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On the occasion of the 60th birthday
of Holm Altenbach



Preface

This volume of the Advanced Structured Materials Series is dedicated to Prof. Holm
Altenbach, the leading researcher and teacher in the field of applied mechanics from
the Faculty of Mechanical Engineering, Institute of Mechanics, Otto-von-Guericke-
University Magdeburg (Germany) on the occasion of his 60th birthday.

Holm has made contributions in many fields of applied mechanics, including
theory of shells, mechanics of composite materials, yield and failure criteria, con-
stitutive models for inelastic behavior, continuum damage mechanics, micro-polar
continua as well as mechanics of nano-sized structures. His achievements in these
areas have led to numerous national and international awards.

Holm holds honorary doctorates from the National Technical University,
“Kharkiv Polytechnical Institute”, Kharkiv (Ukraine), the Ovidius University,
Constanta (Romania) and I. Javakhishvili Tbilisi State University (Georgia).
Amongst numerous awards he received, two notable medals are Gold-Medal of the
Mechanical Engineering Faculty, Politechnika Lubelska and Semko-Medal,
National Technical University, “Kharkiv Polytechnical Institute”.
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He is Editor-in-Chief of Zeitschrift für Angewandte Mathematik und Mechanik
(ZAMM, Journal of Applied Mathematics and Mechanics) and member of the
editorial boards of The Journal of Strain Analysis for Engineering Design,
Mechanics of Composite Materials, Continuum Mechanics and Thermodynamics
and Technische Mechanik.

Among many international conferences and advanced courses Holm organized
or co-organized, some are as follows: the CISM-Courses in Udine, Italy Creep and
Damage in Materials and Structures (1998), Modern Trends in Composite
Laminates Mechanics (2002), Cellular and Porous Materials: Modeling - Testing -
Application (2009), Generalized Continua - From the Theory to Engineering
Applications (2011), Failure and Damage Analysis of Advanced Materials (2013),
Shell-like Structures - Advanced Theories and Applications (2014), EUROMECH
Colloquia 444 Critical Review of the Theories of Plates and Shells and New
Applications (2002), 527 Shell-like Structures - Nonclassical Theories and
Applications (2011) as well as international seminars on different aspects of
Mechanics of Generalized Continua (2010) and (2012) in Lutherstadt Wittenberg
and (2015) in Magdeburg.

Holm Altenbach was born in 1956 in Leipzig and grew up in Magdeburg, where
he attended the Polytechnic Advanced High School. He passed the high school
graduation exam, “Reifeprüfung”, at the Martin-Luther-University Halle-Wittenberg
in 1974. He went to Leningrad Polytechnical Institute (today St. Petersburg State
Polytechnical University) to study Energy Engineering (1974–1975) and Dynamic
and Strength of Machines (1975–1980), where he graduated with distinction.

During his graduation, Holm started his research in applied mechanics. His first
experience was to find effective properties of a composite plate from the given
properties of constituents. Holm continued to explore composite plates and shells
during his Ph.D. study (1980–1983) under the supervision of Profs. P.A. Zhilin and
V.A. Palmov from the Chair “Mechanics and Control Processes” at St. Petersburg
State Polytechnical University. At that time, this was a prestigious school in the
field of solid mechanics, founded by A.I. Lurie, the famous Russian and Soviet
scientist. First paper by Holm in co-authorship with Zhilin was on the stability of
shells (Altenbach and Shilin 1982) and then with Palmov was on the topic
Cosserat-type plate theory (Palmow and Altenbach 1982) appeared in the local
journal, Journal of TH “Otto von Guericke” Magdeburg.1 In this university, Holm
held research fellowship as assistant (1980–1987) and senior assistant (1987–1995).
Holm returned to St. Petersburg in 1987 to defend his second doctoral thesis and
received the degree “Doctor of Technical Sciences”.2 The objective of the thesis
was to develop a nonlinear theory of shells under consideration of visco-elastic
material properties. Holm presented the main results in Ingenieur-Archiv

1TH “Otto von Guericke” Magdeburg was founded on August 6, 1953 as Hochschule (higher
educational institute) of heavy machinery, in 1961 it was renamed as TH (technical higher edu-
cational institute) Magdeburg, in 1987 in Technical University Otto von Guericke. In 1993 the
Otto-von-Guericke-University Magdeburg was founded upon the former TH.
2This degree is equivalent the habilitation in Germany.
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(Altenbach 1988)—it was his first publication in the western part of Germany.3 One
feature of his approach is that the theory is developed from the basic principles of
rational mechanics, directly for the thin shells. This is in contrast to the diverse shell
theories which are derived from equations of three-dimensional continuum
mechanics by mathematical or numerical techniques, for example, asymptotic
methods or variational principles. The direct approach is robust and elegant as the
balance laws are applied for shells. On the other hand, it is rather complex, since
constitutive equations must be formulated for stress resultants (Altenbach and
Zhilin 1988). This requires to extend the classical concepts of material and physical
symmetries and to develop new approaches as how to identify the material prop-
erties of shells. At that time it was not quite clear, why such an expensive direct
approach might have been advantageous. In the last two decades, engineers have
been dealing with materials which cannot be modeled by the three-dimensional
Cauchy continuum and interestingly some materials even do not exist in a
“three-dimensional form”. Examples include coatings, (organic) light-emitting
diodes, silicon photovoltaic cells, and thin films.

In 1996, Holm was appointed Full Professor of Engineering Mechanics at the
Martin-Luther-University Halle-Wittenberg. His chair was integrated with the
Department of Materials Sciences and the Institute of Materials Science.4 Holm
specialized in the research of mechanics of thin-walled structures. One aspect was
to consider inelastic material behavior including creep and damage (Altenbach et al.
1997; Altenbach 2002). Another point was the modeling of laminates and shells
made from short-fiber-reinforced materials. For such modeling, the manufacturing
process should be analyzed first to predict the orientation of short fibers during the
flow of fiber suspensions. Here the micro-polar (Cosserat-type) continuum theory is
required to capture independent rotations of short fibers (Altenbach et al. 2003b,
2007). Knowing the orientation states of fibers, one should estimate anisotropic
material properties to investigate deformations and stress state in thin-walled
components (Altenbach et al. 2003a; Kröner et al. 2009).

3In those years it was not easy to publish research results outside the Eastern Bloc countries.
4This combination: Department of Materials Sciences (Fachbereich Werkstoffwissenschaften) and
Institute of Materials Science (Institut für Werkstoffwissenschaft) was the result of several
restructuring stages of the former Technische Hochschule für Chemie Leuna-Merseburg. In 1998
the department was renamed as Department of Engineering Sciences. In 2003 the department and
the chair were moved to Halle. In 2011, Holm returned with his group to
Otto-von-Guericke-University Magdeburg (www.ifme.ovgu.de/ltm).
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One of the favorite discussion topics of Holm is the question how to compute the
effective transverse shear stiffness of a plate. This is a tricky task even for plates
made of linear-elastic materials. Indeed, to find the transverse shear stiffness within
the linear theory of elasticity, a nonlinear equation should be solved (Altenbach
2000; Altenbach et al. 2015). As an example, consider a three-layer laminate plate
with skin layers made from the same material and a core layer. Let h be the
thickness of the plate and hc be the thickness of the core layer. Assume that the
shear moduli are Gc and Gs for the core and skin layers, respectively. Then
according to Altenbach (2000), the effective transverse shear stiffness C of the plate
can be computed as follows

C ¼ 1
3
Gshk

2 1� a3ð1� lÞ� �
; l ¼ Gc

Gs
; a ¼ hc

h
; ð1Þ

where k is the least positive root of the following equation

sin ka sin kð1� aÞ ¼ l cos ka cos kð1� aÞ: ð2Þ

For homogeneous plates with l ¼ 1, Eqs. (1) and (2) yield

C ¼ jGh; G ¼ Gs ¼ Gc;

where the factor j takes the value p2=12 as originally derived by Mindlin (1951).
Sandwich plates applied in lightweight structures are usually composed of relatively
thick soft core layer and thin skin layers with a relatively high stiffness. As shown
in Altenbach (2000) for sandwich plates, the Reissner’s formula (Reissner 1947)
follows from Eqs. (1) and (2)

C ¼ Gch:

For laminated glass plates having a thin core layer with the lower shear modulus,
the approximate solution of Eq. (2) reads

k2 ¼ l
að1� aÞ : ð3Þ

With Eq. (1), the approximate value of the transverse shear stiffness is

C ¼ 1
3
Gch

1� a3ð1� lÞ
að1� aÞ : ð4Þ

For thin-walled structures undergoing creep and damage, special iterative pro-
cedures are required in order to compute transverse shear deformation (Altenbach
and Naumenko 2002).

Beyond the activities on shear correction factors, let us take the opportunity to
mention some recent researches by Holm, his students, and collaborators. These
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include analysis of shells from functionally graded materials (Altenbach and
Eremeyev 2008), photovoltaic modules (Schulze et al. 2012; Weps et al. 2013;
Eisentrager et al. 2015a, b), nanoscale shell structures, where surface effects have to
be taken into account (Altenbach et al. 2009; Altenbach and Eremeyev 2011;
Altenbach et al. 2012), inelastic behavior of advanced heat-resistant materials
(Altenbach et al. 2008; Langler et al. 2014), micro-mechanics of grain boundary
cavitation under creep conditions (Ozhoga-Maslovskaja et al. 2015) and inelastic
micro-polar materials (Altenbach and Eremeyev 2014).

It is not straightforward to identify the exact number of books published and/or
edited by Holm. We guess that this number would be in the range between 40 and
50. Let us mention some of his textbooks which are used by many professors for
teaching applied mechanics and are popular among students as well. These include
Engineering Mechanics (Altenbach 2014), Continuum Mechanics (Altenbach
2015), Theory of Plates (Altenbach et al. 1998), and Mechanics of Composite
Structural Elements (Altenbach et al. 2004).

Holm has directly supervised over 30 doctoral students, and countless, doctoral
and postdoctoral fellows from different countries. For many years, he has been the
board member of the interdisciplinary Graduate School 1554 on Micro-Macro-
Interactions in Structured Media and Particle Systems5 funded by the German
Research Foundation (Deutsche Forschungsgemeinschaft, abbreviated DFG). Many
Ph.D. holders from this school and from the former one6 have managed academic
positions in different universities.

Professor Altenbach with assistants and students. Merseburg, 2002

5see homepage: www.grk1554.ovgu.de.
6Ph.D. schools (“Graduiertenkollegs”, abbreviated GRK) are established by German universities to
promote young scientists. Their key emphasis is on the qualification of doctoral researchers within
the framework of a focused research program and a structured training strategy. The first Ph.D.
school at the TU Magdeburg entitled Modellierung, Berechnung und Identification mechanischer
Systeme was founded in 1992.
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This volume contains a collection of contributions on advanced approaches of
continuum mechanics written by leading scientists and collaborators, former Ph.D.
students, and friends of Holm around the globe. These articles cover not only
modern high-impact research areas but also historical essays and fundamentals. We
thank all these distinguished authors for sharing this celebration.

We would like to acknowledge the series editor Prof. Andreas Öchsner for
giving us the opportunity to publish this volume. We thank Helal Chowdhury,
Johanna Eisenträger, Oliver Junge, and Barbara Renner from the Institute of
Mechanics, Otto-von-Guericke-University Magdeburg, for their careful readings of
parts of the volume. We would like to acknowledge Dr. Christoph Baumann from
Springer Publisher for the assistance and support during the preparation of the
book.

