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Mircea Bîrsan and Patrizio Neff

Abstract We consider the Cosserat continuum in its finite strain setting and discuss
the dislocation density tensor as a possible alternative curvature strain measure in
three-dimensional Cosserat models and in Cosserat shell models. We establish a
close relationship (one-to-one correspondence) between the new shell dislocation
density tensor and the bending-curvature tensor of 6-parameter shells.

1 Indroduction

The Cosserat-type theories have recently seen a tremendous renewed interest for
their prospective applicability to model physical effects beyond the classical ones.
These comprise notably the so-called size-effects (“smaller is stiffer”).

In a finite strain Cosserat-type framework, the group of proper rotations SO(3) has
a dominant place. The original idea of the Cosserat brothers (Cosserat and Cosserat
1909) to consider independent rotational degrees of freedom in addition to themacro-
scopic displacement was heavily motivated by their treatment of plate and shell the-
ory. Indeed, in shell theory it is natural to attach a preferred orthogonal frame (triad)
at any point of the surface, one vector of which is the normal to the midsurface, the
other two vectors lying in the tangent plane. This is the notion of the “trièdre caché”.
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The idea to consider then an orthogonal frame which is not strictly linked to the
surface, but constitutively coupled, leads to the notion of the “trièdre mobile”. And
this then is already giving rise to a prototype Cosserat shell (6-parameter) theory. For
an insightful review of various Cosserat-type shell models, we refer to Altenbach
et al. (2010).

However, the Cosserat brothers have never proposed any more specific consti-
tutive framework, apart from postulating euclidean invariance (frame-indifference)
and hyperelasticity. For specific problems it is necessary to choose a constitutive
framework and to determine certain strain and curvature measures. This task is still
not conclusively done, see e.g. Pietraszkiewicz and Eremeyev (2009).

Among the existing models for Cosserat-type shells, we mention the theory of
simple elastic shells (Altenbach and Zhilin 2004), which has been developed by
Zhilin (1976, 2006) and Altenbach and Zhilin (1982, 1988). Later, this theory has
been successfully applied to describe the mechanical behaviour of laminated, func-
tionally graded, viscoelastic or porous plates in Altenbach (2000), Altenbach and
Eremeyev (2008, 2009, 2010) and ofmulti-layered, orthotropic, thermoelastic shells
in Bîrsan and Altenbach (2010, 2011), Bîrsan et al. (2013), Sadowski et al. (2015).
Another remarkable approach is the general 6-parameter theory of elastic shells pre-
sented in Libai and Simmonds (1998), Chróścielewski et al. (2004), Eremeyev and
Pietraszkiewicz (2004). Although the starting point is different, one can see that the
kinematical structure of the nonlinear 6-parameter shell theory is identical to that of
a Cosserat shell model, see also Bîrsan and Neff (2014a, b).

In this paper, we would like to draw attention to alternative curvature measures,
motivated by dislocation theory, which can also profitably be used in the three-
dimensional Cosserat model and the Cosserat shell model. The object of interest is
Nye’s dislocation density tensor CurlP . Within the restriction to proper rotations
it turns out that Nye’s tensor provides a complete control of all spatial derivatives
of rotations (Neff and Münch 2008) and we rederive this property for micropolar
continua using general curvilinear coordinates. Then, we focus on shell-curvature
measures and define a new shell dislocation density tensor using the surface Curl
operator. Then, we prove that a relation analogous to Nye’s formula holds also for
Cosserat (6-parameter) shells.

The paper is structured as follows. In Sect. 2 we present the kinematics of a
three-dimensional Cosserat continuum, as well as the appropriate strain measures
and curvature strain measures, written in curvilinear coordinates. Here, we show the
close relationship between the wryness tensor and the dislocation density tensor,
including the corresponding Nye’s formula. In Sect. 3, we define the Curl operator
on surfaces and present several representations using surface curvilinear coordinates.
These relations are then used in Sect. 4 to introduce the new shell dislocation density
tensor and to investigate its relationship to the elastic shell bending-curvature tensor
of 6-parameter shells.
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2 Strain Measures of a Three-Dimensional Cosserat Model
in Curvilinear Coordinates

Let B be a Cosserat elastic body which occupies in its reference (initial) configu-
ration the domain Ωξ ⊂ R

3. A generic point of Ωξ will be denoted by (ξ1, ξ2, ξ3).
The deformation of the Cosserat body is described by a vectorial map ϕξ and a
microrotation tensor Rξ ,

ϕξ : Ωξ → Ωc , Rξ : Ωξ → SO(3),

where Ωc is the deformed (current) configuration. Let (x1, x2, x3) be some general
curvilinear coordinates system on Ωξ . Thus, we have a parametric representation
Θ of the domain Ωξ

Θ : Ω → Ωξ , Θ(x1, x2, x3) = (ξ1, ξ2, ξ3),

where Ω ⊂ R
3 is a bounded domain with Lipschitz boundary ∂Ω . The covariant

base vectors with respect to these curvilinear coordinates are denoted by gi and the
contravariant base vectors by gj (i, j = 1, 2, 3), i.e.

gi = ∂Θ

∂xi
= Θ ,i , gj · gi = δ

j
i ,

where δ
j
i is the Kronecker symbol. We employ the usual conventions for indices:

the Latin indices i, j, k, . . . range over the set {1, 2, 3}, while the Greek indices
α,β, γ, . . . are confined to the range {1, 2} ; the comma preceding an index i
denotes partial derivatives with respect to xi ; the Einstein summation convention
over repeated indices is also used.

