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Abstract Nowadays the Cosserat brothers are mostly cited for their work on so-
called “Cosserat continua” of 1909 that practically initiated the theory of “oriented
media” as generalized continua. But in 1896 they had already published a lengthy
well-structuredmemoir on the theory of elasticity. Thismemoir is often considered as
a foundationalwork on themodern approach to elasticity as it beautifully summarizes
what was achieved in the nineteenth century but with original traits that will permeate
further the twentieth century developments with an emphasis on finite deformations,
the interest for applying the thermodynamic laws, the allied formulation of the notion
of stress (internal forces), questions of stability, and the use of curvilinear coordinates,
though still without using vector and/or tensor analysis. The present contribution
examines in detail the contents of this epoch-making work of 1896, its main sources
(e.g. Kirchhoff, Kelvin, Saint-Venant, Boussinesq, and Poincaré) and its insertion in
the then current technical literature. We try to appraise its importance and its legacy
in the modern developments of continuum mechanics, especially after the revival of
the field by Truesdell and others.

1 Introduction

At the time of writing of this contribution, the most cited work of the Cosserat broth-
ers, Eugène and François, certainly is their book of 1909 (Cosserat and Cosserat
1909). This is due to a justified renewal of interest in continua endowed with a
microstructure (in particular, so-called “micropolar continua” also rightly named
“Cosserat continua”). These are not classical in the sense that such media exhibit
nonsymmetric stress tensors and so-called moment (or couple) stresses. Year 2009
marked with some emphasis the hundredth anniversary of the publication of this
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famous but rarely read opus (cf. Maugin and Metrikine 2010). In the period 1896–
1914, the Cosserats in fact published together no less than 21 works in the field of
theoretical mechanics. Out of these, 14 were short notes—of three or four pages—to
the Paris Academy of Sciences. Apart from their book of 1909, the only long original
memoir they published was a long paper in a true serial scientific journal in Toulouse
in 1896 (Cosserat and Cosserat 1896), while their other publications in the field are
scattered in oddplaces, often as supplements to lecture notes or books byother authors
[Koenigs, Chwolson (in French translation), Appell, Voss (also in French transla-
tion)]. This paper of 1896 is the object of the present perusal. Theoriginality of its con-
tents is a discussed matter, whether the paper provides a nice overview of nineteenth
century continuum mechanics or it does bring a new enriching viewpoint with spe-
cific traits of the brothers’ talents and rigour, a positive appraisal certainly expressed
by Truesdell on different occasions (cf. Truesdell 1952a; Truesdell and Toupin 1960).
Our own opinion is that the Cosserats demonstrated a deep understanding of the bases
of continuum mechanics and thus clarified many points, and they exhibited a style
and ideas that were to bear fruits during the following 60 years or about.

2 About the Cosserats and Their Scientific Environment

In order to grasp the essentials of the Cosserats’ personalities and achievements, we
need to comprehend their scientific formation and to appraise the scientific envi-
ronment they shared at a time that may schematically be called the “Belle Epoque”
(roughly, 1880–1914). In that period the twomost prestigious schools in France were
the Ecole Polytechnique and the Ecole Normale Supérieure (ENS), both in Paris, and
accessible only after a difficult competitive entrance examination. The former was
destined to form engineers essentially for the needs of the State although the pro-
gramme in mathematics was the highest possible with the best available teachers. To
be fully trained in more engineering matters the best alumni from Ecole Polytech-
nique had to follow an “Ecole d’application” of which the most well-known one was
theEcoleNationale des Ponts et Chaussées (ENPC). Studentswho successfully com-
pleted their study in the two schools would become members of the elitist “Corps
of Engineers of Ponts et Chaussées”, one of the most desired titles in the French
Third Republic. This opened the way to both technical and managerial positions
at the highest level in the State or in private companies (e.g. the newly expanding
railway companies). Notice that not much was said about universities (or rather fac-
ulties) which fell under the unique directorship of theMinistry of Education. Famous
French scientists, physicists and mathematicians of the nineteenth century belonged
to the Corps of Ponts et Chaussées, among them, Cauchy, Navier, Lamé, Duhamel,
Coriolis, Clapeyron, Poncelet, Liouville, Arago and Barré de Saint-Venant. “Poor”
Boussisnesq who “modestly” graduated from the University of Montpellier had a
much harder work to achieve to reach the same stratospheric medium. Another pres-
tigious school of application of Polytechnique was the National School of Mines in
Paris. Henri Poincaré thus belonged to the “Corps of Engineers of Mines”—which
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in time became even more prestigious than the one of Ponts et Chaussées—although
he devoted his whole life to mathematics and mathematical physics.

The Ecole Normale Supérieurewas initially destined to form teachers for Lycées,
i.e. secondary high schools educating students from age 12 to 18 with a final diploma
called the “Baccalauréat”with a strong emphasis on classics. Then they could attempt
a university or continue to prepare for the difficult examination entrance to Polytech-
nique and ENS. Very good students were admitted to both schools and selected the
one that pleased them most. Under the influence of Louis Pasteur the ENS also
became a “fish tank” for creative scientists who would soon join and then surpassed
the polytechnicians.

