal description languages are simple enough to be
used by any network researcher and software engineer. These languages can be used
to specify and analyse rather complicated protocols. To achieve more automation in
the analysis, they often offer tool support, such as model checking.

So, the question remains why despite of the maturity of formal description lan-
guages and formal methods for analysing them, the description of real protocols is
still overwhelmingly informal. As Zave pointed out, this drags down industrial pro-
ductivity and impedes research progress [46]. It is my belief that three ingredients are
still missing: (1) Better (easy to use) tool support: better tools and faster computers
allow more and more automation. However, the use of tools often requires special
knowledge (how to use the tool) or a special input format (e.g. timed automata). (2)
Code generation: it is often believed that the combination of formal specification
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followed by implementation requires more time (and hence more money) than just
implementing the protocol straight away. If entire (or at least parts of) implementa-
tions could be generated out of formal specifications automatically, one could gain
even more advantages from formal methods. (3) Training: to use formal methods,
engineers working in industry must be aware of them; this can only be achieved by
training. Current research tackles the first two items, the last one may be the hardest
to achieve.
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Relational Hash

Avradip Mandal and Arnab Roy

Abstract Traditional cryptographic hash functions allowone to easily checkwhether
the original plaintexts are equal or not, given a pair of hash values. Probabilistic hash
functions extend this conceptwhere given a probabilistic hash of a value and the value
itself, one can efficiently checkwhether the hash corresponds to the given value.How-
ever, given distinct probabilistic hashes of the same value it is not possible to check
whether they correspond to the same value. In this work we introduce a new cryp-
tographic primitive called Relational Hash using which, given a pair of (relational)
hash values, one can determinewhether the original plaintextswere related or not.We
formalize various natural security notions for the Relational Hash primitive—one-
wayness, twin one-wayness, unforgeability and oracle simulatability. We develop a
Relational Hash scheme for discovering linear relations among bit-vectors (elements
of Fn

2) and Fp-vectors. Using the linear Relational Hash schemes we develop Rela-
tional Hashes for detecting proximity in terms of hamming distance. The proximity
Relational Hashing schemes can be adapted to a privacy preserving biometric iden-
tification scheme, as well as a privacy preserving biometric authentication scheme
secure against passive adversaries.

Keywords Probabilistic hash functions · Functional encryption ·Biometric authen-
tication

1 Introduction

Consider a scenario where there is a database of fingerprints of known criminals. The
database should not reveal the actual fingerprints, even internally. An investigative
officer might want to check, whether a candidate fingerprint digest matches with
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the database. How can we build a biometric identification scheme which guarantees
complete template privacy to both the server, as well as to the investigating officer?

We observe that Homomorphic Encryption [3] does not entirely solve this prob-
lem. In Homomorphic Encryption, one of the parties has to have a decryption key, in
order to decrypt the final result. However, this decryption key also enables the party
to decrypt the corresponding input from the other party, thus eluding true bipartite
privacy. In particular, if the decryption key is leaked, the whole database could be
compromised.

We propose a cryptographic primitive called Relational Hash [4] which attempts
to address the question above. One of the key ideas is to have distinct, but related,
hashing systems for the individual co-ordinates, i.e., have two hash functions h1 and

h2 and enable checking of x1
?= x2, given h1(x1) and h2(x2). Extending equality,

we define Relational Hash with respect to a relation R, such that given two hashes
h1(x1) and h2(x2), we can efficiently determine whether (x1, x2) ∈ R holds. It may
also be desirable to compute ternary relations R′ on x1, x2 and a third plaintext
parameter z, so that given h1(x1), h2(x2) and z, we can efficiently determine whether
(x1, x2, z) ∈ R′ holds. For any Relational Hash primitive, we formalize a few natural
and desirable security properties, namely one-wayness, unforgeability, twin one-
wayness and oracle simulatability. We emphasize here that there are no secret keys
in the system to decrypt the input data, thusmitigating the drawback ofHomomorphic
Encryption wherein leakage of a secret key can compromise the database.

In this talk I will describe a relational hash construction for checking linear rela-
tions and then show how we use the linear relational hash to construct a relational
hash system for verifying proximity, which addresses the biometric privacy scenario
that we set out with. The biometric application is depicted in Fig. 1.

Fig. 1 Relational hash for biometric authentication
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1.1 Why Traditional Hash Functions Are Not Sufficient

Traditional cryptographic hash functions, like MD-5 and SHA-3, enable checking
for equality while hiding the plaintexts. Since these are deterministic functions, this
just involves checking if the hashes are identical. However, hash functions are not
useful for biometric matching as biometric data are noisy.

The notion of probabilistic hash functions was developed in [1, 2]. In this setting,
the computation of hashes is randomized and thus no two independently generated
hashes of the same plaintext look same.However, given the plaintext and a hash, it can
be checked efficiently if the hash corresponds to the plaintext. However, probabilistic
hashes suffer from the drawback that for verification of equality the plaintext has to be
provided in the clear, which deterministic hashes do not require. Probabilistic hashes
do not allow checkingwhether the plaintexts are equal, given two distinct hash values.
This drawback can preclude use of probabilistic hashes in certain scenarios where
it is desirable to hide the plaintext from the verifier as well. For example, consider
a scenario where password equality is to be checked by a server. If the server uses
deterministic hashes, then only the hash of the password could be transmitted to
the server. However, with probabilistic hashes, the actual password has to be sent to
the server for verification. With relational hashes, we allow verification given two
distinct hashes of the passwords, as shown in Fig. 1.
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Cryptography and Financial Industry

Takenobu Seito

Abstract Cryptographic algorithms are widely used for the purpose of ensuring
security of data used in financial transactions (e.g., ATM transactions, the online
banking). RSA has been one of the most widely used cryptographic algorithms.
Currently, the migration from RSA to Elliptic Curve Cryptography is an impor-
tant agenda in many sectors including the financial industry. Comparing with RSA,
Elliptic Curve Cryptography has the following two advantages: (1) It can provide
the same security level by smaller key sizes, (2) The probability of the occurrence of
security flaws by operational issues is much lower. In this paper, we will introduce a
brief overview of the recent situation of RSA and explain the usage of Elliptic Curve
Cryptography in the financial industry. Also, we will show the recent study on the
security evaluation of Elliptic Curve Cryptography.

Keywords Financial industry · Public-key cryptography · RSA · Elliptic curve
cryptography

1 Introduction

Background. In the financial industry, cryptographic algorithms are widely used
as fundamental techniques in order to ensure security of financial transaction data.
For example, the algorithms are used to ensure confidentiality as well as integrity
of important data (e.g., a personal identification number, or a password) and authen-
ticity of smart cards (e.g., bank cards, debit cards or credit cards) in ATM transac-
tions. In the retail financial service through the Internet such as the online banking,
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many financial institutions adopt the cryptographic protocol called Secure Socket
Layer/Transport Layer Security1 (SSL/TLS for short) [4] in order to ensure confiden-
tiality and integrity of their transmission data between the financial institutions and
end users. There are two major classes of the cryptographic algorithms, Symmetric-
Key Cryptography and Public-Key Cryptography. In Symmetric-Key Cryptography,
a cryptographic key for the encryption is identical to that for the decryption. The
key is shared securely among users. On the other hand, in Public-Key Cryptogra-
phy, a cryptographic key for the encryption is different from that for the decryption.
The encryption key is called a public-key because it can be widely distributed for
unspecified users. The decryption key is kept secret by its owner as secret-key.

In order to design these algorithms, mathematics is fundamentally used. Espe-
cially, Public-Key Cryptography makes use of it more fundamentally than Secret-
Key Cryptography does. For instance, RSA [19], one of the most famous algorithms
of Public-Key Cryptography, is constructed based on Euler’s theorem.Moreover, the
security of RSA depends on the hardness of a large integer factoring problem which
is evaluated using the recent study of the number theory. On the other hand, the
security of Symmetric-Key Cryptography is not based on the mathematically hard
problems. From the above fact, it can be considered that Public-Key Cryptography
relates more closely with mathematics than Symmetric-Key Cryptography. Thus, we
will focus on Public-Key Cryptography in this paper.

Current Issues of RSA. RSA (named after Rivest, Shamir and Adleman) is the most
popular algorithms for Public-Key Cryptography according to major international
standards and guidelines in the financial industry. RSA, however, has the following
two issues. The first is that its key size is relatively large. Therefore, many researchers
point out that itwill be difficult to implementRSA in cryptographic hardwaremodules
with a limited computational power. The second is that RSA has the vulnerability of
generating weak keys which cause the security flaws.

Elliptic Curve Cryptography: Alternative to RSA. Elliptic Curve Cryptography
(ECC for short), which is another type of Public-Key Cryptography, has attracted
much attention as an alternative Public-Key Cryptography to RSA. Comparing with
RSA, ECC has the following two advantages: (1) It can provide the same security
level by smaller key sizes (about 1/10), (2) The probability of generating weak keys
is much lower. The migration from RSA to ECC has been an important topic in
many sectors including the financial industry. In fact, ECC is specified in several
international standards (e.g., ISO and IEC) and guidelines (e.g., EMV specification)
regarding security techniques in the financial industry. ECC is also specified in
SSL/TLS as one of utilizable cryptographic algorithms. Therefore, ECCwill become
a mainstream of Public-Key Cryptography in the future.

In this paper, we will introduce a brief overview of the recent situation around
RSA and explain the usage of ECC in the financial industry. After that, we will show
the recent study on the security evaluation of ECC.

1It is specified by International Engineering Task Force (IETF) which develops and maintains
international standards regarding information techniques used on the Internet.
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Table 1 Role of keys for achieving confidentiality and integrity

Kind of security functions Role of keys

Public-key Secret-key

Confidentiality Encrypt a message Decrypt a ciphertext

Integrity (Authenticity) Verify the validity of a
signature

Generate a signature of a
message

2 Recent Situation Around RSA

2.1 Public-Key Cryptography

Public-Key Cryptography can realize both confidentiality and integrity (authenticity)
by using two different keys: the public-key and the secret-key (see Table1). To
guarantee confidentiality, the public-key is used for encrypting amessage (plaintext),
and the secret-key is used for decrypting a ciphertext to obtain the message. On the
other hand, to guarantee integrity, the secret-key is used for generating a digital
signature of a message, and the public-key is used for verifying the validity of the
signature.

The most basic security requirement of Public-Key Cryptography is that it is dif-
ficult to compute the secret-key from the corresponding public-key. This difficulty is
generally based on the assumption of mathematically hard problems that are infea-
sible to solve such as the integer factoring problem, the discrete logarithm problem,
and the elliptic curve discrete logarithm problem.

2.2 RSA and Its Issues

Wedescribe the RSA encryption algorithmwhich consists of key generation, encryp-
tion, and decryption phases.

1. Key Generation. Each user generates two large primes P and Q. Then, the user
computes a composite integer N = P × Q. Also, the user selects two natural
numbers e and d which satisfy the following two equations:

gcd(e, (P − 1) × (Q − 1)) = 1,

e × d ≡ 1 mod (ϕ(N )),

where ϕ(N ) is the Carmichael function. The user sets (P , Q, d) and (N , e) as the
secret-key and the public-key, respectively.

2. Encryption. For the message M , a message sender computes the ciphertext C =
Me mod N by using the public-key and sends it to a message receiver.
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3. Decryption. After receiving the ciphertext C , the receiver decrypts the message
M = Cd mod N by using the secret-key.

The security of RSA is based on the difficulty of the integer factoring problem
(IFP for short) which is defined as follow.

Definition 1 (IFP) Given a large composite integer N , find prime factors of N .

Roughly speaking, the secret-key of RSA is a pair of two primes P and Q, and the
public-key is the composite integer N = P × Q. It is easy to compute the public-
key N from the secret-key P and Q. Conversely, it is hard to compute the secret-key
P and Q from the public-key N based on the assumption of IFP. Furthermore, the
hardness of IFP is proportional to the size of the composite integer N . So far, no
algorithms has been proposed to solve RSA efficiently.

Currently, it is pointed out that RSA has two practical issues: a large key size and
a weak keys.

Large key size. The first issue is the restriction of the hardware implementation by
increasing the key size of RSA in the future. In general, the security level declines
gradually due to the development of new attack algorithms and the improvement of
the cost performance of computers. To prevent the security level from decreasing, it
is necessary to lengthen the key size. So far, the key size of RSA has been expanded
from 768-bits to 2,048-bits periodically. A current mainstream of its key size is
2,048-bits. National Institute for Standards and Technology (NIST) recommends the
migration from 2,048-bit key size to 3,072-bit key size up to 2030 [17].

It will be more difficult to use RSA with longer keys in hardware devices such
as smart cards and embedded devices in the future. Especially, it is pointed out that
RSA with 4,096-bits is infeasible to be implemented in currently used smart cards.
Since the smart cards are widely used in the financial industry, it will become a very
important issue. Therefore, there is a need for cryptographic algorithms which can
provide a same security level as RSA by smaller key sizes.

Weak keys. It is well known that the vulnerability of weak keys exists due to the
inappropriate implementation. For instance, if two different users have the same
prime (at least one) as the secret-key, it is easy to compute both users’ secret-keys
from the corresponding public-keys by the following attack algorithm (Table2).

Obviously, the secret-key can be computed in polynomial time. Thus, the impact
on the security of RSA is significant. Since the number of primes which can be

Table 2 Attack algorithm by using weak keys

Input: Two public-keys N1 = P1 × Q and N2 = P2 × Q where P1, P2, and Q are primes
Output: Two secret-keys (P1, Q) and (P2, Q)
Step 1. Compute Q = gcd(N1, N2)

Step 2. Compute P1 = N1/Q and P2 = N2/Q
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Table 3 Typical concrete algorithms of ECC

Security functionality Typical example

Confidentiality Elliptic Curve LeGamal Encryption (ECElGamal)

Integrity (authenticity) Elliptic Curve Digital Signature Algorithm (ECDSA)

Key Agreement Elliptic Curve Diffie–Hellman Key Agreement (ECDH)
Elliptic Curve Menezes–Qu–Vanstone Key Agreement (ECMQV)

used as the secret-key is usually large,2 the probability which the same prime is
selected by the different two users is negligible. However, it has been pointed out
that the distribution of secret-keys is biased if the implementation of the pseudo-
random number generator is inappropriate. In fact, some researchers pointed out that
there exists vulnerable keys which are used over the Internet [7, 13]. Even if two
uses select secret-key as (P1, Q) and (P2, Q) where P1, P2 and Q are large primes
sufficing P1 �= P2, the corresponding public-keys N1 = P1 × Q and N2 = P2 × Q
are different integers. Therefore, suchweak keys are difficult to be detected by system
administrators. In order to detect the weak keys, it is needed to check all pairs of
public-keys by using the Euclidean algorithm.

