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Abstract Following up on the classical solutions by Love for a linear-elastic
self-gravitating sphere, this paper presents the corresponding extension to a lin-
ear viscoelastic body of the Kelvin–Voigt type. The solution is expressed in closed
form by making use of Laplace transforms. Applications to the genesis of terrestrial
planets are sought and the evolution of the Love radius and possible extensions to
large deformations are discussed. As a new result, it turns out that in the early days
of planet formation there is no Love radius and that it takes time for the Love radius
to develop.

1 What This Paper Is About and What It Is Not

Viscoelasticity is of current interest to geology. Typically geologists investigate the
temporal evolution of deformation within the Earth’s outer crust caused by earth-
quakes or other gravitational load shifts such asmelting ice, using viscoelastic mater-
ial models, e.g., Campbell (1974), Ragazzo and Ruiz (2015) and Tanaka et al. (2009).

The present paper is not going in this direction at all. Rather it is a idealistic
continuum approach toward an understanding of the genesis of terrestrial planets
and the subsequent state of deformation in a large self-gravitating object. However,
there is also a certain esthetic aspect in the solution we are about to present, and in
order to quote Keats we may say that “beauty is truth, truth beauty.” More specifi-
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cally, our result is a follow-up on the classical solutions found by the great A.E.H.
Love for a self-gravitating linear-elastic sphere, see Love (1892, 1906, 1927). We
shall extend his beautiful formulae to a linear-elastic model of the Kelvin–Voigt
type. In other words, we will explore the temporal development of the static linear-
elasticity solution of a self-gravitating terrestrial planet. In particular, we shall look
at the temporal evolution of the Love radius, i.e., the position of the transition zone
between compression and tension within a self-gravitating “solid” sphere. This may
even be of practical use, since it is related to damage during the early stages of a
developing terrestrial planet. However, we shall not endeavor to investigate this in
full quantitative detail, at least not here. Surprisingly, our results will be of closed
form, thanks to the efforts of one of the authors in a completely different field of
research, cf. Frelova (2016). This shows the power of continuum theory: Everything
is connected, a maxim we chose to start our salute to our esteemed colleague Holm
Altenbach!

2 Literature Review and Putting the Problem
into Perspective

Today it is a commonly accepted opinion that terrestrial planets, such as Mercury,
Venus, Earth, and Mars, but also other huge solid celestial objects, specifically the
Moon,1 are the result of a coagulation process of “rocky” matter, a.k.a. “planetes-
imals,” to form so-called “protoplanets” during the early stages of the developing
solar system, cf., Wetherill (1990). In order to quote Lissauer (1993), pg. 134: “... in
this picture, planet formation is fundamentally different from star formation in that
planetary growth begins with the accumulation of solid bodies, with the accretion of
substantial amounts of gas occurring after a planet becomes sufficiently massive ...”
and, pg. 136, “... These planetesimals continue to agglomerate via pairwise mergers.
... Growth via binary collisions proceeds until the protoplanets become dynamically
isolated from each other.”

Hearing all this, wemight conclude that the mathematical modeling of the genesis
of a planet is exclusively numerical and within the field of discrete mechanics or
(better) discrete systems, since there will be thermodynamics aspects involved, see,
e.g., Kenyon (2006). However, it is always wise to look at a problem from different
angles and, consequently, we promote the continuum perspective in what follows.

Let us consider the following scenario: A spherical, initially homogeneous,
unstressed sphere (the planet in statu nascendi) undergoes self-gravity. We must
ask as to whether static equilibrium is possible and how it is reached? Two rather
idealized scenarios come to mind.

First, imagine that gravity is “suddenly switched on.” Then, we will essentially
face a situation similar to that of a moving masspoint connected to a linear-elastic

1It is said that also the gas giants initially need a rocky core of sufficient size which is then able to
attract gas, if available in the region of its formation.
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Hookean spring: Due to the inertial terms in the equation of motion and due to
the potential of a linear oscillator pertinent to a radially symmetric, self-gravitating
sphere, this sphere will begin to shrink below the radius determined by static equilib-
rium of forces. While doing so, stress-related forces will build up so that the sphere
will finally start to rebounce. Provided there is no dissipation it will reach its initial
radius again. This will happen over and over if we assume the material of the sphere
to be perfectly elastic without internal friction and without heat conduction, so that
isothermal conditions prevail. In other words, without dissipation there will be a con-
stant exchange between the elastic energy, the gravitational potential, and the kinetic
energies: The motion of the self-gravitating matter would never come to a standstill.
Of course, in the real world there are dissipative processes acting. The shrinking will
be accompanied by dissipation in terms of viscoelastic or viscoplastic deformation,
and there will be heat conduction. All of this will, in the end, bring motion to a
standstill, and the sphere will arrange itself in thermomechanical equilibrium, i.e.,
there will be equilibrium of gravitational and inner, stress-related forces in a state
of homogeneous temperature. It should be mentioned that the final equilibrium state
of a self-gravitating sphere has been modeled in closed mathematical form at the
end of the nineteenth century by Love (1892), who used linear elasticity at small
deformations for this purpose. The interested reader will find detailed information
about Love’s solution and interpretation in the Appendix.

In conclusion, we shall not attempt to model the dynamic transition toward that
equilibrium for various reasons. First of all, its treatment would be fully numerical
based on large deformations expressed in terms of velocities. This makes it difficult
if not impossible to compare it to Love’s analysis of equilibrium, which was based
on small strains. Moreover, choosing an adequate numerical technique would be
required. Surely there will be more than one, all of them with certain pros and cons.
Finally, the question which initial conditions are appropriate is difficult to answer,
since gravity is not simply “switched on” but always present. Hence in terms of
capturing reality our dynamic continuum model could not seriously compete with
the discrete mechanics approach of planetesimal masses bouncing into each other,
sticking together, and finally forming a primordial planet that relaxes stress- and
displacement-wise under the influence of their mutual gravitational attraction. In
short, the fully dynamic continuum model requires too much effort for little gain.