François Cosserat (1852–1914), the elder of the two brothers, graduated from the
Ecole Polytechnique and became a member of the Corps of Ponts et Chaussées. He
had a professional career in the fast growing development of railways with the North
and then the East companies of Railways in France. Eugène Cosserat (1866–1931),
his cadet by 14 years, was educated in mathematics at the Ecole Normale Supérieure
in Paris and became a professional (mathematical) astronomer with a career spent
almost entirely in Toulouse in the south-west of France. As such he had to teach
courses in analysis, astronomy and celestial mechanics, but he also had a marked
interest in differential geometry already exhibited in his doctoral thesis.

We do not know what prompted the interest of the Cosserat brothers for rational
mechanics and the theory of elasticity in particular. It may be the lectures received
by François at both Polytechnique and ENPC and then the influence of this older
brother on his cadet. The cooperation of the two brothers lasted from 1896 to the
death of François in 1914. Anyway, they must have been bright students to start with
and endowed with some easiness to grasp fundamental concepts and a gift to expand
them as neither François nor Eugène were officially professional mathematicians in
the field ofmechanics. But theywere enlightened amateurs with all technical abilities
and a background of true professionals. Both became members of the Paris Acad-
emy of Sciences (François in 1896, and Eugène in 1919). François was even elected
President of the French Society of Mathematics (Société Mathématique de France)
in 1913 one year before his death. François was certainly confronted to the works
of Adhémar Barré de Saint-Venant (1797–1886) and Joseph V. Boussinesq (1842–
1929) at the ENPC. In his engineering curriculum he met with the works of his great
predecessors, namely, Gabriel Lamé (1795–1870) and Alfred Clebsch (1833–1872),
both authors of the first comprehensive treatises on elasticity (cf. Lamé 1852; with a
tremendous expansion by Barré de Saint-Venant 1883 for the latter in French transla-
tion), and also Gustav Kirchhoff (1824–1887) in Kirchhoff (1852) and James Clerk
Maxwell (1831–1873) (cf. Maxwell 1853). Eugène Cosserat defended his Sorbonne
thesis in mathematics before a committee formed by Gaston Darboux (1842–1917),
Paul Appell (1855–1930) and Gabriel Koenigs (1858–1931)—see Lebon (1910).
This thesis on geometry was published in the Annales of the Faculty of Sciences of
Toulouse in 1885. Darboux was the author of a formidable work—in four volumes—
on the theory of surfaces and an ardent propagandist of the notion of mobile triad
that was readily adopted by the Cosserats. Paul Appell became professor of ratio-
nal mechanics at the Sorbonne in 1885 and, among many creative works, published
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an influential encyclopaedic treatise on rational mechanics (starting in 1893 with
many augmented editions) and practically became the godfather of all mechani-
cians in France in the period of interest. Koenigs, a student of Darboux, became
professor of mechanics at the Sorbonne while publishing a successful treatise on
kinematics (Lessons of 1895–1897, Koenigs 1895, see also Lovett 1900). Both Dar-
boux and Koenigs left a strong print on the Cosserats’ work of 1896 as witnessed
by the large number of citations to their books. Other French contemporaries of
the two brothers were Henri Poincaré (1854–1912), Pierre Duhem (1861–1916),
Marcel Brillouin (1854–1948), Emile Picard (1856–1941), Emile Jouguet (1871–
1943), JacquesHadamard (1865–1963), and Paul Painlevé (1863–1933), all educated
at the ENS save Poincaré. EugèneCosserat was very close toHadamard and Painlevé.
Contemporaries outside France were Woldemar Voigt (1850–1919), August Föppl
(1854–1924), Hermann von Helmholtz (1821–1894), Georg Hamel (1887–1954),
and Ludwig Boltzmann (1844–1906) in Germany, Josiah Willard Gibbs (1838–
1905) in the USA, and William Thomson (1824–1907; aka Lord Kelvin), A.E.H.
Love (1863–1940), and Lord Rayleigh (1842–1919) in the UK. What are really
missing in the interactions with foreign scientists are any contacts with, and citations
to, Italian mechanical engineers and mathematicians. The strangest fact is the lack of
connection with Gabrio Piola (1794–1850), apparently eclipsed by Kirchhoff. In all,
the scientific environment of the Cosserat brothers in Paris was stupendous, and they
dutifully cited all scientists—that they studied in detail—at the proper place of their
works with high accuracy. Hard working in such a rich environment and equipped
with knowledge of the most influential foreign languages, the Cosserats were in a
most favourable frame to develop their original views although their activity in ratio-
nal mechanics was only an aside to their professional occupations. The result is all
the more remarkable.

3 The Cosserats’ Paper of 1896

Preliminary remark: In their general kinematic description the Cosserat brothers note the
direct deformation (x, y, z) → (x1, y1, z1) that we note (XK , K = 1, 2, 3) → (xi, i =
1, 2, 3) in modern indicial notation. They note (u, v,w) the components of the displacement
that we would note (ui, i = 1, 2, 3). The initial density they note ρ and the final one ρ1
while we shall use ρ0 and ρ for these two, respectively. We repeatedly use the convention
of summation over repeated indices. The Cosserats do not use any vector or tensor notation
and thus have to give all components explicitly, but we rewrote the main cited equations in
the modern outlook to help the reader. We hope that this does not create any confusion, still
always referring to the original equations of the Cosserats in their text where necessary (i.e.
page number and equation number). They do not treat the dynamical case.