3 ECC: Alternative Public-Key Cryptography to RSA

3.1 Overview

ECC was introduced by Koblitz and Miller independently of one another [11, 15].
The security of ECC is based on the hardness of the elliptic curve discrete logarithm
problem (ECDLP for short).An elliptic curve is a special type of a cubic equation over
finite fields. As finite fields, prime and binary fields are often adopted to construct
algorithms. It is well known that the point addition can be defined on the elliptic
curve, and this property is applied for designs and security evaluations of ECC.
There are some concrete algorithms in ECC. Here we summarize typical concrete
algorithms of ECC categorized by the security functionality in Table3.

We describe the algorithm of ECElGamal as a typical example of ECC. Before
generating each user’s key, it is necessary to select a common parameter which is
shared by all users. This parameter determines the type of an elliptic curve and it is
closely related to the security of ECC. It is a parameter unique to ECC and such a
parameter is not required in RSA. The common parameter is usually generated by a
trusted authority. The algorithm of ECElGamal consists of the following phases.

2For example, in RSAwith 2,048-bits key, the number of such primes is about 21,015 from the prime
number theorem.
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1. CommonParameterGeneration. A trusted authority selects the following para-
meters: (i) the type of an elliptic curve (i.e., the type of a finite field and coefficients
of the curve), and (ii) the pointG on the elliptic curve. Then, the trusted authority
publishes a set of these parameters as the common parameter.

2. Key Generation. Each user selects a natural number s. After that, the user com-
putes a point T = s × G by using the common parameter. The secret-key is s and
the public-key is T.

3. Encryption. For the message M, the sender selects a random number r and
computes C1 = r × G, and C2 = M + (r × T) by using the public-key and the
common parameter. After that, the sender constructs a ciphertext C = (C1, C2)
and sends it to the receiver.

4. Decryption. After receiving the ciphertext C = (C1, C2), the receiver decrypts
the message M = C2 − (s × C1) by using the secret-key.

The security of ECC is based on the difficulty of ECDLP which is defined as
follow.

Definition 2 (ECDLP) Given an elliptic curve over a finite field (the prime field or
the binary field) and two points G and T, find a natural number s with T = s × G.

In ECC, it is easy to compute the public-key T = s × G from the secret-key s and
the common parameterG. Conversely, it is hard to compute the secret-key s from the
public-key T and the common parameterG. The hardness of ECDLP is proportional
to the size of the secret-key s.

3.2 Comparison Between ECC and RSA

Comparing with RSA, ECC has the following practical advantages.

1. Smaller key sizes. ECC can provide the same security level by smaller key sizes
(about 1/10). The reason for this advantage is that ECDLP is harder to solve than
IFP. Currently, the most efficient algorithm solves ECDLP in exponential time.
On the other hand, the efficient algorithm for IFP solves in sub-exponential time.
Here, we show a comparison of key sizes which provide the same security levels
in Table4. This was estimated by comparing the current hardness of ECDLP
and IFP on the basis of the recent computational power of computers and the
improvement of attack algorithms. This advantage makes ECC more suitable for
the implementation to smart cards and embedded devices.

2. Advantage of operational aspect. The mechanism of the implementation to the
key generation is different from that of RSA. In ECC, each user randomly selects
the natural number s as the secret-key. It is well known that the number of natural
numbers is much larger than that of primes. Therefore, the probability of selecting
the same secret-key among different users is much lower than that of RSA. In
addition, if different users select the same natural number as secret-keys, the
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Table 4 Comparison of key sizes between ECC and RSA (NIST [17])

Key sizes of ECC (bits) Key sizes of RSA (bits)

160–223 1,024

224–255 2,048

256–383 3,072

384–511 7,680

512–521 15,360

corresponding public-keys are the same value. Thus, it is easy to notice such an
event by comparing the existing public-keys.

These are why ECC has been paid much attention to as an alternative Public-Key
Cryptography to RSA.

3.3 Usage of ECC in the Financial Industry

SSL/TLS Standard. In the online banking, SSL/TLS is widely used as the crypto-
graphic protocol. ECC is standardized in the latest version of SSL/TLS (TLS1.2) [4]
as the utilizable cryptographic algorithm. More precisely, SSL/TLS consists of the
following phases.

• Phase 1. Authentication of the server using Public-Key Cryptography.
• Phase 2. Key Agreement for Symmetric-Key Cryptography.
• Phase 3. Secure communication using Symmetric-Key Cryptography.

ECDSA and ECDH can be used in the phases 1 and 2, respectively.

EMV Specification. EMV specification3 is an international standard for debit/credit
cards payment systems using smart cards. This specification is managed by EMVCo
which is a consortium of some international payment service corporations (American
Express, Discover, JCB, MasterCard, UnionPay, and VISA). In EMV specification,
RSA is now used for authenticity of smart cards (e.g., bank cards, debit cards, and
credit card) in the transaction. In 2009, EMVCo indicated the roadmap for the migra-
tion of RSA to ECC in this specification to enhance the security and the practicality
of the transaction environment which is compliant with EMV specification [5].

ISO Standards. ECC is now specified in many ISO standards regarding security
techniques (Table5). Referring to these, the financial institutions seem to adopt ECC
in their services.

3Japanese Bankers Association (JBA) IC Cash Card Specifications are compliant with the EMV
specification.
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Table 5 ISO standards specifying ECC (ISO [9], ISO/IEC [8, 10])

International standard Specified ECC algorithms

ISO 11568
Key Management (retail)

Authenticity: RSA, ECDSA
Key Agreement: ECDH, ECMQV

ISO/IEC 11770
Key Management

Key Agreement: ECDH

ISO/IEC 14888
Digital Signature with Appendix

Authenticity: RSA, ECDSA

In addition, U.S financial standards also adopt ECC as secure Public-Key Cryp-
tography algorithms. For instance, ANSI X9.62 specifies ECC as the algorithm for
Public-Key Cryptography for the financial services [2].

3.4 Security Evaluation of ECC

The security of ECC is based on the hardness of ECDLP. However, if the selected
common parameter satisfies specific conditions, then ECDLP can be efficiently
solved by known attack algorithms. For example, MOV reduction [14], FR reduction
[6], SSSA algorithm [20, 21, 23], and Index calculus [1, 12] are well known as major
attack algorithms. Therefore, it is important to select the common parameter in order
to defend against these algorithms. The trusted third party such as NIST and SECG
(The Standards for Efficient Cryptography Group) publish recommended common
parameters for using ECC securely [3, 17].

The key size is also an important factor for the security of ECC, because the brute
force can be applied. So far, Pollard ρ algorithm [18] and Baby-Step Giant-Step
algorithm [22] have been proposed. Thus it is needed to select the key size in such
way to prevent from these algorithms. At present, NIST recommends 224-255-bit or
higher key size for use up to 2030 [17].

4 Conclusion

Cryptographic algorithms are crucial techniques to ensure the security of various
financial services such as the online banking and smart card transactions. So far, RSA
has been widely used as Public-Key Cryptography in the financial sector. Recently,
ECC has been paid much attention as an alternative Public-Key Cryptography to
RSA. Comparing with RSA, ECC can provide the same security level by smaller
key sizes and the probability of causing the vulnerability of weak keys is much
lower. Thus, the migration from RSA to ECC is the important agenda in the financial
industry. Major international standards regarding the cryptographic algorithms and
protocols specify ECC as a new algorithm. It is expected that the security of ECC
would be discussed more carefully in the future.
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Relaxation of an Energy Model
for the Triangle-to-Centred
Rectangle Transformation

Pierluigi Cesana

Abstract We model and analyze the two-dimensional triangle-to-centred rectangle
transformation of elastic crystals. By considering a Ginzburg–Landau type model,
we compute the relaxation of the total energy both in the case of compressible and
incompressible materials and construct some possible explicit microstructures as the
approximate solutions of a non-convex minimization problem.

Keywords Phase-transformations · Microstructure · Variational calculus

1 Introduction

The austenite-to-martensite phase transformation is a first-order solid-to-solid tran-
sition characterized by an abrupt change of shape of the crystalline lattice driven by
temperature or applied stresses. First observed in steel, it has then been discovered
in ceramics, biological systems and, most important for technological applications,
shape-memory alloys (SMAs) [4]. The transition from the high-temperature phase
(austenite) to the low-temperature state (martensite) is usually activated by a decrease
of the temperature belowacritical threshold.The low-symmetry anddisorderedphase
usually appears in the form of a mixture of symmetry-related crystal variants, called
martensitic microstructure. This system is characterized by the presence of inter-
faces separating plates composed of various variants, possibly coexisting at different
scales, which may result in complicated patterns rich in misalignments as well as
vacancies of the crystal lattice usually modelled as topological defects [6, 14].

Themathematicalmodelling of the austenite-to-martensite phase-transition via an
energy-minimization approach traces back to the work of Ericksen, Ball and James.
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In their paper Fine phase mixtures as minimizers of energy, Arch. Rat. Mech. Anal.,
100 (1987), Ball and James explain themechanism of the formation ofmicrostructure
in the general framework of minimization problems for non-convex free energies in
non-linear elasticity, and of differential inclusion problems for non-linear partial
differential equations with algebraic constraints associated to the crystallographic
properties of the transformation. This approach has been employed by a number
of authors giving rise to an extensive platform of both analytical and numerical
work related to the austenite-to-martensite transformation (see [4, 13] and references
quoted therein).

In this contribution, we analyze an energy model of the triangle-to-centred rec-
tangle (briefly, TR) transformation. This is the two-dimensional version of the three-
dimensional hexagonal-to-orthorhombic transformation observed in materials such
as the MgCd ordered alloys [6, 17]. The TR transformation has been the subject
of investigation in relation to the modelling of crystal defects (disclinations) and of
their interaction with microstructure [6, 10, 12, 14, 17]. Focusing on purely elastic
deformations, in what follows we characterize the low-energy states and construct
possible microstructures associated to the full relaxation of a continuum model of
the TR transformation.

2 Microstructure Modelling

Wefollow the approachof [6, 17] (see also [10, 12]) andmodel the triangle-to-centred
rectangle (TR) transformation in the framework of the Ginzburg–Landau theory of
phase transitions by considering the mechanical strain as the order parameter of the
system. Formation of microstructure results as the approximate minimizer of the
non-convex model.

2.1 Continuum Model

We consider Ω an open, bounded subset of R2 with Lipschitz boundary which we
address as the reference configuration occupied by the elastic crystal. Based on the
assumption that the microstructure is essentially homogeneous perpendicular to the
plane of the paper, we assume u : Ω → R2 to be the two-dimensional displacement
vector. In the framework of linearized elasticity, the mechanical energy density of
the system depends only on the symmetric part of the 2 × 2 displacement gradient
F = ∇u which we denote with

E := E(F) = F + FT

2
.
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We introduce the multiwell energy density

Ψ (F) := Ψlin(E) = 2μ min
i=1,2,3

[|E − Ei |2
] + κ(tr E)2 (1)

by means of the auxiliary function Ψlin defined on R2×2
sym , the space of symmetric

matrices. Here μ and κ are the classical (positive) Lamé constants of linearized
elasticity. Slightly different expressions forΨlin are also possible and available in the
literature (see [6, 17]). The following two properties of Ψlin are crucial:

Ψlin(E)

{= 0 if E ∈ T
> 0 otherwise

(2)

whereT = {E1, E2, E3}. Conditions (2) imply that the free energy density has three
minimumpoints, corresponding to the threemartensitic variants, with strainmatrices

E1 = γ

(
1 0
0 −1

)
, E2 = γ

(
− 1

2

√
3
2√

3
2

1
2

)
, E3 = γ

(
− 1

2 −
√
3
2

−
√
3
2

1
2

)
. (3)

γ > 0 is a constant material parameter.
By integrating Ψ over Ω ⊂ R2, we obtain the total elastic energy of the crystal

I (u) :=
∫

Ω

Ψ
(∇u

)
dx ≡

∫

Ω

Ψlin

(∇u + ∇T u

2

)
dx . (4)

Correctly, the total energy depends only on the symmetrized displacement gradient.
According to a variational principle, we consider as the equilibrium configurations
of our elastic crystal the absolute minimizer of I in the presence of applied boundary
conditions. To be more precise, we consider minimization problems for functionals
defined in Sobolev spaces by applying the direct method of the calculus of variations.
Here and in what follows the notation is standard [7, 8].

2.2 Relaxation

The direct method of the calculus of variations is a technique that provides a suffi-
cient condition for the existence of solutions to minimum problems. Fix a function
u ∈ H 1(Ω, R2). We investigate whether the boundary value problem for the energy
I introduced in (4)

min
u−u∈H 1

o (Ω,R2)
I (u) (5)

admits a solution. The two main ingredients for the direct method to apply are
boundedness of the minimizing sequences (so that one can extract a sub-sequence
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converging in the weak topology) and lower semi-continuity of the functional (with
respect to the weak convergence). Let u j be a minimizing sequence for I , that is,

lim
j→∞ I (u j ) = inf

u−u∈H 1
o (Ω,R2)

I (u). (6)

FromacombinationofPoincaré andKorn’s inequalities [7] there follows that themin-
imizing sequence {u j } is bounded in H 1(Ω, R2). However, the direct method fails
here because of the non-convexity and, more essentially, non-lower semi-continuity
of I . Although this is only a sufficient condition, it is actually easy to construct
boundary conditions for which (5) does not have a solution.

Furthermore, if we take u ≡ 0, the following holds. Let u j be a minimizing
sequence for I . Then ∇u j develops finer and finer oscillations as j → ∞. This is
what we call a microstructure. The asymptotic behaviour of theminimizing sequence
is captured by the lower semi-continuous envelope of I also called the relaxation of
I , defined as

I (u) := inf
{
lim inf
k→+∞ I (uk), uk ⇀ u in H 1(Ω, R2), uk − u ∈ H 1

o (Ω, R2)
}
.

The relaxation is characterized by the fundamental property

inf
u−u∈H 1

o (Ω,R2)
I (u) = min

u−u∈H 1
o (Ω,R2)

I (u) (7)

and that the minimizing sequence defined in (6) converges (possibly up to a sub-
sequence) to a minimizer of I . Explicit knowledge of the relaxation I turns out
to be a powerful tool to achieve a qualitative as well as quantitative insight on the
microstructure and its influence on the macroscale properties of the system, what is
often called a mesoscale or effective modelling. In the current situation, by taking
advantage of the geometric structure of the function Ψ it turns out to be possible to
compute the relaxation of I exactly. This result follows essentially from ideas and
constructions already contained in [3, 5, 9, 11, 16].

To begin, we introduce some terminology.

Definition 1 (Quasiconvexity)We recall the fundamental definition of quasiconvex-
ity [1]. A continuous function f : R2×2 → R is said to be quasiconvex if and only
if ∀Z ∈ R2×2, ω open bounded subset of R2, w ∈ C1

o(ω, R2) we have

f (Z) ≤ |ω|−1
∫

ω

f (Z + ∇w(y))dy.