We wish Holm a wonderful 60th birthday, continued success, many new sci-
entific papers and books, happiness, as well as excellent health for many years to
come.

Magdeburg Konstantin Naumenko
March 2016 Marcus Aßmus
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Part I
Fundamentals and Elasticity



Time Derivatives in Material and Spatial
Description—What Are the Differences and
Why Do They Concern Us?

Elena A. Ivanova, Elena N. Vilchevskaya and Wolfgang H. Müller

Abstract This paper has many, albeit mostly didactic objectives. It is an attempt
toward clarification of several concepts of continuum theory which can lead and have
led to confusion. In away the paper also creates a bridge between the lingo of the solid
mechanics and the fluid mechanics communities. More specifically, an attempt will
be made, first, to explain and to interpret the subtleties and the relations between the
so-called material and spatial description of continuum fields. Second, the concept of
time derivatives in material and spatial description will be investigated meticulously.
In particular, it will be explained why and how the so-called material and total time
derivatives differ and under which circumstances they turn out to be the same. To that
end, material and total time derivatives will be defined separately and evaluated in
context with local fields as well as during their use in integral formulations, i.e., when
applied to balance equations. As a special example the mass balance is considered
for closed as well as open bodies. In the same context the concept of a “moving
observation point” will be introduced leading to a generalization of the usual material
derivative. When the total time derivative is introduced the distinction between the
purelymathematical notion of a coordinate systemand the intrinsically physics-based
concept of a frame of reference will gain particular importance.
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1 Introduction

There are two fundamentally different approaches for describing the kinematics
of continua. One method of observing a structure’s motion is based on following
individual particles of the body as they move through space and time. It is used for
modeling solid matter with various rheological properties (elastic and nonelastic).
In the other method motion is described by focusing on a specific location of space
through which the structure moves as time passes on. It is mostly used in fluid and
gas mechanics as well as in granular media modeling. Following Malvern (1969),
we will call the first description material and the second one spatial.

In order to consider multiphase structures consisting of a solid and fluid phases
it is convenient to use the material description for the solid and a modification of
the spacial description for fluids. In this case it is very important to understand
how the concepts introduced in the different descriptions relate to each other. This
holds, in particular, for the time derivatives. The so-called total derivative in material
description and the material derivative in spatial description written in terms of a
partial derivative look very similar. Thus it is not surprising that it is a widespread
opinion that the total and the material derivatives are different names for the same
concept. But as it will be shown further down they are different concepts describing
a rate of change of a property of the material point and a rate of change of a property
at the space point. Consequently, one aim of the present paper is to give a definition
of the total derivative (as an analogue and generalization of the derivative used in the
material description), to give a definition of the material derivative (as an analogue
and generalization of the derivative used in the spatial description), to make a strict
distinction between these concepts, and to investigate the conditions for which they
coincide.

In summary, this paper is an attempt to clarify sometimes obscure and confusing
statements made in context with the material and spatial description and the associ-
ated time derivatives. In this sense it is of didactic value and we only claim to raise
awareness of the situation and to provide some comments regarding possible ways
out of die-hard conundrums.

2 Total and Material Derivatives in Material and Spatial
Descriptions—Literature Review

The main problem with the definition of a total time derivative is that the corre-
sponding operator appearing in the laws of continuum theory is not simply a purely
mathematical concept. Rather it contains an underlying, definitive physical meaning.
In order to clarify the problem we start with a purely mathematical definition. Let
g = g̃(u(t), v(t),w(t), t). The total derivative of g̃ with respect to t (the symbol of
the time variable, chosen as a reminder for later purpose) is:
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dg̃

dt
= ∂ g̃

∂u

du

dt
+ ∂ g̃

∂v

dv

dt
+ ∂ g̃

∂w

dw

dt
+ ∂ g̃

∂t
. (1)

Now let the arguments of the function depend on two independent variables, say u =
u∗(s, t), v = v∗(s, t), w = w∗(s, t). We can form partial derivatives of g = g∗(s, t)
with respect to one of its arguments with the other held constant. Thus in the case of
a function of several independent variables (here s and t) every derivative is a partial
one. The concept of a total derivative of a function of several independent variables
does not exist in mathematics.

Inmechanics of continua all quantities characterizing a stress–strain state are func-
tions of several independent variables—three spatial coordinates and time. There-
fore, introducing the concept of a total derivative with respect to time in a strictly
mathematical sense is impossible. An additional physics-based idea postulating what
spatial coordinates should be fixed and how to identify them is needed. We will get
back to that later.

Within the framework of material description the so-called material points are
identified by their position, R, in an arbitrary chosen reference configuration. The
reference configuration is usually chosen to be fixed in the frame of reference. The
total derivative of a vector field, ψ(R, t), is then defined as a partial derivative with
respect to t with R held constant, see Dmitrienco (2009):

dψ

dt
= ∂ψ

∂t

∣
∣
∣
∣
R=const

. (2)

Note that in some cases it makes sense to exclude a rigid body motion from our
considerations (e.g., if we are only interested in the (local) deformation, i.e., the
displacement, u, of the matter of an object, it does not make sense to look at its total
motion. Hence, we “take out” the rotation when considering the deformation of a
spinning shaft, or the translative/rotative motion of a flying aircraft when bending of
its wing becomes an issue, etc.). If a coordinate system comoving with the body is
used then the reference position vector depends on time and the definition (2) has to
be modified since R = R̂(t).

In a number of books on solid mechanics and nonlinear elasticity the derivative
(2) is called material, substitutional, or individual (see, e.g., Ogden 2003; Asaro and
Lubarda 2006) and the concept of a total derivative is not introduced. In other books
the definition (2) is not given explicitly. Rather the material derivative is defined as
a rate of change of a variable, ψ , whose arguments are the current position vector of
a material particle (the so-called motion), r(R, t), and time, t . Then, by virtue of the
chain rule of calculus:

ψ̇ ≡ Dψ

Dt
= ∂ψ

∂t

∣
∣
∣
∣
r=const

+ v · ∇ψ, ∇ = ∂

∂ r
, v = ∂ r(R, t)

∂t

∣
∣
∣
∣
R=const

. (3)

In these books the definition of the total derivative is either not given at all or it is
said that the material derivative coincides with the total one (Milne-Thomson 1960;
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Lojtsanskij 1950; Durst 1992). It is interesting to note that in Petrila and Trif (2005),
p. 7, the derivative (2) is called “a local or material derivative,” while in the case of
(3) it “is designed to be the total or spatial or substantive derivative or the derivative
following the motion.” Truesdell (1972), p. 104, writes more cautiously:

The dot operator as defined by (3) is called the substantial derivative. [...] We have already
agreed to use the dot to denote the time derivative in the substantial and referential descrip-
tions, and the definition (3) has been framed so as to render the two usages consistent with
each other.

The symbol of the total derivative appears also in balance equations as a general-
ization of the theorem on differentiation of an integral with respect to a parameter, see
Truesdell (1972). Widely used in continuummechanics is a volume-related transport
theorem of the form:

d

dt

∫

V (t)
ψ dV =

∫

V (t)

(
Dψ

Dt
+ (ψ∇) · v

)

dV, (4)

which contains symbols of the material and of the total derivatives, D/Dt and d/dt ,
respectively (Adler 1992; Ogden 2003; Asaro and Lubarda 2006; Gurtin 1981). Note
that integration over the volume in (4) does not exclude a dependence of the result
of integration from a position vector, since in the case of a nonuniform distribution
of the field ψ across the medium varying from subvolume to subvolume, the result
depends on the position of a subvolume within the medium. Thus the left part of (4)
can be the total derivative of a function of several independent variables, namely time
and the location of the subvolume. This might be one reason why Truesdell (1972),
p. 105, says:

More generally, if Ψ denotes a tensor field of any order,

d

dt

∫

P
Ψ dM = d

dt

∫

X (P,t)
ρΨ dV =

∫

X (P,t)
ρΨ̇ dV (5)

and Ψ̇ is to be calculated by an appropriate rule of the type (3). (The central expression,
which involves an undefined operation d/dt , is to be regarded only as a suggestive way of
writing the left-hand expression.) The commutation formula (5) is used so often in continuum
mechanics that it is taken for granted without special reference.

At the same time many authors point out that the transport theorem is used for
the calculation of the material derivative over a material volume, i.e., a volume that
consists of the same matter all the time. For example, we find in Eringen (1980), p.
791:

The material derivative of any field over a material volume is given by

D

Dt

∫

V (t)
ϕ dV =

∫

V (t)
(ϕ̇ + ϕ∇ · v) dV =

∫

V (t)

(
∂ϕ

∂t
+ ∇ · (vϕ)

)

dV . (6)

1Eringen’s choice of symbols has been adapted to coincide with the ones used in this article.
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The derivative ϕ̇ in (6) has the same meaning as in (5). The apparent difference
between (6) and (5) is due to the fact that the transport theorem in the form (5) is
written for specific quantities, Ψ .

Analogous formulae can be found in many other books, see, e.g., Malvern (1969),
Mase (1970), Fung (1965). However, it is not clear which velocity of what point
appears in the convective part of (3) and what r is fixed. Therefore, in that case the
operation D/Dt on the left side to the integral is also undefined.

Despite such differences, thematerial description is presented in the solids-related
literature more or less similarly. The situation is quite different with hydrodynamics
books. First of all, it should be noted that in fact the material description is also
used in many hydrodynamics books, see, e.g., Serrin (1959), Petrila and Trif (2005).
However, a consistent presentation of the alternative, so-called spatial description can
be found, for example, in Lojtsanskij (1950), Daily and Harleman (1966), Batchelor
(1970).

The spatial description is a method of observing a motion that focuses on a spe-
cific location in space throughwhich the structuremoves as time passes, the so-called
observation point. The difference between the material and the spatial descriptions is
basically as follows. Within the material description there are two configurations—
the reference and the current one—, which are determined by the position vectors R
and r(R, t), respectively. R labels the substantial point and r(R, t) is the basic func-
tional relationship through which all other kinematic characteristics are expressed.
The spatial description considers only the current configuration and the position vec-
tor r describes the position of a (fixed) point in space so that it does not depend on
time and on the evolution of matter. The primary quantity in the spatial description
is the velocity of the matter and all other quantities are expressed in terms of v(r, t).

The concept of a material derivative in hydrodynamics seems to originally stem
from Stokes (cf., Granger (1995), Sect. 1.7.3) in order to describe changes in the
properties of liquid particles during the time dt , which in the beginning of the interval
dt was at a certain point in space. In order to show how the material derivative in
spatial description is introduced we present a quote from the book of Adler (1992), p.
55, who uses δt instead dt for designation of the time increment (the equation labels
have been adjusted for convenience; note that by “element” Adler means “material
element” as he says in a here-not-quoted sentence before):

At time t , the element is located at position r , and at t + δt , it is located at r + vδt . Hence a
change in the quantity ψ for this particular element can be expressed as

ψ(r + vδt, t + δt) − ψ(r, t) =
(

∂ψ

∂t
+ v · ∇ψ

)

δt. (7)

The time derivative ofψ , following themotion of the fluid, can be symbolized by the operator
D/Dt called the material derivative:

Dψ

Dt
= ∂ψ

∂t
+ v · ∇ψ. (8)

This is the only possible way to introduce thematerial derivative within the frame-
work of a spatial description and it is presented in many hydrodynamics books, see,
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e.g., Batchelor (1970), Lamb (1975), Rouse (1959), Lojtsanskij (1950), Landau and
Lifshitz (1959), Prandtl and Tietjens (1929). It should be noted that this definition
of a material derivative cannot be regarded as a mathematical definition of the func-
tion derivative since an increment of argument vδt cannot be expressed in terms of
function arguments r and t .