Introducing the deformation function ϕ by the composition

ϕ := ϕξ ◦ Θ : Ω → Ωc , ϕ(x1, x2, x3) := ϕξ

(
Θ(x1, x2, x3)

)
,

we can express the (elastic) deformation gradient F as follows:

F := ∇ξ ϕξ(ξ1, ξ2, ξ3) = ∇x ϕ(x1, x2, x3) · [∇xΘ(x1, x2, x3)
]−1

.

Using the direct tensor notation, we can write

∇xϕ = ϕ,i ⊗ ei , ∇xΘ = gi ⊗ ei ,
[∇x Θ

]−1 = ej ⊗ gj,

where ei are the unit vectors along the coordinate axes Oxi in the parameter domain
Ω . Then, the deformation gradient can be expressed by

F = ϕ,i ⊗ gi.
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Fig. 1 The reference (initial) configuration Ωξ of the Cosserat continuum, the deformed (current)
configurationΩc and the parameter domainΩ of the curvilinear coordinates (x1, x2, x3). The triads
of directors {di} and {d0i } satisfy the relations di = Qed

0
i = Rei and d0i = Q0ei , where Qe is the

elastic microrotation field, Q0 the initial microrotation, and R the total microrotation field

The orientation and rotation of points in Cosserat (micropolar) media can also
be described by means of triads of orthonormal vectors (called directors) attached
to every point. We denote by {d0i } the triad of directors (i = 1, 2, 3) in the reference
configuration Ωξ and by {di} the directors in the deformed configuration Ωc , see
Fig. 1. We introduce the elastic microrotation Qe as the composition

Qe := Rξ ◦ Θ : Ω → SO(3), Qe(x1, x2, x3) := Rξ

(
Θ(x1, x2, x3)

)
,

which can be characterized with the help of the directors by the relations

Qed
0
i = di , i.e., Qe = di ⊗ d0i .

Let Q0 be the initial microrotation (describing the position of the directors in the
reference configuration Ωξ)

Q0ei = d0i , i.e., Q0 = d0i ⊗ ei.

Then, the total microrotation R is given by

R : Ω → SO(3), R(xi) := Qe(xi)Q0(xi) = dj(xi) ⊗ ej.

The non-symmetric Biot-type stretch tensor (the elastic first Cosserat deformation
tensor, see Cosserat and Cosserat (1909), p. 123, Eq. (43)) is now

Ue := QT
e F = (

d0i ⊗ di
) (

ϕ,j ⊗gj
) = (

ϕ,j · di
)
d0i ⊗ gj.
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and the non-symmetric strain tensor for nonlinear micropolar materials is defined
by

Ee := Ue − 13 = (
ϕ,j · di − gj · d0i

)
d0i ⊗ gj,

where 13 = gi ⊗ gi = d0i ⊗ d0i is the unit three-dimensional tensor. As a strain mea-
sure for curvature (orientation change) one can employ the so-called wryness tensor
Γ given by:

Γ := axl
(
QT

eQe,i

) ⊗ gi = Q0

[
axl

(
R
T
R,i

) − axl
(
QT

0Q0,i

)] ⊗ gi, (1)

where axl
(
A

)
denotes the axial vector of any skew-symmetric tensorA. For a detailed

discussion on various strain measures of nonlinear micropolar continua we refer to
the paper Pietraszkiewicz and Eremeyev (2009).

As an alternative to the wryness tensor Γ one can make use of the Curl operator
to define the so-called dislocation density tensor De by (Neff and Münch 2008)

De := QT
e CurlQe , (2)

which is another curvature measure for micropolar continua. Note that the Curl
operator has various definitions in the literature, but we will make its significance
clear in the next Sect. 2.1, where we present the Curl operator in curvilinear coor-
dinates. The use of the dislocation density tensor De instead of the wryness tensor
in conjuction with micropolar and micromorphic media has several advantages, as
it was shown in Ghiba et al. (2015), Neff et al. (2014), Madeo et al. (2015). The
relationship between the wryness tensor Γ and the dislocation density tensor De is
discussed in Sect. 2.2 in details.

Using the strain and curvature tensors (Ee , De) the elastically stored energy
density W for the isotropic nonlinear Cosserat model can be expressed as (Neff
et al. 2015; Lankeit et al. 2016)

W(Ee,De) = Wmp(Ee) + Wcurv(De), where

Wmp(Ee) = μ ‖ dev3 symEe ‖2 + μc ‖ skewEe ‖2 + κ

2

(
trEe

)2
, (3)

Wcurv(De) = μLp
c

(
a1‖ dev3 symDe‖2 + a2‖ skewDe‖2 + a3

(
trDe

)2)p/2
,

where μ is the shear modulus, κ is the bulk modulus of classical isotropic elasticity,
and μc is called the Cosserat couple modulus, which are assumed to satisfy

μ > 0, κ > 0, and μc > 0 .

The parameter Lc introduces an internal length which is characteristic for the mate-
rial, ai > 0 are dimensionless constitutive coefficients and p ≥ 2 is a constant
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exponent. Here, dev3 X := X − 1
3 (trX) 13 is the deviatoric part of any second order

tensor X.
Under these assumptions on the constitutive coefficients, the existence of mini-

mizers to the corresponding minimization problem of the total energy functional has
been shown, e.g. in Neff et al. (2015), Lankeit et al. (2016).

2.1 The Curl Operator

For a vector field v, the (coordinate-free) definition of the vector curl v is

(curl v) · c = div(v × c) for all constant vectors c, (4)

where · denotes the scalar product and × the vector product. The Curl of a tensor
field T is the tensor field defined by

(
CurlT

)T
c = curl

(
TTc

)
for all constant vectors c. (5)

Remark 22.1 The operator CurlT given by (5) coincides with the Curl operator
defined in Svendsen (2002), Mielke and Müller (2006). However, for other authors
the Curl of T is the transpose of CurlT defined by (5), see e.g. Gurtin (1981),
Eremeyev et al. (2013).