Definition 2 (Rank-1 convexity) A function f : R2×2 �→ R is rank-1 convex [8] if
f (sZ1 + (1 − s)Z2) ≤ s f (Z1) + (1 − s) f (Z2) for every s ∈ [0, 1], Z1, Z2 ∈ R2×2

with
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rank(Z1 − Z2) ≤ 1. (8)

By removing the constraint (8) we encounter the usual definition of convexity.

Definition 3 (Envelopes) Let us now consider a generic function 0 ≤ g : R2×2 →
R. We define the convex envelope of g as gco(Z) := sup{h(Z) : h ≤ g, h convex}.
In the same way we define the quasi- and rank-1 convex envelopes, by requiring that
the function h satisfies the corresponding requirement of partial convexity.

If we restrict our attention to the case of real-valued functions, the following chain
of inequalities follows by definition (see [8], p. 265)

gco ≤ gqc ≤ grc. (9)

The following characterization of the rank-1 convex envelope (see [8, Theorem 6.10]
and see [8, Sect. 6.4]) has a relevant role in what follows

grc(Z) = inf
{ K∑

i

λi g(Zi ) : 0 ≤ λi ≤ 1,
K∑

i

λi = 1,
K∑

i

λi Zi = Z , {λi , Zi } satisfy (HK )
}
. (10)

Here Zi ∈ R2×2 for all i . Condition (HK ) (for brevity here not reported, see
[8, Sect. 5.2.5]) consists in a series of algebraic constraints ensuring that the matrix
Z in (10) is obtained by a kinematically compatible combination of matrices Zi .
As an example, in the case K = 2, the pair (λ1, Z1) and (λ2, Z2) satisfy (H2) if
λ1, λ2 ∈ [0, 1] with λ1 + λ2 = 1 and Z1, Z2 verify

rank(Z1 − Z2) = 1,

that is, Hadamard’s jump condition [2]. As a relevant case for the TR transformation,
for K = 3 we have that (λi , Zi ) satisfy condition (H3) if λi ∈ [0, 1], ∑3

i λi = 1 and
if, up to a permutation,

rank(Z2 − Z3) ≤ 1 (11)

rank
(
Z1 − λ2Z2 + λ3Z3

λ2 + λ3

)
≤ 1. (12)

Our relaxation result of Theorem1 is based on the computation of a compatible
combination of matrices that is optimal in the sense that it realizes the minimum in
Eq. (10). This procedure is frequently referred to as lamination construction (see [15]
for the definition of laminates).

Remark Note that for the integral functional J : H 1
o (Ω, R2) → R defined as

J := ∫
Ω

f (∇u)dx with f (F) quasiconvex and c|F |2 − c̃ ≤ f (F) ≤ C |F |2 (with
0 < c < C , c̃ > 0) there follows the lower semi-continuity of J with respect to the
weak topology of H 1(Ω, R2). The existence of a solution to minimum problem for
J over H 1

o (Ω, R2) then follows by the direct method.
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We are now in a position to state our main relaxation results for the model of com-
pressible (Theorem1) and incompressible materials (Theorem2).

Theorem 1 (Compressiblematerials) Let I : H 1
o (Ω, R2) → R as defined in (1) and

(4). Then

I (u) =
∫

Ω

Ψ
(∇u

)
dx

where Ψ ≡ Ψ co the convex envelope of Ψ .

Sketch of the proof. From the theory of Acerbi-Fusco [1] there follows thatΨ ≡ Ψ qc.
The proof of Theorem1 then consists in showing that Ψ qc ≡ Ψ co. We do so by
matching an upper bound with a lower bound to Ψ qc.

Lower bound. Note that Ψ co ≤ Ψ qc because (real-valued) convex functions are qua-
siconvex (9).

Upper bound. Consider the particular geometric structure of Ψlin . Introducing the
distance function, we have

Ψ (F) = Ψlin(E) = 2μ min
i=1,2,3

|E − Ei |2 + κ(tr E)2 = 2μ dist2
(
E,T

) + κ(tr E)2 (13)

where E = F+FT

2 . By recalling that Ψ qc ≤ Ψ rc (9), it is then enough to show that

Ψ rc(F) ≤ 2μ dist2
(
E, coT

) + κ(tr E)2 ≤ Ψ co(F) (14)

where coT denotes the convex envelope of the setT . By definition of convex enve-
lope, the properties of the distance function and since T ⊆ coT , the last inequality
in (14) follows immediately. We are left to show the first inequality in (14). We begin
with considering the case F ∈ coT . This implies that the both the trace and the skew
part of F are zero, in other words F = E and trE = 0.We perform a lamination con-
struction thus obtaining coT as the average of kinematically compatible matrices in
the sense of (HK ) whose symmetric parts belong to the set T . Let us write

E = γ

(
e2 e3
e3 −e2

)
(15)

with e2, e3 ∈ R. The assumption E ∈ coT can be implemented by the parameteri-
zation

e2 = 3λ1 − 1

2
, e3 = α(1 − λ1)

with 0 ≤ λ1 ≤ 1 and −
√
3
2 ≤ α ≤

√
3
2 so that both λ1 and α can be easily expressed

in terms of e2, e3. We can then take
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• λ2 = λ(1 − λ1), λ3 = (1 − λ)(1 − λ1)

• Z1 = E1 + W (φ1), Z2 = E2 + W (φ2) + W (θ2), Z3 = E3 + W (φ2) + W (θ3)
(16)

where

• φ1 = ±(1 − λ1)

√
9
4 + α2, φ2 = ∓λ1

√
9
4 + α2

• θ2 = ±√
3(1 − λ), θ3 = ∓√

3λ
• λ = α√

3
+ 1

2

(17)

and

W (φ) = γ

(
0 +φ

−φ 0

)
. (18)

Choice of parameters (16–17) is determined by a series of algebraic constraints
represented by condition (HK ). More precisely, the role of the off-diagonal matrix
W (φ) is to guarantee that the lamination construction is kinematically compatible
while leaving the symmetric part of the matrix Zi equal to Ei for i = 1, 2, 3. Thus,

it is immediate to see that (λi , Zi )
3
i satisfy (HK ) with K = 3 (see Eqs. 11–12) and

that the family (λi , Zi )
3
i is optimal in the sense that

Ψ rc(F) ≤
3∑

i

λiΨ (Zi ) =
3∑

i

λi

[
2μ min

i=1,2,3

∣∣∣
Zi + ZT

i
2

− Ei
∣∣∣
2] = 0 = 2μ dist2(F, coT ). (19)

The first inequality in (19) follows from the characterization of Ψ rc (see Eq. (10))
while the chain of equalities holds because the symmetric part of Zi with i = 1, 2, 3
belongs to T . The general proof with any F ∈ R2×2 (possibly with non-zero trace
or non-zero skew part) follows easily. �
The classical way to model incompressible materials in linearized elasticity is to
consider the limit ratio κ/μ = +∞. This is equivalent to restricting the admissible
deformation gradients to the class of tracelessmatrices, and hence to define an energy
functional in the presence of a linear constraint on the gradient of the displacement.
This yields the following results.

Theorem 2 (Incompressible materials) Let I : H 1
o (Ω, R2) → R as in Theorem1.

Define the functional I∞ : H 1
o (Ω, R2) → R ∪ {+∞} as

I∞(u) =
{
I (u) i f div u = 0
+∞ otherwise.

(20)

Then

I∞(u) =
{∫

Ω
Ψ

(∇u
)
dx i f div u = 0

+∞ otherwise
(21)
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where Ψ ≡ coΨ is the convex envelope of Ψ .

Remark Proof of Theorem2 can be easily obtained by modifying the Proof of
[5, Theorem2] accordingly.

Remark Although in Theorems1 and 2 we are focussing on functionals defined over
the subspace of zero boundary displacement, the relaxation result still holds in the
presence of more general boundary conditions as in the situation of [5].

3 Discussion and Summary

The main outcome of Theorem1 (and, similarly, Theorem2) consists in providing an
explicit formula for the relaxed energy I . Although it is known that the relaxed energy
densityΨ coincides with the quasiconvex envelope ofΨ [1, 8], this information is in
general of little use to fully characterize quantitatively the relaxed functional. Trying
to compute the relaxed density by applying the definition of quasiconvex envelope
turns out to be a prohibitive task. In practical cases, as the scenario analyzed in this
paper, the possibility of computing quasiconvex envelopes reduces in matching an
upper bound (based on the notion of rank-1 convexity) with a lower bound (based
on convexity). In the current situation, it is found that the relaxed energy density Ψ

is a convex function and coincides with the measure of the distance from the set of
zero-energy mechanical strains, represented by the convex envelope of the set T .
The computation of coT is a trivial algebraic computation and in Fig. 1 we represent
a parameterization of coT in the space (e2, e3).

As a first result, we have all the low-energy states of the system, and, therefore
all the possible microstructures, occur as a mixture of kinematically compatible
combinations of the matrices E1, E2 and E3 at the level of simple laminates or,
at most, laminates within laminates (see our construction of the upper bound in

Fig. 1 Representation of the
set T in the space of
coordinates e2, e3. With
some abuse of notation we
represent the three matrices
E1, E2 and E3 in the same
image. The convex envelope
of T is represented by the
closed triangle (green region
in the online version of this
proceeding)
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Fig. 2 Right: schematic
representation of a possible
microstructure associated to
the TR transformation

the proof Theorem1). As by-product of our relaxation result we gain some insight
on the nature of the minimizing sequences for I . In Fig. 2 we sketch one element
for the minimizing sequence {uk} ⊂ H 1

o (Ω, R2) for the problem infH 1
o (Ω,R2) I (u)

corresponding to a given k. As the gradient of uk oscillates, the symmetric part
(∇uk + ∇T uk)/2 takes value in T . Note that the volume fraction of each of the
three martensitic variants involved in this construction corresponds to 1

3 . Therefore,
we have

inf
H 1
o (Ω,R2)

I (u) = min
H 1
o (Ω,R2)

I (u) = I (0) = 0

and
uk ⇀ 0 in H 1(Ω, R2).

The construction for uk involves a laminate-within-laminate construction where
bands occupied by the variants E1 are matched with a further mixture composed
of the two remaining variants E2 and E3 occurring at a smaller scale. The boundary
layer occurring between at the interface separating the variant 1 with the mixture
E2/E3 is schematically represented in Fig. 2 by a thicker line.
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Capillary Surfaces Modeling Liquid Drops
on Wetting Phenomena

Rafael López

Abstract The aim of the present work is to relate the shape of a liquid drop in
some contexts on capillarity and wetting with the surfaces that are mathematical
models of these droplets. When a liquid drop is deposited on a support substrate,
we are interested whether the geometry of the support imposes restrictions to the
possible configurations of the droplet. Recently there is a progress in experiments
done for liquid drops deposited on (or between) spherical rigid bodies, an assembly
of cylinders and on a cone that allows to consider new theoretical problems in the
field of capillary surfaces. We exploit the symmetries of these supports to apply
the maximum principle of elliptic equations concluding that in some cases the drop
inherits part of the symmetries of the support.

Keywords Capillarity ·Wetting ·Mean curvature ·Delaunay surfaces ·Free bound-
ary problem · Tangency principle

1 Introduction

1.1 A Brief Approach to Capillarity and Wetting

Following [8], capillarity studies the interfaces between two immiscible phases and
wetting refers how a liquid deposited on a solid (or liquid) substrate spreads out. Cap-
illarity and wetting appear in a variety of industrial and engineering processes (e.g.,
automobile manufacturing, textile production, ink-jet printing, or colloid-polymer
mixtures) where it is of interest to understand the physical and chemical behavior
of a fluid. Many experiments consist of modifying the characteristics of the liquid
and the solid until to attain the desirable wetting/spreading properties [5, 8]. A sim-
ple, but illustrative example, is when a given amount of an incompressible liquid
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Fig. 1 Left an interface is the boundary of two homogenous systems with different physical and
chemical properties. Right a liquid droplet deposited on a substrate under ideal physical conditions

is deposited on a solid substrate. Under idealized conditions (non-roughness, con-
stant pressure and temperature, purity or low viscosity), the only forces acting on
the liquid molecules are of order of a few nanometers and are determined by the van
der Waals and electrostatic interactions. These forces are balanced except for the
molecules on the liquid–air interface S of the drop which, to be in contact with the
air and solid phases, are mainly attracted inward and to the sides so that the attraction
energy at the interface is less than in the interior. See Fig. 1, left. Under the above
physical assumptions, the total energy E of the system is E = ES + E A + EG where
ES is the surface tension, E A is a wetting energy, and EG the gravitational energy
(Fig. 1, right). The energy ES is the surface energy to create the interface S and is
proportional to the number of interfacial molecules, that is, the surface area of S. The
energy per area of S is called the surface tension σ . Similarly, E A is the energy by the
adhesion of the droplet on the solid phase which is also proportional to the number of
molecules of the droplet in contact with the solid. Finally, EG represents the weight
of the drop and can be written as an integral

∫
V gz, where V is the volume of the

drop, g is the gravitational constant and z is the height at a point of S with respect to
a reference system. In this physical system, there are three different phases present,
namely, liquid–air, solid–liquid, and solid–air phase, and the three corresponding
surface tensions σ , σSL and σS A, respectively: see Fig. 2, left.

In thermodynamic equilibrium, the interface S is free to change the shape in order
to minimize its total free energy E . Assuming that the volume V of the drop remains
fix (no evaporation), or in other words, if V is a Lagrange multiplier, and according

SA

SL

NS

S

N

Fig. 2 Left the contact angle γ between S and Π and the equilibrium between the three surface
tensions. Right the pendant drop method to measure the surface tension for an axisymmetric droplet



Capillary Surfaces Modeling Liquid Drops on Wetting Phenomena 129

to the principle of virtual work, the system will be in equilibrium if the energy E
attains a critical point in the position of S. Then S satisfies the well-known Laplace
equation

(PL − PA) + (Δd) g z =
(

1

R1
+ 1

R2

)
σ = 2Hσ. (1)

Here PL − PA is the difference between the liquid pressure PL under S and the air
pressure PA just above S,Δd is the difference of densities between the liquid and air
phases and H is the mean curvature of S. The mean curvature H at each point of S
is defined by 2H = 1/R1 + 1/R2, where Ri are the curvature radii. Because we are
assuming ideal conditions, PL − PA is constant, aswell as,Δd, g and σ . In particular,
the mean curvature H is a linear function of z, that is, for each point (x, y, z) ∈ S, we
have H(x, y, z) = λz + μ, where λ = gΔd/(2σ), μ = (PL − PA)/(2σ). Usually
there are two extra boundary conditions. The first one supposes that the liquid–solid
phase is prescribed, that is, the part that the drop wets the solid is confined in a
fixed region so the boundary ∂S of S is a prescribed curve. A second and more
natural scenario is assuming that the droplet can move freely on the substrate Π

(free boundary condition). In this situation, S satisfies the so-called Young equation

cos γ = σS A − σSL

σ
, (2)

where γ is the angle that makes S with the liquid–solid–air contact line ∂S. Because
the three surfaces tensions are constant, the Young equation (2) establishes that
the contact angle γ between the drop and the substrate is constant along ∂S
[11, 16]. Here γ is the angle between the unit normal vectors NS and NΠ of S
and Π , respectively: cos γ = 〈NS, NΠ 〉, where NS points to the liquid drop and NΠ

points outward the drop.
In a specific problem it is necessary for the prediction of the magnitude of the

capillary forces for eliminating or minimizing undesirable events, for example, an
uncontrolled growth of agglomeration of particles or an abrupt change of the flow
behavior of a fluid. According to this, the wetting state of the fluid is determined once
the three surface tensions are known. In general, it is difficult to compute all of them,
although the difference σS A − σSL in (2) is a property of the solid and independent
off the liquid used. Thus the interest focuses to compute the surface tension σ which
is obtained from the Laplace equation (1) once calculated H or from the Young
equation (2) if the contact angle γ is known.