Thus, the formally introduced definition of the material derivative as a derivative
of a composite function cannot be used in spatial description. Also, it is worthwhile
mentioning that in the velocity of (8) we put v(r, t), whereas in (3) it is a function
of the reference position vector, v(R, t).

Now let us consider the definition of the material derivative (2) as a derivative
following the motion of the fluid. In the spatial description a given region in space is
considered. The material element at position r at time t possesses the velocity v(r, t)
and moves to the position r + vdt . Thus in order to describe the evolution of matter
during the infinitesimal period of time dt onemay use the material description taking
r and du(x, t) = vdt as the reference position and the infinitesimal displacement
correspondingly. As a result, one may apply mathematical methods developed for
the material description to the spatial description, taking at every moment of time
the current configuration as the reference one and considering a small vicinity of this
configuration, see Ilyushin (1971). Fixing the position vector of the material particle
at some moment of time and taking it as the reference position vector contradicts the
essence of spatial description, thus the definition (2) cannot be used in it.

It should be noted that since there is only the current configuration in the spatial
description it is obvious which coordinates should be fixed. The total derivative is
defined as a partial derivative with the observation point, r , being held constant,

dψ

dt
= ∂ψ

∂t

∣
∣
∣
∣
r=const

. (9)

In addition to that the balance equations are formulated for a constant volume con-
taining the observation point. As a result a partial derivative operator appears in front
of the integral (Milne-Thomson 1960; Landau and Lifshitz 1959). The total deriva-
tive is usually not used in classical hydrodynamics at all and all equations are written
in terms of the material and partial derivatives.

However, in order to considermore complicated problems (e.g., fluid flow through
a deformable solid or porousmedia) it is convenient to use amoving observation point
fixed within the (elementary) volume jointly traversing space at a given velocity.

An expression for the material derivative in the spatial description with a moving
observationpointwas suggested inAltenbach et al. (2003), Zhilin (2012) and contains
the total time derivative:

Dψ

Dt
= dψ(r(t), t)

dt
+

(

v(r(t), t) − d r(t)
dt

)

·∇ψ(r(t), t). (10)

A similar expression can be found in the literature on porous media, e.g.,
Hassanizadeh and Gray (1980). A porous medium is viewed as a body consisting of
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two coexistent continua. The motion of the solid phase is defined by the current po-
sition vector rs(Rs, t), the motion of the solid so-to-speak. The time rate of change
with respect to the solid phase of a quantity ψ is defined as:

Dsψ

Dt
= ∂ψ(Rs, t)

∂t

∣
∣
∣
∣
Rs=const

= ∂ψ(rs, t)
∂t

∣
∣
∣
∣
rs=const

+ vs·∇ψ, (11)

where vs is the solid phase velocity. It is obvious that (11) coincides with the def-
initions of the total derivative in the material description (2), (3). The time rate of
change of the quantity ψ with respect to the fluid phase is given by

D f ψ

Dt
= ∂ψ(rs, t)

∂t

∣
∣
∣
∣
rs=const

+ v f ·∇ψ, (12)

where v f is the fluid-phase velocity field.
Subtraction of Eq. (11) from (12) yields the following relation, see Hassanizadeh

and Gray (1980):

D f ψ

Dt
= Dsψ

Dt
+ (v f − vs) · ∇ψ . (13)

By taking into account that d r(t)/dt in (10) corresponds to the velocity of the solid
phase one can see that the definitions (13) and (10) coincide.

The moving observation point is also considered in the Arbitrary Lagrangian–
Eulerian (ALE) technique. ALE is used to account for the deformation of the fluid
domain which arises from the displacement and deformation of the solid structure.
The material derivative is defined by the fundamental ALE equation (see all of the
references immediately below for details):

Dψ

Dt
= dψ

dt

∣
∣
∣
∣
R=const

+ (v − v̂) · ∇ψ, (14)

where v is the velocity of the fluid particle and v̂ is referred to indistinctly as the
“velocity of the reference point” by Dettmer and Peric (2006) or “velocity of the
moving frame” by Del Pin et al. (2007). In fact, it should be called unmistakably
“grid velocity” as in Vuong et al. (2015) and Gadala (2004), or “mesh velocity”
as in Khoei et al. (2007) or Filipovic et al. (2006). Also note that the concept of a
moving grid and of a relative speed inherent to thematerial derivative was anticipated
before ALE became a prominent concept by Müller and Muschik (1983), where v̂
was called “mapping velocity.” Moreover, d/dt corresponds to the change of the
material particle quantity, which is noted by an observer traveling with a point on
the reference frame. The definitions (10), (13), and (14) coincide.

However, in some articles, see Dang and Meschke (2014), Preisig and Zimmer-
mann (2011), Sarrate et al. (2001), the material derivative is defined by:
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Dψ

Dt
= ∂ψ

∂t
+ (

v − v̂
) · ∇ψ, (15)

where the symbol v was used for the fluid velocity and v̂ for the so-called “velocity
of the moving reference,” see Dang and Meschke (2014), or “fluid mesh velocity”
as termed by Preisig and Zimmermann (2011) or Sarrate et al. (2001). Even if we
ignore differences in the linguistic terminology, Eq. (15) coincides with (14), (10),
and (13) only if the partial derivative in (15) is defined with the reference position
vector of the observation point held constant. At the same time it is written in Surana
et al. (2014)2:

... the Eulerian description with transport

ρ

(
∂v
∂t

∣
∣
∣
∣
r=const

+ v · ∇v
)

− ∇ · σ − ρ f = 0,

is converted to ALE form by replacing velocity v (velocity at a fixed location r) in the
convective terms with convective velocity C̄ = v − v̂.

It is obvious that in this case the material derivative in Surana et al. (2014) differs
from the material derivatives defined by (14), (10), and (13). It is seen that there are
different formulae for the operator of amaterial derivative inmodern literature. Some
authors distinguish between the total and the material derivatives, but sometimes it is
used synonymously, namely as “the total time or the material derivative,” cf., Milne-
Thomson (1960), Lojtsanskij (1950). Sometimes an operator of material derivative
is defined through another operator of material derivative (equations analogously
to (13)). It conflicts with the classical interpretation of the material derivative as a
derivative following the motion of the specific particle.

In many papers the material derivative is written in a form very similar to the one
adopted from the classical textbooks. However, it is not specified what is meant by
the partial time derivative. As a result, a comparison of material derivatives used by
different authors in order to ensure that they coincide or differ is extremely difficult in
some cases. Furthermore, definitions of the used notations are not always provided,
and only formulae for calculations are listed.

In summary of our review we have to conclude that we are facing, first, the need
for a clear distinction between the concept of a material and a spatial description of
fields. Second, a distinction of various time derivatives of these fields is required,
namely between one unfortunately called material time derivative, despite the fact
that it exists in material and in spatial description, as well as the other known as
total time derivative. Sometimes both coincide in meaning and sometimes they do
not. Following this remark, it is the goal of the present paper to give, first, clear
mathematical definitions of the material and of the total time derivatives, which can
be used for a moving observation point and for a nonconstant reference vector, and,
second, to clarify the physical meaning of these operators.

2This is not a verbal quote. For the convenience of the reader it has been adjusted to the symbols
used in this paper.
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3 Material Description

3.1 Kinematics of Continua

In material description quantities related to material particles are functions of the
reference position, R, and of time, t , which we will refer to as “referential variables.”
Any such function f = f∗(R, t)maybe replaced by a function of the spatial variables
f̃ (r, t), which has the same value, f , at the corresponding position vector: f =
f∗(R, t) = f̃ (r∗(R, t), t).
Suppose that the reference position vector does not depend on time. Then the rate

of change of a quantity relevant for characterization of the material particle is

∂ f∗
∂t

= lim
Δt→0

f∗(R, t + Δt) − f∗(R, t)

Δt
, (16)

if it is a function of the referential variables. Otherwise

dr f̃

dt
= lim

Δt→0

f̃ (r∗(R, t + Δt), t + Δt) − f̃ (r∗(R, t), t)

Δt

= lim
Δt→0

f̃ (r∗(R, t + Δt), t + Δt) − f̃ (r∗(R, t + Δt), t)

Δt
(17)

+ lim
Δt→0

f̃ (r∗(R, t + Δt), t) − f̃ (r∗(R, t), t)

Δt

= ∂ f̃ (r, t)
∂t

+ ∂ r∗(R, t)

∂t
· ∇ f̃ , ∇ ≡ ∂

∂ r
.

The rate of change of a physical quantity should not depend on the choice of
variables. Thus

∂ f∗(R, t)

∂t
= dr f̃ (r, t)

dt
,

dr
dt

≡ ∂

∂t

∣
∣
∣
∣
r=const

+ ∂ r∗(R, t)

∂t
· ∇. (18)

Equation (18)1 is consistent with the chain rule of calculus. The operator dr/dt
defines the total derivative under the condition that the reference position vector is a
constant.

Now let R = R∗0(R0, t), where R0 does not depend on time. The velocity vector
is thus defined by

v = lim
Δt→0

r∗(R∗0(R0, t + Δt), t + Δt) − r∗(R∗0(R0, t), t)

Δt

= ∂ r∗(R, t)

∂t
+ ∂R

∂t
· ◦∇r ≡ d◦r

dt
, (19)

◦∇ ≡ ∂

∂R
,

d◦

dt
≡ ∂

∂t

∣
∣
∣
∣
R=const

+ ∂R
∂t

· ◦∇
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The operator d◦/dt is the total time derivative in the reference configuration. Then
the rate of change of the quantity in the current configuration can be found by the
chain rule:

dr f̃
dt

≡ ∂ f̃ (r, t)
∂t

∣
∣
∣
∣
∣
r=const

+ d◦r
dt

· ∇ f̃ . (20)

The operator of the total time derivative in the current configuration, dr/dt , is a
generalization of (18)2. After taking (19) into account, the operators (20) and (18)2
can be expressed in the same manner:

dr
dt

≡ ∂

∂t

∣
∣
∣
∣
r=const

+ v ·∇. (21)

According to Eq. (19) the velocity emerges as a function of the reference position
vector v = v∗(R, t). However, we may eliminate R by assuming that there exists
an inverse of the single-valued function r = r∗(R, t), so that it is possible to obtain
the velocity as a function of spatial coordinates v = ṽ(r, t). In the first case the
acceleration is

a∗(R, t) = d◦v∗(R, t)

dt
= lim

Δt→0

v∗(R∗(R̃, t + Δt), t + Δt) − v∗(R∗(R̃, t), t)

Δt
,

(22)

whilst in the second

ã = dr ṽ
dt

= lim
Δt→0

ṽ(r∗(R∗(R̃, t + Δt), t + Δt), t + Δt) − ṽ(r∗(R(R̃, t), t), t)

Δt
.