Then, from (4) and (5) we obtain the following formulas

curl v = −v,i × gi, CurlT = −T,i × gi. (6)

Indeed, the Definition (4) yields

(curl v) · c = div(v × c) = (v × c),i · gi = (v,i × c) · gi = (gi × v,i) · c,

and the Eq. (6)1 holds. Further, from (5) we get

(
CurlT

)T
c = curl

(
TTc

) = gi × (
TTc

)
,i = gi × (

TT
,ic

) = (
gi × TT

,i

)
c,

so it follows CurlT = (
gi × TT

,i

)T = −T,i × gi and the relations (6) are proved.
In order to write the components of curl v and CurlT in curvilinear coordinates,

we introduce the following notations

gij = gi.gj , g = det
(
gij

)
3×3 > 0.
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The alternating (Ricci) third-order tensor is

ε = −13 × 13 = εijk gi ⊗ gj ⊗ gk = εijkgi ⊗ gj ⊗ gk , where

εijk = √
g eijk , εijk = 1√

g
eijk , eijk =

⎧
⎨

⎩

1, (i, j, k) is even permutation
−1, (i, j, k) is odd permutation
0, (i, j, k) is no permutation

.

The covariant, contravariant, and mixed components of any vector field v and any
tensor field T are introduced by

v = vk gk = vkgk , T = Tjk gj ⊗ gk = Tjkgj ⊗ gk = Tj
· k gj ⊗ gk .

For the partial derivatives with respect to xi we have the well-known expressions

v,i = vk|i gk , T,i = Tjk|i gj ⊗ gk = Tj
· k|i gj ⊗ gk, (7)

where a subscript bar preceding the index i denotes covariant derivative w.r.t. xi.
Using the relations (7) in (6), we can write the components of curl v and CurlT

as follows

curl v = εijkvj|i gk , CurlT = εijkTsj|i gs ⊗ gk = εijkT s
· j|i gs ⊗ gk. (8)

Indeed, from (6)1 and (7)1 we find

curl v = −(
vk|i gk

) × gi = −vk|i
(
gk × gi

) = −vk|i
(
εkijgj

) = εijkvj|i gk .

Analogously, from (6)2 and (7)2 we get

CurlT = −(
Tsk|i gs ⊗ gk

) × gi = −Tsk|i gs ⊗ (
gk × gi

) = εijkTsj|i gs ⊗ gk .

Thus, Eq. (8) is proved.

Remark 22.2 In the special case of Cartesian coordinates, the relations (6) and (8)
admit the simple form

curl v = −v,i × ei = eijkvj,i ek, CurlT = −T,i × ei = eijk Tsj,i es ⊗ ek,

where v = viei and T = Tijei ⊗ ej are the corresponding coordinates. Moreover, in
this case one can write

CurlT = ei ⊗ curl
(
T i

)
for T = ei ⊗ T i, (9)

where T i = Tij ej are the three rows of the 3 × 3 matrix
(
Tij

)
3×3 . The relation (9)

shows that Curl is defined row-wise (Neff and Münch 2008): the rows of the 3 × 3
matrix CurlT are, respectively, the three vectors curl

(
T i

)
, i = 1, 2, 3.
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Remark 22.3 In order to write the corresponding formula in curvilinear coordinates
which is analogous to (9), we introduce the vectors T i := Tij gj and T i := Tij gj =
Ti

· j gj such that it holds

T = gi ⊗ T i and T = gi ⊗ T i. (10)

If we differentiate (10)1 with respect to xj we get

T,j = gr· ,j ⊗ Tr + gi ⊗ Ti,j = −Γ r
ji g

i ⊗ Tr + gi ⊗ Ti,j = gi ⊗ (
Ti,j − Γ r

ji Tr
)
,

where Γ r
ij are the Christoffel symbols of the second kind. Hence, it follows

T,j = gi ⊗ T i|j with T i|j := T i,j − Γ r
ji Tr = Tik|j gk . (11)

Taking the vector product of (11)1 with gj we obtain

CurlT = −T,j × gj = −(
gi ⊗ T i|j

) × gj, i.e.

CurlT = gi ⊗ curlcov
(
T i

)
where curlcov

(
T i

) := −T i|j × gj. (12)

The relation (12) is the analogue of (9) for curvilinear coordinates. Similarly, by
differentiating (10)2 with respect to xj one can obtain the relation

CurlT = gi ⊗ curlcov
(
T i

)
where we denote (13)

curlcov
(
T i

) := −T i
· |j × gj and T i

· |j := T i
· ,j + Γ i

rj T
r = Ti

· k|j g
k .

2.2 Relation Between the Wryness Tensor and the
Dislocation Density Tensor

LetA = Aijgi ⊗ gj be an arbitrary skew-symmetric tensor and axl(A) = akgk its axial
vector. Then, the following relations hold

A = axl(A) × 13 = 13 × axl(A),

axl(A) = − 1
2 ε : A = − 1

2 εijkAij gk ,

A = −ε axl(A) = −εijkak gi ⊗ gj ,

(14)

where the double dot product “:” of two tensors B = Bijk gi ⊗ gj ⊗ gk and T =
Tij gi ⊗ gj is defined as B : T = BijkTjk gi .
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Using these relations, we can derive the close relationship between the wryness
tensor and the dislocation density tensor: it holds

De = −Γ T + (tr Γ ) 13, or equivalently, (15)

Γ = −D
T
e + 1

2
(trDe) 13. (16)

Indeed, in view of the Eq. (14)3 and the Definition (1) we have

QT
eQe,k ⊗ gk = −ε axl(QT

eQe,k) ⊗ gk = −εΓ

= −(
εijr gi ⊗ gj ⊗ gr

)(
Γ s

· k gs ⊗ gk
) = −εijs Γ

s
· k g

i ⊗ gj ⊗ gk .