For all these reasons, we shall eat humble pie and turn alternatively to a quasistatic
treatment instead. Thisway inertial forces in the equations ofmotion can be neglected
and the self-gravitating spherewill quasistatically and isothermallymove into its final
state of deformation. Such a situation is frequently conjured up in so-called p dV -
thermodynamics, for example, if we allow the pressure on a piston to change very
slowly so that the gas which is trapped in the corresponding container has time to
accommodate pressure- and temperature-wise. However, in our approach the time
parameter will enter through a viscoelastic model used to connect stresses, strains,
and their corresponding rates. More specifically, in order to be able to study the
temporal development of the solution for the displacements, strains, and stresses
toward Love’s closed-form solutions we will make use of a linear viscoelastic model
of the Kelvin–Voigt type, i.e., small deformation theory will reappear.
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Fig. 1 Stress- versus displacement-controlled viscoelastic experiments (see text)

In this context recall the two fundamental types of quasistatic experiments always
mentioned in combination with quasistatic, linear viscoelasticity (see Fig. 1)2: In the
first one a linear-viscoelastic strip is suddenly subjected to a constant “dead load,”
i.e., a constant uniaxial tensile stress (the “cause”), σ0, is prescribed. Under such
circumstanceswe also speak of load-control. The “effect” consists of an elastic strain,
εi, instantaneously built up.After that the strip gradually creeps quasistatically toward
its final total strain, εf . The counterpart to this experiment consists of prescribing a
strain of a fixed amount (the “cause”), ε0, and to observe the stress response (the
“effect”). This is what we call a displacement-controlled test. It turns out that the
stress response immediately overshoots to a high level, σi, and is then reduced by
creeping quasistatically toward a final lower value, σf . This time we speak of stress-
relaxation.

In the following section we shall state and solve the linear-viscoelastic problem
for a self-gravitating sphere mathematically and study the behavior of the corre-
sponding solution which, surprisingly, will also be of closed-form. Moreover, we
shall also investigate as to whether this fits into the traditional pattern of stress or
strain controlled experiments.

3 A Viscoelastic Model of Self-gravitation

3.1 Viscoelasticity of the Kelvin–Voigt Type

Recall the 1D representation of the so-called Kelvin–Voigt model: AHookean spring
and a dashpot are arranged in parallel: Fig. 2. If we apply a displacement, δ, at the
outer points of this rheological model it will be transferred equally to the spring and
to the dashpot, δ = δ1 = δ2, whereas the resulting force is the sum of the forces due

2Some readers may want to consult Lakes (2009), pg. 4 or Müller and Müller (2009), pg. 370 for
more information.
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Fig. 2 The Kelvin–Voigt
model of 1D linear
viscoelasticity

to both elements, F = F1 + F2. In strength-of-materials-terminology we may say
that the strains and, hence, the strain rates are equal, ε = ε1 = ε2 ⇒ ε̇ = ε̇1 = ε̇2,
whereas the stresses are additive, σ = σ1 + σ2, and where the dot refers to a time
derivative. The spring is now modeled by Hooke’s law, σ1 = Eε1, and the dashpot
by a Newton–Navier–Stokes relationship, σ2 = η ε̇2. If we combine these equations,
we arrive at:

σ = E
( η

E
ε̇ + ε

)
. (1)

We can then introduce a strain-based relaxation time, τε = η/E, which will come
in handy once we turn to dimensionless equations.

One-dimensional rheologicalmodels allowus tofind three-dimensional analogues
if we accept the daring idea of replacing the 1D stress and strain simply by stress
and strain tensors. We proceed to illustrate this idea for the case of the Kelvin–Voigt
model, Eq. (1), and write:

σ = σ 1 + σ 2 , ε = ε1 = ε2. (2)

Now we assume that the planet can be modeled as a linear, isotropic medium. We
therefore consider the following customary constitutive equations for linear elasticity
and viscosity during further analysis (the acronyms “dil” and “dev” refer to dilatoric
and deviatoric parts of the strain (rate) tensors, respectively):

σ 1 = 3k εdil1 + 2μ εdev1 , σ 2 = 3η′ ε̇2dil + 2η ε̇2
dev , (3)

where k and μ refer to the bulk modulus and the shear modulus, respectively. More-
over, η′ and η are known as coefficients of bulk and shear viscosity.

If we now combine Eqs. (2) and (3) suitably we finally arrive at the following
relation:

σ = 3k

(
η′

k
ε̇dil + εdil

)
+ 2μ

(
η

μ
ε̇dev + εdev

)
. (4)

Hence, in principle, we must distinguish between two different relaxation times:
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τv,ε = η′

k
, τs,ε = η

μ
, (5)

where the indices v and s are supposed to remind us of the dilatoric (volumetric) and
deviatoric (shear) parts, and the index ε of the strain-related relaxation process.

