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Abstract Based on the representation of the incremental stress fields by complex
potentials and conformal mapping technique, the fundamental solutions for an
unbounded, homogeneous, orthotropic elastic body containing an elliptical hole
subjected to uniform remote loads are determined. The orthotropic body is under
by uniform remote tensile, tangential, and antiplane shear loads—cases correspond-
ing to Mode I, Mode II, and Mode III of fracture. The solutions are obtained in a
compact and elementary form.

1 Introduction

The problem of an isotropic body with an elliptical hole was studied by many
authors using Kolosov–Muskhelishvili’s complex potentials Muskhelishvili (1953)–
Bertoldi et al. (2007) or the integral transform method Singh et al. (2012). In what
follows our results Craciun and Soós (2006), Craciun and Barbu (2015) for a pre-
stressed elastic composite material under by uniform distributed remote loads are
presented and extended. To get the complex potentials describing the incremental
stress and displacement fields, Ψ1 = Ψ1(z1) and Ψ2 = Ψ2(z2) for the plane problem,
and Ψ3 = Ψ3(z3) for the antiplane problem, a technique based on the conformal
mapping of the exterior of the elliptical hole in the planes on the exterior of the unit
circle is used. The unknown potentials are represented by two Laurent series in the
complex planes and their coefficients are determined from the boundary conditions.
The compact closed-form analytical solutions, i.e., the complex potentials, of the
considered boundary value problems for an unbounded, homogeneous, prestressed
orthotropic elastic composite with an elliptic hole are obtained.
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2 Representation of the Incremental Stress Fields

The representation of elastic fields by complex potentials in the classical case of
anisotropic elastic bodies was given by Lekhnitski (1963). This representation was
used, for instance, by Sih and Leibowitz (1968) to analyze problems concerning the
existence of a crack in an anisotropic elastic solid. The results obtained by Lekhnitski
(1963) were generalized for the case of a prestressed material by Guz (1983), who
also has analyzed the influence of the initial applied stresses on the behavior of a
solid body containing cracks. Guz’s representation of the incremental stress fields by
complex potentials Guz (1983), Cristescu et al. (2004) is presented. In what follows
it is considered an elastic composite with an elliptical hole prestressed with the initial

applied stress
◦
σ 11, in the direction of Ox1 axis, i.e., along the major semi-axis of

the ellipse. The initial deformed equilibrium configuration of the body is assumed
to be homogeneous and locally stable. The paper starts with representation of the
incremental stress fields corresponding to the antiplane state, by a single complex
potential Ψ3 = Ψ3 (z3) depending on the complex variable z3 = x1 + μ3x2. The
complex parameter μ3 is the root of the characteristic equation of the differential
equilibrium equation and has the following form, see Guz (1983)–Cristescu et al.
(2004):

μ3 = 1

ω2332

[−ω1332 + i
√

ω1331ω2332 − ω1332ω2331
]
, (1)

where ωklmn (k, l,m, n = 1, 2, 3) are the instantaneous elasticities of the material in
its free reference configuration and can be expressed through engineering constants

of the composite and initial applied stress
◦
σ 11 and i denotes the imaginary unit, see

Cristescu et al. (2004).
Taking into account the antiplane state relative to the plane x1x2 the instantaneous

elasticities of the material have to satisfy the following restrictions:

√
ω1331ω2332 − ω1332ω2331 > 0, ω2332 > 0. (2)

The corresponding components θ13 and θ23 of the nominal stress are then given by

θ13 = 2Re {qΨ3 (z3)} , θ23 = 2Re {Ψ3 (z3)} , q = ρ1

ρ2
,

ρ1 = ω1331 + μ3ω1323, ρ2 = ω2313 + μ3ω2323. (3)

It is assumed that the initial deformed composite material is in plane state relative
to the x1x2 plane.

The representation of the incremental stress fields by two arbitrary analytical
complex potentials Ψ j = Ψ j (z j ), j = 1, 2 has the following form:

θ22 = 2Re {Ψ1(z1) + Ψ2(z2)} , (4)
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θ21 = −2Re {a1μ1Ψ1(z1) + a2μ2Ψ2(z2)} , (5)

a j = ω2112ω1122μ
2
j − ω1111ω1212

Bjμ
2
j

, (6)

θ12 = −2Re {μ1Ψ1(z1) + μ2Ψ2(z2)} , (7)

θ11 = 2Re
{
a1μ

2
1Ψ1(z1) + a2μ

2
2Ψ2(z2)

}
, (8)

Bj = ω2222ω2112μ
2
j + ω1111ω2222 − ω1122(ω1122 + ω1212), (9)

where μ1 and μ2 are the roots of characteristic equation of equilibrium, see
Cristescu et al. (2004). The instantaneous elasticities of the material ωklmn (k, l,m,

n = 1, 2) can be expressed through engineering constants of the composite and initial

applied stress
◦
σ 11, by the following relations, see Cristescu et al. (2004):

ω1111 = 1 − ν23ν32

E2E3H
+ ◦

σ 11, ω2222 = 1 − ν13ν31

E1E3H
,

ω1122 = ν12 + ν32ν13

E1E3H
,

ω1212 = ω1221 = ω2112 = G12,

with

H = 1 − ν12ν21 − ν23ν32 − ν31ν13 − ν21ν32ν13 − ν12ν23ν31

E1E2E3
.