Hence, we deduce

QT
eQe,k = −εijs Γ

s
· k g

i ⊗ gj. (17)

In view of (6)2 , the Definition (2) can be written in the form

De = QT
e

( − Qe,k × gk
) = −(

QT
eQe,k

) × gk . (18)

Inserting (17) in (18), we obtain

De = εijs Γ
s
· k

(
gi ⊗ gj

) × gk = εijs Γ
s
· k g

i ⊗ (
εjkrgr

) = (
εjsi ε

jkr
)
Γ s

· k g
i ⊗ gr

= (
δks δri − δrs δki

)
Γ s

· k g
i ⊗ gr = Γ s

· s g
i ⊗ gi − Γ s

· i g
i ⊗ gs = (tr Γ ) 13 − Γ T .

Thus, the relation (15) is proved. If we apply the trace operator and the transpose in
(15) we obtain also the relation (16). For infinitesimal strains this formula is well-
known under the nameNye’s formula, and (−Γ ) is also calledNye’s curvature tensor
(Nye 1953). This relation has been first established in Neff and Münch (2008).

Let us find the components of thewryness tensor and the dislocation density tensor
in curvilinear coordinates. To this aim, we write first the skew-symmetric tensor

QT
eQe,i = (

d0j ⊗ dj
)(
dk,i ⊗ d0k + dk ⊗ d0k,i

) = (
dj · dk,i

)
d0j ⊗ d0k + d0j ⊗ d0j,i

= (
dj · dk,i − d0j · d0k,i

)
d0j ⊗ d0k . (19)

Then, we obtain for the axial vector the equation

axl
(
QT

eQe,i

) = −1

2
ejks

(
dj · dk,i − d0j · d0k,i

)
d0s . (20)
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Indeed, according to (14)2 and (19) we can write

axl
(
QT

eQe,i

) = −1

2
ε : (

QT
eQe,i

)

= −1

2

(
esjk d

0
s ⊗ d0j ⊗ d0k

) : [(
dl · dr,i − d0l · d0r,i

)
d0l ⊗ d0r

]

= −1

2
ejks

(
dj · dk,i − d0j · d0k,i

)
d0s

and the relation (20) is proved. Using (20) in the Definition (1) we find the following
formula for the wryness tensor

Γ = 1

2
ejks

(
dj,i · dk − d0j,i · d0k

)
d0s ⊗ gi. (21)

To obtain an expression for the components of De we insert (19) in (18) and we get

De = −(
dj · dk,i − d0j · d0k,i

) (
d0j ⊗ d0k

) × gi

= (
dj,i · dk − d0j,i · d0k

)
d0j ⊗ (

d0k × gi
)
. (22)

We rewrite the last vector product as

d0k × gi = d0k × [(
gi · d0r

)
d0r

] = (
gi · d0r

)
d0k × d0r = ekrs

(
gi · d0r

)
d0s

and we insert it in (22) to find the following expression for the dislocation density
tensor

De = ekrs
(
dj,i · dk − d0j,i · d0k

) (
gi · d0r

)
d0j ⊗ d0s . (23)

Remark 22.4 In the special case of Cartesian coordinates one can identify d0i =
ei, gi = gi = ei, and the relations (21) and (22) simplify to the forms

Γ = 1

2
eiks

(
dk,j · ds

)
ei ⊗ ej,

De = eijk
(
dj,i · ds

)
es ⊗ ek .

Remark 22.5 One can find various definitions of the wryness tensor in the literature,
see e.g. Tambača and Velčić (2010), where Γ is called the curvature strain tensor.
Thus, one can alternatively define the wryness tensor by

Γ = QT
e ω, (24)

where ω is the second order tensor given by

ω = ωi ⊗ gi with Qe,i = ωi × Qe. (25)
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If we compare the Definition (1) with (24), (25), we see that indeed QT
e ωi =

axl
(
QT

eQe,i

)
, i.e.

ωi = Qe axl
(
QT

eQe,i

) = axl
(
Qe,i Q

T
e

)
. (26)

By a straightforward but lengthy calculation, one can prove that the vectors ωi are
expressed in terms of the directors by

ωi = 1

2

[
dj × dj,i − Qe

(
d0j × d0j,i

)]
. (27)

Inserting (27) in (25)1 and (24), we obtain the expression of the wryness tensor
written with the help of the directors di

Γ = 1

2

[
QT

e

(
dj × dj,i

) − d0j × d0j,i
] ⊗ gi. (28)

3 The Curl Operator on Surfaces

Let S be a smooth surface embedded in the Euclidean space R3 and let y0(x1, x2),
y0 : ω → R

3, be a parametrization of this surface. We denote the covariant base
vectors in the tangent plane by a1, a2 and the contravariant base vectors by a1, a2:

aα = ∂y0
∂xα

= y0,α, aα · aβ = δβ
α

and let

a3 = a3 = n0 = a1 × a2
|a1 × a2| ,

where n0 is the unit normal to the surface. Further, we designate by

aαβ = aα · aβ, aαβ = aα · aβ, a =
√
det

(
aαβ

)
2×2 = |a1 × a2| > 0

and we have

aα × aβ = εαβa3, a3 × aα = εαβaβ, aα × aβ = εαβa3, a3 × aα = εαβaβ,

(29)

where εαβ = 1

a
eαβ, εαβ = a eαβ and eαβ is the two-dimensional alternator given

by e12 = −e21 = 1, e11 = e22 = 0.
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Then, a = aαβaα ⊗ aβ = aαβaα ⊗ aβ = aα ⊗ aα represents the first fundamental
tensor of the surface S, while the second fundamental tensor b is defined by

b = −Grads n0 = −n0,α ⊗ aα = bαβ aα ⊗ aβ = bα
β aα ⊗ aβ, with

bαβ = −n0,β · aα = bβα, bα
β = −n0,β · aα.