(23)

With the rules of differentiation for a composite function it is easy to show that:

d◦v∗(R, t)

dt
= dr ṽ(r, t)

dt
. (24)

This is valid for every physical quantity.
Thus, within the framework of a material description, the rate of change of a

physical quantity of a material particle is determined by the total time derivative.

3.2 Equations of Balance

The equations of balance of continuum thermomechanics are mathematical state-
ments of the conservation laws for mass, linear and angular momentum, and energy.



Time Derivatives in Material and Spatial Description … 13

We take the mass balance as an example. Consider a material body occupying the
region V0 in the reference configuration. If a continuous medium of density ρ0(R)

fills the region, the total mass in V0 is:

m0(R∗) =
∫

V0

ρ0(R) dV0, (25)

where R∗ is a position vector of a point within the region (e.g., the center of mass).
Note that integration over the region does not imply independence of the result
from a position vector in a case of inhomogeneous medium. This calls for further
explanation: V0 does not necessarily encompass all the mass there. Rather it may
refer to a subvolume, e.g., one layer of a sandwich structure. And it is the position
of this substructure we wish to identify by the label R∗.

In the current configuration the body occupies the region V (t) and its mass is:

m̃(r∗, t) =
∫

V (t)
ρ̃(r, t) dV, where r∗ = r(R∗, t). (26)

By taking into account the well-known expressions:

dV

dV0
= J∗(R, t), J∗(R, t) = Det

(
∂ r∗(R, t)

∂R

)

, (27)

we may express the volume integral in the reference configuration:

m̃(r∗, t) = m∗(r∗, t) =
∫

V0

ρ∗(R, t) J∗(R, t) dV0. (28)

The mass of the body is unchanged during the motion and therefore:

d∗
dt

∫

V (t)
ρ̃(r, t) dV = 0 ⇔ d◦∗

dt

∫

V0

ρ∗(R, t) J∗(R, t) dV0 = 0, (29)

d∗
dt

≡ ∂

∂t

∣
∣
∣
∣
r∗=const

+ d◦∗ r∗

dt
· ∇∗,

d◦∗
dt

≡ ∂

∂t

∣
∣
∣
∣
R∗=const

+ ∂R∗

∂t
· ◦∇∗,

∇∗ = ∂

∂ r∗ ,
◦∇∗ = ∂

∂R∗ .

Note that in (29)1 the operators of differentiation and integration are not inter-
changeable. If R = const then d/dt = ∂/∂t and one may put differentiation in (29)2
under the integral sign. Otherwise we have the following chain of equations:
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d◦∗
dt

∫

V0

ρ∗(R, t) J∗(R, t) dV0 = ∂

∂t

∫

V0

ρ∗0(R0, t) J∗0(R0, t) dV0

=
∫

V0

∂

∂t

[

ρ∗0(R0, t) J∗0(R0, t)
]

dV0

=
∫

V0

d◦

dt

[

ρ∗(R, t) J∗(R, t)
]

dV0. (30)

After taking (30) into account and

J∗(R, t) = J̃ (r, t) = Det

(

∂ R̃(r, t)
∂ r

)−1

, ∇ · ṽ(r, t) = J̃−1(r, t)
dr J̃ (r, t)

dt
,

(31)

we can carry out the differentiation in (29)1:

d∗
dt

∫

V (t)
ρ̃(r, t) dV

= d◦∗
dt

∫

V0

ρ∗(R, t)J∗(R, t) dV0

=
∫

V0

d◦

dt

[

ρ∗(R, t)J∗(R, t)
]

dV0

=
∫

V (t)

dr
dt

[

ρ̃(r, t) J̃ (r, t)
]

J̃−1(r, t) dV

=
∫

V (t)

[

dr ρ̃(r, t)
dt

+ ρ̃(r, t) J̃−1(r, t)
dr J̃ (r, t)

dt

]

dV

=
∫

V (t)

[
dr ρ̃(r, t)

dt
+ ρ̃(r, t)∇ · ṽ(r, t)

]

dV . (32)

By substituting this result into (29) we obtain the local conservation of mass:

dr ρ̃(r, t)
dt

+ ρ̃(r, t)∇ · ṽ(r, t) = 0. (33)

Equation (33) often appears in the literature as:

∂ρ̃(r, t)
∂t

+ ∇ · [

ρ̃(r, t)ṽ(r, t)
] = 0. (34)

This form is obtained after expanding the total derivative in (33).
In contrast to a partial derivative, the total time derivative is an objective operator,

in the sense that it does not depend on the choice of coordinate system. That is why
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it appears in balance equations in a natural way. A partial derivative can appear in
balance equations only after substitution (21).

We will now endeavor to define the total derivative even more stringently.

4 Definition of Total Derivative

Keeping mathematical rigor leads to many different notions of the same physical
quality and symbols of the total derivative. In order to facilitate the notation without
risking confusion, we shall introduce the general definition of the total time derivative
below. However, each formula will be accompanied by verbal remarks, which seem
in order, because physics is involved that goes way beyond mathematics. Let us
proceed in this spirit.

All quantities in continuum mechanics are functions of spatial coordinates and
time. The spatial coordinates may be constants or they may depend upon time. Note
that the latter does not imply that we have a function with an argument (i.e., time).
Themoving coordinates have to depend on other variables that allow us to distinguish
different substantial points. Therefore, in order to define a “total time derivative” we
have to postulate which spatial coordinates are held constant. In other words, we
have to choose a coordinate system with a distinctive feature. The frame of reference
could be the one. At this point it is appropriate to introduce the notion “frame of
reference” formally.

Imagine in a point O three rigidly connected, perpendicular pointers (“arrows”),
e1, e2, and e3. The set {O, e1, e2, e3} is called a “frame.”

Definition 1 The body of reference is defined by a frame to which a set of points (in
space) have been added, whereby a rigid body motion of all the points together with
the frame is allowed. The position of the points are labeled relatively to the frame by
establishing the reference coordinate system x1, x2, x3 with origin O:

r∗ = x1e1 + x2e2 + x3e3, −∞ < (x1, x2, x3) < +∞. (35)

The frame and the reference coordinate system determine the reference body.
They are “immutable.” This is supposed to mean that once introduced they cannot
be changed or this would lead to a different frame of reference (whose definition
will come immediately). In order to describe quantitative characteristics of motion
we must be able to measure distance and time. Hence a “clock” is needed as well:

Definition 2 The reference body with a “clock” is called the “Frame of Reference”
(FoR).

Note that a frame of reference is not just a mathematical construct. Physics is in-
volved due to the requirement ofmeasuring distances in three independent directions
and corresponding lengths as well as time.
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It is impossible to say anything about the motion of the reference body, because it
stands as such alone. However, it is possible to observe and quantify motions of other
bodies with respect to the reference body. All physical qualities describing motion,
such as velocity, for example, are measured with respect to the frame of reference
and do not have any meaning without the reference frame.

In addition to the reference coordinate system one is free to choose any
mathematical coordinate system in which the equations are specified. However, the
reference coordinate system is a distinctive one since it determines the frame of
reference. As an example consider a first coordinate transformation within an FoR,
x ′
i = x̂ ′

i (x j ), i, j ∈ (1, 2, 3). On top of that we now impose a second coordinate
transformation x ′′

i = x̃ ′′
i (x

′
j ) = x̃ ′′

i (x̂
′
j (xk)) ≡ x̂ ′′

i (x j ), i, j, k ∈ (1, 2, 3). Note that
if this operation is applied in context with the spatial dependence of a physical field
quantity this would be a purely mathematical operation leading to no change of the
meaning or value of that physical quantity. However, if we perform a change of the
FoR this could result in a completely different story.

In this context it should be noted that many people do not distinguish between the
concepts of frame of reference and coordinate system. Indeed, we read in Cornille
(1993), p. 149:

... a distinction between mathematical sets of coordinates and physical frames of reference
must be made. The ignorance of such distinction is the source of much confusion ...

or in Nerlich (1994), pp. 64–65:

... the idea of a reference frame is really quite different from that of a coordinate system.
Frames differ just when they define different spaces (sets of rest points) or times (sets of
simultaneous events). So the ideas of a space, a time, of rest and simultaneity, go inextricably
together with that of frame. However, a mere shift of origin, or a purely spatial rotation of
space coordinates results in a new coordinate system. So frames correspond at best to classes
of coordinate systems. ...

In order to emphasize it once more: A change of the coordinate system is a purely
mathematical operation, where an observer (i.e., the creator and user of the FoR)
“sensing” vector quality is not needed. That is why in this case there is no difference
how a vector is considered, as a directed segment or as a set of three components.
Evenmore, we can completely exclude base vectors from our considerations and deal
only with vector components. We use the notation employed with the coordinate
transforms from above in an example. Suppose the coordinates of a vector in the
reference coordinate system of the FoR are given by pi . We would then obtain the

corresponding coordinates w.r.t. the two other coordinate systems by p′
j = ∂ x̂ ′

j

∂xi
pi

and p′′
k = ∂ x̃ ′′

k
∂x ′

j
p′
j = ∂ x̃ ′′

k
∂x ′

j

∂ x̂ ′
j

∂xi
pi = ∂ x̂ ′′

k
∂xi

pi .

Let f (x1, x2, x3, t) be a function of the reference coordinates and of time. The
total time derivative of f is:

d f (x1, x2, x3, t)

dt
= lim

Δt→0

f (x1, x2, x3, t + Δt) − f (x1, x2, x3, t)

Δt
, (36)
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under the condition that the reference coordinates x1, x2, x3 are held constant and
there is an increment in the function only because of the increment in time.

Now let and g(x(x1, x2, x3, t), y(x1, x2, x3, t), z(x1, x2, x3, t), t) be a com-
posite function of several variables, namely x , y, and z, which are functions like f .
Then the total time derivative of g is:

dg

dt
= ∂g

∂x

dx

dt
+ ∂g

∂y

dy

dt
+ ∂g

∂z

dz

dt
+ ∂g

∂t
. (37)

Hence, we arrive at:

Definition 3 The total time derivative is the partial derivative with the reference
coordinates held constant.

This definition allows us to drop the function arguments and keep the notation
relative to different arguments. In other words we can simply write:

v = d r
dt

, a = dv
dt

,
dρ

dt
+ ρ∇ · v = 0.

Note that in the case of partial derivatives the arguments of the function have to
be present. Indeed:

a(R, t) = ∂v∗(R, t)

∂t
, a(r, t) 
= ∂ ṽ(r, t)

∂t
,

∂ρ̃(r, t)
∂t

+ ∇ · [

ρ̃(r, t)ṽ(r, t)
] = 0,

∂ρ∗(R, t)

∂t
+ ∇ · [

ρ∗(R, t)v∗(R, t)
] 
= 0.

As we shall learn in the next chapter the distinction between various functions,
identified by a hat and a tilde, will become obsolete if we turn to the spatial descrip-
tion,where the concepts of a reference and of a current configuration becomeobsolete
and the motion and state of matter is described with respect to an independent grid
in space.

5 Spatial Description

5.1 Body of General Type

The fundamental laws of mechanics are formulated for a body. Within the material
description the body is amaterial volume. In the spatial description it is not so obvious
which object should be considered as the body. In an attempt to make things clearer
we start with some definitions.