3.1 Deformations

The Cosserats define finite deformation just like Green in his celebrated memoir of
1839 (Green 1839), but they emphasize the intimate link with the use of the theory
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of curvilinear coordinates. That is, to be unambiguous, their formulas (3) and (4)
are none other than the modern formulas for the Cauchy–Green strain of material
components EKL and for the finite deformation gradient F of components Fi

.Ksuch
that

dx = F dX, F =
{
Fi

·K = ∂xi

∂XK

}
,

E = 1
2

(
FTF − 1

) =
{
EKL = 1

2

(
Fi

·KF
j
·Lgij − δKL

)}
.

(1)

The (relative) strain measures here introduced have also been considered by Barré de
Saint-Venant, Kirchhoff, Lord Kelvin (William Thomson) and Boussinesq. The six
functions given by the elements of EKL cannot be completely arbitrary as they must
verify a system of second-order partial differential equations (known as compatibility
conditions; cf. Barré de Saint-Venant 1864). Whenever all EKL‘s vanish it means that
the deformed configuration is deduced form the original one by a displacement “en
bloc”, combined or not combined with a symmetry transformation (cf. p. I.12). This
is of fundamental importance because it defines what is understood by a rigid-body
motion. After Lord Kelvin, a homogeneous deformation is one in which the EKL’s
are all constants or they vanish identically. This allows one to introduce analytically
the simple form (homographic transformation) of homogeneous deformations (Eq.
(5), p. I.13), particular cases being those of linear dilatations and angular dilatations.
For a sufficiently small portion of the undeformed body about a point P, one can
substitute a homogeneous deformation to the actual deformation at P. In this they
essentially adopt the viewpoint of W. Thomson (Lord Kelvin) with so-called lin-
ear dilatations and angular dilatations as main constructive elements. Following the
original work of Cauchy (1827) they pay special attention to the notions of ellipsoids
of deformation, rotation at a point, and pure deformation. The first ellipsoid E of
deformation clearly corresponds to a transformation of an initially spherical form
into an ellipsoid. Reciprocally, the second ellipsoid E1 relates to the inverse relation
between a sphere in the final configuration and an ellipsoid in the initial configuration.
The three axes of E can be brought parallel to those of E1 by an appropriate rota-
tion. The vanishing of such rotation corresponds to what Thomson and Tait (1867),
p. 132, call a pure deformation. This combination of pure deformation and rotation
(pp. I.19–I.25) materializes in what is called the polar decomposition (attributed to,
but not proved by, Cauchy) of the deformation gradient—noted F = RU = VR in
modern treatises (e.g. Truesdell and Toupin 1960). As noted in the modern formula
the rotation can be effected first and pure deformation next, or in the other order
but with a different pure deformation (in fact in a different space; cf. Footnote in p.
I.20). In their geometric proof the Cosserats exploit the transformation of quadratic
forms and the notion of principal axes of the involved ellipsoids. They also have to
introduce the cubic dilatation and the Jacobian determinant—that they note Δ—of
the deformation, i.e. J = detF in modern notation. These considerations lead them
directly to introduce the invariants of deformation (p. I.26) and the useful notions
of simple extension (stretch) and simple shear (pp. I.25–I.28). The usefulness of the
notion of simple shear, e.g. (with coefficient γ characterizing the amount of shear)
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x = X + γY , y = Y , z = Z, (2)

had particularly been emphasized by a certain Louis Vicat (1786–1861)—cf. Vicat
(1833)—and above all Barré de Saint-Venant in his lectures of 1837–1838
(Barré de Saint-Venant 1837, 1838) at the School of Ponts et Chaussées—see also
Brillouin (1891). As we know now, the notion of simple shear is often used as a
test deformation in the characterization of nonlinear elastic responses for various
materials with a priori prescribed strain energy.

Infinitesimally small deformations are correctly introduced (p. I.29) by the
Cosserats with the help of an ordering parameter (that they note t) and expansion of
the displacement components in integer powers of this parameter, assuming uniform
convergence of the corresponding series and of those defined by their derivatives with
respect to the initial coordinates. In this context, special cases are those of linear and
angular “dilatations” (following the vocabulary introduced by Cauchy). Principal
dilatations (or stretches) are those expanded along the axes of the second ellipsoid
of deformation. In the case where both linear dilatations and relative shears vanish,
then it is shown, following a method due to Darboux, that the displacement field is
one of the rigid-body types that we can write in direct notation as

u = u0 + ω × X (3)

where both u0 and ω are translation and rotation of constant values.
Finally, the Cosserats (pp. I.35–I.37) recall the necessary and sufficient conditions

that a system of six functions of coordinates must satisfy to be that of a symmetric
deformation associated with an existing displacement. These conditions form a set
of six second-order partial differential equations, an auxiliary system, now called
the compatibility condition of Navier and Saint-Venant, but in fact introduced by
Barré de Saint-Venant (1864) in his commented edition of Navier’s lectures (cf.
Navier 1864). Related works by Boussinesq (1871), Beltrami (1889), Love (1892)
and Cesàro (1894) are cited in this context.