In these relations E1, E2, E3 are Young’s moduli in the corresponding symmetry
directions of the material, G12 is the shear modulus in the symmetry plane Ox1x2
and ν12, ..., ν32 are the Poisson’s ratios.

Also, for an orthotropic material the roots μ1 and μ2 usually are not equal. In
what follows the case of non-equal roots is considered

μ1 �= μ2.

3 Antiplane State

In this section the plane problem of antiplane shear loads, i.e., the case corresponding
to the thirdmode of fracture, is studied. Let us consider an unbounded, homogeneous,
prestressed orthotropic elastic composite containing an elliptical hole which is acted
by an antiplane constant shear load τ > 0 in the direction of the x3 axis at large
distances. The boundary of the elliptical hole is free from stresses.
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Let us write the boundary conditions corresponding to the mechanical problem:

lim|z3|→∞θ13 (z3) = 0, lim|z3|→∞θ23 (z3) = τ > 0,

n1θ13 (z3) + n2θ23 (z3) = 0, (10)

on the hole boundary, where n1 and n2 are the components of the unit exterior normal
to the boundary.

In order to find the complex potential Ψ3 = Ψ3 (z3) is considered the conformal
mapping of the exterior of the elliptical hole onto the exterior of the unit circle,
having the form

z = x1 + i x2 = a + b

2
ζ + a − b

2

1

ζ

z3 = x1 + μ3x2 = a − iμ3b

2
ζ3 + b + iμ3b

2

1

ζ3
. (11)

The inverse mapping is given by

ζ = z + √
z2 − a2 + b2

a + b
, ζ3 =

z3 +
√
z23 − a2 − μ3b2

a − iμ3b
. (12)

Let a, b, b ≤ a be the two semi-axis of the elliptical hole and if b → 0 the consid-
ered hole obviously becomes the mathematical model of an usual, classical Griffith-
Irwin crack given by a segment of length 2a.

Let us introduce now the complex potential Ψ3 (ζ3) through the relation

Ψ3 (ζ3) = Ψ3 (z3 (ζ3)) , (13)

where for simplicity it is used the same notationΨ3 for the complex potential depend-
ing on z3 or on ζ3. The boundary conditions (10) by means of the potential Ψ3 (ζ3)

and the mapping formula (11) become

lim|z3|→∞θ13 (ζ3) = 0, lim|z3|→∞θ23 (ζ3) = τ (14)

and
(cos θ)θ13(ζ3) + (sin θ)θ23(ζ3) = 0, ζ3 = eiθ , 0 ≤ θ ≤ 2π, (15)

where (cos θ, sin θ) is the unit exterior to the unit circle in the complex plane ζ3,
and θ is obviously the angle between this normal and the x1 axis.

The complex potential Ψ3 = Ψ3 (ζ3) is an analytic function on the exterior of the
unit circle, and thus we may write it as
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Ψ3(ζ3) = A0 +
∞∑

m=1

Amζ−m
3 , (16)

where A0, A1, A2, . . . are unknown complex constants to be determined from the
boundary conditions. The second boundary condition from (10) at large distance
from the hole leads to the following restrictions on A0:

q A0 + q̄ Ā0 = 0, A0 + Ā0 = τ (17)

therefore,

A0 = −τ
q̄

q − q̄
= τ q̄i

2r2
, q = r1 + ir2. (18)

The third boundary condition from (10) imposes an additional restriction on the
coefficients of the potential Ψ3(z3)

(q + i)A1 + (q̄ − i) Ā1 + (q + i)A2e
−iθ + (q − i)

−
A2 e

iθ

+
∞∑

m=2

[(q + i)Am+1 + (q − i)Am−1]e−imθ +
∞∑

m=2

[(q̄ − i) Ām+1 + (q̄ + i) Ām−1]eimθ

= −A0[(q + i)eiθ + (q − i)e−iθ ] − Ā0[(q̄ + i)eiθ + (q̄ − i)e−iθ ], (19)

for 0 ≤ θ ≤ 2π . Condition (19) is fulfilled if and only if the following relations are
satisfied:

(q + i)A1 + (q̄ − i) Ā1 = 0 (20)

(q + i)A2 = −[A0(q − i) + Ā0(q̄ − i)],

(q̄ − i) Ā2 = −[A0(q + i) + Ā0(q̄ + i)] (21)

A1+2m = sm A1, A2+2m = sm A2,m = 1, 2, 3... (22)

with

s = −q − i

q + i
. (23)

Equation (21) becomes

A2 = − A0 (q − i) + A0 (q − i)

q + i
(24)

and taking into account (24) the expression of the constant A2 has the following
form:

A2 = i
τ

q + i
. (25)
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Let γ and δ denote the real and the imaginary part of A1, respectively, i.e.,

A1 = γ + iδ. (26)

Now, from (20) we get the following value for A1:

A1 = γ

(
1 + i

r1
r2 + 1

)
(27)

with
q = r1 + ir2. (28)

Let us remark that the real number γ remains undetermined in the expression (27) of
A1. This is not an unexpected result since we have a boundary value problem in stress
where such indetermination generally occurs. After some laborious manipulations,
using (22) into (14) the final form of the complex potential Ψ3(ζ3) has the following
form:

Ψ3(ζ3) = A0 + A1ζ3 + A2

ζ 2
3 − s

. (29)

The basic complex potential Ψ3(z3) may then be obtained by introducing the
expression of ζ3 given by (12) into the right-hand side of (29) and the problem is
completely solved.

4 Plane State

In this section the plane problem of a uniform distributed remote tensile load, i.e., the
case corresponding to the first opening mode of fracture, is studied. Let us consider
an unbounded, homogeneous, prestressed orthotropic elastic composite containing
an elliptical hole which is acted by a uniform constant normal tensile load p > 0 in
the direction of the x2 axis at large distances. The boundary of the elliptical hole is
free from stresses.

Let us write the boundary conditions corresponding to our mechanical problem:

lim|z|→∞θ11 (z) = lim|z|→∞θ12 (z) = lim|z|→∞θ21 (z) = 0, lim|z|→∞θ22 (z) = p > 0, (30)

n1θ11 (z) + n2θ21 (z) = 0, n1θ12 (z) + n2θ22 (z) = 0,

on the hole boundary, where n1 and n2 are the components of the unit exterior normal
to the boundary.

The complex potentials Ψ j = Ψ j
(
z j

)
, j = 1, 2, must be determined not in the

region of the infinite prestressed orthotropic plate with an elliptical hole, denoted by
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S, but in the regions Sj , j = 1, 2 obtained from S by the affine transformations:

x j
1 = x1 + α j x2, x

j
2 = β j x2, j = 1, 2. (31)

The regions Sj are also planes with elliptical holes whose contours are given by
the equations

x j
1 = a cos θ + α j b sin θ, x j

2 = β j sin θ, 0 ≤ θ ≤ 2π, j = 1, 2. (32)

The following conformal mapping of the regions S, S1, and S2 onto the exterior of
the unit circle is used:

z = x1 + i x2 = a + b

2
ζ + a − b

2

1

ζ
,

z j = x1 + μ j x2 = a − iμ j b

2
ζ j + a + iμ j b

2

1

ζ j
, j = 1, 2. (33)

The inverse mapping is given by

ζ = z + √
z2 − a2 + b2

a + b
, ζ j =

z j +
√
z2j − a2 − μ j b2

a − iμ j b
, j = 1, 2. (34)

When the x1 and x2 are running along the contour of the ellipse taking the values
x21
a2 + x22

b2 = 1, the functions defined by the (34) take the values ζ = ζ1 = ζ2 = eiθ .
Let us introduce now the complex potentials Ψ j

(
ζ j

)
through the relations

Ψ j
(
ζ j

) = Ψ j
(
z j

(
ζ j

))
, j = 1, 2, where for simplicity we use the same notation

Ψ j for the complex potentials depending on z j or on ζ j . The boundary conditions
(30) by means of the potential Ψ j

(
ζ j

)
and the mapping formulae (33) become

lim|ζ |→∞θ11 (ζ ) = lim|ζ |→∞θ12 (ζ ) = lim|ζ |→∞θ21 (ζ ) = 0, lim|ζ |→∞θ22 (ζ ) = p > 0, (35)

(cos θ)θ11 (ζ ) + (sin θ)θ21 (ζ ) = 0, (cos θ)θ12 (ζ ) + (sin θ)θ22 (ζ ) = 0, (36)

on the unit circle ζ = eiθ , 0 ≤ θ < 2π ,where (cos θ, sin θ) is the unit exterior normal
to the unit circle in the complex plane ζ , and θ is obviously the angle between this
normal and the x1 axis.