Definition 4 Consider a closed surface undergoing deformation and motion. A set
of material particles located at the present moment within the surface is called the
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“body.” A set of material particles located outside the surface will be referred to as
the “exterior of the body.”3

Definition 5 The body is said to be closed if it exchanges no matter with its exterior,
otherwise it is said to be open.

The material volume that we considered above is an example of a closed body.
This sounds like a tautology at first glance, but, as it wasmentioned before, the notion
“material volume” is frequently claimed by the solids community. However, we also
want to think in terms of a fixed ensemble of gas or fluid by the term “closed system.”
In the spatial description we deal with an open body as a set of particles within a
certain volume in space. The specifics of how to formulate balance equations for an
open body will now be demonstrated for the mass balance.

5.2 Balance Equations

Consider a closed, undeformed surface S whose position is fixed in space and which
encloses a volume V . If ρ(r, t) is the density field at time t , the mass of matter
enclosed by the surface at any moment is:

m(r∗, t) =
∫

V
ρ(r, t) dV, (38)

where r∗ is the position vector of a fixed point within the surface. Note that this
point cannot be considered as the center of mass since the volume is undeformed
and fixed in space while the density distribution within the volume changes during
the evolution of the medium.

The rate of change of the total mass in the volume, after differentiation under the
integral sign (remembering that the volume is fixed in space), is:

∂m(r∗, t)
∂t

= lim
Δt→0

m(r∗, t + Δt) − m(r∗, t)
Δt

=
∫

V

∂ρ(r, t)
∂t

dV . (39)

In the absence of a source of mass (an expression frequently used in fluid
mechanics-oriented textbooks, cf., Batchelor (1970) or Pasipoularides (2009), but
sometimes also in the more solid mechanics-based literature Malvern (1969), p.
451) inside V the mass change is equal to the mass flux through the surface:

∫

V

∂ρ(r, t)
∂t

dV = −
∫

S
n(r) · v(r, t)ρ(r, t) dS = −

∫

V
∇ · (v(r, t)ρ(r, t)) dV,

(40)

3For simplicity it is assumed that there is no particle on the surface.
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where n(r) is the unit outward normal to S. The last line follows from the divergence
theorem. Since the relation (40) is valid for arbitrary choices of V we have a local
form of the mass balance:

∂ρ(r, t)
∂t

+ ∇ · [

ρ(r, t)v(r, t)
] = 0. (41)

A different form of Eq. (41) is obtained by expanding the divergence term:

δrρ(r, t)
δt

+ ρ(r, t)∇ · v(r, t) = 0. (42)

Here the following notation is introduced:4

δrρ(r, t)
δt

≡ ∂ρ(r, t)
∂t

+ v(r, t) · ∇ρ(r, t), (43)

The operator

δr

δt
≡ ∂

∂t

∣
∣
∣
∣
r=const

+ v · ∇ (44)

is the operator of the material derivative in spatial description. The material deriv-
ative in form (44) is well known in hydrodynamics.

As long as the position vector r does not depend on time the total time derivative
coincides with the partial derivative and Eq. (44) can be rewritten as:

δr

δt
= d

dt
+ v · ∇. (45)

This form is more convenient for comparison with the material derivative for the
moving observation point that will be considered later.

5.3 Material Derivative

Consider a material point located at the observation point of position r at time t . In
the small intervalΔt it moves to the position r+Δs. Thus, the particle displacement
is determined as Δs = v(r, t)Δt . In order to determine the change of a property
f (r, t) relevant to the given material point one has to find the material derivative.

Definition 6 The material derivative of f (r, t) is:

4We will use symbol δ for the material derivative since the notation D introduced in Sect. 2 is often
associated with the material description.
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δr f

δt
= lim

Δt→0

f (r + Δs, t + Δt) − f (r, t)
Δt

. (46)

The numerator on the right side of (46) describes the change of the property of
the given material point in time Δt . Thus, the material derivative determines a rate
of change of the property of the material point located at the observation point at
time t .

We now show that the formulae (45), (44) are consistent with the definition of the
material derivative (46). Indeed, the function f (r + Δs, t + Δt) can be written as

f (r + Δs, t + Δt) = f (r, t + Δt) + Δs ·∇ f (r, t + Δt), (47)

and then it follows from (46):

δr f

δt
= lim

Δt→0

f (r, t + Δt) − f (r, t)
Δt

+ lim
Δt→0

v(r, t) · ∇ f (r, t + Δt)

= d f (r, t)
dt

+ v(r, t) · ∇ f (r, t). (48)

It should be noted that even though the definition (46) looks like the definitions of
the total and partial derivatives, there is a significant difference between them. The
material derivative (46) is not a derivative of a function in the mathematical sense.
Indeed, the displacement Δs = v(r, t)Δt on the right side of Eq. (46) cannot be
expressed in terms of function arguments. This is due to a peculiarity of the spatial
description in which the position vector r is unrelated to the evolution of matter and

the velocity v(r, t) is an independent characteristic. Since
d r
dt

= 0 and ∇r = I (I

is the unit tensor), the equation relating the position vector and the velocity,

v(r, t) ≡ δr r
δt

= d r
dt

+ v(r, t) · ∇r (49)

turns into an identity.
Thus, the velocity v(r, t) is the primary quantity in the spatial description and all

other quantities are expressed in terms of v(r, t). For example, the acceleration of a
material particle a(r, t) is determined as the material derivative of the velocity:

a(r, t) ≡ δrv(r, t)
δt

= dv(r, t)
dt

+ v(r, t) · ∇v(r, t). (50)

Note that the first term on the right side of (50) is the local rate of velocity change
due to temporal changes at the observation point. It is not the acceleration of the
material point at position r at time t , because the material point is located at that
position only instantaneously.

The spatial description is usedmostly in fluid and gas dynamicswhere the velocity,
density, and the pressure are the main unknowns. Due to the complex motion of fluid
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and gas particles a monitoring of their motion, i.e., of their displacements is hardly
feasible. As a result, the displacement vector is usually not considered in classical
hydrodynamics. However, from a theoretical point of view, the introduction of this
concept is an interesting task. There are different approaches to a formal introduction
of the displacement vector. But all of them result in the following differential relation
between the velocity v(r, t) and the displacement vector u(r, t):

δru(r, t)
δt

= v(r, t). (51)

Note that in spatial description this relation is used for determination of the dis-
placement vector provided v is known. Then one can introduce the concept of the
reference position vector in the same manner as in the case of the material descrip-
tion R(r, t) = r − u(r, t). In contrast to the material description, where the current
position vector, r , is a function of the reference position vector, R, and time, t , the
reference position vector, R, within the spatial description is a function of the cur-
rent position vector, r , and time, t . This means that we have a different reference
configuration for every moment of time. Since

δru(r, t)
δt

= δr (R(r, t) + r)
δt

= δr R(r, t)
δt

+ v(r, t) (52)

it follows from (51) that

δr R(r, t)
δt

= dR
dt

+ v · ∇R = 0. (53)

This differential equation determines the relation between the velocity of thematerial
point, v, and its reference position, R.

5.4 Moving Observation Point

Now consider the closed surface S defined as the boundary of a volume that is
no longer fixed in space but moves with a known velocity as a rigid body. The
motion of points within the volume is expressed by the field of the position vector
r(x1, x2, x3, t), where x1, x2, x3 is the reference coordinate system. The total mass
in the volume is determined by Eq. (38). The vector r∗(t) is the position vector of
a point fixed with respect to the volume but it moves with respect to the reference
coordinate system. The rate of change of the total mass in the volume is the total
time derivative of the mass:

dm(r∗(t), t)
dt

= ∂m(r∗, t)
∂t

∣
∣
∣
∣
r∗ = const

+ d r∗

dt
· ∇∗m(r∗, t), ∇∗ = ∂

∂ r∗ . (54)
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To clarify the meaning of Eq. (54) we note two special cases. The first of these
concerns a volume fixed in space. Then r∗ does not depend on time and the rate of
change of the total mass is characterized only by the partial derivative. The second
special case is relevant when the mass density is inhomogeneously distributed over
space and this distribution does not change with time. In this case the first term on
the right side of (54) is equal to zero and the change in mass is due to transport of
the volume to a different position.

In order to pull the total derivative under the integral sign in (38) a change of
variables is required:

r = r(r̂, t), ρ(r, t) = ρ̂(r̂, t), r∗ = r∗(r̂∗
, t), m(r∗, t) = m̂(r̂∗

, t), (55)

where r̂ and r̂∗ are fixed in the reference system.
By doing so we can make the following transformations:

dm(r∗, t)
dt

= ∂m̂(r̂∗
, t)

∂t
= ∂

∂t

∫

V
ρ̂(r̂, t) dV =

∫

V

∂ρ̂(r̂, t)
∂t

dV =
∫

V

dρ(r, t)
dt

dV,

(56)

where use has been made of the fact that the volume V is independent of time. Thus,
in the case of a moving undeformed volume we obtain

d

dt

∫

V
ρ(r, t) dV =

∫

V

dρ(r, t)
dt

dV . (57)

Here the total derivative of the mass density is:

dρ(r, t)
dt

= lim
Δt→0

ρ(r(t + Δt), t + Δt) − ρ(r(t), t)
Δt

= ∂ρ(r, t)
∂t

+ d r
dt

·∇ρ(r, t).

(58)

Equation (58) characterizes the rate of change of the mass density at the observation

point that moves with velocity
d r
dt

.

It should be emphasized that the meaning of the total derivative is the same in both
descriptions. The total derivative determines the rate of change of a property related
to the matter at the observation point. Within the material description the motion of
the observation point coincides with the motion of the material point. This is why,
in this particular case, the results of calculation of the material and total derivatives
coincide.

The change of mass in the volume is equal to the mass flux through its surface.
The rate of mass flow is determined by ρ(r, t) and by the relative velocity of the
material points and the surface. Thus the mass balance reads:
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d

dt

∫

V
ρ(r, t) dV = −

∫

S

[

n(r) ·
(

v(r, t) − d r
dt

)]

ρ(r, t) dS. (59)

After transforming the integral on the right side by means of the divergence theorem
and using (57), we arrive at the local mass balance:

dρ(r, t)
dt

+ ∇·
[

ρ(r, t)
(

v(r, t) − d r
dt

)]

= 0. (60)

By taking into the account the following relations:

∇· d r
dt

= ∇· ∂ r
∂t

= ∂(∇· r)
∂t

= 0, (61)

Equation (60) is transformed as follows:

dρ(r, t)
dt

+
(

v(r, t) − d r
dt

)

· ∇ρ(r, t) + ρ(r, t)∇· v(r, t) = 0. (62)

Upon introducing the notation

δρ(r, t)
δt

= dρ(r, t)
dt

+
(

v(r, t) − d r
dt

)

· ∇ρ(r, t) (63)

the mass balance becomes:

δρ(r, t)
δt

+ ρ(r, t)∇· v(r, t) = 0. (64)

In order to obtain (64) we assume that the volume is not deformed (because
of Eq. (57), which hold for an undeformed volume). Rejection of the assumption
complicates the derivations but the final Eqs. (62)–(64) remain unchanged.

The operator

δ

δt
= d

dt
+

(

v − d r
dt

)

·∇ (65)

is a generalization of thematerial-derivative operator (45) for themoving observation
point.