Globally, in this introduction to the deformation theory of continua, the Cosser-
ats do not innovate so much but they faithfully incorporate all progress made
since Cauchy till the work of their contemporaries (Poincaré, Darboux, Koenigs,
Kelvin,...). Still, they cultivate this fruitful view that general deformations must be
considered first, leaving infinitesimal deformations as infinitesimally small limits in
a strict mathematical vision.

Truesdell (1952a), p. 53, however, notes that the Cosserats missed the long innovative paper
of Finger (1894)—obviously very recent at the time of the Cosserats’ publication—where
Finger introduced the spatial strain measure named after him, i.e. (c−1)i.j = (FFT ) i.j =
Fi

.KF
k
.Lδkjδ

KL , whichwould havemade simple the formulation of elasticity constitutive equa-
tions for finite strain in isotropic bodies.
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3.2 Internal Forces (stresses) in a Continuum

The Cosserats do not elaborate much about the original introduction of the notion
of stresses (according to the coinage of Rankine), i.e. more traditionally, internal
forces in a continuum. They skip Cauchy’s classical argument to introduce (p. I.39)
the stress notion at a cut at a point in a body, simply remarking in passing that the
cut is tangent to an infinity of curved surfaces, so that only the normal to the cut at
a point is involved, and stresses (as we shall call them now) are forces per unit area
in contrast to body forces that are mass forces. The Cosserats do not refer to these
internal forces as “tensors” (following Voigt 1898 or, as if they had followed Gibbs
1881–1884) and others, “linear vector functions”. But here, to facilitate the reading
by modern students, we denote by the Cartesian tensor components tj.i or t

ijthe stress
in the actual (after deformation) configuration, and will avoid any direct (no indices)
notation that could create some confusion.

Cauchy’s equilibrium equations are stated as (cf. Eqs. (24) and (23) in pp. I.39–
I.40) in the following traditional form:

∂

∂xi
ti.j + ρfj = 0 (4)

at internal points in the body and

tj = ni t
i
.j (5)

at its regular boundary of unit outward normal of components ni. But the Cosserats
have formulated the deformation theory essentially in the undeformed reference
configuration (see preceding section). They thus want to reformulate Eqs. (4) and
(5) in the appropriate framework, that is, per unit undeformed volume and unit
undeformed area. They rightly think that the required manoeuvre must be analogous
to what is done in hydrodynamics in passing from Euler to Lagrange equations.
This is called a “pull back operation” in modern treatises, and this is in fact defined
by the celebrated Piola transformation (Piola 1836), but the Cosserats refer only
to Kirchhoff (1852) for this operation which they achieved astutely by associating
to Eqs. (4) and (5) a form of the principle of virtual work and then effecting the
required transformation in this global formulation (pp. I.42–I.48). Noting δuj the
virtual displacement, one obtains thus the global expression (Eq. I.26)

∫
V

ρfjδu
j dV +

∫
∂V

tjδu
jda −

∫
V

ti.j
∂

∂xi

(
δuj

)
dV = 0. (6)

On this occasion, the Cosserats remark on the definition of a virtual “rigidifying”
deformation which cancels out the last expression in the left-hand side of Eq. (6). The
lengthy transformation of (6) that we do not repeat yields the following expression
of the principle of virtual work:
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∫
V0

ρ0fjδu
j dV0 +

∫
∂V0

Tj δu
jda0 −

∫
V0

SKLδEKL dV0 = 0, (7)

assuming that J = detF is everywhere positive and the continuity equation reads
ρ0 = ρJ . Here δEKL is the variation of the Cauchy–Green strain measure resulting
from the variation δuj, and SKL is the conjugate stress (now called the second Piola–
Kirchhoff stress). The Cosserats are then able to transform (7) in the form

∫
∂V0

(
Tj − NKT

K
.j

)
δujda0 +

∫
V0

(
∂

∂XK
TK

.j − ρ0fj

)
δuj dV0 = 0 , (8)

with the definition of the object TK
.j (now called the first Piola–Kirchhoff stress) given

by (in our notation; cf. Eq. (36) in p. I.48)

TK
.j = ∂J

∂Fi
.K

ti.j = JXK
,i t

i
.j , (9)

and NK denotes the components of the unit outward normal to the surface body in
the undeformed configuration. The localisation of (8) provides the two equations (cf.
Eqs. (34) and (35) in p. I.46)

∂

∂XK
TK

.j + ρ0fj = 0 inV0, (10)

Tj = NKT
K
.j at ∂V0. (11)

Here, as emphasized by the Cosserats (top of p. I.47), the hybrid geometrical object
TK

.j represents a force in the direction of the actual axis noted i, but per unit area in
the undeformed configuration. Equations (10)–(11) were given by Marcel Brillouin
(1884, 1885).