The surface gradient Grads and surface divergence Divs operators are defined for a
vector field v by

Grads v = ∂v
∂xα

⊗ aα = v,α ⊗ aα, Divs v = tr
[
Grads v

] = v,α · aα. (30)

We also introduce the so-called alternator tensor c of the surface (Zhilin 2006)

c = −n0 × a = −a × n0 = εαβ aα ⊗ aβ = εαβ aα ⊗ aβ . (31)

The tensors a and b are symmetric, while c is skew-symmetric and satisfies cc = −a.
Note that the tensors a , b , and c defined above are planar, i.e. they are tensors in
the tangent plane of the surface. Moreover, a is the identity tensor in the tangent
plane.

We define the surface Curl operator curls for vector fields v and, respectively,
Curls for tensor fields T by

(
curls v

) · k = Divs
(
v × k

)
for all constant vectors k, (32)

(
Curls T

)T
k = curls

(
TTk

)
for all constant vectors k. (33)

Thus, curls v is a vector field, while Curls T is a tensor field.

Remark 22.6 These definitions are analogous to the corresponding Definitions (4),
(5) in the three-dimensional case. Notice that the curl operator on surfaces has a
different significance for other authors, see e.g. Backus et al. (1996).

From the Definitions (32) and (33) it follows

curls v = −v,α × aα, Curls T = −T,α × aα. (34)

Indeed, in view of (30) and (32) we have

(
curls v

) · k = Divs
(
v × k

) = (
v × k

)
,α

· aα = (
v,α × k

) · aα

= (
aα × v,α

) · k = ( − v,α × aα
) · k for all constant vectors k
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and also

(
Curls T

)T
k = curls

(
TTk

) = aα × (
TTk

)
,α

= aα × (
TT

,αk
) = (

aα × TT
,α

)
k,

which implies Curls T = (
aα × TT

,α

)T = −T ,α × aα, so the relations (34) hold true.
Towrite the components of curls v andCurls T weemploy the covariant derivatives

on the surface. Let v = vi ai be a vector field on S. Then, we have

aα
·,β = −Γ α

βγ a
γ + bα

β a
3, a3,β = −bα

β aα = −bαβ aα,

v,α = (vβ|α − bαβ v3)aβ + (v3,α + bβ
α vβ)a3, (35)

where vβ|α = vβ,α − Γ
γ
αβ vγ is the covariant derivative with respect to xα. Inserting

this relation in (34)1 and using (29)1,2 we obtain

curls v = εαβ
[
(v3,β + bγ

β vγ)aα + vβ|α a3
]
. (36)

For a tensor fieldT = Tij ai ⊗ aj = Tij ai ⊗ aj = Ti
· j ai ⊗ aj on the surface, the deriv-

ative T,γ can be expressed as

T,γ = (
Tαβ|γ − bαγ T3β − bβγ Tα3

)
aα ⊗ aβ + (

Tα3|γ + bβ
γ Tαβ − bαγ T33

)
aα ⊗ a3

+(
T3α|γ + bβ

γ Tβα − bαγ T33
)
a3 ⊗ aα + (

T33,γ + bα
γ Tα3 + bα

γ T3α
)
a3 ⊗ a3,

(37)

where the covariant derivatives are

Tαβ|γ = Tαβ,γ − Γ δ
βγ Tαδ − Γ δ

αγ Tδβ,

Tα3|γ = Tα3,γ − Γ β
αγ Tβ3, T3α|γ = T3α,γ − Γ β

αγ T3β .

Using (37) in (34)2 we obtain with the help of (29)1,2 the decomposition

Curls T = εβγ
(
Tα3|γ +bσ

γ Tασ−bαγ T33
)
aα⊗aβ + εγβ

(
Tαβ|γ −bαγ T3β

)
aα⊗a3

+ εβγ
(
T33,γ + bα

γ Tα3 + bα
γ T3α

)
a3⊗aβ + εγβ

(
T3β|γ +bα

γ Tαβ

)
a3⊗ a3.

(38)

Alternatively, one can use the mixed components Ti
· j and write Curls T in the tensor

basis { ai ⊗ aj}

Curls T = εβγ
(
Tα

· 3|γ +bσ
γ T

α
·σ−bα

γ T
3
· 3

)
aα⊗aβ + εγβ

(
Tα

·β|γ −bα
γ T

3
· β

)
aα⊗a3

+ εβγ
(
T 3

· 3,γ + bαγ T
α
· 3 + bα

γ T
3
·α

)
a3⊗aβ + εγβ

(
T 3

· β|γ +bαγ T
α
· β

)
a3⊗ a3.

(39)
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where

Tα
· β|γ = Tα

· β,γ + Γ α
γσ T

σ
· β − Γ σ

βγ T
α
·σ,

Tα
· 3|γ = Tα

· 3,γ + Γ α
γσ T

σ
· 3, T 3

· β|γ = T 3
·β,γ − Γ σ

βγ T
3
· σ.

Remark 22.7 In order to obtain a formula analogous to (9) and (12), (13) for Curls
we write T in the form

T = ai ⊗ T i = ai ⊗ T i with T i = Tij aj, T i = Ti
·j a

j.