However, it is known that the bulk viscosity is a rather elusive parameter and
very difficult to measure, see Gad-el Hak and Bandyopadhyay (1995). Therefore,
we will neglect it in what follows and obtain from the previous equations because of
εdil := 1

3 Tr εI and εdev := ε − εdil:

σ = 3k εdil + 2μ εdev + 2η ε̇dev ≡ λ Tr ε I + 2μ ε + 2η

(
ε̇ − 1

3
Tr ε̇ I

)
, (6)

I being the unit tensor.
Our main objective is to determine the displacement, u, in spherical coordinates

(for obvious reasons). We assume perfect spherical symmetry, hence u = ur (r)er ,
ur being its radial component and er being the radial unit vector. All necessary
equations will be written in spherical coordinates. Specifically, we recall Eqs. (37)
and (38) from the Appendix, which we complement by:

ε̇rr = u̇′
r , ε̇ϑϑ ≡ ε̇ϕϕ = u̇r

r
, ε̇rϑ = ε̇rϕ = ε̇ϑϕ ≡ 0 . (7)

Then we obtain analogously to Eq. (39):

σrr = (λ + 2μ)u′
r + 2λ

ur
r

+ 4

3
η

(
u̇′
r − u̇r

r

)
,

σϑϑ ≡ σϕϕ = λu′
r + 2(λ + μ)

ur
r

+ 2

3
η

(
u̇r
r

− u̇′
r

)
, (8)

σrϑ = σrϕ = σϑϕ ≡ 0.

The equilibrium conditions (34) hold and we arrive similarly to Eq. (40) at the
following Partial Differential Equation (PDE) for ur (r, t):

u′′
r + 2

u′
r

r
− 2

ur
r2

+ 4

3

η

λ + 2μ

(
u̇′′
r + 2

u̇′
r

r
− 2

u̇r
r2

)
= 4πρ2

0G

3(λ + 2μ)
r, (9)

where the dot means differentiation w.r.t time, t , and the dash differentiation w.r.t.
position, r .

This PDE must be solved in combination with two boundary conditions and one
initial condition. We will study the case of a viscoelastic sphere of outer radius, ro.
The boundary conditions state that the displacement stays finite and vanishes in the
center and that there is no traction at the outer boundary, ro:



A Closed-Form Solution for a Linear Viscoelastic Self-gravitating Sphere 85

ur (r = 0, t) = 0 , σrr (r = ro, t) = 0. (10)

3.2 Solution in Dimensionless Form

Analogously to Eqs. (47) and (49)1 we define

u ≡ u(x, τ ) = ur
ro

, x = r

ro
, τ = λ + 2μ

η
t , α = 8πGρ2

0r
2
o

3(λ + 2μ)
. (11)

Then the PDE (9) assumes the form:

u′′ + 2
u′

x
− 2

u

x2
+ 4

3

(
u̇′′ + 2

u̇′

x
− 2

u̇

x2

)
= α

2
x, (12)

where the dot now refers to differentiation w.r.t. dimensionless time, τ , and the dash
means differentiation w.r.t. dimensionless position, x .

The nonvanishing stresses are normalized by λ + 2μ (identified by a tilde) and
read:

σ̃rr = u′ + 2ν

1 − ν

u

x
+ 4

3

(
u̇′ − u̇

x

)
, (13)

σ̃ϑϑ ≡ σ̃ϕϕ = ν

1 − ν
u′ + 1

1 − ν

u

x
− 2

3

(
u̇′ − u̇

x

)
.

The boundary conditions (10) take the following form:

u(0, τ ) = 0 , (14)

σ̃rr (1, τ ) ≡ u′(1, τ ) + 2ν

1 − ν
u(1, τ ) + 4

3

[
u̇′(1, τ ) − u̇(1, τ )

]
= 0,

and the initial condition reads:

u(x, 0) = 0 , x ∈ [0, 1], (15)

this is to say that we expect no displacements initially, because “gravitation has just
been switched on at τ = 0.”

We solve the PDE (12) by mapping it onto Laplace space w.r.t. time τ ↔ s and
then finding a solution of the corresponding Ordinary Differential Equation (ODE).
The Laplace transform of the displacement will be identified by a bar, ū = ū(x, s),
and we may write according to the usual rules of Laplace transforms:
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(
1 + 4

3
s

)(
ū′′(x, s) + 2

ū′(x, s)
x

− 2
ū(x, s)

x2

)
−

4

3

[
u′′(x, 0) + 2

u′(x, 0)
x

− 2
u(x, 0)

x2

]
= αx

2

1

s
. (16)

The term in brackets drops out. We can give two reasons for that. First, there is the
initial condition (15), according to which the displacement (and all its derivatives)
shall vanish initially. Second, we note that this very term represents the (stationary)
ODE of the gravitational problem provided gravitation is not present, see Eq. (40),
which is zero to begin with. The solution of the remaining ODE for ū(x, s) is com-
pletely analogous to the one presented in Eq. (41). We may write:

ū(x, s) = Ax + B

x2
+ α

20
x3

1

s
(
1 + 4

3 s
) , 0 ≤ x ≤ 1, (17)

In order to determine the constants of integration we have to transform the bound-
ary conditions (14) into Laplace space as follows:

ū(0, s) = 0 , (18)

(
1 + 4

3
s

)
ū′(1, s) +

(
2ν

1 − ν
− 4

3
s

)
ū(1, s) − 4

3

[
u′(1, 0) − u(1, 0)

]
= 0.

For the same reasons as before the term in parentheses in the second equation
drops out. The first equation requires us to put B = 0. Moreover, the remaining
linear equation for A in Eq. (17)2 can be solved and, after back transform into real
time space, the final result reads as follows:

u(x, τ = 0) = 0 , (19)

u(x, τ > 0) = − α

20
x

[
3 − ν

1 + ν
− x2

] [
1 − exp

(− 3
4τ

)] − α

10

1 − ν

1 + ν
x exp

(− 3
4τ

)
.

Note that special attention has been given to the case τ = 0: If we consider the
limit case τ → 0 we find a nonvanishing initial displacement. Moreover, it can be
seen that the initial and boundary conditions from Eqs. (14), (15) are indeed satisfied.
For τ → ∞ the stationary relation shown in Eq. (48) is obtained.