On using an identity established by Carl Neumann (1860),

∂

∂XK

(
∂J

∂Fi
.K

)
= 0 , (12)

one can revert to the actual (Eulerian form of the) equation of equilibrium as proved
by Boussinesq (1869) since with (9) and (10) one has

∂

∂XK

(
ti.j

∂J

∂Fi
.K

)
+ ρ0fj = 0. (13)

But (see p. I.49)
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∂

∂XK

(
ti.j

∂J

∂Fi
.K

)
= ∂J

∂Fi
.K

∂

∂XK
ti.j

= J
∂XK

∂xi
∂

∂XK
ti.j = J

∂

∂xi
ti.j = ρ0

ρ

∂

∂xi
ti.j, (14)

whence Eq. (4). Note that the virtual work of external forces can be written as (cf.
Eqs. (6) and (7) above):

δTe =
∫
V

tj.i
∂

∂xj
δui dV =

∫
V0

TK
.i

∂

∂XK
δxi dV0. (15)

The Cosserats then discuss the notion of isostatic surfaces after Lamé, Boussinesq
andWeingarten (1881), a subjectmatter that we skip here. In concluding their chapter
II the Cosserats evoke the equilibrium equations (cf. p. I.58) in a straight cylinder
(before deformation), i.e. a thin rod, and mention those that would be obtained in
plates of any thickness loaded on their edge. These are the equations expanded by
Clebsch and Barré de Saint-Venant (1883) in the French translation of the book of
Clebsch (1883).

One has to wait for the next chapter to witness an introduction of elasticity con-
stitutive equations on thermodynamic bases.

3.3 Equations of Equilibrium

In their formulation of the equations of equilibrium for elastic bodies (Chapter III),
the Cosserat brothers are strongly influenced by the thermodynamic works of Kelvin
(Thomson 1855, 1856, 1857); also (Thomson and Tait 1867), and the recent con-
siderations brought to the field by Pierre Duhem (1887, 1894). That means that they
exploit the formulation of the first and second laws of thermodynamics, respectively,
then called the principle of equivalence of heat and work (with the symbol E >

0 standing for the so-called mechanical equivalent of heat, and ignored in modern
texts with appropriate physical units) and the principle of Carnot and Clausius. For a
body in its natural state (homogeneous and without deformation), one then considers
homogeneous deformations from this natural state with the same absolute tempera-
ture T for all material points. The state of this body after deformation from the natural
state is defined by six strains and the temperature. It is assumed (p. I.60) that these
seven parameters remain within acceptable limits so that any alteration of the body
may be viewed as a continuous sequence of equilibrium states and it corresponds to
a reversible evolution (following Duhem). In the sequence of these states the body
is maintained in such states by the application of a unique system of external forces
with the external bodies kept at the same temperature as the considered body. The
two principles of thermodynamics then read:
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E δQ + δTe = δ
∑ mv2

2
+ dU (16)

and

E δQ − δ
∑ mv2

2
− E T dS < 0. (17)

Here δQ is the quantity of heat received by the system during any elementary alter-
ation, while both the external forces have achieved a work δTe and dU is an exact
differential of a functionU called the internal energy. In Eq. (17) dS denotes an exact
differential of a function S called the entropy. Both functions U and S are functions
of state that completely define the state of the system in terms of the seven introduced
parameters (six deformations and temperature).

The writing of Eqs. (16) and (17) in which there simultaneously appear variations noted “δ”
and exact differentials noted “d” is particularly shocking to our modern eyes and was thus
forcefully criticized by supporters of rational thermodynamics in the Truesdellian School in
the 1960–1970s.

If one defines Duhem’s thermodynamic potential (now called free energy or
Helmholtz’s potential) by

F = U − E S T , (18)

one, on account of (16), can rewrite (17) in any of the following two forms (Eq. (53),
p.I.61)

dU − E T dS − δTe < 0 or dF + E S dT − δe Te < 0 (19)

In the same conditions, for a truly reversible evolution Eq. (17) reduces to

δQ − T dS = 0, (20)

and this can be rewritten as

dU − E T dS − δTe = 0 or dF + E S d T − δeTe = 0. (21)

Alterations satisfying (17) or (19) are said to be “realizable”. Those satisfying (6)
are said to be “reversible” in the sense of Duhem (1894). Following also this last
author, the equilibrium conditions for the body under the action of a prescribed
system of forces are then thus established. These conditions are to be understood
as corresponding to our notions of thermodynamic equilibrium (i.e. thermostatics)
and the absence of dissipation of mechanical origin. Indeed, the first case considered
where temperature is assumed to be known (T = T0) yields (Eq. (56), p.I.62)
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∂F

∂T
= −E S. (22)

While the thermodynamic state being described by means of “normal variables of
state” (a concept due to Duhem which isolates entropy as a specific state variable
among the seven variables eij = eji and S), for all variations of the parameters one
obtains (in modern notation; cf. Eq. in p. I.62)

∂F

∂eij
δeij = δTe, (23)

where the left-hand side is none other than δF computed at T = T0.
However, if it is entropy that keeps a given value (S = S0), then using the first of

(21), we are led to the following results (Eqs. in p. I.63):

∂U

∂S
= E T , (24)

and

∂U

∂eij
δeij = δTe, (25)

where U is computed at S = S0. Equations (22) and (23) on the one hand and (24)
and (25) on the other characterize isothermal and adiabatic elasticity evolutions,
respectively. We recognize in (22) and (24), the thermostatic definitions of entropy
and temperature. The Cosserats call “energy of deformation” W—per unit volume
of the undeformed configuration—either F or U, the choice being made according
to circumstances. This allows the authors to deduce the general form (in the manner
of George Green) for the elastic constitutive equations, i.e. (cf. Eq. (59), p. I.64) but
in modern notation