By differentiating the first equation with respect to xγ we get

T,γ = ai,γ ⊗T i + ai⊗T i,γ = (−Γ α
βγ a

β + bα
γ a

3
)⊗Tα − bαγ aα⊗T3 + ai⊗T i,γ

= aα ⊗ (
Tα,γ − Γ β

αγ Tβ − bαγ T3
) + a3 ⊗ (

T3,γ + bα
γ Tα

)
.

Taking the vector product with aγ and using (34)2 we find

Curls T = −[
aα ⊗ (

Tα|γ − bαγ T3
) + a3 ⊗ (

T3,γ + bα
γ Tα

)] × aγ, (40)

with Tα|γ := Tα,γ − Γ β
αγ Tβ . Similarly, we obtain

Curls T = −[
aα ⊗ (

Tα
· |γ − bα

γ T
3
) + a3 ⊗ (

T3
· ,γ + bαγ Tα

)] × aγ, (41)

with Tα
· |γ := Tα

· ,γ + Γ α
βγ T

β . The Eqs. (40) and (41) are the counterpart of the
relations (12) and, respectively, (13) in the three-dimensional theory.

4 The Shell Dislocation Density Tensor

Let us present first the kinematics of Cosserat-type shells, which coincides with
the kinematics of the 6-parameter shell model, see Chróścielewski et al. (2004),
Eremeyev and Pietraszkiewicz (2006), Bîrsan and Neff (2014b).

We consider a deformable surfaceωξ ⊂ R
3 which is identifiedwith themidsurface

of the shell in its reference configuration and denote with (ξ1, ξ2, ξ3) a generic point
of the surface. Each material point is assumed to have 6 degrees of freedom (3 for
translations and 3 for rotations). Thus, the deformation of the Cosserat-type shell is
determined by a vectorial map mξ and the microrotation tensor Rξ

mξ : ωξ → ωc, Rξ : ωξ → SO(3),
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where ωc denotes the deformed (current) configuration of the surface. We consider
a parametric representation y0 of the reference configuration ωξ

y0 : ω → ωξ , y0(x1, x2) = (ξ1, ξ2, ξ3),

where ω ⊂ R
2 is the bounded domain of variation (with Lipschitz boundary ∂ω) of

the parameters (x1, x2). Using the same notations as in Sect. 3, we introduce the base
vectors ai, aj and the fundamental tensors a, b for the reference surface ωξ .

The deformation function m is then defined by the composition

m = mξ ◦ y0 : ω → ωc, m(x1, x2) := mξ

(
y0(x1, x2)

)
.

According to (30), the surface gradient of the deformation has the expression

Grads m = m,α ⊗ aα. (42)

As in the three-dimensional case (see Sect. 2) we define the elastic microrotation Qe
by the composition

Qe = Rξ ◦ y0 : ω → SO(3), Qe(x1, x2) := Rξ

(
y0(x1, x2)

)
,

the total microrotation R by

R : ω → SO(3), R(x1, x2) = Qe(x1, x2)Q0(x1, x2),

where Q0 : ω → SO(3) is the initial microrotation, which describes the orientation
of points in the reference configuration.

To characterize the orientation and rotation of points in Cosserat-type shells, one
employs (as in the three-dimensional case) a triad of orthonormal directors attached
to each point. We denote by d0i (x1, x2) the directors in the reference configuration
ωξ and by di(x1, x2) the directors in the deformed configuration ωc (i = 1, 2, 3). The
domain ω is referred to an orthogonal Cartesian frameOx1x2x3 such that ω ⊂ Ox1x2
and let ei be the unit vectors along the coordinate axes Oxi . Then, the microrotation
tensors can be expressed as follows

Qe = di ⊗ d0i , R = Qe Q0 = di ⊗ ei, Q0 = d0i ⊗ ei. (43)

Remark 22.8 The initial directors d0i are usually chosen such that

d03 = n0, d0α · n0 = 0, (44)

i.e. d03 is orthogonal to ωξ and d0α belong to the tangent plane. This assumption is
not necessary in general, but it will be adopted here since it simplifies many of
the subsequent expressions. In the deformed configuration, the director d3 is no
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longer orthogonal to the surface ωc (the Kirchhof–Love condition is not imposed).
One convenient choice of the initial microrotation tensorQ0 = d0i ⊗ ei such that the
conditions (44) be satisfied is Q0 = polar

(
ai ⊗ ei

)
, as it was shown in Remark10 of

(Bîrsan and Neff 2014a).

Let us present next the shell strain and curvature measures. In the 6-parameter
shell theory the elastic shell strain tensor Ee is defined by (Chróścielewski et al.
2004, Eremeyev and Pietraszkiewicz 2006)

Ee = QT
e Gradsm − a. (45)

To write the components of Ee we insert (42) and (43)1 into (45)

Ee = (
d0i ⊗ di

)(
m,α ⊗ aα

) − aα ⊗ aα = (
m,α · di − aα · d0i

)
d0i ⊗ aα.

As a measure of orientation (curvature) change, the elastic shell bending-curvature
tensor Ke is defined by (Chróścielewski et al. 2004, Eremeyev and Pietraszkiewicz
2006, Bîrsan and Neff 2014b)

Ke = axl
(
QT

eQe,α

) ⊗ aα = Q0

[
axl

(
R
T
R,α

) − axl
(
QT

0Q0,α

)]
. (46)

We remark the analogy to the Definition (1) of the wryness tensor Γ in the three-
dimensional theory. Following the analogy to (2), we employ next the surface curl
operator Curls defined in Sect. 3 to introduce the new shell dislocation density tensor
De by

De = QT
e Curls Qe. (47)

In view of relation (34)2, we can write this definition in the form

De = QT
e

(−Qe,α × aα
) = −(

QT
eQe,α

) × aα. (48)

The tensor De given by (47) represents an alternative strain measure for orientation
(curvature) change in Cosserat-type shells.