We are now in a position to determine the dimensionless stresses from Eq. (13):

σ̃rr = − α

20

(
1 − x2

) [
3 − ν

1 + ν
− 1 + ν

1 − ν
exp

(
−3

4
τ

)]
, (20)

σ̃ϑϑ ≡ σ̃ϕϕ = − α

20

3 − ν

1 − ν

[
1 − 1 + 3ν

3 − ν
x2 − 1 + ν

3 − ν

(
1 − 2x2

)
exp

(
−3

4
τ

)]
.
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It is easy to see that in the limit τ → ∞ the stresses of the stationary solution
from Eq. (52) result.

3.3 Evaluation and Discussion of the Results

Figure3 depicts the temporal evolution of the displacement as a function of radial
distance in dimensionless form as predicted by Eq. (19) for the choice ν = 0.3. Note
that immediately after “gravity has been switched on” the dependence is nearly
linear.3 Consequently, the minimum is located at the outer radius x = 1. It is an edge
minimum and not a “true” minimum with vanishing derivative.

In this context recall the notion of the “Love radius.” It indicates the position
where the radial strains within a self-gravitating sphere changes sign and it was first
discovered by A.E.H. Love. In equilibrium this (normalized) position is given by:

xLove =
√

3 − ν

3(1 + ν)
, (21)

and the details of the derivation of the formula can be found in the Appendix.

Fig. 3 Temporal
development of the
displacement as a function of
radial position (see text)

3The label τ = 0 in Figs. 3, 4 is to be understood in the sense τ ≈ 0 (i.e., very small but not equal
to zero). A more detailed discussion of this degenerated case can be found in Müller and Weiss
(2016).
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Fig. 4 Temporal
development of the Love
radius (see text)

Also recall that in the present case the radial strain is nothing else but the derivative
of the radial displacement w.r.t. position, i.e., the slope to that curve. Moreover, the
Love radius is defined by a true minimum of the radial displacement with zero slope.
Consequently, in the transient case, a tensile region does not exist initially. It takes
a certain while until the prominent feature of a true minimum corresponding to the
location of the Love radius evolves.

We can obtain the location of the Love radius by (formal) differentiation of the
displacement shown in Eq. (19) w.r.t. x . The result is:

xLove = 1√
3

√
3 − ν

1 + ν
+ 1 − ν

1 + ν

1

exp
(
3
4τ

) − 1
. (22)

It is easily seen that this expression tends to the “elastic” Love radius shown in
Eq. (21) if τ goes to infinity (Fig. 4).

Finally, Fig. 5 presents the (dimensionless) stresses. It is noteworthy that the radial
stress component relaxes monotonically without a qualitative change in the shape of
the curve. This is not so for the angular stresses, whose minima switch from x = 1
to x = 0 as time goes on.

Based on the results presented in Figs. 3 and 5, we must conclude that the process
of relaxation in a self-gravitating terrestrial planet is not as simple as in the textbook
example of a load and displacement-controlled viscoelastic strip shown in Fig. 1. This
is due to the fact that we face a three-dimensional state of stress after “switching on”
a spatially varying body force.
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Fig. 5 Temporal
development of the stresses
(see text)

4 Outlook and Conclusions

The main objective of this paper was to present an analysis of the temporal devel-
opment of the displacements, strains, and stresses in a self-gravitating sphere. The
model was based on a radially symmetric linear viscoelastic constitutivemodel of the
Kelvin–Voigt type. An analytical solution was found based on Laplace transforms.
It was shown how the displacement and stresses relax to the stationary linear-elastic
solution, originally due to Love, which was also reviewed in an appendix. In partic-
ular it was shown that the so-called Love radius, which marks the transition between
the regions of compressive and tensile strain, does not exist in the early stages. It
takes some time to develop.

In future work we will investigate alternative viscoelastic models, for example a
generalization of the Zener type. We will also attempt to predict the relaxation time
scales based on recent measurements of the viscosity of (liquid) iron and igneous
rock.
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Appendix: Love’s Solution—Its History in Modern Form

The following passages were primarily written for the benefit of readers who do not
solve linear-elastic problems on a daily basis. However, they also contain interpre-
tations not originally provided by Love, for example intuitive explanations of the
meaning of the normalizing coefficients for the displacements and for the stresses.

A.1 The Primary Assumptions of Love and Their Limitations

Love’s solution for the state of deformation in a self-gravitating sphere is a static
one. Hence the balance of momentum degenerates to the following equation:

∇ · σ = −ρ f , (23)

where ρ denotes the local current mass density, and σ the Cauchy stress tensor.
The specific body force, f , i.e., the gravitational acceleration, is conservative and
originates from self-gravity. Hence a gravitational potential U grav(x) exists, where
x denotes an arbitrary (current) position within the body, and we may write:

f (x) = −∇U grav(x). (24)

The gravitational potential obeys Poisson’s equation:

�U grav(x) = 4πGρ(x). (25)

For the stress tensor we initially assume that Hooke’s law holds, so that there are
no rate effects:

σ = λ Trε I + 2μ ε, (26)

where the linear strain tensor has been used:

ε = 1
2 (∇u + ∇u
). (27)

u refers to the displacement vector, i.e., to u = x − X , X being the reference
position of a material point of the sphere. λ and μ are Lamé’s elastic constants.

At this point three remarks for putting Love’s approach in perspective are in order,
which are all related somehow. They all circle around the question “What happens if
the deformations prove to be large?” We shall see that they can be large, we want to
point out possible remedies, we will provide some citations for further reading, but
we shall not endeavor to work it all out in this paper.