1.2 The Measurement of the Surface Tension

Among the numerous measurement techniques of the surface tension σ , we describe
the sessile and pendant dropmethod [1]. A drop is sitting (or hanging) on a horizontal
plane which takes aside-view photographs of the profile and we use a snapshot to
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determine the shape of S (or the angle γ ) by comparing the actual shape of the drop
with theoretical simulations based on the parameter σ ; see Fig. 2, right. However
in order to use the Young equation (2), it is actually difficult to compute explicitly
the contact angle γ because the liquid is easily contaminated. The other (and more
common) procedure consists to determine the mean curvature H adequating the
profile shape of the drop to a well-controlled geometry and extracting σ from the
Laplace equation (1). The mean curvature H of a surface z = u(x, y) in Euclidean
space R3 satisfies

(1 + u2
y)uxx − 2ux uyuxy + (1 + u2

x )uyy = 2H(1 + u2
x + u2

y)
3/2. (3)

We observe that Eq. (3) is a PDE of order two, which cannot be integrated, even if H
is constant, and only be numerically approximated by analytic methods. Assuming a
small scale (wetting) or that the typical size of the meniscus is much smaller than the
capillary length (capillarity), the surface tension dominates the gravitational force, so
the gravity can be neglected. Thus g = 0 in the Laplace equation (1) and we deduce
that the mean curvature H is constant. As a consequence we can affirm that the
liquid–air interface S of a liquid droplet is modeled by a surface in Euclidean space
where the mean curvature is the same at every point and makes a constant contact
angle with the support substrate. Surfaces with zero mean curvature everywhere
(H = 0) are called minimal surfaces and they appear when the pressures coincide
in both sides of S. Constant mean curvature surfaces are easily obtained when we
dip in and out a closed wire in a container with soapy water. The soap film spanning
by the wire is a minimal surface because there is not pressure difference across it.
However if the wire traps air inside it, or if we blow air on it making a bubble, then
there is an enclosed volume, the pressure difference is nonzero (but constant), and
the surface has nonzero constant mean curvature.

Therefore experimentalists need to simplify Eq. (3) and the usual idea is assuming
symmetric shapes so the discrete computational procedures developed to simulate the
mathematical behavior of these processes can be fast and manageable. In this sense,
it would be useful to reduce this equation into an ODE if, owing to symmetries, the
equation depends only on one coordinate. The most common situation is assuming
axisymmetric solutions of (3), that is, S is a surface of revolution. If u = u(r) is the
distance to the rotation axis, a first integration of (3) is

Hu2 − u√
1 + u′2 = c (4)

for some c ∈ R. From this equation, we can solve some cases: if c = 0, the solution
of (4) is the circle u(r) = √

1 − H 2r2/H and S is a sphere of radius 1/|H |; if u is
a constant function, then the solution is u(r) = 1/(2H) (for 1 + 4Hc = 0) and S
is a cylinder of radius 1/(2|H |); if H = 0, then c = m2 > 0, u(r) = m cosh(r/m)

and S is a catenoid. However for arbitrary c, the solutions of (4) cannot integrate
completely and they can only be represented by elliptic integrals. The profile curves
of the solutions of (4) aremathematically characterized to be the roulettes of the focus
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Fig. 3 Delaunay surfaces. From left to right sphere, cylinder, unduloid, nodoid, and catenoid

of a conic and the surfaces are called Delaunay surfaces [9, 10]. Besides spheres and
cylinders, they are unduloids, nodoids, and catenoids: seeFig. 3.Usually, experiments
utilize symmetric devices to sit or hang a droplet from a circular opening where the
observed interface is assumed to be a surface revolution. In general, pendant drops
aremore utilised because they are easily controllable.Onceweknow that the interface
is rotational, determining the geometry of the drop consists to capture and digitalize
its image, extracting its contour, smoothing the profile, and comparing the shape
with the theoretical Delaunay surfaces (Fig. 4). Finally, a software (for example, a
Runge–Kutta method, a technique based on finite elements or the Surface Evolver)
works to compute the mean curvature H . This measurement method is simple and
it does not require a sophisticated machinery or any special cleanliness of the solid
substrate.

In contrast to the assumption that a droplet hanging for a circular opening is
axisymmetric (independently with or without gravity), and from the theoretical view-
point, the shape of a surface with constant mean curvature (cmc surface in short) in
Euclidean space spanning a circle S

1 is not well known up today and only some
partial results ensure that a compact cmc surface in R

3 spanning S
1 is a planar disk

or a spherical cap. For the state of the art in this topic, see [18]. In the free boundary
problem, it is unknown whether the geometry of the substrate affects to the geome-

Fig. 4 Left description of the typical apparatus of the pendant drop method. Right a pendant drop
is modeled by an axisymmetric surface by adjusting its contour
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try of a cmc surface supported on it, for example, if it inherits its symmetries. First
mathematical results were obtained byWente in [34] assuming embeddedness of the
surface.

2 Capillary Surfaces Supported on Spheres, Cylinders,
Cones, and Wedges

Recently there is a great interest in the study of liquid drops deposited on (or between)
configurations formed by spherical rigid bodies, an assembly of cylinders, cones or
planes because this variety of systems may be found like a crystallization, agglomer-
ation, phase sintering, liquid foams, and emulsions [15, 17, 23, 27, 33]. Moreover,
the improvement of the numerical analysis methods as well as the modeling soft-
ware allows to consider new theoretical problems in capillarity and wetting. When
the size of the liquid drop is very small, the effect of gravity is negligible and no other
force is considered. In such a case, the interface S has the same mean curvature H
everywhere. We need to again model the liquid bridges as Delaunay surfaces where
the geometry associated is relatively simple or at least giving conditions that ensure
that S is rotational. In this section, by a capillary surface we mean a cmc surface S
with free boundary on a substrate Π and S makes a constant contact angle with Π

along its boundary ∂S. Since we are considering bounded droplets, we also suppose
that S is compact. The symmetry of the mentioned supports in this section allows to
get (at least theoretically) explicit examples of pieces of Delaunay surfaces that are
capillary surfaces. Some examples appear in Fig. 5, where the support Π is a sphere,
a circular cylinder and a circular cone and the rotation axis of S coincides with the
one of Π .

In what follows, we show some results on the symmetry of a capillary surface
when the support substrate is a sphere, a right cylinder, a cone, and a wedge. See
[19–22].

Fig. 5 Pieces of Delaunay surfaces that make a constant contact angle with a sphere, a circular
cylinder, and a cone
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2.1 Droplets on a Sphere

Consider a cmc surface S whose boundary lies on a sphere, which we suppose to be
the unit sphere S

2 and denote by B
3 the unit ball enclosed by S

2. Previous results
on capillary surfaces on S

2 included in B
3 were obtained assuming that the contact

angle is constant [12, 29, 30].

Theorem 1 Let S be an embedded cmc surface onS2 whose boundary ∂S is included
in a hemisphereS2+. Suppose S is a capillary surface. Let W be the 3-domain bounded

by S ∪ Ω , where Ω ⊂ S
2+ is the domain bounded by ∂S. If W ⊂ R3 − B3 or S ⊂ B

3,
then S is part of a sphere.

This result extends if we replace the capillary condition by assuming that the
boundary ∂S is a circle. In such a case andwhenW ⊂ R3 − B3,we add the hypothesis
that the mean curvature H satisfies |H | ≥ 1.

2.2 Droplets on a Right Cylinder

By a right cylinder we mean Σ = C × R, where C ⊂ R
2 is a simple planar closed

curve. The cylinder is said to be circular if C is a circle. The cylinder Σ determines
two domains inR3, namely, the inside and the outside, that is,Ω × R andR3\Ω × R,
respectively,whereΩ ⊂ R

2 is the boundeddomain byC . Consider a capillary surface
S onΣ that lies in one side ofΣ . A first question to elucidate is if the boundary ∂S is
a curve nullhomotopic in Σ or if ∂S is homotopic to C . For example, the first setting
could occur if the volume of S is very small, and the second one when a cylindrical
tube is introduced in a container of liquid and the liquid rises up by capillarity. In
the latter one, we ask if S is a graph z = u(x, y) on Ω .

Theorem 2 Let Σ be a right cylinder and let S be an embedded capillary surface
on Σ such that S ⊂ inside(Σ).

1. If ∂S is homotopic to C, then S is a graph on Ω . If Σ is a circular cylinder, then
S is a planar disk or a spherical cap.

2. If ∂S = C1 ∪ C2 and each Ci , (i = 1, 2) is homotopic to C, then S has a symmetry
with respect to a plane orthogonal to the axis.

3. If Σ is a circular cylinder and ∂S is contained in a half cylinder of Σ , then S has
two mutually planes of symmetry and S is a topological disk.

In the item 3, by a half cylinder of Σ we mean one of the two components remains
when we intersect Σ by a plane containing the rotation axis.

In case that S has zeromean curvature,we have a strong result under the hypothesis
that the surface is immersed.

Theorem 3 Let S be capillary minimal surface on Σ such that S ⊂ inside(Σ). If
∂S is a graph on C, then S is a horizontal planar domain.
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2.3 Droplets on a Cone

Consider Ω ⊂ S
2 a simply connected domain of S2 and included in a hemisphere of

S
2. If 
 = ∂Ω , the cone determined by 
 is defined as Σ = {λp : λ > 0, p ∈ 
},

that is, the set of all rays starting from the origin O through all points of 
. If 
 is a
circle, we say thatΣ is a circular cone. The inside of the coneΣ is the corresponding
3-domain {λp : λ > 0, p ∈ Ω}.

We consider a capillary surface S whose boundary lies on Σ and contained in
the inside of Σ . As in the case of a right cylinder, we do not know whether ∂S is
nullhomologous in Σ − {O} or if ∂S is homotopic to 
 in Σ − {O} and S has a
one-to-one central projection on Ω (a radial graph), that is, each ray starting from
the vertex intersects S one point at most. See Fig. 6, left. We obtain

Theorem 4 Let S be an embedded capillary surface supported on a cone Σ and let
us fix N the unit normal vector field of S pointing towards the liquid drop. If H ≤ 0,
then S is a radial graph and the boundary ∂S has only one connected component
which is homologous to 
 in Σ − {O}. In the particular case that the cone is circular,
then S is a planar disk or a spherical cap.

In other words, Theorem 4 says that the non-positivity of H implies that S is a
topological disk and that there are no capillary bridges between the walls of Σ . As a
consequence, and dropping the assumption on the sign of H , we have (Fig. 6, right)

Corollary 1 If S is a capillary surface on a circular cone Σ such that the contact
angle γ satisfies γ ≤ (π − ϕ)/2, being ϕ the amplitude of Σ , then S is a planar disk
or a spherical cap.

In this case, the hypothesis on γ implies H ≤ 0: this is a consequence of comparing
S with spherical caps or planar disks having the same mean curvature and the same
contact angle with Σ .

Fig. 6 Left possible configurations of a liquid drop deposited on a cone. Right spherical caps and
planar disk are examples of capillary surfaces on a circular cone
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Fig. 7 Left capillary surfaces on a wedge. Right a spherical cap meeting orthogonally the walls of
a wedge

2.4 Droplets on a Wedge

If we intersect appropriately, a Delaunay surface by two orthogonal planes Π1 ∪
Π2 to the rotation axis, we obtain a capillary surface contacting Π1 ∪ Π2 with the
same contact angle. It is known by experiments that only some pieces of Delaunay
surfaces are physically realized, that is, only some surfaces are stable in the sense
that the second variation of the energy E is non-negative. Early results of Vogel and
Athanassenas prove that the only stable capillary surfaces connecting two parallel
planes are rotational surfaces and that if the contact angle γ is π/2, then the half-
sphere and the cylinder are the only possibilities [4, 32]. However, the problem is far
to be completely known for a general contact angle or other assumptions replacing
stability [2, 6, 14, 24, 35].

A similar situation occurs when Π1 and Π2 are not parallel planes. In this case,
the 3-domain determined by Π1 ∪ Π2 is called a wedge. For this support, there
are explicit examples of capillary surfaces when we place a sphere centered in the
plane bisecting the wedge (γ > π/2), or if the center lies in the axes of the wedge
(γ = π/2). See Fig. 7. A first question posed is on the existence of capillary surfaces
with cylindrical topology connecting Π1 and Π2: see [7, 25, 26]. Under this context
and γ = π/2 (Fig. 7, right), we prove

Theorem 5 Consider a cmc surface S on a wedge with contact angle γ = π/2. If
S is stable or S is embedded, then S is part of a sphere centered at the vertex.

3 The Proof Methods

Motivated by experiments on wetting and capillarity, we assume that the interface of
a droplet is an embedded surface. In our context, and since our surfaces are compact,
embeddedness is equivalent to say that the surface has not self-intersections. In
the theory of embedded cmc surfaces, one of the main ingredients in the proofs is
the Alexandrov reflection principle. Alexandrov proved that the sphere is the only
embedded closed to cmc surface [3]. Although this result was expected, the novelty
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aS
S

Fig. 8 TheAlexandrov reflectionmethod. Left the closed embedded case.Right the circular bound-
ary case

came from the proof, where the very surface is utilized as a barrier with itself to obtain
the desired result. This idea has been extensively utilized not only in geometry but
also in PDE theory, starting with the breaking paper of Serrin [31].We briefly explain
the Alexandrov method. The mean curvature equation (3) is elliptic but not linear.
However if u1 and u2 are two solutions of (3), the difference function u = u1 − u2

satisfies a linear elliptic equation Lu = 0 and we can apply the maximum principle
[13]. In the context of cmc surfaces, this result is known as the tangency principle
which asserts that if S1 and S2 are two surfaceswith the same constantmean curvature,
which are tangent at a point p ∈ S1 ∩ S2 and S1 lies in one side of S2 around p, then S1
and S2 coincide in a neighborhood of p, and by extension of the argument, S1 and S2
coincide in a common open and closed set [18]. For the proof, let S be an embedded
closed cmc surface and let us fix a direction a ∈ R

3. Consider a plane coming from
infinity and orthogonal to a until arriving the first contact point with S: Fig. 8, left.
Next, we followmoving the plane and reflecting the surface that lies behind the plane
until the first time that the reflected surface (with respect to a plane Pa) reaches the
initial surface. In the touching point between both surfaces, the tangency principle
implies that the reflected surface and the part of the surface in that side of Pa must
coincide, proving that Pa is a plane of symmetry of S. Doing the same argument for
all spatial directions a, we conclude that S must be a round sphere.