In what follows, we want to establish the relationship between the shell bending-
curvature tensor Ke and the shell dislocation density tensor De . We observe that
this relationship is analogous to the corresponding relations (19), (20) in the three-
dimensional theory. More precisely, in the shell theory it holds

De = −KT
e + (

trKe
)
13 or equivalently, Ke = −DT

e + 1

2

(
trDe

)
13. (49)

To prove (49), we designate the components of the shell bending-curvature tensor
by Ke = Kiα d

0
i ⊗ aα and use (16)3 to write



On the Dislocation Density Tensor in the Cosserat Theory of Elastic Shells 407

(
QT
e Qe,α

) ⊗ aα = −ε axl
(
QT
e Qe,α

) ⊗ aα = −εKe

= −(
eijk d

0
i ⊗ d0j ⊗ d0k

)(
Ksα d0s ⊗ aα) = −eijs Ksα d0i ⊗ d0j ⊗ aα,

which implies

QT
eQe,α = −eijs Ksα d

0
i ⊗ d0j

We substitute the last relation into (48) and derive

De = (
eijs Ksα d

0
i ⊗ d0j

) × aα = (
eijs Ksα d

0
i ⊗ d0j

) × [(
aα ·d0β

)
d0β

]

= (
aα ·d0β

)[
eijs Ksα d

0
i ⊗ (

d0j × d0β
)] = (

aα ·d0β
)[
eijs ejβm Ksα d

0
i ⊗ d0m

]

= (
aα ·d0β

)[(
δim δsβ − δiβ δsm

)
Ksα d

0
i ⊗ d0m

]

= (
aα ·d0β

)[ − Ksα d
0
β ⊗ d0s + Kβα d

0
i ⊗ d0i

]

= −Kiα
[(
aα ·d0β

)
d0β

] ⊗ d0i + Kβα

(
d0β ·aα

)
13

]

= −(
Kiα d

0
i ⊗ aα

)T + tr
(
Kiα d

0
i ⊗ aα

)
13 = −KT

e + (
trKe

)
13,

which shows that (49)1 holds true. Applying the trace operator to Eq. (49)1 we get
trKe = 1

2 trDe . Inserting this into (49)1 we obtain (49)2 . The proof is complete.

Remark 22.9 As a consequence of relations (49) we deduce the relations between
the norms, traces, symmetric and skew-symmetric parts of the two tensors in the
forms

‖De‖2 = ‖Ke‖2 + (
trKe

)2
, ‖Ke‖2 = ‖De‖2 − 1

4

(
trDe

)2
, (50)

trDe = 2 trKe, skewDe = skewKe, dev3symDe = −dev3symKe.

Indeed the relations (50) can be easily proved if we apply the operators tr, ‖ · ‖, skew,
dev3, and sym to the Eq. (49)1 . In view of (50)1 and

(
trKe

)2 ≤ 3 ‖Ke‖2, we obtain
the estimate

‖Ke‖ ≤ ‖De‖ ≤ 2 ‖Ke‖. (51)

In what follows, we write the components of the tensors Ke and De . To this aim, we
use the relations

QT
eQe,α = (

d0i ⊗ di
)(
dk,α ⊗ d0k + dk ⊗ d0k,α

)

= (
di · dk,α

)
d0i ⊗ d0k + d0i ⊗ d0i,α = (

di · dk,α − d0i · d0k,α
)
d0i ⊗ d0k, (52)

which can be proved in the same way as Eq. (19). We compute the axial vector of
the skew-symmetric tensor (52) and find (similar to (20))
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axl
(
QT

eQe,α

) = −1

2
eijk

(
dj · dk,α − d0j · d0k,α

)
d0i . (53)

By virtue of (53) the Definition (46) yields

Ke = 1

2
eijk

(
dj,α · dk − d0j,α · d0k

)
d0i ⊗ aα

= (
d2,α · d3 − d02,α · d03

)
d01 ⊗ aα + (

d3,α · d1 − d03,α · d01
)
d02 ⊗ aα

+ (
d1,α · d2 − d01,α · d02

)
d03 ⊗ aα, (54)

which gives the componentsKiα of the shell bending-curvature tensorKe in the tensor
basis {d0i ⊗ aα}.

For the components of De, we insert the relation (52) in the Eq. (48)

De = −(
di · dk,α − d0i · d0k,α

)(
d0i ⊗ d0k

) × aα.

Using that d0k × aα = d0k × [(
aα ·d0β

)
d0β

] = (
aα ·d0β

)
ekβj d

0
j , we obtain

De = ejkβ
(
di,α · dk − d0i,α · d0k

)(
aα ·d0β

)
d0i ⊗ d0j , (55)

which shows the components of the shell dislocation density tensor in the tensor
basis {d0i ⊗ d0j }.

5 Remarks and Discussion

Herein we present some other ways to express the shell dislocation density tensor,
the shell bending-curvature tensor and discuss their close relationship.

Remark 22.10 It is sometimes useful to express the components of the shell disloca-
tion density tensor De in the tensor basis {ai ⊗ aj}. If we multiply the relation (49)2
withn0 and take into account thatKen0 = 0, thenwe find 0 = −DT

e n0 + 1
2

(
trDe

)
n0 ,

which means

n0 De = 1

2

(
trDe

)
n0.