Definition 7 If the motion of the observation point r(t) is known then the material
derivative of a material point property f (r, t) is:

δ f

δt
= lim

Δt→0

f (r(t + Δt) + Δs, t + Δt) − f (r, t)
Δt

, Δs =
(

v − d r
dt

)

Δt,

(66)
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whereΔs is the displacement with respect to the observation point of a material point
that was in the observation point at time t .

The above definition has the same physical meaning as (46). The material deriv-
ative characterizes the rate of change a property of the material point that was in the
observation point at time t .

It can be shown that Eq. (65) is in agreement with this definition. Since

f (r(t + Δt) + Δs, t + Δt) = f (r(t + Δt), t + Δt) + Δs·∇ f (r(t + Δt), t + Δt),
(67)

Equation (66) yields:

δ f

δt
= d f (r, t)

dt
+

(

v(r, t) − d r
dt

)

·∇ f (r, t). (68)

By taking into account

d

dt
= ∂

∂t

∣
∣
∣
∣
r=const

+ d r
dt

· ∇, (69)

we rewrite (65) in the form:

δ

δt
= ∂

∂t

∣
∣
∣
∣
r=const

+ v ·∇. (70)

It is easy to see that the expression for the material derivative (70) coincides
with the expression for the material derivative with the fixed observation point (44).
However, it is impossible to say from these expressions as to whether the observation
point is fixed or not. Furthermore, the expression (70) looks similar to the total
derivative in the current configuration within the material description (21). Such
a coincidence is confusing and obscures the sense and meaning of the total and
material derivatives. But from the expressions (65) and (69) the difference between
the derivatives is obvious. The material derivative determines a rate of change of
a property of the material point located at the observation point at time t , the total
derivative determines a rate of change of the property at the observation point. It is
true both in the spatial and the material descriptions. Within the material description
the observation point is the material point, thus:

v = d r
dt

⇒ δ

δt
= d

dt
, (71)

and the material derivative coincides with the total derivative. Only in this particular
case the statement “the total derivative, it is also thematerial derivative” can bemade.

In general, the observation point velocity
d r
dt

in Eq. (69) does not relate to a material
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point. If the observation point is fixed or moves independently of the motion of the
medium, the total and material derivatives have different meanings and different
values. If in a particular case their values coincide it does not mean that the physical
meaning of a derivative changes. That is why the difference between the concepts
of the total and material derivatives is important. This is particularly relevant when
modeling amulticomponent medium, where all components have different velocities
with respect to the common observation point.

In conclusion of this section note that the gradient operators have different prop-
erties in the material and spatial descriptions. This becomes important if one wants
to investigate gradients of displacements, i.e., strains and their time derivatives, i.e.,

strain rates. Within the material description there are two gradient operators,
◦∇ in

the reference configuration, and ∇ in the current configuration. It is easy to show
that:

◦∇ d

dt
= d

dt

◦∇, ∇ d

dt

= d

dt
∇. (72)

The spatial description deals with the gradient in the current configuration only. In
the case of the fixed observation point we have

∇ d

dt
= d

dt
∇, ∇ δr

δt

= δr

δt
∇. (73)

Nevertheless, for amoving observation point the gradient operator is not interchange-
able neither with the material nor with the total derivative.

6 Outlook and Conclusions

In Chap.2 we started by presenting a rather detailed literature review of the various
notions of timederivatives for thematerial and spatial description of continuumfields,
which illustrated the confusing, almost desolate state of the subject. This made the
need for a rigorous clarification apparent.

For this purpose the concept of material description was carefully analyzed in
Chap.3. The so-called total time derivative was introduced and analyzed for the
reference and for the current configuration. Within the material description it may be
interpreted as the rate of change of physical field quantities characterizing a material
particle. The total time derivative was then examined in context with global balance
equations, in particular, the mass balance. The property of the total time derivative
being an objective operator independent of the choice of coordinate system was
emphasized.

The latter property gave rise for a precise definition and further investigations of
the total time derivative in combination with the concepts of Frames of Reference
(FoR) and observers in Chap.4. To this end an FoR was formally defined. The

http://dx.doi.org/10.1007/978-981-10-0959-4_2
http://dx.doi.org/10.1007/978-981-10-0959-4_3
http://dx.doi.org/10.1007/978-981-10-0959-4_4
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difference between an FoR, being a physics-based concept, and coordinates and
transformations thereof, being purely mathematical operations, was pointed out.

Chapter5 was dedicated to the description of continuum fields in spatial descrip-
tion. Here the considered matter is not necessarily a material volume any more. In
order to point out the issue of a possible exchange of matter the notion of a body was
introduced. The formulation of balance equations, specifically of the mass balance,
was investigated and the operator of a material time derivative in spatial description
for a nonmoving position vector, i.e., observation point was introduced. Moreover,
an attempt was made to clarify the notion of displacement in spatial description.
This culminated in a differential equation between the velocity of a material point
and its reference configuration which, under these circumstances, must be viewed as
continuously varying. The end of this chapter was devoted to the generalization of
the material time derivative for a moving point of observation. It was shown that the
material derivative characterizes the rate of change a property of the material point
that was in the observation point at the certain moment of time, while the total deriv-
ative is the rate of change of property in an observation point. If this point coincides
with a material particle (the material description) then (and only then) it is the rate
of change of a quantity of the material point. In general, we may conclude that if the
observation point is fixed or moves independently of the motion of the medium, the
total and material derivatives have different meanings and different values.

Moreover, similarities regarding the mathematical form of the material derivative
in spatial description with the total derivative in the current configuration within the
material description are nothing else but amis faux.

Finally, in context with the mathematical description and the physical interpreta-
tion of time derivatives it became expedient to point out the difference between the
mathematical concept of a coordinate system representation and the physics-based
notion of an FoR. However, the question regarding the indifference of time deriva-
tives w.r.t. changes of an FoR remains an open issue. In particular, an examination
of the objectivity of time derivatives in context with the principle of material frame
indifference will be presented in future work.
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The Cosserats’ Memoir of 1896 on Elasticity

Gérard A. Maugin

Abstract Nowadays the Cosserat brothers are mostly cited for their work on so-
called “Cosserat continua” of 1909 that practically initiated the theory of “oriented
media” as generalized continua. But in 1896 they had already published a lengthy
well-structuredmemoir on the theory of elasticity. Thismemoir is often considered as
a foundationalwork on themodern approach to elasticity as it beautifully summarizes
what was achieved in the nineteenth century but with original traits that will permeate
further the twentieth century developments with an emphasis on finite deformations,
the interest for applying the thermodynamic laws, the allied formulation of the notion
of stress (internal forces), questions of stability, and the use of curvilinear coordinates,
though still without using vector and/or tensor analysis. The present contribution
examines in detail the contents of this epoch-making work of 1896, its main sources
(e.g. Kirchhoff, Kelvin, Saint-Venant, Boussinesq, and Poincaré) and its insertion in
the then current technical literature. We try to appraise its importance and its legacy
in the modern developments of continuum mechanics, especially after the revival of
the field by Truesdell and others.

1 Introduction

At the time of writing of this contribution, the most cited work of the Cosserat broth-
ers, Eugène and François, certainly is their book of 1909 (Cosserat and Cosserat
1909). This is due to a justified renewal of interest in continua endowed with a
microstructure (in particular, so-called “micropolar continua” also rightly named
“Cosserat continua”). These are not classical in the sense that such media exhibit
nonsymmetric stress tensors and so-called moment (or couple) stresses. Year 2009
marked with some emphasis the hundredth anniversary of the publication of this

G.A. Maugin (B)
Institut Jean le Rond d’Alembert UMR CNRS 7190, Sorbonne Universités,
Université Pierre et Marie Curie – Paris 6, Tour 55, 4 place Jussieu,
75252 Paris Cedex 05, France
e-mail: gerard.maugin@upmc.fr

© Springer Science+Business Media Singapore 2016
K. Naumenko and M. Aßmus (eds.), Advanced Methods of Continuum Mechanics
for Materials and Structures, Advanced Structured Materials 60,
DOI 10.1007/978-981-10-0959-4_2

29



30 G.A. Maugin

famous but rarely read opus (cf. Maugin and Metrikine 2010). In the period 1896–
1914, the Cosserats in fact published together no less than 21 works in the field of
theoretical mechanics. Out of these, 14 were short notes—of three or four pages—to
the Paris Academy of Sciences. Apart from their book of 1909, the only long original
memoir they published was a long paper in a true serial scientific journal in Toulouse
in 1896 (Cosserat and Cosserat 1896), while their other publications in the field are
scattered in oddplaces, often as supplements to lecture notes or books byother authors
[Koenigs, Chwolson (in French translation), Appell, Voss (also in French transla-
tion)]. This paper of 1896 is the object of the present perusal. Theoriginality of its con-
tents is a discussed matter, whether the paper provides a nice overview of nineteenth
century continuum mechanics or it does bring a new enriching viewpoint with spe-
cific traits of the brothers’ talents and rigour, a positive appraisal certainly expressed
by Truesdell on different occasions (cf. Truesdell 1952a; Truesdell and Toupin 1960).
Our own opinion is that the Cosserats demonstrated a deep understanding of the bases
of continuum mechanics and thus clarified many points, and they exhibited a style
and ideas that were to bear fruits during the following 60 years or about.

2 About the Cosserats and Their Scientific Environment

In order to grasp the essentials of the Cosserats’ personalities and achievements, we
need to comprehend their scientific formation and to appraise the scientific envi-
ronment they shared at a time that may schematically be called the “Belle Epoque”
(roughly, 1880–1914). In that period the twomost prestigious schools in France were
the Ecole Polytechnique and the Ecole Normale Supérieure (ENS), both in Paris, and
accessible only after a difficult competitive entrance examination. The former was
destined to form engineers essentially for the needs of the State although the pro-
gramme in mathematics was the highest possible with the best available teachers. To
be fully trained in more engineering matters the best alumni from Ecole Polytech-
nique had to follow an “Ecole d’application” of which the most well-known one was
theEcoleNationale des Ponts et Chaussées (ENPC). Studentswho successfully com-
pleted their study in the two schools would become members of the elitist “Corps
of Engineers of Ponts et Chaussées”, one of the most desired titles in the French
Third Republic. This opened the way to both technical and managerial positions
at the highest level in the State or in private companies (e.g. the newly expanding
railway companies). Notice that not much was said about universities (or rather fac-
ulties) which fell under the unique directorship of theMinistry of Education. Famous
French scientists, physicists and mathematicians of the nineteenth century belonged
to the Corps of Ponts et Chaussées, among them, Cauchy, Navier, Lamé, Duhamel,
Coriolis, Clapeyron, Poncelet, Liouville, Arago and Barré de Saint-Venant. “Poor”
Boussisnesq who “modestly” graduated from the University of Montpellier had a
much harder work to achieve to reach the same stratospheric medium. Another pres-
tigious school of application of Polytechnique was the National School of Mines in
Paris. Henri Poincaré thus belonged to the “Corps of Engineers of Mines”—which



The Cosserats’ Memoir of 1896 on Elasticity 31

in time became even more prestigious than the one of Ponts et Chaussées—although
he devoted his whole life to mathematics and mathematical physics.