The first comment concerns the nabla operator used in the aforementioned equa-
tions: Note that all nabla operators above indicate differentiation w.r.t. the current
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spatial position, x. This is how the theoryworks for “linear elasticians:” There is only
one gradient in linear theory of elasticity at small deformations, namely that one.
Hence for them putting an emphasis on it sounds trivial. However, there is a world
outside of linear elasticity as understood by Sokolnikoff (1956) or Timoshenko and
Goodier (1951), in order to quote just two references of that denomination. Indeed, it
is possible to understand linear elasticity as a limit case of nonlinear materials theory.
Then Hooke’s law results in a natural way written in terms of gradients with respect
to the reference configuration, X , see Wang and Truesdell (1973), pp. 170, or Müller
(1973), p. 72. However, in the next breath it is said, see Truesdell and Toupin (1960),
Sects. 57 and 301, that it does not really matter, and these gradients can be replaced
by derivatives w.r.t. the current position, since the deformations are so small. What
they do not say, though, is that it does matter from a principal, didactic point-of-view.

Second, from the standpoint of linear elasticity, the set of Eqs. (23)–(27) serves
only one purpose: It allows us to calculate the displacement u(x). To this end the
mass density ρ(x)must be considered as known, and for linear-elasticians it is, in the
simplest case, a space-independent constant, ρ = ρ0. If we relate it to our problem
we may consider it to be the mass density of the homogeneous sphere before gravity
has been switched on. However, recall that this does not mean that the current mass
density is also a constant, even if it is one in the reference state. It is dependent
on deformation and it can be determined from mass conservation. In general, now
turning back to nonlinear theory for a moment, it is well known that we may write:

ρ(x) = ρ0

detF(x)
, (28)

where F(x) ≡ ∇X x is the deformation gradient pertinent to a material point. Recall
once more that Eq. (28) is the result of the physical principle of local mass con-
servation and geometry, i.e., nonlinear kinematics, and, as such, it holds for arbi-
trary deformations. If we insist on studying small deformations, we must replace
Eq. (28) by:

ρ(x) ≈ ρ0
[
1 − Tr ε(x)

]
. (29)

Consequently, the argument now runs as follows: Once the linear strain ε(x) is
known from a linear-elastic analysis based on the (static) balance of momentum in
combination with Hooke’s law, during which the mass density is assumed to be spa-
tially constant, the spatial distribution of the current mass density in the strained body
can be calculated from Eq. (29). In other words, one does not solve a coupled prob-
lem and does not make use of the balances of mass and momentum simultaneously.
Indeed, in our problem we calculate the strains or rather the displacements from
Eqs. (23)–(27) after the current mass density in the body force has been replaced
by a constant reference mass density, hence mimicking homogeneous initial condi-
tions for the mass distribution of a terrestrial planet. For conciseness of this paper,
the question as to how the current mass density will look like and how it compares
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with today’s knowledge of the inner mass distribution of Earth will be discussed
elsewhere.4

Third, the use of a constant reference mass density in linear elasticity turns into
a very subtle point when applied to problems of self-gravity. Observe that in the
current local balance of momentum the current mass density appears explicitly and
linearly in three locations: (i) in the inertial term (not shown in Eq. (23), because
we restrict ourselves to quasistatic conditions); (ii) in the product of the term for the
body force density, and (iii) in the acceleration part of the body force density, if we
consider the case of full self-gravitational interaction. The latter will be demonstrated
explicitly in Subsection (A.2.1). Now recall once more that all of this is ignored in
linear elasticity where the current mass density is simply replaced by a constant value
ρ0, everywhere. We may rephrase it in the jargon of technical mechanics by saying
that the forces are applied to the undeformed structure and a first order theory is
used to calculate the resulting deformation. Thus we would like to reemphasize that
the model “linear elasticity” is defined by three prerequisites (also see, for example,
the beginning of Kienzler and Schröder (2009), namely, first, a linear relationship
between stress and strain, second, strains and displacements to be small and, third,
equilibrium of an undeformed element.

However, the use of linear elasticity in self-gravitational problems remains ques-
tionable. Indeed, we shall see that for certain celestial objects, in particular the Earth,
the strains we are about to predict from the linear theory of elasticity can become
very large. Probably the first to notice was A.E.H. Love after applying linear elas-
ticity in the way defined above and discovering what is known as the Love radius, a
radial transition point within a self-gravitating spherical body, where radial strains
switch from compression to tension and, consequently, may result in damage of the
body. Love muses in sudden attacks of self-doubt about his approach, namely in
Love (1892), Article 127: “There is another difficulty in the application of the result
[for the strains and for the breaking stress] to the case of the Earth. The necessary
limitation to the mathematical theory is that the strain found from it must always
be “small”. ...” and in Love (1927), Article 75: “The Earth is an example of a body
which must be regarded as being in a state of initial stress, for the stress that must
exist in the interior is much too great to permit of the calculation, by the ordinary
methods, of strains reckoned from the unstressed state as unstrained state.”

Consequently, we could come to the conclusion to abandon linear elasticity com-
pletely and to use a deformation-wise nonlinear theory instead. Indeed, this was done
in a series of papers from the school of Seth, who was one of the first to study and use
nonlinear deformation measures for elasticity problems, see, e.g., Chattarji (1953)
or Bose and Chattarji (1963). In principle, this requires solving the coupled problem,
namely the balances of mass and momentum, unless an empirical expression for the
(current) mass density distribution is assumed. The latter was the case in the afore-
mentioned papers from the school of Seth. One of their main conclusions was that
the position of the Love radius as predicted by linear elasticity at small deformations
does not change much when switching to large deformation theory.