It follows that the components of De in the directions n0 ⊗ aα are zero, i.e. De has
the structure

De = D‖ + Dα3 aα ⊗ n0 + 1

2

(
trDe

)
n0 ⊗ n0, (56)
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where D‖ = De a = Dαβaα ⊗ aβ = D β
α · aα ⊗ aβ is the planar part of De (the part

in the tangent plane). If we insert (56) into (49)1 and use 1
2 trDe = trKe, we get

D‖ + Dα3 aα ⊗ n0 + (
trKe

)
n0 ⊗ n0 = −Kiα aα ⊗ d0i + (

trKe
)(
a + n0 ⊗ n0

)
,

which implies (in view of (54)) that

Dα3 = −K3α = d1 · d2,α − d01 · d02,α and D‖ = −(
K‖

)T + (
trKe

)
a, (57)

where K‖ = aKe = Kβαd
0
β ⊗ aα is the planar part of Ke.

Remark 22.11 We observe that between the planar part D‖ of De and the planar
part K‖ of Ke there exists a special relationship. The tensor D‖ is the cofactor of the
tensor K‖ . Let us explain this in more details: for any planar tensor S = Sα

·β aα ⊗ aβ

we introduce the transformation

T(S) = −ST + (
tr S

)
a. (58)

One can prove that this transformation has the properties

T
(
T(S)

) = S and T(S) = −c S c, (59)

where the alternator c is defined in (31). Moreover, in view of (59)2 and (31) we can
write T(S) in the tensor basis {aα ⊗ aβ} as follows

T(S) = S2· 2 a
1 ⊗ a1 − S2· 1 a

1 ⊗ a2 − S1· 2 a
2 ⊗ a1 + S1· 1 a

2 ⊗ a2,

which shows that the 2 × 2 matrix of the components of T(S) in the basis {aα ⊗ aβ}
is the cofactor of the matrix of components of S in the basis {aα ⊗ aβ}, since

(
S2· 2 −S2· 1

−S1· 2 S1· 1

)

= Cof

(
S1· 1 S1· 2
S2· 1 S2· 2

)

.

If the tensor S is invertible, then from the Cayley–Hamilton relation
(
ST

)2 −(
tr S

)
ST + detS = 0 and (58) we deduce

T(S) = −ST + (
tr S

)
a = (

detS
)
S−T =: Cof(S)

. (60)

In our case, for the shell bending-curvature tensor Ke we have trKe = tr
(
aKe

) =
tr
(
K‖

)
, in view of (54). Then, the relation (57)2 yields

D‖ = −(
K‖

)T + (
trK‖

)
a.
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Using the relations (58)–(60) we see that D‖ is the image of K‖ under the transfor-
mation T , so that it holds

D‖ = T
(
K‖

) = −c
(
K‖

)
c = Cof

(
K‖

)
, (61)

K‖ = T
(
D‖

) = −c
(
D‖

)
c = Cof

(
D‖

)
.

From (56), (57) we can write

De = Cof
(
K‖

) − K3α aα ⊗ n0 + (
trK‖

)
n0 ⊗ n0, (62)

which expresses once again the close relationship between the shell dislocation den-
sity tensor De and the shell bending-curvature tensor Ke.

Remark 22.12 The shell bending-curvature tensorKe can also be expressed in terms
of the directors di . In this respect, an analogous relation to the formula (28) for the
wryness tensor (see Remark 22.5) holds

Ke = 1

2

[
QT

e

(
di × di,α

) − d0i × d0i,α
] ⊗ aα. (63)

To prove (63), we write the two terms in the brackets in the following form

QT
e

(
di × di,α

) = (
d0k ⊗ dk

)(
di × di,α

) = [
dk · (

di × di,α
)]
d0k

= [
di,α · (

dk × di
)]
d0k = ekij

(
di,α · dj

)
d0k

and similarly

d0i × d0i,α = [
d0k · (

d0i × d0i,α
)]
d0k = [

d0i,α · (
d0k × d0i

)]
d0k = ekij

(
d0i,α · d0j

)
d0k .

Inserting the last two relations into (63) we obtain

Ke = 1

2
eijk

[(
dj,α · dk

)
d0i − (

d0j,α · d0k
)
d0i

] ⊗ aα,

which holds true, by virtue of (54). Thus, (63) is proved.
We can put the relation (63) in the form

Ke = QT
e ω where we define (64)

ω = ωα ⊗ aα with ωα = 1

2

[
di × di,α − Qe

(
d0i × d0i,α

)]
. (65)

If we compare the relations (64) and the Definition (46), we derive

ωα = Qe axl
(
QT

eQe,α

) = axl
(
Qe,α Q

T
e

)
.
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Then, from (16) we deduce Qe,α Q
T
e = ωα × 13 and by multiplication with Qe

we find

Qe,α = ωα × Qe, α = 1, 2. (66)

Thus, the Eqs. (64), (65) can be employed for an alternative definition of the shell
bending-curvature tensor, namely

Ke = QT
e ω , where ω = ωα ⊗ aα and Qe,α = ωα × Qe. (67)

This is the counterpart of the relations (24), (25) for the wryness tensor in the three-
dimensional theory of Cosserat continua. The relations (67) were used to define the
corresponding shell bending-curvature tensor, e.g. in Altenbach and Zhilin (2004),
Zhilin (2006).

Remark 22.13 As shown by relations (3) for the three-dimensional case, one can
introduce the elastically stored shell energy density W as a function of the shell
strain tensor and the shell dislocation density tensor

W = W
(
Ee , De

)
. (68)

If (68) is assumed to be a quadratic convex and coercive function, then the existence
of solutions to the minimization problem of the total energy functional for Cosserat
shells can be proved in a similar manner as in Theorem 6 of Bîrsan and Neff (2014a).
In the proof, one should employ decisively the estimate (51) and the expressions of
the shell dislocation density tensor De established in the previous sections.
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