SKL = ∂W

∂EKL
(26)

or (cf. Eq. 60, p. I.65)

TK
.i = ∂W

∂Fi
.K

. (27)

Here SKLand TK
.i are none other than the second and first Piola–Kirchhoff stresses

but the Cosserats give no name to them. Constitutive Eq. (26) is sometimes called
the Kelvin–Cosserat formulation, while (27) is referred to as Kirchhoff (1852) form.
Going from (26) to (27) implies the use of the Piola transformation given by the
Cosserats in their component equations (31) and (33)—pp. I.44–I.45—without men-
tion of Piola but with due citation to Kirchhoff (1852). Furthermore, the Cauchy
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stress in the deformed configuration is then given in a form attributed to Boussinesq
(1869) that we can rewrite in condensed form as

ti.j = J−1Fi
.K TK

.j = J−1xi,KS
KLxp,L gjp = J−1xi,K

∂W

∂EKL

xp,L gpj. (28)

This, obviously, is not reported in this tensorial form, but the Cosserats give only
the form taken in full by two of the components of ti.j (cf. Eq. (61), or (62), p. I.65)
indicating that other components are easily deduced.

In the above-specified conditions the mechanical equilibrium equations are
obtained as (cf. Eq. (63)–(64), p. I.66)

∂

∂XK

(
∂W

∂Fi
.K

)
+ ρ0fi = 0 (29)

at internal points in the body and

Ti = NK

∂W

∂Fi
.K

(30)

at its regular boundary of unit outward pointing normal of components NK in the
undeformed configuration.

In the rest of this chapter, the Cosserats deal with various matters that include
a “paradox” previously dealt with by Poincaré, Kirchhoff and others, notions on
stability, the choice of a natural state, the question of material symmetry, and the case
of infinitesimal deformations. The paradox referred to by the Cosserats concerns the
possible a priori existence of a function Φ of the gradient components Fi

.K such that

∫
V

δΦ dV − δTe = 0. (31)

This means that for an equilibrium position one must have Eqs. (27) and (30) with
W replaced by Φ, so that, for any part of the body, Eq. (27) must be written with W
replaced by Φ. But the quantities Fi

.K cannot be taken arbitrarily as they must obey
a set of three partial differential equations (Eq. (37) in p. I.49) of which the general
integral is an arbitrary function of the six components EKL of the finite deformation.
This is the requirement for Eq. (31) to be compatible with the existence of internal
forces. This was noticed by Poincaré in his lectures on elasticity (Poincaré 1892, p.
77) but also by Kirchhoff (1852), C. Neumann (1860), and closer to the Cosserats
by Cellérier (1893).

The second remark relates to the stability of equilibrium and the notions of “bifur-
cation” equilibrium and “limit” equilibrium of Poincaré. We must recall that the
years 1890s are fruitful as regards questions of stability. This is particularly true
of the works of Henri Poincaré with his marked interest in the stability of liquid
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masses in rotation, a subject also of interest to Paul Appell (1888) in his treatise
on rational mechanics, and the original work by Aleksandr Lyapunov (1857–1918)
with his Doctoral thesis (in Russian) on “The general problem of stability of motion”
at Kharkov, Ukraine (Love 1892). Although the Cosserats had some knowledge of
Russian, Lyapunov’s work came too late to influence them, but will influence Pierre
Duhem when the latter will have identified a potential akin to a Lyapunov function.
Thus, the Cosserats are mostly influenced by Poincaré and his considerations on
stability in his lectures on elasticity (Poincaré 1892), Chapters III and IV). Along
this line, one first notes that in the absence of external forces, the function W − Te
reduces toW . If the latter is minimum at the natural state, then one can only say that
the corresponding equilibrium is stable only in so far as deformations are concerned
(but it is not stable in a general way). But, now, if the externally applied forces vary
in a continuous way depending on a parameter y, assuming that Te exits for all values
of y, then one is led to a situation identical to that envisaged by Poincaré in his study
of the equilibrium of a fluid mass in rotation (Poincaré 1885), so that one has to
consider Poincaré’s notions of “bifurcation” and “limit” equilibria (cf. Cosserats,
p.I.69) and to imagine a linear series of equilibrium forms that correspond to a series
of real values of y related to the critical points of y functions defined by the system
of equilibrium equations. That is all for this remark.