In case the boundary of S is a circle, we need to assume that S lies in one side
of the plane containing ∂S, see Fig. 8, right. This prevents that the first contact point
may occur between an interior point with the boundary ∂S because in such a case,
the reflected surface and S are not tangent at the first touching point and we cannot
utilize the tangency principle.

In each one of the support substrates considered in Sect. 2, we have different
possibilities of choices of planes to start with the reflection method. We explain in
each case [19–22].

1. Suppose that the support is a sphere S2 and that ∂S is a circle in S2+ (Theorem 1).
Recall that in this case, we are assuming |H | ≥ 1. Let Π be the horizontal plane
containing the center O of S2. A first step is proving that if W lies outside B3,
then O /∈ W . On the contrary, consider the uniparametric family of spherical caps
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SS
S

W

Fig. 9 Reflection method for a capillary surface droplet supported on a sphere

of radius bigger than 1 below Π and with the common boundary to be the circle
Π ∩ S

2. Starting from the radius r = 1, we increase the radius of these caps until
the first contact with S: Fig. 9, left. At the contact point, the mean curvature of the
cap, namely 1/r , must be bigger than |H |, which it is not possible because |H | ≥
1. As a conclusion, if W lies outside B

3, then O /∈ W . The reflection process
starts with horizontal planes coming from below until we reach S (Fig. 9, right).
Next, we follow moving up the plane and reflecting. Since ∂S lies in the upper
hemisphere, there is not a touching point before arriving to the plane Π since,
on the contrary, there would be a horizontal plane of symmetry: a contradiction
because ∂S ⊂ S

2+. Once arrived to the origin, we fix a horizontal straight line
L ⊂ Π passing through O . Let us replace the above planes by a family of planes
all containing L (Fig. 9, right). Then we go rotating the plane and we follow
the reflection method until the first touching point p. If p is an interior point, a
standard argument implies that the plane is a plane of symmetry, so of ∂S. If p
is a boundary point, then the plane is a plane of symmetry of ∂S. Repeating this
argument for any horizontal straight line L through the center of S2, we conclude
that S is a spherical cap.
In case that S is a capillary surface, the only difference in the above argument is
that if the first touching point p is a boundary point (necessarily with respect to a
plane containing L), the condition on the constancy of the contact angle implies
that the reflected surface and the initial one are tangent at p. Thus we apply the
(boundary version) tangency principle [13] concluding that the plane is a plane
of symmetry of the surface.

2. Suppose that the support is a right cylinderΣ = C × R. In the item 1 of Theorem
2, the reflection method uses a family of orthogonal planes to a vertical line and
coming from infinity (Fig. 10, left). In case of existence of a horizontal plane
where the reflected surface touches the first time with the initial surface at some
interior point, then this plane is a plane of symmetry. This is a contradiction with
that ∂S is a curve homotopic to C . If the first contact point occurs at a boundary
point, the condition on the constancy of the contact angle implies that the initial
and the reflected surface are tangent at that point, and the proof works. For the
item 2, the argument is similar.
For the item 3, and because ∂S lies in a half cylinder, then ∂S is nullhomotopic
in Σ . Thus S together a domain of Σ bounds a 3-domain W ⊂ R

3. A first step
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S

S S

Fig. 10 Reflection method for a capillary surface supported on a right cylinder. Right a top view
of Σ

consists to apply the reflection method with a uniparametric family of planes
orthogonal to the rotation axis. Hence we obtain a first plane of symmetry P1

of S. Let Π be the plane containing the rotation axis that leaves in one side ∂S.
We now use a uniparametric family of planes parallel to Π and all of them lie in
the other side of Π (not containing ∂S). The reflection method works until we
arrive to the very plane Π (Fig. 10, right). The hypothesis on ∂S to be contained
in a half cylinder prevents the existence of a first contact point. At this position,
we replace the planes by a family of planes containing the axis. We follow the
reflection method by rotating these planes until the first (interior or boundary)
contact point, obtaining a new plane of symmetry P2 of S. The plane P2 contains
the axis so P2 is orthogonal to P1. Because S is symmetric by these orthogonal
planes P1 and P2, then S is a topological disk.

3. In the case of a cone, the reflection process with respect to planes is substituted
by a spherical reflection method, which appeared first in [25] replacing inver-
sions about a one parameter family of spheres all centered at the center O of S2.
Although an inversion does not preserve H , there is a certain control of the mean
curvature of the inverted surface in order to use the tangency principle. Exactly
if S2r ⊂ R

3 is the sphere of radius r centered at O , the spherical reflection about
S
2
r is the inversion mapping defined by

φr : R3\{O} → R
3\{O}, p̂ := φr (p) = r2

|p|2 p.

Let H be the mean curvature of S with respect to a unit normal vector field
N . Denote by Ŝr the spherical reflection of S about φr and consider on Ŝr the
orientation

N̂ ( p̂) = N (p) − 2〈N (p), p〉
|p|2 p.
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Then the mean curvature of Ŝr is

Ĥ( p̂) = H |p|2 + 2〈N (p), p〉
r2

. (5)

We start the spherical reflection method from spheres S2r with r sufficiently big
until the first contact point p0 with S. Because N points are inside the liquid, then
〈N (p0), p0〉 < 0. We have from (5) that Ĥ(p0) ≤ H |p0|2/r2 < H , where we
use H ≤ 0. Following the reflection across inversions and using the assumption
on the non-positivity of H , we conclude that there is not a contact point between
the inverted surface with the part of S inside S2r , which proves that S is a radial
graph on Ω . For the second part of Theorem 4, we use that the only cmc surface
in R3 that is invariant by an inversion about a sphere is an open set of a sphere or
a plane.

4. We only prove Theorem 5 when S is an embedded surface. First we extend the
Ros formula [28] proving that if a compact embedded surface with no necessarily
constant mean curvature H meets a wedge orthogonally, then

∫

S

1

H
d M ≥ 3V, (6)

where V is the volume of S and the equality holds if and only if S is part of
a sphere. The proof of (6) involves the Reilly formula for a solution of PDE
with Dirichlet and Neumann boundary conditions and the classical Minkowski
formula ∫

S
(1 + H〈N , x〉) d S = −1

2

∫

∂S
〈ν, x〉 ds,

where ν is the inward unit conormal along ∂S. After a rigid motion, the orthogo-
nality intersection condition means that 〈ν, x〉 = 0 and as H is constant, we get
A − 3H V = 0, where A is the area of S. This implies equality in (6) and the
result follows.

4 Conclusions

In the present paperwe have discussed underwhat conditions some geometric config-
urations of a liquid droplet in thermodynamic equilibrium is a surface of revolution.
Our motivation comes from the fact that experiments devoted to compute the surface
tension σ of a liquid (e.g., the pendant drop method) assume previously that if the
boundary of the air–liquid interface is symmetric, or if the drop is supported on a
highly symmetric substrate, the liquid drop receives the same symmetries. In recent
years there is a great progress in the creation of new materials and experimentation
at nanometer and microscopic scales of fluids deposited between configurations of
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spheres, cylinders, and planes. In some industrial experiments, there exist processes
of crystallization and agglomeration that require the knowledge of the effects of the
capillary forces of the liquids bridges connecting these solids and avoiding an abrupt
change in the liquid shape, or preventing undesirable overflowing events. To quantify
and estimate these forces, the mathematical models for droplets and liquid bridges
are cmc surfaces which are assumed to be surfaces of revolution because the analytic
expression of the mean curvature equation (3) in the axisymmetric case (4) is easier.
Recent progress in experiments with a wider variety of morphologies on the substrate
has given a new boost in the theoretical study that it was not previously considered.

Our results show that if these drops are modeled by a surface with constant mean
curvature and under assumptions of embeddedness, then the droplet inherits some
symmetries of the support substrate Π when Π is a sphere, a right cylinder, a cone,
or a wedge. This allows to provide a mathematical understanding of why the shapes
of these drops are axisymmetric. These results provide us new directions of inves-
tigation, for example, assuming that the droplet has self-intersections which means
that in the fluid there may appear empty chambers of liquid or that the droplet does
not lie completely in one side of the substrate.
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Deformable Human Body Modeling from 3D
Medical Image Scans

Taehyun Rhee, Patrick Lui and J.P. Lewis

Abstract Creating an accurate virtual humanbodymodel is challenging but required
in many fields. This study presents a method to create 3D human body models from
medical image scans. Visible light scanning of articulated 3D objects such as the
human hand has limitation due to the self-occlusion of surfaces in certain poses. We
present a complete system to create a deformable articulated human body volume
from multiple 3D MRI scans of a living person, which can produce accurate volume
deformation containing inner anatomical layers. The method combines technologies
involving medical imaging, and computer vision, as well as computer graphics, to
address the practical issues involved in producing detailed volume models from
living human scans. The results provide an occlusion free person-specific 3D human
body model, asymptotically accurate inner tissue deformations, and realistic volume
animation of articulated movements driven by standard joint control estimated from
the actual skeleton.

Keywords Registration · Deformation · Human modeling · Volume animation

1 Introduction

An anatomically accurate deformable 3D human body model including the bones,
muscles, tendons, and other anatomical layers is challenging. Articulated body
regions such as the human knee or hand are capable of a wide range of skeletal

T. Rhee (B) · P. Lui · J.P. Lewis
School of Engineering and Computer Science,
Victoria University of Wellington,
Gate 6, KelburnParade, Wellington, New Zealand
e-mail: taehyun.rhee@ecs.vuw.ac.nz

P. Lui
e-mail: patrick.lui@ecs.vuw.ac.nz

J.P. Lewis
e-mail: john.lewis@ecs.vuw.ac.nz

© Springer Science+Business Media Singapore 2017
B. Anderssen et al. (eds.), The Role and Importance of Mathematics
in Innovation, Mathematics for Industry 25,
DOI 10.1007/978-981-10-0962-4_13

143



144 T. Rhee et al.

movements, resulting in complex deformation of the surrounding soft tissues. The
difficulty in manually or algorithmically defining complex articulated body struc-
tures of an individual subject can be avoided by adopting a data-driven approach.
Since scans of a living subject at multiple poses can be used as the training samples,
accurate deformable models can be built from actual data. Also, a model constructed
from living human scans reflects characteristics of the subject and provides person-
alized information, which is often essential to create a virtual clone for medical and
other applications.

Volume data obtained from 3D medical image scans (e.g. MRI or CT) repre-
sents 3D interior anatomy. Translucent volume rendering can successively visualize
anatomical layers without losing the overall context of the subject. Previous scan
based approaches have focused on surface scans [1, 2] and deformation [3, 4]. This
study describes a data-driven approach in the volume domain using appropriate
deformation algorithms [6], resulting in accurate volume deformation informed by
multiple scans of articulated body regions from a living person [7].

2 Articulated Volume Registration

One of the challenging issues in scan-based deformation is to obtain geometric cor-
respondences across the samples. In case of medical image volumes, the geometrical
information is represented by voxel properties without explicit geometric parame-
terizations, and creating iso-surfaces of each layer from in vivo MRI volumes is
difficult due to poor delineation of different tissue layers. Working with volumetric
data brings computational scaling issues, since the volume of data is considerably
larger than the surface data. Volume registration methods for producing correspon-
dence across multiple scans of different poses must deal not only with the volume of
data, but also with the many degrees of freedom (DOFs) arising from both non-rigid
tissue deformation and rotations of the underlying skeletal joints. In addition, the
optimization must handle the strong local minima inherent in complex articulated
subjects. There are also issues involving the use of in vivo MRIs that do not arise
with cadavers or non-articulated subjects.

In our study [7], the issues described above are successively addressed, resulting
in sophisticated solutions for quantifying and visualizing complex volume deforma-
tion arising from a wide range of skeletal movements of the human body. Differently
posed volumes of real human body regions (e.g. the hand and knee) are obtained
by MRI scans. Skeleton models of each pose sample are created by semi-automatic
hierarchical bone volume registration. Then, the kinematic joint structures of each
volume sample are estimated. In order to solve the correspondence problem across
scans, a template volume is registered to each volume sample. The wide range of
pose variations is first approximated by the volume blend deformation algorithm [6],
providing proper initialization for subsequent non-rigid volume registration. The
initialized volume is then automatically registered to the target volume while mini-
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Fig. 1 From the left, the original image, images warped by 2D biharmonic clamped plate spline
(CPS) and thin plate spline (TPS). Control point correspondences (small squares) are indicated as
yellow (source) and white (target). The right most image is comparison of the CPS (top) with TPS
(bottom) interpolating the same points. The CPS is both smooth and localized, decaying to zero at
the boundary of the unit disc

mizing themutual information or sum of squared intensity difference without relying
on fiducial markers.

Non-rigid volume registration requires high DOFs warping functions for accurate
registration. To address this, a locally adaptive registration algorithm that efficiently
reduces the search domain and DOFs of the warping function is developed. The
volume is hierarchically and spatially decomposed and dissimilar regions are locally
and adaptively registered using deformation based on the clamped plate spline (CPS)
[5, 7]. The CPS minimizes the standard spline curvature functional, but subject to
having zero value and derivative on the boundary of the unit disc inRn as in the Fig. 1.
The derivation of the CPS resembles that of radial basis functions (RBFs), with the
solution being a weighted sum of the Green’s function of the solution’s differential
operator, but the Green’s function in this case is not a radially symmetric function
but instead depends implicitly on the location relative to the origin. The function for
the biharmonic case in three dimensions is:

{
G(x, y) = ‖x − y‖(A + 1/A − 2)

A(x, y) =
√

‖x‖2‖y‖2−2xT y+1
‖x−y‖

(1)

The x component of the resulting interpolated deformation at a point p is:

dx =
∑

wkG(p, ck) (2)

(and similarly for the y, z components) where ck are the locations of the feature
points to be interpolated.
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Fig. 2 Volume deformation: MRI volumes of the human hand and knee are deformed to arbitrary
poses; translucent volume rendering visualizes the anatomical layers without losing the context of
the subject

3 Example Based Volume Deformation

Accurately registered volume samples are now used to compute volumetric displace-
ments between the samples as is required for example based deformation algorithms
such as pose space deformation [3, 4, 7] that generate arbitrary poses of an articulated
subject. The result (Fig. 2) is a rapidly deformable volumetric model of an articu-
lated body containing accurate data-driven deformation of all anatomical layers. The
model can be visualized by any volume rendering algorithm. Although the example
based volume deformation (EVD) requires complex precomputations to handle raw
medical volume samples, note that the EVD deformation time itself is small: the
time is around 3.5 s to deform the human hand volume (255 × 255 × 90 voxel grid
points) and 1.7 s to deform the knee volume (255 × 255 × 123 voxel grid points) to
any arbitrary pose. The end result has potential uses in many applications of medical
image analysis, biomechanics, and computer graphics.