4The interested reader is referred to Müller and Weiss (2016).
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This in mind, do we now feel completely reconciled by using the linear theory
elasticity in context with problems of self-gravity? The answer is unfortunately “no.”
Indeed, a detailed study of the nonlinear problem shows that there are many open
questions, ranging from numerical issues to the use of the proper nonlinear stress-
strain relationship.5 Nevertheless, this paper is not the place to explore this issue
completely.Wemust and will assume the position of Galileo’s Simplicio, who would
use the linear-elastic solution anyway, no matter how large the self-gravitating mass
really is. To quote Churchill: “Now this is not the end. It is not even the beginning
of the end. But it is, perhaps, the end of the beginning” or shall we say the dawn of
awareness?

In the next section we shall briefly summarize Love’s linear elasticity results at
small deformations and provide some additional comments for better explanation and
clarification of the problem. For example we shall introduce and interpret various
parameters in terms of their physical meaning, which can be used for normalization
of the solution. Moreover, we will show that for certain celestial objects, such as
Mercury, the linear elasticity solution with small deformations can be considered as
valid. It will also serve as a starting point as well as for comparison with the results
from linear viscoelasticity in Sect. 3.

A.2 Review of Love’s Linear-Elastic Model of Self-gravitation

A.2.1 Analysis of the Strictly Radially Symmetric Case

Westart from the Poisson equation describingNewtonian gravity as shown inEq. (24)
and assume purely radial dependencies:

1

r2
d

dr

(
r2

dU grav(r)

dr

)
= 4πGρ(r) ⇒ dU grav

dr
= G

m(r)

r2
, (30)

where m(r) denotes the total mass within a spherical region of radial extension r :

m(r) = 4π

r̃=r∫

r̃=0

ρ(r̃)r̃2dr̃ , 0 ≤ r ≤ ro, (31)

and ro stands for the current outer radius of the spherical body. Consequently, accord-
ing to Eq. (24), under these circumstances the volume density of body force is given
by:

ρ(r) f (r) = −G
ρ(r)m(r)

r2
er . (32)

5The interested reader may want to consult Müller and Weiss (2016) for further information.
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This includes the well-known high school result according to which the gravita-
tional force at a distance r within a homogeneous sphere is given by Newton’s law
of gravity for point masses: The attracting mass is given by all the matter below the
position r , i.e., m(r), and can be thought of as being concentrated in the origin of
the sphere, i.e., r = 0. The to-be-attracted mass at the radial position r is given by
dm = ρ(r) dV , dV being the corresponding volume element to be used for multipli-
cation in Eq. (24). Moreover, the gravitational force is attractive, as indicated by the
negative direction of the current radial unit vector, er . It should be pointed out that
in this equation the mass density within the sphere does not necessarily have to be
homogeneous. Rather it can be a function of the current radius, ρ(r), and the high-
school result still holds. This is very often not clearly stated in textbooks, especially
if use of the Poisson equation is avoided for mathematical simplicity.

However, as outlined before, it is customary in linear elasticity to use the body
force of an undeformed structure inEq. (23).More specifically,we pretend everything
is initially homogeneous and use a constant mass density, ρ0, such that:

ρ(r) f (r) ≈ −G
ρ0m(r)

r2
er ≈ −4πGρ2

0

3
r er . (33)

Note that a two-step approximation was involved here. First, the current mass
density, ρ(r), in Eq. (23) or in (32) was replaced by the reference mass density, ρ0.
Second, no distinction is made between the current and the reference radius on the
right hand side of Eq. (32). We will now use the approximation (33) in Eq. (23),
which reads in spherical coordinates as follows:

∂σrr

∂r
+ 1

r

∂σrϑ

∂ϑ
+ 1

rsinϑ

∂σrϕ

∂ϕ
+ 2σrr − σϑϑ − σϕϕ + σrϑ cot ϑ

r
= 4πGρ2

0

3
r,

∂σrϑ

∂r
+ 1

r

∂σϑϑ

∂ϑ
+ 1

rsinϑ

∂σϑϕ

∂ϕ
+ 3σrϑ + (

σϑϑ − σϕϕ

)
cotϑ

r
= 0, (34)

∂σrϕ

∂r
+ 1

r

∂σϑϕ

∂ϑ
+ 1

rsinϑ

∂σϕϕ

∂ϕ
+ 3σrϕ + 2σϑϕ cot ϑ

r
= 0.

Moreover, Hooke’s law reads in spherical coordinates as follows:

σrr = λ(εϑϑ + εϕϕ) + (λ + 2μ)εrr , σϑϑ = λ(εrr + εϕϕ) + (λ + 2μ)εϑϑ,

σϕϕ = λ(εrr + εϑϑ) + (λ + 2μ)εϕϕ , (35)

σrϑ = 2μεrϑ , σrϕ = 2μεrϕ , σϑϕ = 2μεϑϕ.

And finally the linear strain tensor is linked with spatial derivatives of the dis-
placements by:

εrr = ∂ur
∂r

, εϑϑ = 1

r

∂uϑ

∂ϑ
+ ur

r
, εϕϕ = 1

rsinϑ

∂uϕ

∂ϕ
+ ur

r
+ cotϑ

r
uϑ ,
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εrϕ = 1
2

(
1

rsinϑ

∂ur
∂ϕ

+ ∂uϕ

∂r
− uϕ

r

)
, (36)

εrϑ = 1
2

(
1

r

∂ur
∂ϑ

+ ∂uϑ

∂r
− uϑ

r

)
, εϑϕ = 1

2

(
1

rsinϑ

∂uϑ

∂ϕ
+ 1

r

∂uϕ

∂ϑ
− cotϑ

r
uϕ

)
.