The next remark relates to the choice of a natural state. In the absence of external
loading, one admits the existence of a natural state that corresponds to a vanishing
of the derivatives of the function W with respect to the strain components. We can
assume thatW can be expanded in the positive entire powers of the strain components,
providing thus an expression of the type (Cosserats, Eq. (67), p. I.70)

W = W2 + W3 + · · · , (32)

where Wk denotes a homogeneous polynomial of degree k, assuming that the con-
stant term has been set equal to zero without loss in generality. For a natural state
corresponding to a stable equilibrium from the point of view of deformations (see
above), it is sufficient thatW be positive for all infinitesimally small components of
the strain. This classically yields the definite positiveness of the quadratic formW2.
Following more generally Poincaré (1892), Sects. 27 through 30, one can assume
that there exists a first-order contribution W1 so that 27 elasticity coefficients—at
most—will be defined fromW1 andW2 in the absence of any specific symmetry. The
Cosserats then turn to the special case of isotropy for a homogeneous body. Invoking
the traditional three invariants of strains, W1 contains only one coefficient ν while
W2 contains the famous two Lamé coefficients, λ and μ, which have to satisfy the
inequality

3λ + 2μ > 0, μ > 0, (33)

to warrant stability about a natural state (for which ν = 0).
The chapter concludes with the formulation of equations in the case of infinitesi-

mal deformations. This brief analysis (pp. I.72–I.74) introduces an order parameter
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noted t by the Cosserats; this leads to an expansion of the displacement field in suc-
cessive positive integer powers of t. This is also the case of the function W. This
follows considerations of Darboux in his theory of surfaces (Darboux 1887–1896,
Vol. 4, p. 65 on) and Poincaré in his general approach to problems of mathematical
physics (cf. Poincaré 1894). The study ofW2 in fact follows the developments offered
by Poincaré (1892), pp. 46–58, that we shall not repeat. A theorem due to Kirchhoff
(1852) applies when forces vanish. Finally, the standard equilibrium equations are
deduced for infinitesimal strains (Cosserats, Eq. (80), p.I.77) rewritten in modern
intrinsic notation for the isotropic case as

(λ + μ)∇θ + μΔu + ρf = 0, (34)

where θ = ∇ · u denotes the dilatation.

3.4 On Curvilinear Coordinates

The long and final chapter IV must have been welcomed by most readers when
the paper was published. It deals with the basic problem of the formulation of the
equations of elasticity in curvilinear coordinates. This was approached by pioneers
such as Lamé and Beltrami and other scientists before the advent of tensor calculus.
But the Cosserat brothers are still living in a period where vector calculus still is
in development and is rarely applied (see Crowe 1967, for a historical perspective)
and tensor analysis is still in infancy with no clear-cut application but for the notion
of tensor introduced by W. Voigt (1898) and that of dyadic by J.W. Gibbs (1881–
1884). What the Cosserats propose is to implement the theory of the mobile triad
introduced by G. Darboux in his general studies of surfaces (Darboux 1887–1896).
This is not so surprising since this theory is in full blossom and “é la mode” in these
years 1890s. Furthermore, Eugène Cosserat was a disciple of Darboux, who in fact
belonged to his Doctoral thesis committee. The main point in this approach is the
consideration of a displacement field that depends on three independent parameters
(noted ρi , i = 1, 2, 3 by the Cosserats,) and the important role played by rotations.
Then one first envisages the case where the mobile system has a fixed point (it can
only rotate). But the interesting case for continuum mechanics is one where the
mobile triad of three rectangular axes moves in any way through space so that nine
new entities (related to translation) have to be adjoined to the nine rotation parameters
(director cosines). In all this is equivalent to a single motion but observed in different
systems of axes.Advance in the theory (p. I.83) ismade by followingGauss (1827) (in
2D) and Lamé (1859) (in 3D) in exploiting the geometric representation of a system
of curvilinear coordinates by considering three families of surfaces and looking for
the expression of an arc of any curve traced in space in terms of theρi’s, with a drastic
simplification if the curvilinear coordinates are rectangular. The change in surface
element is evaluated in the same conditions. The consideration of a referencemobile
triad is emphasized (cf. p. I.65). This allows one to deal with geometric questions
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related to surfaces and curves traced in space (problem of conjugated tangents on
one of the surfaces ρi = const. with i fixed, or the problem of establishing the
differential equation for curvature lines). This looks very much like exercises given
in the past to students in competition for admission to Grandes Ecoles. But for
applications to continuum mechanics in 3D, one must focus on kinematic formulas
where parameters ρi are none other than the original orthogonal coordinates (noted x,
y, z by the Cosserats, but simply XK , K = 1, 2, 3 in modern indicial notation). Then
translations are given by the displacement. The latter has to be projected on themobile
triad, and the strain components can be expressed in terms of this projection (cf.
Eq. (98) in p. I.91). External applied forces also are reported to themobile axes. In the
end one canwrite down the equations of equilibrium in this framework (SeeEq. (100),
p. I.92). The result is a set of partial differential equations satisfied byboth translations
and rotations, the knowledge of which is intimately related to the triple system of
surfaces in which the primitive rectangular coordinate planes have been transformed.
Then the Cosserats specialize to the case of infinitesimally small deformations with
corresponding expansions of various quantities in the already introduced ordering
parameter t, resulting in fact in expressions already given by Beltrami and Barré de
Saint-Venant. These are given byEq. (I.103) for a simple natural state and an isotropic
elastic body. The Cosserats mention that the case of thin straight rods and thin plates
would be treated in the likemanner, but the corresponding elaboration is postponed to
further works. The more general case where the body before deformation is reported
to an arbitrary triple system of surfaces (with parameters ρi) is then lengthily exposed
in the rest of the chapter together with equilibrium equations relative to the deformed
body. This is achieved with the help of the principle of virtual work (Eq. (32) in p.
I.101) for both finite and infinitesimally small deformations with, wemust say, rather
atrocious equations in terms of the ρi ’s (for illustration, see Eqs. (116)–(117) in p.
I.103 on).