4 Conclusion

This study presents a complete pipeline to produce a person specific volume defor-
mation of articulated body regions, while managing the practical problems arising in
multiple volume scans of a living human. The approach is demonstrated onMRI vol-
umes of articulated body regions such as the human knee and hand. In particular, the
human hand is one of the most complex articulated human body regions. It requires
a novel and powerful registration approach to avoid the strong local minima inherent
in registering highly articulated body region. Given the results obtained with this
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complex subject, we feel there is a good argument that the method will work well
for many simpler cases. Since we focused on several challenging problems, some
related issues such as high quality volume visualisation and accurate joint modeling
and animation were omitted or simplified and left for future work.
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The Mathematics Describing Two-Phase
Geothermal Fluid Flows: Quantifying
Industrial Applications and Innovations

Graham Weir

Abstract Geothermal energy generates about 10% of New Zealand’s electricity.
At shallow depths, due to low pressure, geothermal fluid begins to boil, and forms a
two-phase flow system. The corresponding equations are of mixed type, containing a
parabolic equation for pressure, but hyperbolic equations for the liquid fraction and
for dissolved chemicals. The steady flow equations are highly constrained, and are
useful in the design of heat exchangers, and to chromatography. The transient flow
equations are essential to the validation of reservoir models. However, the strong
heterogeneity of the earth produces fractal-like behaviour in tracer transport, which
raises many open questions. We present a dimensional argument, showing that a
previously derived fractal Green’s function can be derived by assuming a one-sided
Gaussian distribution of permeability, and noting that an inversion of this distribution
produces the corresponding tracer profile. Such tracer profiles are characterised by
asymptotic inverse-square time behaviour, and consequently, all nonzero moments
are unbounded.

Keywords Geothermal energy · Boiling · Tracer profiles · One-sided Gaussian
distributions · Scale-dependent dispersivity

1 Introduction

Geothermal energy is an important cultural and energy source, especially for coun-
tries around the “Ring of Fire” [3]. Bathing in geothermal springs is popular, and
believed bymany to have therapeutic properties. Geysers, hot pools, boilingmud and
volcanoes are attractive to many tourists. Most of the earth’s gold, silver, and copper
deposits have resulted from mineral transport by geothermal convection cells, with
deposition occurring in the two-phase zone. Base-load electric power generation
from geothermal fields is an important energy source in many countries [10].
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This paper introduces the equations used in numerical modelling of geothermal
reservoirs. Large length scales are often appropriate to geothermal models, and con-
sequently diffusive, conductive, and capillary effects can be ofminor importance.We
make such an assumption, and derive simplified idealised flow regimes associated
with steady vertical flows, as well as, considering shock transport processes, and
indicate some of the associated innovations.

Heterogeneity characterises geological media. Tracer tests are an important
method for identifying preferred flow paths in a geothermal field. Tracer profiles are
often analysed by assuming a fracture-block system, or by using a scale-dependent
dispersivity. It has been found recently that many tracer profiles are well approxi-
mated by a probability function for which all nonzero moments are infinite. We show
how such probability functions for tracer profiles result from an inversion performed
on a one-sided Gaussian probability distribution of permeability.

2 The Mathematical Equations

We assume that the transport of mass, energy, and chemicals in a porous medium,
in which the pore space is occupied by a single phase fluid (either a liquid or a gas),
follows from Darcy’s Law

V = − k

μ
(∇P − ρg) (1)

whereV, k, μ, P, ρ, g denote volumetric flux, permeability, dynamic viscosity, fluid
pressure, density, and gravitational acceleration, respectively. Volumetric flux has
the dimensions of volume of fluid per area of rock per unit time, and so V
has the dimensions of a velocity (the Darcy velocity). Since fluid flow occurs
within the pores of the rock matrix, typical fluid velocities are significantly greater
than the Darcy velocity.

Darcy’s law was derived observationally from geophysical measurements. It also
follows from assuming low-velocity, non-turbulent flows subject to the Navier–
Stokes equations. About feed points for wells, where high-velocity fluid flow occurs,
Darcy’s equation needs modification, for example, to the Brinkman equation [7].

In a two-phase (boiling) region, where both liquid and vapour phases exist within
the pore space, Darcy’s law in (1) is extended by assuming that each phase obeys
separate Darcy equations, with fluid flow fluxes being the sum of the corresponding
liquid and vapour phase fluxes, Vl and Vv, respectively,

Vl = −kkl
μl

(∇Pl − ρlg); Vv = −kkv
μv

(∇Pv − ρvg) (2)

where kl, kv, μl , μv, Pl , Pv, ρl , ρv are the relative permeabilities, dynamic viscosi-
ties, pressures, and densities for the liquid and vapour phases, respectively. Different
relative permeabilities arise because each phase obstructs the motion of the other
phase. Non-flowing residual phases are possible, if this obstruction to flow from the
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other phase becomes too great. Similarly, surface tension effects produce different
pressures in the liquid and vapour phases, and an empirical relationship needs to be
introduced to relate the two-phase pressures.

The conservation equations for mass, energy and chemicals are of the form

∂tρi + ∇ · Ji = 0; i = M, E, c (3)

where ρi , Ji are the total density and flux of conserved quantity i . For example,

ρM = φρl S + φρv(1 − S); JM = ρlVl + ρvVv (4)

where φ, S are porosity and liquid saturation. The energy density and fluxes are

ρE = (1 − φ)ρRUR + φρlUl S + φρvUv(1 − S); JE = ρl hlVl + ρvhvVv − K∇T
(5)

where ρR,UR,Ul ,Uv, hl , hv, K , T are rock density, internal rock energy, internal
liquid energy, internal vapour density, liquid enthalpy, vapour enthalpy, thermal con-
ductivity and rock temperature, respectively.

The chemical density and chemical fluxes (for one conserved chemical) are

ρc = φρl Xl S + φρv Xv(1 − S); Jc = ρl XlVl + ρv XvVv − Dcl∇Xl − ρvτφSDcv∇Xv (6)

where Xl , Xv, Dcl , τ, Dcv are chemical liquid mass density, chemical vapour mass
density, chemical liquid diffusivity, tortuosity, chemical vapour diffusivity, respec-
tively [5, 13]. For multiple chemicals in the fluid, there are correspondingly multiple
chemical conservation equations, as in (3) and (6) [14].

In a two-phase region, the mass fraction of the chemical in the vapour phase will
be related to that in the liquid phase, usually by a Henry law,

Xv = Xv(Xl) (7)

which allows Xv to be eliminated from the equations.
Finally, the difference between liquid and vapour pressures is typically defined as

an empirical function of liquid saturation S,

Pl − Pv = Plv(S) (8)

to model capillary effects.

2.1 Steady Vertical Flow Equations

The aim of this subsection is to assume steady, vertical flows and constant perme-
abilities, ignoring diffusive, conductive, and capillary effects, in order to gain insight
into the equations above. Then the three conservation equations (4)–(6) allow three
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constant vertical fluxes, JM , JE , Jc, which depend essentially only on the local deriv-
ative of pressure. Because three free variables are essentially determined by only one
variable (∂z P), there are two implicit constraints.

One of these constraints typically [1] implies that the liquid saturation S can
take on one of two values. The low (high) value relates to vapour- (liquid-) saturated
conditions, such as hold at theLarderello geothermal field in Italy (theTaupoVolcanic
Zone in New Zealand). Utilisation of these two saturation values has led to the
innovation of geothermal heat pipes [4].

The second constraint determines how the boiling point of the fluid depends on
both fluid properties and the local flow [9].

2.2 Infinitesimal Discontinuities

Many numerical experiments with geothermal simulators show that rapid changes in
pressure, for example from opening a well in a field, can result in shock-like propa-
gation of saturation and chemical concentrations through the geothermal field. Dif-
fusive, conductive, and capillary effects will ensure that pure shocks do not develop,
but nevertheless, very rapid spatial variations in some variables can occur.

In the idealised case when diffusive, conductive, and capillary effects are ignored,
pure shocks can occur. The corresponding Rankine–Hugoniot equations relate
changes across the shock surface, in flux and density through [Ji ] = c[ρi ], where
c is the shock speed. In the case of only one chemical, shocks can occur only in
saturation and chemical mass fractions, [S], [Xl], since (7) can be used to eliminate
[Xv]. We obtain

c = ρl [Vl ] + ρv[Vv]
φ(ρl − ρv)[S] = ρl hl[Vl] + ρvhv[Vv]

φ(ρl hl − ρvhv)[S] = ρl[XlVl] + ρv[XvVv]
φ(ρl[Xl S] + ρv[Xv(1 − S)]) (9)

where we have used thermodynamic identity ρlUl − ρvUv = ρl hl − ρvhv. Rearrang-
ing the first two expressions in (9) gives [Vl + Vv] = 0, or that volumetric flux is
continuous. This follows since the pore space is always completely filled by fluid,
and flow of a volume of fluid through a surface through the porous medium must be
matched by a corresponding flow of an equal volume away from that surface.

The last two equations in (9) describe how shocks in chemical mass fraction
transmit, but this depends on the expression in (7). An important innovation follow-
ing from this difference in wave speed of different chemicals in a porous media is
chromatography, but in most industrial applications, capillary effects should be con-
sidered, because the corresponding length scales are much smaller than for those in a
geothermal application. A theory of multiple reacting chemicals in a porous medium
is given in [14]. A general theory of infinitesimal shocks in a porous medium is given
in [11].
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2.3 Classification of Equations

The presence of approximate shock solutions to (2)–(6) arise because these equations
are almost singular. The large length scales in geothermal reservoirs, and the frequent
dominance of convection over diffusion, means that diffusive, conductive, and cap-
illary effects are often small. Then the Laplacian of pressure can be eliminated from
the energy and chemical conservation equations above, yielding one elliptic equation
for pressure, and wave equations for saturation and chemical mass fraction, analo-
gous to that occurring in Buckley–Leverett theory. A general separation of diffusive
and wave equations in a porous medium is given in [11].

3 Analysing Tracer Returns

Geological media are characterised by immense variations in permeability. Conse-
quently, tracer tests in geological media can be characterised by fast returns along
preferential flow paths, combined with slow flows from low permeability paths. This
has led to the concept of scale-dependent dispersion, in which the variance of tracer
returns increases linearly with the scale of the experiment [6].

The aim of this section, and the main result of this paper, is to derive ideal tracer
profiles, obtained from a specific distribution of permeability, which yields results
consistent with a linear scale-dependent dispersion, as observed in field experiments.
This will yield permeabilities to be considered in construction of a numerical model
of a geothermal field.

The properties of the probability distribution of permeability we seek are

1. A peak in permeability, consistent with a set of preferred geological flow paths.
2. A rapid decrease in probability, for permeabilities greater than the peak value.
3. A nonzero value of probability for low values of permeability.

The last of these conditions reflects the great many dead-ends in a porous media,
whichwill contribute to the low permeability paths. Note that it is not unusual towork
with the logarithm of permeability, in order to capture the large range of naturally
occurring permeabilities. However, this will typically impose a zero probability for
zero permeability paths, unlike the requirement in (3).

The one-sided Gaussian distribution p(k),

p(k) =
√
2

√
πs

[
1 + erf

(
k0√
2s

)] exp

[
− (k − k0)2

2s2

]
;

∫ ∞

0
pdk = 1, (10)

where k0 is the peak permeability, and s is a variance, satisfies the three points above.
Consider a well discharging liquid water at a constant mass rate q (kg s−1), with

water density ρ, and tracer mass density in the water X (kg m−3). Then the rate of
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mass discharge of tracer Ṁ is qX/ρ (kg s−1). In an infinitesimal amount of time, dt ,
the increment dM in tracer mass discharged is

dM = Ṁdt = qXdt

ρ
= Mp(k)dk;

∫ ∞

0
Ṁdt = M, (11)

where M is the total mass of tracer recovered, and we associate an infinitesimal
increment dk of permeability producing the discharged tracer, with probability p(k)
given in (10).

If the mean speed of fluid flowing in a pore is u, then

u = L

t
= k�P

φμL
; → k = μφL2

t�P
; u0 = k0�P

φμL
, (12)

where L is the distance between the injection and productionwell,�P is the pressure
difference between the injection and production wells, t is the time since the tracer
was injected into the injectionwell, and u0 is amean speed of tracer between injection
and production wells.

If (12) is used to relate permeability k to time t , then from (11) and (10)

X = ρμφL2M

q�Pt2
p

(
μφL2

t�P

)
=

√
2ρμφL2M exp

[
− (L−u0t)2

2σ t2

]

q�Pt2
√

πs
[
1 + erf

(
1√
θ

)] , (13)

where

σ =
(
s�P

μφL

)2

; θ = 2s2

k20
(14)

These expressions are identical to those derived earlier [12], by assuming a dis-
persion varying linearly with time, D = σ t , but where σ is now given explicitly
in (14), rather than empirically. It was shown in [12] that many tracer profiles are
well approximated by (13). It is clear from (13), that for large time, X decreases as
t−2, and so all nonzero moments of X with respect to time, are unbounded, since
asymptotically

∫
tnt−2dt is unbounded at the upper limit, for each integer n greater

than zero.
If tm is the time that the peak occurs in measured tracer mass density X , then

tm = L(
√
1 + 4θ − 1)

2u0θ
; u0 = L(

√
1 + 4θ − 1)

2θ tm
(15)

We can now find explicit expressions for k0 and s,

k0 = φμL2(
√
1 + 4θ − 1)

2θ tm�P
; s =

√
θ

2
k0 (16)

which fixes the the one-sided Gaussian probability function in (10).
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When tracer returns arewell approximated by (13), then the time tm of peak returns
can be read off the experimental record, and the parameter θ obtained by fitting (13)
to the tracer return. Field measurements will also provide field temperatures and
hence provide μ, as well as estimates of the pressure difference �P between the
injection and production wells, and the distance L . An estimate of the porosity
remains undetermined, with a possible default value being perhaps 0.1, which is a
typical low value for a consolidated sandstone [2]. Then (16) gives k0 and s.