We now proceed to solve these equations. To this end we make use of the semi-
inverse method. Because of symmetry it seems reasonable to seek for solutions with
the following ansatz:

ur = ur (r) , uϑ = 0 , uϕ = 0. (37)

Consequently, we find for the linear strains:

εrr = u′
r (r) , εϑϑ ≡ εϕϕ = ur

r
, εrϑ = εrϕ = εϑϕ ≡ 0 , (38)

where the dash refers to a differentiation w.r.t. r . Because of that Hooke’s law (35)
reduces to:

σrr = (λ + 2μ)u′
r + 2λ

ur
r

, σϑϑ ≡ σϕϕ = λu′
r + 2(λ + μ)

ur
r

, (39)

σrϑ = σrϕ = σϑϕ ≡ 0 .

Thus, the angular components of the balance of momentum shown in Eq. (34) are
identically satisfied and the first one results in an ordinary differential equation of
second order (a dash refers to differentiation with respect to the radius, r ):

u′′
r + 2

u′
r

r
− 2

ur
r2

= 4πρ2
0G

3(λ + 2μ)
r. (40)

The general solution consists of the full solution to the homogeneous part and
one particular solution of the inhomogeneous case. It reads with two constants of
integration, A and B, respectively, as follows:

ur = Ar + B

r2
+ 4πρ2

0G

30(λ + 2μ)
r3. (41)

Two conditions are needed in order to determine the two constants of integration.
First, we require that the solution does not become singular at r = 0 and, second, the
tractionmust be continuous at the outer radius, ro, of the sphere. Hence, σrr

∣∣
r=ro

= 0,
because the influence of the outer atmospheric pressure of roughly 1bar is negligibly
small when it comes to the deformation of a solid. With Eq. (39)1 we find that:
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B = 0 , A = − 4πGρ2
0

30(λ + 2μ)

3 − ν

1 + ν
r2o ≡ −4πGρ2

o

90 k

3 − ν

1 − ν
r2o , (42)

because λ = Eν
(1−2ν)(1+ν)

and μ = E
2(1+ν)

, E being Young’s modulus and ν Poisson’s
ratio, respectively. Hence the radial displacement reads:

ur = − 2πGρ2
0r

2
o

15(λ + 2μ)

(
3 − ν

1 + ν
− r2

r2o

)
r ≡ −2πGρ2

0r
2
o

45 k

1 + ν

1 − ν

(
3 − ν

1 + ν
− r2

r2o

)
r.

(43)

For completeness, the nonvanishing stresses then follow from Eq. (39) as:

σrr = −2πGρ2
0r

2
o

15

3 − ν

1 − ν

(
1 − r2

r2o

)
, (44)

σϑϑ ≡ σϕϕ = −2πGρ2
0r

2
o

15

3 − ν

1 − ν

(
1 − 1 + 3ν

3 − ν

r2

r2o

)
.

Note the common factor 2πGρ2
0r

2
o

15 in front of all these expressions. On first glance
it does not allow for an easy intuitive interpretation. However, on second thought,
note that (within the approximations made) the total mass of the gravitating sphere,
m0, the gravitational acceleration on its surface, g, and its surface area, Ao, are given
by:

m0 = 4π

3
ρ0r

3
o , g = Gm0

r2o
, Ao = 4πr2o . (45)

Hence, we may write the ominous factor as:

2πGρ2
0r

2
o

15
≡ 3m0g

10Ao
, (46)

and interpret it, with the exception of the fraction 3
10 , as an average “pressure,”

namely the ratio between the “total gravitational force,” m0g, distributed over the
total surface area, Ao.

A.2.2 Dimensionless Formulation

For a numerical analysis it is best to work with dimensionless quantities. Since the
outer radius, ro, is the only length parameter in the problem, there is no other choice
for a dimensionless distance and a dimensionless displacement but to define:

x = r

ro
, u = ur

ro
. (47)
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This allows us to rewrite Eq. (43) as follows:

u = − α

20

(
3 − ν

1 + ν
− x2

)
x ≡ −αk

30

1 + ν

1 − ν

(
3 − ν

1 + ν
− x2

)
x, (48)

with two dimensionless factors:

α = 8πGρ2
0r

2
o

3(λ + 2μ)
, αk = 4πGρ2

0r
2
o

3 k
, (49)

because the bulk modulus is given by k = E
3(1−2ν)

.
Whilst the appearance of α is a straightforward consequence of Eq. (43) the need

for αk must be explained. To this end note that the dimensionless expressions in
the parentheses of Eq. (48) still contain Poisson’s ratio. However, Poisson’s ratio of
a terrestrial planet is not an immediately accessible parameter. A homogenization
technique has to be applied in order to find outwhich effective elastic parameters such
an object has. On the other hand, if we evaluate the parentheses in this equation at the
surface of the planet, i.e., at x = 1, we obtain twice the fraction 1−ν

1+ν
. Hence Poisson’s

ratio disappears completely in the expression for the normalized displacement if we
use the dimensionless factor αk . In this case one only needs to know the effective
compressibility of the planet, a parameter that can vary within certain physically
reasonable bounds.Andwhat ismore, since u(x = 1) can be interpreted as an average
strain characterizing the state of deformation of the planet, which we wish to access
numerically, it is very useful to have one elastic parameter less to worry about. A
final comment is in order in context with Eq. (48). It obviously provides a restriction
to the size of α so that small strain theory applies. However, as it was pointed out
above, we will discuss this issue in detail in Müller and Weiss (2016) and not here.

Later we shall be interested in a strain-based failure criterion. Hence it is useful
to know the strains explicitly:

εrr = − α

20

(
3 − ν

1 + ν
− 3x2

)
, εϑϑ ≡ εϕϕ = − α

20

(
3 − ν

1 + ν
− x2

)
. (50)

We now turn to the stresses given by Eq. (44). Differently from the case of length
related quantities there are various possibilities for normalization. First, as Eq. (44)

suggestively seems to indicate, we can use the factor 2πGρ2
0r

2
o

15 , which we have inter-
preted as an “average gravitational pressure” before. However, alternatively, we may
use combinations of (effective) elastic constants. There is λ + 2μ, which is related to

the velocity of P-waves
(
vP =

√
λ+2μ

ρ0

)
, and, hence, a physically accessible quantity.