The Ecole Normale Supérieurewas initially destined to form teachers for Lycées,
i.e. secondary high schools educating students from age 12 to 18 with a final diploma
called the “Baccalauréat”with a strong emphasis on classics. Then they could attempt
a university or continue to prepare for the difficult examination entrance to Polytech-
nique and ENS. Very good students were admitted to both schools and selected the
one that pleased them most. Under the influence of Louis Pasteur the ENS also
became a “fish tank” for creative scientists who would soon join and then surpassed
the polytechnicians.

François Cosserat (1852–1914), the elder of the two brothers, graduated from the
Ecole Polytechnique and became a member of the Corps of Ponts et Chaussées. He
had a professional career in the fast growing development of railways with the North
and then the East companies of Railways in France. Eugène Cosserat (1866–1931),
his cadet by 14 years, was educated in mathematics at the Ecole Normale Supérieure
in Paris and became a professional (mathematical) astronomer with a career spent
almost entirely in Toulouse in the south-west of France. As such he had to teach
courses in analysis, astronomy and celestial mechanics, but he also had a marked
interest in differential geometry already exhibited in his doctoral thesis.

We do not know what prompted the interest of the Cosserat brothers for rational
mechanics and the theory of elasticity in particular. It may be the lectures received
by François at both Polytechnique and ENPC and then the influence of this older
brother on his cadet. The cooperation of the two brothers lasted from 1896 to the
death of François in 1914. Anyway, they must have been bright students to start with
and endowed with some easiness to grasp fundamental concepts and a gift to expand
them as neither François nor Eugène were officially professional mathematicians in
the field ofmechanics. But theywere enlightened amateurs with all technical abilities
and a background of true professionals. Both became members of the Paris Acad-
emy of Sciences (François in 1896, and Eugène in 1919). François was even elected
President of the French Society of Mathematics (Société Mathématique de France)
in 1913 one year before his death. François was certainly confronted to the works
of Adhémar Barré de Saint-Venant (1797–1886) and Joseph V. Boussinesq (1842–
1929) at the ENPC. In his engineering curriculum he met with the works of his great
predecessors, namely, Gabriel Lamé (1795–1870) and Alfred Clebsch (1833–1872),
both authors of the first comprehensive treatises on elasticity (cf. Lamé 1852; with a
tremendous expansion by Barré de Saint-Venant 1883 for the latter in French transla-
tion), and also Gustav Kirchhoff (1824–1887) in Kirchhoff (1852) and James Clerk
Maxwell (1831–1873) (cf. Maxwell 1853). Eugène Cosserat defended his Sorbonne
thesis in mathematics before a committee formed by Gaston Darboux (1842–1917),
Paul Appell (1855–1930) and Gabriel Koenigs (1858–1931)—see Lebon (1910).
This thesis on geometry was published in the Annales of the Faculty of Sciences of
Toulouse in 1885. Darboux was the author of a formidable work—in four volumes—
on the theory of surfaces and an ardent propagandist of the notion of mobile triad
that was readily adopted by the Cosserats. Paul Appell became professor of ratio-
nal mechanics at the Sorbonne in 1885 and, among many creative works, published
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an influential encyclopaedic treatise on rational mechanics (starting in 1893 with
many augmented editions) and practically became the godfather of all mechani-
cians in France in the period of interest. Koenigs, a student of Darboux, became
professor of mechanics at the Sorbonne while publishing a successful treatise on
kinematics (Lessons of 1895–1897, Koenigs 1895, see also Lovett 1900). Both Dar-
boux and Koenigs left a strong print on the Cosserats’ work of 1896 as witnessed
by the large number of citations to their books. Other French contemporaries of
the two brothers were Henri Poincaré (1854–1912), Pierre Duhem (1861–1916),
Marcel Brillouin (1854–1948), Emile Picard (1856–1941), Emile Jouguet (1871–
1943), JacquesHadamard (1865–1963), and Paul Painlevé (1863–1933), all educated
at the ENS save Poincaré. EugèneCosserat was very close toHadamard and Painlevé.
Contemporaries outside France were Woldemar Voigt (1850–1919), August Föppl
(1854–1924), Hermann von Helmholtz (1821–1894), Georg Hamel (1887–1954),
and Ludwig Boltzmann (1844–1906) in Germany, Josiah Willard Gibbs (1838–
1905) in the USA, and William Thomson (1824–1907; aka Lord Kelvin), A.E.H.
Love (1863–1940), and Lord Rayleigh (1842–1919) in the UK. What are really
missing in the interactions with foreign scientists are any contacts with, and citations
to, Italian mechanical engineers and mathematicians. The strangest fact is the lack of
connection with Gabrio Piola (1794–1850), apparently eclipsed by Kirchhoff. In all,
the scientific environment of the Cosserat brothers in Paris was stupendous, and they
dutifully cited all scientists—that they studied in detail—at the proper place of their
works with high accuracy. Hard working in such a rich environment and equipped
with knowledge of the most influential foreign languages, the Cosserats were in a
most favourable frame to develop their original views although their activity in ratio-
nal mechanics was only an aside to their professional occupations. The result is all
the more remarkable.

3 The Cosserats’ Paper of 1896

Preliminary remark: In their general kinematic description the Cosserat brothers note the
direct deformation (x, y, z) → (x1, y1, z1) that we note (XK , K = 1, 2, 3) → (xi, i =
1, 2, 3) in modern indicial notation. They note (u, v,w) the components of the displacement
that we would note (ui, i = 1, 2, 3). The initial density they note ρ and the final one ρ1
while we shall use ρ0 and ρ for these two, respectively. We repeatedly use the convention
of summation over repeated indices. The Cosserats do not use any vector or tensor notation
and thus have to give all components explicitly, but we rewrote the main cited equations in
the modern outlook to help the reader. We hope that this does not create any confusion, still
always referring to the original equations of the Cosserats in their text where necessary (i.e.
page number and equation number). They do not treat the dynamical case.

3.1 Deformations

The Cosserats define finite deformation just like Green in his celebrated memoir of
1839 (Green 1839), but they emphasize the intimate link with the use of the theory
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of curvilinear coordinates. That is, to be unambiguous, their formulas (3) and (4)
are none other than the modern formulas for the Cauchy–Green strain of material
components EKL and for the finite deformation gradient F of components Fi

.Ksuch
that

dx = F dX, F =
{

Fi
·K = ∂xi

∂XK

}

,

E = 1
2

(

FTF − 1
) =

{

EKL = 1
2

(

Fi
·KF

j
·Lgij − δKL

)}

.

(1)

The (relative) strain measures here introduced have also been considered by Barré de
Saint-Venant, Kirchhoff, Lord Kelvin (William Thomson) and Boussinesq. The six
functions given by the elements of EKL cannot be completely arbitrary as they must
verify a system of second-order partial differential equations (known as compatibility
conditions; cf. Barré de Saint-Venant 1864). Whenever all EKL‘s vanish it means that
the deformed configuration is deduced form the original one by a displacement “en
bloc”, combined or not combined with a symmetry transformation (cf. p. I.12). This
is of fundamental importance because it defines what is understood by a rigid-body
motion. After Lord Kelvin, a homogeneous deformation is one in which the EKL’s
are all constants or they vanish identically. This allows one to introduce analytically
the simple form (homographic transformation) of homogeneous deformations (Eq.
(5), p. I.13), particular cases being those of linear dilatations and angular dilatations.
For a sufficiently small portion of the undeformed body about a point P, one can
substitute a homogeneous deformation to the actual deformation at P. In this they
essentially adopt the viewpoint of W. Thomson (Lord Kelvin) with so-called lin-
ear dilatations and angular dilatations as main constructive elements. Following the
original work of Cauchy (1827) they pay special attention to the notions of ellipsoids
of deformation, rotation at a point, and pure deformation. The first ellipsoid E of
deformation clearly corresponds to a transformation of an initially spherical form
into an ellipsoid. Reciprocally, the second ellipsoid E1 relates to the inverse relation
between a sphere in the final configuration and an ellipsoid in the initial configuration.
The three axes of E can be brought parallel to those of E1 by an appropriate rota-
tion. The vanishing of such rotation corresponds to what Thomson and Tait (1867),
p. 132, call a pure deformation. This combination of pure deformation and rotation
(pp. I.19–I.25) materializes in what is called the polar decomposition (attributed to,
but not proved by, Cauchy) of the deformation gradient—noted F = RU = VR in
modern treatises (e.g. Truesdell and Toupin 1960). As noted in the modern formula
the rotation can be effected first and pure deformation next, or in the other order
but with a different pure deformation (in fact in a different space; cf. Footnote in p.
I.20). In their geometric proof the Cosserats exploit the transformation of quadratic
forms and the notion of principal axes of the involved ellipsoids. They also have to
introduce the cubic dilatation and the Jacobian determinant—that they note Δ—of
the deformation, i.e. J = detF in modern notation. These considerations lead them
directly to introduce the invariants of deformation (p. I.26) and the useful notions
of simple extension (stretch) and simple shear (pp. I.25–I.28). The usefulness of the
notion of simple shear, e.g. (with coefficient γ characterizing the amount of shear)
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x = X + γY , y = Y , z = Z, (2)

had particularly been emphasized by a certain Louis Vicat (1786–1861)—cf. Vicat
(1833)—and above all Barré de Saint-Venant in his lectures of 1837–1838
(Barré de Saint-Venant 1837, 1838) at the School of Ponts et Chaussées—see also
Brillouin (1891). As we know now, the notion of simple shear is often used as a
test deformation in the characterization of nonlinear elastic responses for various
materials with a priori prescribed strain energy.

Infinitesimally small deformations are correctly introduced (p. I.29) by the
Cosserats with the help of an ordering parameter (that they note t) and expansion of
the displacement components in integer powers of this parameter, assuming uniform
convergence of the corresponding series and of those defined by their derivatives with
respect to the initial coordinates. In this context, special cases are those of linear and
angular “dilatations” (following the vocabulary introduced by Cauchy). Principal
dilatations (or stretches) are those expanded along the axes of the second ellipsoid
of deformation. In the case where both linear dilatations and relative shears vanish,
then it is shown, following a method due to Darboux, that the displacement field is
one of the rigid-body types that we can write in direct notation as

u = u0 + ω × X (3)

where both u0 and ω are translation and rotation of constant values.
Finally, the Cosserats (pp. I.35–I.37) recall the necessary and sufficient conditions

that a system of six functions of coordinates must satisfy to be that of a symmetric
deformation associated with an existing displacement. These conditions form a set
of six second-order partial differential equations, an auxiliary system, now called
the compatibility condition of Navier and Saint-Venant, but in fact introduced by
Barré de Saint-Venant (1864) in his commented edition of Navier’s lectures (cf.
Navier 1864). Related works by Boussinesq (1871), Beltrami (1889), Love (1892)
and Cesàro (1894) are cited in this context.

Globally, in this introduction to the deformation theory of continua, the Cosser-
ats do not innovate so much but they faithfully incorporate all progress made
since Cauchy till the work of their contemporaries (Poincaré, Darboux, Koenigs,
Kelvin,...). Still, they cultivate this fruitful view that general deformations must be
considered first, leaving infinitesimal deformations as infinitesimally small limits in
a strict mathematical vision.

Truesdell (1952a), p. 53, however, notes that the Cosserats missed the long innovative paper
of Finger (1894)—obviously very recent at the time of the Cosserats’ publication—where
Finger introduced the spatial strain measure named after him, i.e. (c−1)i.j = (FFT ) i.j =
Fi

.KF
k
.Lδkjδ

KL , whichwould havemade simple the formulation of elasticity constitutive equa-
tions for finite strain in isotropic bodies.