Writing the probability function in (13) in nondimensional units

k(x) = 2
√

π
[
1 + erf

(
1√
θ

)] exp

[
−

(
x − 1√

θ

)2
]

; x = k

k0
√

θ
(17)

shows that for small θ , the permeability distribution is essentially a delta function cen-
tred on k0, whereas for large θ , the permeability is essentially a one-sided Gaussian,
with zero mean. Figure1 plots four one-sided Gaussians. For large values of perme-
ability, the probability is essentially zero, corresponding to zero tracer returns for
early times. The nonzero value of probability for zero k produces the t−2 decay of
tracer profiles, for long times.

Fig. 1 One-sidedGaussian distributions, k(x) versus nondimensional x (=k/(k0
√

θ))withmaxima
(k = k0) at x = 0 (black line), 0.5 (red triangles), 1 (blue squares), 2 (green dashes)
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Fig. 2 Nondimensional tracer profiles, Y (τ ) versus τ , for θ = ∞ (black line), 4 (red triangles), 1
(blue squares), 0.25 (green dashes), corresponding to Fig. 1

The tracer profile X in (13) can be nondimensionalised to Y , through

X0 =
√
2ρμφL2M

q�Pt2m
√

πs
[
1 + erf

(
1√
θ

)] exp−
(√

1 + 4θ − 1

2
√

θ

)
(18)

Y =
exp

(√
1+4θ−1
2
√

θ

)

τ 2
exp−

[(√
1 + 4θ + 1

)

2
√

θτ
− 1√

θ

]2

(19)

X = X0Y ; τ = t

tm
; 2σ = u20; Y (τ = 1) = 1 (20)

Figure2 plots the dependence of Y (τ ) vs τ , for θ = ∞, 4, 1, 0.25. All four plots
have been scaled for their maxima to occur at τ = 1, and their maximum value there
to be unity. In the limiting case of θ = ∞, we have

Y = e

τ 2
exp

(
− 1

τ 2

)
; k = 2√

π
exp(−x2) when θ = ∞ (21)



The Mathematics Describing Two-Phase Geothermal … 157

4 Constructing the Numerical Model

A widely used numerical simulator for geothermal modelling is TOUGH2 [8], an
acronym for Transport Of Unsaturated Groundwater and Heat. Often the size of
numerical blocks used in TOUGH2 simulations are as large as 100m, whereas the
interior of pores in a geological setting can be as small as 10−7 m. Consequently, there
is considerable craft in choosing spatial permeability distributions in geothermal
modelling, and specific models will often depend on the viewpoint of the modeler.

5 Conclusions

This paper has briefly reviewed the two-phase flow equations used in geothermal
modelling, and outlined some of the flow regimes which can follow from these
equations. Some of the innovations associated with these idealised flow regimes
include the technologies of chromatography, geothermal heat pipes and geothermal
energy utilisation.

The main new result of this paper was given in (13), which showed that a previ-
ously derived set of empirical tracer profiles, incorporating the concept of a scale-
dependent dispersivity, follow identically from an underlying permeability structure
satisfying a one-sided Gaussian permeability distribution. We outlined how a tracer
profile can be used to derive the mean and variance of this Gaussian distribution. The
corresponding tracer profile results from an inversion of this distribution, resulting
in a new probability distribution in which all nonzero moments are unbounded.
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Leveraging Progress in Analytical
Groundwater Infiltration for New Solutions
in Industrial Metal Solidification

Dimetre Triadis

Abstract Previous analytical solutions for Stefan solidification problems with
nonlinear heat conduction relied on a boundary flux proportional to 1/

√
t . These can

now be generalised to analytical series solutions for a large family of boundary fluxes
with the same leading-order form, representing significant progress towards analyti-
cal treatment of simple casting systems for industrial metal manufacture. Mathemat-
ically, these nonlinear Stefan problems are intimately related to integrable solutions
of Richards’ equation, governing unsaturated one-phase groundwater flow though
soil. For the most general known integrable soil model, it has taken 20 years to move
from analytical treatment of a free-surface boundary condition implying constant
rainfall to one implying surface saturation. Here the corresponding advances both
in theory and efficient algorithms for symbolic computation are utilised directly to
generalise the class of boundary fluxes for nonlinear Stefan solidification problems.

Keywords Stefan problems · Casting · Metal solidification · Heat conduction ·
Integrable PDEs · Symbolic computation · Phase-change

1 Introduction

Specialised continuous and billet casting processes utilised in industrial metal man-
ufacture are often the subject of large-scale numerical simulations that provide pre-
dictions relevant to the particular process being studied. Analytical solution methods
can only be applied to simplified casting geometries, however, they yield impor-
tant physical insights into the general behaviour of casting systems, and are needed
as benchmarks to evaluate the accuracy of more versatile numerical techniques. In
the study of groundwater flow, relatively complex analytical series solutions have
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yielded concrete insights into the very popular but oftenmisunderstood Green–Ampt
[4] infiltration model [13].

Understanding the simplified one-dimensional system illustrated in Fig. 1 is
important to a wide variety of industrial metal casting processes. Here a layer of
molten metal is initially placed upon a solid, cooler metal at time t = 0, with a
known time-dependent quantity of heat extracted from the lower surface. The illus-
tration shows a solidification front and a single secondary phase-change front, both
of which originate at the metal-metal interface x = 0, and migrate away as time
passes.

To the author’s knowledge, there is no analytical solutionmethod for the illustrated
system that addresses practical nonlinear thermal properties. Exact solutions do exist
for base and production metal layers that are assumed to have infinite thickness
[3, 14]. Of course these also apply to finite-thickness metal layers at times small
enough for boundary effects to be neglected. For the above solutions the natural heat
flux at the metal-metal interface is found to be proportional to 1/

√
t . Hence solutions

are also known for systems that neglect explicit consideration of the base metal layer
altogether, and consider only a production metal of infinite extent with a known heat
extraction rate at its lower surface [7, 8]. We expect that explicitly accounting for
a finite base layer will alter the leading-order interface flux through the action of
lower-order terms in a small-time expansion. Hence the present study is aimed at
generalising known results by considering a production metal of infinite extent with

Initially molten 
production metal 

Cooler base 
metal 

Known heat 
extraction rate

Solidification front

Phase-change front 

molten

solid

solid

solid
Fixed metal-metal 
interface

Fig. 1 Simplified casting system with solidification and phase-change fronts. Heat flux at the
bottom surface of the cast wall metal (shown in blue), is known. Two production metal phase-
change fronts are shown migrating away from the metal-metal interface x = 0, where they are
assumed to originate at time t = 0
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a known heat flux at the bottom surface that may be expressed as a power series in√
t with leading-order term proportional to 1/

√
t .

The canonical 1/
√
t heat flux results in a constant metal-metal interface tempera-

ture. Our generalised results predict a time-dependent interface temperature, that has
the potential to be compared to experimental studies that are capable of recording
this cast interface temperature [6].

While there is often a larger number of phase changes relevant to a particular
casting process, our model below will only consider two phases of the production
metal; a molten and a solid phase. Thus the phase-change front of Fig. 1 and similar
phase-change fronts are neglected to demonstrate the solution method as clearly as
possible. As our modelling assumptions do not include fluid motion, there is no
mathematical difference between the treatment of a solid-liquid phase-change front
and a solid-solid phase-change front. From earlier studies [14] and the development
below it should be clear that there is no significant difficulty involved in extending
the model to a larger number of phases.

2 Linearising the Governing Equations

We assume that heat flows in both the solid phase (i = 1) and the molten phase
(i = 2) are governed by the nonlinear diffusion equations

ci (θi )
∂θi

∂t
= ∂

∂x

[
ki (θi )

∂θi

∂x

]
, (1)

for the temperature θi (x, t) as a function of the distance from the interface boundary
x and time t . The thermal properties of the production metal manifest through the
volumetric heat capacity ci (θi ) and thermal conductivity ki (θi ) of each phase, all of
which are assumed to be known functions of the relevant temperature range.

The phase change from molten to solid metal takes place at position x = X (t)
and fixed temperature θc

θi
(
X (t), t

) = θc for t > 0, (2)

and we impose no compatibility criterion for the thermal properties on either side of
this boundary. We account for a known latent heat of solidification λ at the phase-
change front through a Stefan boundary condition for the flux:

k1(θ1)
∂θ1

∂x
− k2(θ2)

∂θ1

∂x
= λ Ẋ(t) at x = X (t). (3)

At t = 0, X (0) = 0; and the molten metal is assumed to be at a temperature
θ0 > θc, so that

θ2(x, 0) = θ0. (4)
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Finally, as discussed in the introduction, we assume that the outer-surface flux
U0(t) is known, and can be expressed in power series form through the set of coef-
ficients {ζn}:

U0(t) = k1(θ1)
∂θ1

∂x
=

∞∑

n=0

t
n−1
2 ζn at x = 0. (5)

We first form dimensionless variables θ∗, t∗, x∗, c∗i , k∗i , etc…with some charac-
teristic temperature θs , conductivity ks heat capacity cs and time scale ts . Note that
the leading-order problem in time with only ζ0 �= 0 has a scaling symmetry related
to the fact that there is no evident time scale ts or length scale ls in the system (1)–(5);
only the ratio l2s /ts has a natural scale, ks/cs .

Introducing new ‘heat density’ dependent variables Θi (x, t) with arbitrary con-
stants Θci

Θi ≡ Θci +
∫ θ∗

θ∗c
c∗i (θ̄) d θ̄ , (6)

standardises the form of our governing equations

∂Θi

∂t∗
= ∂

∂x∗

[
k∗i (θ∗i )
c∗i (θ∗i )

∂Θi

∂x∗

]
. (7)

These can be rendered integrable by assuming a particular functional form for the
heat diffusivity in both phases

k∗i (θ∗i )
c∗i (θ∗i )

= αi

Θ2
i

, (8)

where the constants αi may be chosen with theΘci to fit the properties of a particular
metal. For some metals, functions of the above form provide a reasonable fit to their
thermal properties [9]. The heat diffusivity of other metals may be approximated
accurately by versatile segments of the above type, equivalent to introducing addi-
tional fictitious phase-change boundaries with zero latent heat [14]. Models with
less sophisticated piecewise-constant approximation of material properties have also
been presented [11].

We proceed to linearise the governing equations via the ‘reciprocal Bäcklund
transformation’ formalism of [5]. That is, we adopt the new independent variables,
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y1 =
∫ x∗

0
Θ1(x̄, t) dx̄ + I0(t∗) (9)

= −
∫ X∗(t∗)

x∗
Θ1(x̄, t) dx̄ + Θc1X∗(t∗) + Ic1(t∗)

y2 = −
∫ x∗

X∗(t∗)
Θ2(x̄, t) dx̄ + Θc2X∗(t∗) + Ic2(t∗) (10)

while retaining time t∗, and introduce dependent variables

ui (yi , t∗) = 1

Θi
, (11)

where I0(t∗) and the Ici (t∗) represent the total heat passing throughvarious boundaries

I0(t∗) =
∫ t∗

0
U∗0(τ ) dτ, Ici (t∗) =

∫ t∗

0

αi

Θ2
i

∂Θi

∂x∗

∣∣∣∣
x∗=X∗(τ )

dτ. (12)

The alternative forms of (9) can be derived from the reciprocal Bäcklund trans-
formation by integrating over different regions, as in (3.13) and (3.15) of [8]. The
above method of linearisation is essentially equivalent to successive transformations
attributed to Kirchhoff, and Knight or Storm, as detailed in [14].

A final transformation follows from the scaling symmetry of the leading-order
problem. We change independent variables from yi and t∗ to

ωi = yi√
αi t∗

and t∗. (13)

Let Ω0(t∗) denote the value of ω1 corresponding to the interface boundary at
x∗ = 0. From the known boundary flux

U∗0(t∗) =
∞∑

n=0

t
n−1
2∗ ζ∗n, (14)

it follows that

Ω0(t∗) =
∞∑

n=0

t
n
2∗

2ζ∗n√
αi (n + 1)

≡
∞∑

n=0

t
n
2∗ γ0,n. (15)

To track the moving boundary at x∗ = X∗(t∗) with our new variables, let ω1 =
Ω1(t∗), and ω2 = Ω2(t∗) at the solidification front. Our adopted method of lineari-
sation is somewhat complicated by the fact that Ω1(t∗) �= Ω2(t∗), an issue that was
avoided by the linearisation path taken in [14]. However, we will see that this merely
introduces an extra phase-front flux boundary condition to satisfy in our transformed
problem.
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From an understanding of the similar order-by-order solution procedure of [12],
we expect to have to determine sets of constants {γi,n} where

Ωi (t∗) =
∞∑

n=0

t
n
2∗ γi,n. (16)

We now write the separable transformed equations

t∗
∂ui
∂t∗

= ωi

2

∂ui
∂ωi

+ ∂2ui
∂ω2

i

, (17)

and transformed boundary conditions out in full. The surface flux condition takes
the form

−
√

α1

u1

∂u1
∂ω1

∣∣∣∣
ω1=Ω0(t∗)

= √
t∗U∗0(t∗). (18)

The phase-front temperature conditions remain straightforward,

ui
(
Ωi (t∗), t∗

) = 1

Θci
, (19)

but we now have two phase-front flux conditions to satisfy, which can be written as
two independent equations in a variety of ways. The following forms are considered
relatively simple to use

Ic1 = −√
α1Θc1

∫ t∗

0

1√
τ

∂u1
∂ω1

∣∣∣∣
ω1=Ω1(τ )

dτ =
√

α1(λ∗ − Θc2)Ω1(t∗) + √
α2 Θc1Ω2(t∗)

λ∗ + Θc1 − Θc2
,

(20)

Ic2 = −√
α2Θc2

∫ t∗

0

1√
τ

∂u2
∂ω2

∣∣∣∣
ω2=Ω2(τ )

dτ =
√

α2(λ∗ + Θc1)Ω2(t∗) − √
α1 Θc2Ω1(t∗)

λ∗ + Θc1 − Θc2
.

(21)

Finally we denote Θ20 as the value of Θ2 at t∗ = 0, and must have

u2(ω2, t∗) → 1

Θ20
as t∗ → 0. (22)

While this system is larger than Eqs. (24) and (26) of [12], both systems are
amenable to iterative series solution methods. The linearisation technique detailed
above was tailored to reproduce Eq. (24) of [12] so that the iterative techniques
developed in [1, 12] can be more directly utilised.



Leveraging Progress in Analytical Groundwater Infiltration … 165

3 Iterative Solution Procedure

Solutions of (17) are confluent hypergeometric functions, and we have some choice
as to which two independent solutions we choose. As in [12], the following choices
have tidy power series forms convenient for iterative solution

ui (ωi , t∗) =
∞∑

m=0

t
m
2∗
{
Ci,mG

−
(

−m

2
; 1
2
;−ω2

i

4

)
+ Di,mG

+
(

−m

2
; 1
2
;−ω2

i

4

)}
,

(23)

G∓
(

−m

2
; 1
2
;−ω2

i

4

)
≡ √

π

∞∑

p=0

(∓ωi )
p

p! Γ (1 + m
2 − p

2 )
(24)

=
√

π

Γ (1 + m
2 )

1F1

(
−m

2
; 1
2
;−ω2

i

4

)
∓

√
π ωi

Γ ( 12 + m
2 )

1F1

(
1

2
− m

2
; 3
2
;−ω2

i

4

)
.