Moreover, we may turn to the compressibility k, which is a direct measure of the
resistance of a planet’s response to its own self-gravity. However, in this paper we
restrict ourselves for simplicity to the choice:

σ̃ = σ

λ + 2μ
(51)
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Fig. 6 Normalized displacement versus dimensionless radius (see text)

and obtain:

σ̃rr = − α

20

3 − ν

1 − ν

(
1 − x2

)
, σ̃ϑϑ ≡ σ̃ϕϕ = − α

20

3 − ν

1 − ν

(
1 − 1 + 3ν

3 − ν
x2

)
.

(52)

A.2.3 Numerical Evaluation and Graphical Representation

Figure6 (left) illustrates the dependence of the normalized displacement, u ≡ ur
ro
per

αk , on x ≡ r
ro

for three different choices of Poisson’s ratio, ν = 0 (red), ν = 0.3
(green), and ν = 0.5 (blue). Note that, as it should be, the radial displacement is
negative and that the curves show aminimum. Because of Eq. (36)1 we may interpret
the slope of the curves as radial strain multiplied by αk . Hence the only positive
radial strains can be found to the right of the minimum. The transition point between
positive and negative strains (see Fig. 6, right), identifiable by locating the minimum
of the displacement, is a.k.a. the Love radius and given by:

rLove = r0

√
3 − ν

3(1 + ν)
. (53)

This result was first mentioned by Love in his books on linear elasticity, namely
in Article 127 of Love (1892) and later in Article 98 of Love (1906) or Love (1927).
An intuitive explanation for the necessity of its occurrence is as follows: Unlike a
homogeneous, isotropic sphere subjected to a constant external pressure, the state
of strain in our case is not homogeneous and not isotropic. We face a nonconstant
“external hydrostatic pressure,” so-to-speak, given by an effective gravitational force
depending linearly on the distance from the center. This in combination with Pois-
son’s effect, i.e., the ability of a radial strain “making up” for the lateral contractions,
εϑϑ and εϕϕ , which are purely compressive in nature everywhere: The contractive
force is proportional to r , the stretching stress (compensation of the lateral contrac-
tion) is proportional to r2. Hence from some r onward the force is not strong enough
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for compression, resulting in a transition from the negative to the positive, in other
words in the existence of a Love radius. In his later editions Love does no longer
comment on the physical significance of his radius. However, the first edition makes
it perfectly clear that he was aiming at a failure criterion, namely specifically at what
is known today as maximum principal strain theory. Love realized that the angular
strains are always negative, whereas the radial strains may become positive above
the Love radius, cf. Eq. (50) and Fig. 6 (right), and he provided an expression for the
maximum radial strain, which is the one at the surface:

εrr
∣∣
x=1 = α

5

ν

1 + ν
. (54)

According to Love the corresponding tensile breaking stress is then given by:

T0 = Eεrr
∣∣
x=1 = Eα

5

ν

1 + ν
. (55)

This is quite a daring concept, because a planet like Earth is heterogeneous,
and surely not perfectly linear elastic, and the materials it is made of might not be
susceptible to strain-based failure, and so on, and so on. But even if we accept his
idea in principle, what is the proper Young’s modulus to be used for a heterogeneous
object like Earth? On second glance, however, note that the factor α also contains
Young’s modulus in its denominator (cf. Eq. (49)1) since λ + 2μ = (1−ν)E

(1−2ν)(1+ν)
. Thus

we do not need to know E but only Poisson’s ratio, ν, which runs within well-known
bounds, namely 0 ≤ ν ≤ 0.5. Hence, we may rewrite Love’s result as follows:

T0 = ν(1 − 2ν)

1 − ν

8πGρ2
0r

2
o

15
. (56)

If we assume Poisson’s ratio to be that of iron, ν = 0.3, and the mean mass density
of Earth ρ0 = 5500 kg

m3 together with its (average) outer radius ro = 6370 km, we
obtain T0 > 30,000MPa, which is a value for a breaking stress far beyond physical

Fig. 7 Normalized
displacement versus
dimensionless radius for
Mercury and Earth (see text)
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credibility. It may be for that reason that Love did not present his original idea in
later editions of his book any more. Nevertheless, it is a fact that the quality of the
radial strain changes when passing the Love radius and it remains to be seen if the
breaking stress can be brought to physically reasonable values if a deformation-wise
nonlinear theory is used.

Figure7 shows a plot of Eq. (48)1 when data of Mercury (index M) and Earth
(index E) were used for evaluation. Specifically we have values for the average
mass densities of ρE

0 = 5500 kg
m3 and ρM

0 = 5400 kg
m3 and (average) outer radii of rEo =

6370 km and rMo = 2440 km, respectively. For the elastic data we assume in both
cases the values of iron, i.e., E = 210GPa and ν = 0.3. This leads to the red curve
for Mercury and to the blue one for Earth. Consequently, the strains for Mercury
are below two percent but the ones for Earth are huge and amount to a maximum of
fourteen percent. Hence, one may question the validity of the use of linear elasticity
in case of very large self-gravitating masses and turn to a nonlinear formulation
instead. Indeed, this has been done by the Indian school of Seth, who was one of the
pioneers in large strain measures. We will not discuss this in detail here and refer
the interested reader to Chap.3 of the upcoming publication by Müller and Weiss
(2016).
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