The complex potentials Ψ j = Ψ j
(
ζ j

)
j = 1, 2 are analytical functions on the

exterior of the unit circle, i.e.,

Ψ1(ζ1) = A0 +
∞∑

m=1

Amζ−m
1 ,
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Ψ2(ζ2) = B0 +
∞∑

m=1

Bmζ−m
2 , (37)

where Ak and Bk , k = 0, 1, . . . are unknown complex constants to be determined
from the boundary conditions.

Using Eqs. (35)–(37) the following restrictions on A0, A0, B0 and B0 are imposed:

A0 + A0 + B0 + B0 = p, (38)

μ1A0 + μ1A0 + μ2B0 + μ2B0 = 0,

a1μ1A0 + a1μ1A0 + a2μ2B0 + a2μ2B0 = 0, (39)

a1μ
2
1A0 + a1μ

2
1A0 + a2μ

2
2B0 + a2μ

2
2B0 = 0.

Using the representation formulae, the expressions of the complex potentials, and
boundary conditions (36), the following expressions are obtained:

A2m+1 = ξm
1 A1, A2m+2 = ξm

1 A2, B2m+1 = ξm
2 B1, B2m+2 = ξm

2 B2, (40)

with

ξk = i − μk

μk + i
, k = 1, 2,

B1 = 2
a2μ2Re((μ1 + i)A1) − Re(a1μ1(μ1 + i)A1)

(μ2 + i)(a2μ2 − a2μ2)
. (41)

Finally, from system (38), the coefficients A2 and B2 can be determined.
The complex coefficient A1 remains undetermined in the expressions (37) of

complex potentials of Ψ j = Ψ j
(
z j

)
, j = 1, 2. This is not an unexpected result since

it is considered a boundary value problem in stress where such indetermination
generally occurs.

The expression of the complex potentials Ψ j = Ψ j
(
z j

)
, j = 1, 2 may now be

written using (40) into (37):

Ψ1(ζ1) = A0 + A1ζ1 + A2

ζ 2
1 − ξ1

,

Ψ2(ζ2) = B0 + B1ζ2 + B2

ζ 2
2 − ξ2

.

(42)

In the last part of the paper, the plane problem of uniform remote tangential shear
loads, i.e., the case corresponding to the second mode of fracture, is studied.

Let us consider an unbounded, homogeneous, anisotropic elastic body containing
an elliptical hole under by a uniform remote constant tangential shear load h > 0 in
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the direction of the x1 axis. The boundary of the elliptical hole is free from stress.
The boundary condition (36) remains unchanged and the far-field conditions (35)
become

lim|z|→∞θ11 (z) = lim|z|→∞θ21 (z) = lim|z|→∞θ22 (z) = 0, lim|z|→∞θ12 (z) = h > 0. (43)

Using the same formalism as in the previous case, the same expressions of the
complex potentials are obtained. The coefficient B1 has the same form as before and
the coefficient A1 rests undetermined. To find the coefficients A0, B0, A2, and B2,
it will use the same procedure, as for the plane problem of uniform remote tensile
load. From the far-field conditions the following restrictions are obtained:

A0 + A0 + B0 + B0 = 0, μ1A0 + μ1A0 + μ2B0 + μ2B0 = −h,

a1μ1A0 + a1μ1A0 + a2μ2B0 + a2μ2B0 = 0, (44)

a1μ
2
1A0 + a1μ

2
1A0 + a2μ

2
2B0 + a2μ

2
2B0 = 0.

Let us observe that the above system could be a determinate system, an indeter-

minate system, and in the case of resonance due to the initial applied stress
◦
σ 11 an

incompatible system. Finally, the values of the complex coefficients A2 and B2 are
obtained.

The final forms of the complex potentials Ψ j (ζ j ), j = 1, 2 are thus determined
by elementary calculus in both situations of uniform remote tensile and tangential
shear loads, respectively. The basic complex potentialsΨ j (z j ) j = 1, 2 may be then
obtained by introducing the expression of ζ j given by (34) into the right-hand side
of (42) and the problem is completely solved.

5 Final Remarks

Compact closed-formanalytical solutions of the considered boundary value problems
for an unbounded, homogeneous, prestressed orthotropic elastic composite contain-
ing an elliptical hole, subjected to uniform remote tensile, tangential, and antiplane
shear loads (Mode I, Mode II, and Mode III of Fracture), are obtained.

The general results are practically relevant, e.g., for the study of incremental
stress, strain, and displacement fields in the vicinity of the elliptical hole, can be
applied to study a variety of composite mechanics problems, and can be extended
for prestressed thermoelastic, ferromagnetic, or piezoelectricmaterials with elliptical
holes.
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