Note that G− is a just a Kummer confluent hypergeometric function of the second
kind, and that we have introduced four sets of separation constants {Ci,m} and {Di,m}.
Any series solutions above with arbitrary constants {Ci,m} and {Di,m} correspond to
exact solutions of the initial nonlinear heat equations (1), our task now is to find the
members of this family that satisfy the boundary conditions (18)–(22) by determining
{Ci,m} and {Di,m}.

Given the power series representations of G±, and Eq. (16), it is clear that evalu-
ation of our transformed boundary conditions involves manipulating terms of type

( ∞∑

n=0

znγn

)p

=
∞∑

n=0

znWn
(
p; {γq : q ≤ n}), (25)

involving an unknown set of coefficients {γn}. The Wn
(
p; {γq : q ≤ n}) coefficients

naturally take the form of sums over partitions [1], but can be efficiently evaluated
iteratively as in [12].

However, boundary condition evaluation to isolate terms of different orders in
time does not involve the Wn

(
p; {γq : q ≤ n}) coefficients directly. Consider for

example the phase-front temperature boundary condition (19) above:

1

Θci
= ui (Ωi , t∗) (26)

=
∞∑

l=0

t l/2∗
l∑

n=1

{
Cl−nξ

−
i (n, l − n) + Dl−nξ

+
i (n, l − n)

}
,

ξ∓
i (n, j) ≡ √

π

∞∑

m=0

(∓1)mWn
(
m; {γi,q : q < n})

m! Γ (1 + j
2 − m

2 )
. (27)
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Note that while the index i in (26) may take the value 1 or 2, the index i in (27) may
also take the value 0, using the known set of coefficients {γ0,n} introduced in (15).
From (24) it follows that the ξ∓

i (0, j) can be expressed as easily computable 1F1

hypergeometric functions.
The key to efficiently calculating terms like those in the series form of (26), is an

iterative result generalising equation (A6) of [12]

ξ∓
i (n, j) = ∓γi,nξ

∓
i (0, j − 1) ∓ 1

γi,0n
ξ∓
i (0, j − 1)

n−1∑

q=1

γi,qγi,n−q (n − q)

∓ 1

γi,0n

n−1∑

s=1

ξ∓
i (s, j − 1)

n−1∑

q=s

γi,q−sγi,n−q (n − q) − 1

γi,0n

n−1∑

s=1

ξ∓
i (s, j)γi,n−s s.

(28)

This is derived using two iterative identities for theWn
(
p, {γq : q ≤ n}) coefficients.

We note here a closely related problem [10] valid for a more limited range of
materials governed by linear diffusion, there terms of different order were isolated
by repeated differentiation, rather than the series rearrangementmethodologydemon-
strated in (26).

It soon becomes clear that the initial condition (22) is exceptional, and can be
simply satisfied by fixing the set {D2,m}

D2,0 = 1√
πΘ20

, D2,m = 0 for m ≥ 1. (29)

This leaves five sets of undetermined constants {C1,m}, {D1,m}, {C2,m}, {γ1,m},
{γ2,m} to be evaluated order-by-order by small-time series expansion of the five
remaining boundary conditions (18)–(21).

We find that the leading-order equations are nonlinear

ζ0C1,0
√

πerfc
(γ0,0

2

)
+ ζ0D1,0

√
π

(
1 + erf

(γ0,0

2

))
(30)

= (
√

α1C1,0 − √
α1D1,0) exp

(
−γ 2

0,0

4

)
,

√
α2Θc2 exp

(
−γ 2

2,0

4

) (
2C2,0 − 1√

πΘ20

)
=

√
α2(λ∗ + Θc1)γ2,0 − √

α1 Θc2γ1,0

λ∗ + Θc1 − Θc2
,

(31)

√
α1Θc1 exp

(
−γ 2

1,0

4

)
(
2C1,0 − 2D1,0

) =
√

α1(λ∗ − Θc2)γ1,0 + √
α2 Θc1γ2,0

λ∗ + Θc1 − Θc2
,

(32)
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1

Θc1
= C1,0erfc

(γ1,0

2

)
+ D1,0

(
1 + erf

(γ1,0

2

))
, (33)

1

Θc2
= C2,0erfc

(γ2,0

2

)
+ 1√

πΘ20

(
1 + erf

(γ2,0

2

))
. (34)

These are easily reduced to the form f (γ2,0) = 0 and solved numerically, yielding
C1,0, D1,0, C2,0, γ1,0 and γ2,0.

As in [12], considering an l’th-order satisfaction of our boundary conditions, we
encounter a linear system in the l’th-order constants

⎛

⎜⎜⎜⎜⎝

a11 a12 0 0
0 0 a23 a24 a25
a31 a32 0 a34 a35
a41 a42 0 a44 0
0 0 a53 0 a55

⎞

⎟⎟⎟⎟⎠

⎛

⎜⎜⎜⎜⎝

C1,l

D1,l

C2,l

γ1,l
γ2,l

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

b1
b2
b3
b4
b5

⎞

⎟⎟⎟⎟⎠
. (35)

The coefficients of this system are untidy expressions involving ξ∓
i (q, j) and con-

stantsC1,q , D1,q ,C2,q , γ1,q and γ2,q of all orders q < l. They arewritten out explicitly
in the Appendix.

Through repeated calculation of this linear system using (28), we can evaluate as
many coefficients as necessary either to satisfy our boundary conditions to specified
tolerances, or to observe divergent behaviour of our small-time series solution at
larger times.

If evaluating up to the N th-order constants satisfies our termination criterion,
setting all higher-order constants equal to zero implies transformed solutions which
take the form of sums of N + 1 hypergeometric terms from (23), and a phase-front
position X (t) specified as a power series with N + 1 terms via the Ωi (t∗).

In heat-density coordinates solutions take the parametric form

x = √
αi t∗

∫ ωi

Ωi (t∗)
ui (ω̄i , t∗) dω̄i +

√
αi t∗Ωi (t∗)

Θci
+ √

αi

∫ t∗

0

1√
τ

∂ui
∂ωi

∣∣∣∣
ωi=Ωi (τ )

dτ,

Θi = 1

ui (ωi , t∗)
;

and our final step is to obtain θ∗i from the Θi by inverting (6).

4 An Illustrative Example

We can adopt some simple metal properties as a demonstration model. Assume a
phase change at 1400K, with phase-change latent heat 2000 J/cm3, and a constant
volumetric heat capacity c(θ) of 4W s cm−3 K−1. Let the nonlinear thermal conduc-
tivity k(θ) be specified according to
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α1 = 3 + 2
√
2

50
, Θc1 = −

√
2 + 2

5
, (36)

α2 = 3 + 2
√
2

4
, Θc1 =

√
2 + 2

5
; (37)

as illustrated in Fig. 2. The metal properties thus chosen have a vague resemblance
to those of copper.

We set the initial temperature of the molten metal at θ0 = 1800K and consider
three simple interface fluxes as shown in Fig. 3. The black curve contains only the
dominant term as t∗ → 0 such that the corresponding problem can be solved without
the aid of series expansions. The blue and red curves have the same leading-order
term, but have lower-order terms included that result in more or less heat respectively
being extracted over the illustrated period.

For subsequent calculations, we chose the largest terms in our series solutions
so that the phase-front temperature error |θ1(X (t), t) − θ2(X (t), t)| was found to be
consistently less than 1mK. For the examples considered this criterion was suffi-
cient to ensure that the other boundary conditions were satisfied to a high degree
of accuracy. Unstable oscillations about the ideal value were observed when track-
ing satisfaction of boundary conditions for times significantly greater than t∗ = 0.4.
This is interpreted as divergence of our small-time series solutions at relatively large
times.

The solution for the leading-order surface flux term predicts a constant interface
temperature of about 923K. Adding terms to promote heat extraction results in
the surface temperature dropping for intermediate times, as shown in Figs. 4 and 6.
Conversely decreasing the rate of boundaryheat flux results in the surface temperature

Fig. 2 Example metal conductivity k(θ) with discontinuity at θc = 1400K
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Fig. 3 Three scaled surface fluxes of interest. The black central curve shows the canonical surface
flux. The flux specified by the blue curve extracts more heat, whereas the flux in red does not extract
as much heat

Fig. 4 Full temperature profiles calculated from the boundary flux U∗0 = 3
√
t∗/20 + √

t∗/3 −
2t5/2∗ . Here the steep red curve is the t∗ = 0.0001 solution, and the final blue curve the t∗ = 0.4
solution. The N values listed show the suffix of the largest coefficients used to generate each curve,
and the number of non-zero terms in the same series expansion, in parentheses

increasing at intermediate times, as shown in Figs. 5 and 6. The location of the
moving solidification front is shown in Fig. 7. As expected, extracting more heat at
the boundary results in a phase-front position that is further into the body of the
production metal at a particular time.
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Fig. 5 Full temperature profiles calculated from the boundary flux U∗0 = 3
√
t∗/20 − √

t∗/3 +
2t5/2∗ . Here the steep red curve is the t∗ = 0.0001 solution, and the final blue curve the t∗ = 0.4
solution. The N values listed show the suffix of the largest coefficients used to generate each curve,
and the number of non-zero terms in the same series expansion, in parentheses

Fig. 6 Surface temperature variation for the three boundary fluxes of interest
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Fig. 7 Solidification front positions for the three boundary fluxes of interest

5 Conclusion

We have now demonstrated that analytical series solutions for nonlinear heat
conduction may be produced for a vastly expanded family (5) of boundary fluxes
with leading O(1/

√
t) term. Due to efficient iterative algorithms, the full range of

validity of solutions can be explored with minimal computational restrictions.
As small-time expansions, these solutions diverge for sufficiently large times.

Their convergence at any non-zero time has not been strictly proven. The solution
of [12] was found to satisfy boundary conditions accurately at surprisingly large
times, with latter soil moisture profiles reasonably approximating the large-time
travelling wave solution. In the present context we have shown that series solutions
can produce accurate temperature profiles that exhibit a wide range of boundary-
surface temperatures. Larger systems that closely match industrially relevant casting
processes will need to be solved to ascertain just how much of an impediment large-
time divergence is, though future work will also explore the possibility of analytic
continuation of the solution series. A closely related issue involves the possibility of
crossing of critical phase-boundary temperatures at non-zero times, which may be
conversely be viewed as being able to account for non-constant initial conditions.
Having the metal-metal interface temperature specified rather than the boundary
flux will at times be more useful, and solutions for this alternate boundary condition
should be easily produced. Work towards explicit consideration of a finite cast metal
layer as illustrated in Fig. 1 remains ongoing.

Many contexts exist where producing series solutions from a leading-order sym-
metry is possible, and of interest. Related soil water infiltration solutions appear to
produce more manageable systems of equations, and many boundary conditions of
practical importance remain unsolved. Curvature-dependent surface diffusion in the
vicinity of a grain boundary [2] is another intriguing application.
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Appendix

Here we show the explicit form of the linear system (35), which results from
reordering each boundary condition to isolate terms of different orders in time. From
the surface flux condition (18), we have

a11 = ζ0 ξ−
0 (0, l) − √

α1 ξ−
0 (0, l − 1), (38)

a12 = ζ0 ξ+
0 (0, l) + √

α1 ξ+
0 (0, l − 1), (39)

b1 = −
l−1∑

p=0

ζl−p
[
C1,p ξ−

0 (0, p) + D1,p ξ+
0 (0, p)

]
(40)

−
l∑

n=1

l∑

p=n

ζl−p
[
C1,p−n ξ−

0 (n, p − n) + D1,p−n ξ+
0 (n, p − n)

]

+ √
α1

l∑

n=1

C1,l−n ξ−
0 (n, l − n − 1) + D1,l−n ξ+

0 (n, l − n − 1).

For notational convenience we define

ξ r∓
i (n, j) ≡ ξ±

i (n, j) ± γi,n ξ∓
i (0, j − 1), (41)

the remainder when the term with the highest-order coefficient γi,n is removed from
ξ∓
i (n, j). From the phase-front flux boundary conditions (20) and (21) we have

a23 = 2
√

α2Θc2

l + 1
ξ−
2 (0, l − 1), (42)

a24 =
√

α1Θc2

λ + Θc1 − Θc2
, (43)

a25 = −
√

α2(λ + Θc1)

λ + Θc1 − Θc2
− 2

√
α2Θc2

l + 1

[
C2,0 ξ−

2 (0,−2) + D2,0 ξ+
2 (0,−2)

]
, (44)

b2 = 2
√

α2Θc2

l + 1

{
− C2,0 ξ r−2 (l,−1) + D2,0 ξ r+2 (l,−1) −

l−1∑

n=1

C2,l−n ξ−
2 (n, l − n − 1)

}
;

(45)

a31 = 2
√

α1Θc1

l + 1
ξ−
1 (0, l − 1), (46)

a32 = −2
√

α1Θc1

l + 1
ξ+
1 (0, l − 1), (47)

a34 = −
√

α1(λ − Θc2)

λ + Θc1 − Θc2
− 2

√
α1Θc1

l + 1

[
C1,0 ξ−

1 (0,−2) + D1,0 ξ+
1 (0,−2)

]
, (48)

a24 = −
√

α2Θc1

λ + Θc1 − Θc2
, (49)
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b3 = 2
√

α1Θc1

l + 1

{
− C1,0 ξ r−1 (l,−1) + D1,0 ξ r+1 (l,−1) (50)

+
l−1∑

n=1

[ − C1,l−n ξ−
1 (n, l − n − 1) + D1,l−n ξ+

1 (n, l − n − 1)
]}

.

Finally the phase-front temperature boundary conditions (19) result in the terms

a41 = ξ−
1 (0, l), (51)

a42 = ξ+
1 (0, l), (52)

a44 = −C1,0 ξ−
1 (0,−1) + D1,0 ξ+

1 (0,−1), (53)

b4 = −C1,0 ξ r−
1 (l, 0) − D1,0 ξ r+

1 (l, 0) (54)

−
l−1∑

n=1

[
C1,l−n ξ−

1 (n, l − n) + D1,l−n ξ+
1 (n, l − n)

];

a53 = ξ−
2 (0, l), (55)

a55 = −C2,0 ξ−
2 (0,−1) + ξ+

2 (0,−1)

2
√

πΘ20
, (56)

b5 = −C2,0 ξ r−
2 (l, 0) − ξ r+

2 (l, 0)

2
√

πΘ20
−

l−1∑

n=1

C2,l−n ξ−
2 (n, l − n). (57)
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