In all, the contents of this chapter IV seem a bit obsolete to our modern eyes used
to reasoning with tensors. But in the circumstances of the period where both vector
and tensor analyses are not yet sufficiently developed and/or applied, the Cosserats’
efforts are certainly justified in spite of the obvious laborious feeling that we gather
from them and the somewhat old-fashioned geometric character that permeates them.
These may not have been felt as such by the contemporaries of the Cosserats.

4 Summary and Conclusion

This brief perusal of the long paper published by the Cosserat brothers in 1896 brings
us to the following general remarks and conclusion. First, the very length and detail of
the paper lean towards an interpretation of this paper as an aborted series of lectures
on a field of marked interest at the period. Indeed, the first chapters of the opus
support this interpretation, especially in the theory of deformations. However, the
detailed and accurate description with appropriate references reveals a typical trait of
the brothers’ style. They are clearly mathematical and, in spite of their professions,
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pay little attention, if any, to applications such as the strength of materials. This
is borne out by the primal consideration of finite deformations, small ones being
only viewed as perturbations. The original reference can only be one to the great
Cauchy and his memoir of 1827 and the notion of ellipsoids of deformation. But then
there are unavoidable references to more recent works, in particular by G. Green,
Kirchhoff,William Thomson (Kelvin), Barré de Saint-Venant, and Boussinesq. They
have clearly benefited from Poincaré’s lectures (Poincaré 1892). Often enriched by
astute remarks, this part is an excellent compuscus of the abstract level of description
reached in the 1890s without the use of tensor analysis. With the consideration
of the notion of internal forces (stresses), the Cosserats are in the main stream of
the approach to continuum mechanics in the second half of the nineteenth century.
Cauchy is only noted in passingwhile theCosserats favour the approach advocated by
Kirchhoff (1852), apparently one of their favourite sources, but also Clebsch (1883)
as revised and augmented by Barré de Saint-Venant. Strangely enough, they never
cite Gabrio Piola, who is now considered a precursor of Kirchhoff and a missing link
between the 1820 and the 1850s. The constitutive theory for (finite strain) elasticity
is fully thermodynamic with a strong influence of G. Green, Kelvin and the then
new rising star in phenomenological physics, Pierre Duhem. The Cosserats kept
very much aware of any recent developments in the 1880s–1890s. What is more
surprising to modern readers is the frequent reference to the lectures of Poincaré on
elasticity. Of course Poincaré is the acknowledged genius of the time and it seems
quite natural to pay him the respectful dues he deserves. But what is less known
is the nice critical view of elasticity that Poincaré offered in his lectures of 1892
(in fact redacted in a rather student style by two of the auditors; we have examined
this point in Maugin 2016). As a never tired inquisitive “student” of all what was
currently developed in mathematical physics, he applied in these lectures his usual
dexterity and easiness in grasping the totality of a field in a short time with spot on
critical comments, and this proved much useful to the brothers in their own analysis,
including original considerations on stability.

In all, the Cosserat brothers seem to have been strongly influenced by their own
formation, through the teaching at the School of Ponts et Chaussées and reference
to the lectures of other great renowned past members of this Corps of engineers
for the oldest brother, François, and through the works of Darboux and Koenigs for
Eugène. This last influence is particularly felt in their last chapter IV on curvilinear
coordinates. Their memoir is rather lengthy and one may wonder about its place
of publication, in a little publicized journal, the Annales of the Faculty of Sciences
in Toulouse—where Eugène Cosserat (1885) had already published the full text
of his doctoral thesis. Although the Cosserats had a rather unpredictable policy of
publication (clearly they were not preoccupied by matters of publication index and
impact factor!) one explanationmaybe that sinceEugènewas teaching inToulouse he
may have felt a duty to publish something in the local Annales and the brothers used
this opportunity to publish an unusually longmemoir that could have been welcomed
in a more known scientific periodical such as the Journal de Mathématiques Pures
et Appliquées or the Annales of the Ecole Normale Supérieure.
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Then the question remains of what was the influence of the Cosserats paper imme-
diately and much later on. We have noticed in other studies that this memoir was
dutifully cited by Pierre Duhem, Paul Appell and Ernst Hellinger who may be con-
sidered contemporaries of the brothers. It was dutifully cited by the most famous
authors on finite-strain elasticity in the transitional period of the 1920–1930s, e.g. L.
Brillouin, B.R. Seth, F.D. Murnaghan and A. Signorini. The most emblematic work
of the period was by Murnaghan (1937). As a matter of fact, perhaps with a nasty
will to belittle his work, Truesdell (1952b) claims that this work by Murnaghan was
essentially a rewriting of the Cosserats’ work of 1896 in the form of tensors. It was
indeed Truesdell (1952a, 1984), pp.148–150, who revived this work as well as those
of other scientists of the nineteenth century in his historical review. This was incor-
porated in the Truesdell–Toupin encyclopaedic article of the Handbuch der Physik
(Truesdell and Toupin 1960) with now full reference to both Kirchhoff and Piola.
From then on direct reference to the Cosserats’ paper of 1896 became extremely
rare, having become part of the accepted history of the field.
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