The Cosserats’ Memoir of 1896 on Elasticity 35

3.2 Internal Forces (stresses) in a Continuum

The Cosserats do not elaborate much about the original introduction of the notion
of stresses (according to the coinage of Rankine), i.e. more traditionally, internal
forces in a continuum. They skip Cauchy’s classical argument to introduce (p. I.39)
the stress notion at a cut at a point in a body, simply remarking in passing that the
cut is tangent to an infinity of curved surfaces, so that only the normal to the cut at
a point is involved, and stresses (as we shall call them now) are forces per unit area
in contrast to body forces that are mass forces. The Cosserats do not refer to these
internal forces as “tensors” (following Voigt 1898 or, as if they had followed Gibbs
1881–1884) and others, “linear vector functions”. But here, to facilitate the reading
by modern students, we denote by the Cartesian tensor components tj.i or t

ijthe stress
in the actual (after deformation) configuration, and will avoid any direct (no indices)
notation that could create some confusion.

Cauchy’s equilibrium equations are stated as (cf. Eqs. (24) and (23) in pp. I.39–
I.40) in the following traditional form:

∂

∂xi
ti.j + ρfj = 0 (4)

at internal points in the body and

tj = ni t
i
.j (5)

at its regular boundary of unit outward normal of components ni. But the Cosserats
have formulated the deformation theory essentially in the undeformed reference
configuration (see preceding section). They thus want to reformulate Eqs. (4) and
(5) in the appropriate framework, that is, per unit undeformed volume and unit
undeformed area. They rightly think that the required manoeuvre must be analogous
to what is done in hydrodynamics in passing from Euler to Lagrange equations.
This is called a “pull back operation” in modern treatises, and this is in fact defined
by the celebrated Piola transformation (Piola 1836), but the Cosserats refer only
to Kirchhoff (1852) for this operation which they achieved astutely by associating
to Eqs. (4) and (5) a form of the principle of virtual work and then effecting the
required transformation in this global formulation (pp. I.42–I.48). Noting δuj the
virtual displacement, one obtains thus the global expression (Eq. I.26)

∫

V

ρfjδu
j dV +

∫

∂V

tjδu
jda −

∫

V

ti.j
∂

∂xi

(

δuj
)

dV = 0. (6)

On this occasion, the Cosserats remark on the definition of a virtual “rigidifying”
deformation which cancels out the last expression in the left-hand side of Eq. (6). The
lengthy transformation of (6) that we do not repeat yields the following expression
of the principle of virtual work:
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∫

V0

ρ0fjδu
j dV0 +

∫

∂V0

Tj δu
jda0 −

∫

V0

SKLδEKL dV0 = 0, (7)

assuming that J = detF is everywhere positive and the continuity equation reads
ρ0 = ρJ . Here δEKL is the variation of the Cauchy–Green strain measure resulting
from the variation δuj, and SKL is the conjugate stress (now called the second Piola–
Kirchhoff stress). The Cosserats are then able to transform (7) in the form

∫

∂V0

(

Tj − NKT
K
.j

)

δujda0 +
∫

V0

(
∂

∂XK
TK

.j − ρ0fj

)

δuj dV0 = 0 , (8)

with the definition of the object TK
.j (now called the first Piola–Kirchhoff stress) given

by (in our notation; cf. Eq. (36) in p. I.48)

TK
.j = ∂J

∂Fi
.K

ti.j = JXK
,i t

i
.j , (9)

and NK denotes the components of the unit outward normal to the surface body in
the undeformed configuration. The localisation of (8) provides the two equations (cf.
Eqs. (34) and (35) in p. I.46)

∂

∂XK
TK

.j + ρ0fj = 0 inV0, (10)

Tj = NKT
K
.j at ∂V0. (11)

Here, as emphasized by the Cosserats (top of p. I.47), the hybrid geometrical object
TK

.j represents a force in the direction of the actual axis noted i, but per unit area in
the undeformed configuration. Equations (10)–(11) were given by Marcel Brillouin
(1884, 1885).

On using an identity established by Carl Neumann (1860),

∂

∂XK

(
∂J

∂Fi
.K

)

= 0 , (12)

one can revert to the actual (Eulerian form of the) equation of equilibrium as proved
by Boussinesq (1869) since with (9) and (10) one has

∂

∂XK

(

ti.j
∂J

∂Fi
.K

)

+ ρ0fj = 0. (13)

But (see p. I.49)
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∂

∂XK

(

ti.j
∂J

∂Fi
.K

)

= ∂J

∂Fi
.K

∂

∂XK
ti.j

= J
∂XK

∂xi
∂

∂XK
ti.j = J

∂

∂xi
ti.j = ρ0

ρ

∂

∂xi
ti.j, (14)

whence Eq. (4). Note that the virtual work of external forces can be written as (cf.
Eqs. (6) and (7) above):

δTe =
∫

V

tj.i
∂

∂xj
δui dV =

∫

V0

TK
.i

∂

∂XK
δxi dV0. (15)

The Cosserats then discuss the notion of isostatic surfaces after Lamé, Boussinesq
andWeingarten (1881), a subjectmatter that we skip here. In concluding their chapter
II the Cosserats evoke the equilibrium equations (cf. p. I.58) in a straight cylinder
(before deformation), i.e. a thin rod, and mention those that would be obtained in
plates of any thickness loaded on their edge. These are the equations expanded by
Clebsch and Barré de Saint-Venant (1883) in the French translation of the book of
Clebsch (1883).

One has to wait for the next chapter to witness an introduction of elasticity con-
stitutive equations on thermodynamic bases.

3.3 Equations of Equilibrium

In their formulation of the equations of equilibrium for elastic bodies (Chapter III),
the Cosserat brothers are strongly influenced by the thermodynamic works of Kelvin
(Thomson 1855, 1856, 1857); also (Thomson and Tait 1867), and the recent con-
siderations brought to the field by Pierre Duhem (1887, 1894). That means that they
exploit the formulation of the first and second laws of thermodynamics, respectively,
then called the principle of equivalence of heat and work (with the symbol E >

0 standing for the so-called mechanical equivalent of heat, and ignored in modern
texts with appropriate physical units) and the principle of Carnot and Clausius. For a
body in its natural state (homogeneous and without deformation), one then considers
homogeneous deformations from this natural state with the same absolute tempera-
ture T for all material points. The state of this body after deformation from the natural
state is defined by six strains and the temperature. It is assumed (p. I.60) that these
seven parameters remain within acceptable limits so that any alteration of the body
may be viewed as a continuous sequence of equilibrium states and it corresponds to
a reversible evolution (following Duhem). In the sequence of these states the body
is maintained in such states by the application of a unique system of external forces
with the external bodies kept at the same temperature as the considered body. The
two principles of thermodynamics then read:
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E δQ + δTe = δ
∑ mv2

2
+ dU (16)

and

E δQ − δ
∑ mv2

2
− E T dS < 0. (17)

Here δQ is the quantity of heat received by the system during any elementary alter-
ation, while both the external forces have achieved a work δTe and dU is an exact
differential of a functionU called the internal energy. In Eq. (17) dS denotes an exact
differential of a function S called the entropy. Both functions U and S are functions
of state that completely define the state of the system in terms of the seven introduced
parameters (six deformations and temperature).

The writing of Eqs. (16) and (17) in which there simultaneously appear variations noted “δ”
and exact differentials noted “d” is particularly shocking to our modern eyes and was thus
forcefully criticized by supporters of rational thermodynamics in the Truesdellian School in
the 1960–1970s.

If one defines Duhem’s thermodynamic potential (now called free energy or
Helmholtz’s potential) by

F = U − E S T , (18)

one, on account of (16), can rewrite (17) in any of the following two forms (Eq. (53),
p.I.61)

dU − E T dS − δTe < 0 or dF + E S dT − δe Te < 0 (19)

In the same conditions, for a truly reversible evolution Eq. (17) reduces to

δQ − T dS = 0, (20)

and this can be rewritten as

dU − E T dS − δTe = 0 or dF + E S d T − δeTe = 0. (21)

Alterations satisfying (17) or (19) are said to be “realizable”. Those satisfying (6)
are said to be “reversible” in the sense of Duhem (1894). Following also this last
author, the equilibrium conditions for the body under the action of a prescribed
system of forces are then thus established. These conditions are to be understood
as corresponding to our notions of thermodynamic equilibrium (i.e. thermostatics)
and the absence of dissipation of mechanical origin. Indeed, the first case considered
where temperature is assumed to be known (T = T0) yields (Eq. (56), p.I.62)
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∂F

∂T
= −E S. (22)

While the thermodynamic state being described by means of “normal variables of
state” (a concept due to Duhem which isolates entropy as a specific state variable
among the seven variables eij = eji and S), for all variations of the parameters one
obtains (in modern notation; cf. Eq. in p. I.62)

∂F

∂eij
δeij = δTe, (23)

where the left-hand side is none other than δF computed at T = T0.
However, if it is entropy that keeps a given value (S = S0), then using the first of

(21), we are led to the following results (Eqs. in p. I.63):

∂U

∂S
= E T , (24)

and

∂U

∂eij
δeij = δTe, (25)

where U is computed at S = S0. Equations (22) and (23) on the one hand and (24)
and (25) on the other characterize isothermal and adiabatic elasticity evolutions,
respectively. We recognize in (22) and (24), the thermostatic definitions of entropy
and temperature. The Cosserats call “energy of deformation” W—per unit volume
of the undeformed configuration—either F or U, the choice being made according
to circumstances. This allows the authors to deduce the general form (in the manner
of George Green) for the elastic constitutive equations, i.e. (cf. Eq. (59), p. I.64) but
in modern notation

SKL = ∂W

∂EKL
(26)

or (cf. Eq. 60, p. I.65)

TK
.i = ∂W

∂Fi
.K

. (27)

Here SKLand TK
.i are none other than the second and first Piola–Kirchhoff stresses

but the Cosserats give no name to them. Constitutive Eq. (26) is sometimes called
the Kelvin–Cosserat formulation, while (27) is referred to as Kirchhoff (1852) form.
Going from (26) to (27) implies the use of the Piola transformation given by the
Cosserats in their component equations (31) and (33)—pp. I.44–I.45—without men-
tion of Piola but with due citation to Kirchhoff (1852). Furthermore, the Cauchy
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stress in the deformed configuration is then given in a form attributed to Boussinesq
(1869) that we can rewrite in condensed form as

ti.j = J−1Fi
.K TK

.j = J−1xi,KS
KLxp,L gjp = J−1xi,K

∂W

∂EKL

xp,L gpj. (28)

This, obviously, is not reported in this tensorial form, but the Cosserats give only
the form taken in full by two of the components of ti.j (cf. Eq. (61), or (62), p. I.65)
indicating that other components are easily deduced.

In the above-specified conditions the mechanical equilibrium equations are
obtained as (cf. Eq. (63)–(64), p. I.66)

∂

∂XK

(
∂W

∂Fi
.K

)

+ ρ0fi = 0 (29)

at internal points in the body and

Ti = NK

∂W

∂Fi
.K

(30)

at its regular boundary of unit outward pointing normal of components NK in the
undeformed configuration.

In the rest of this chapter, the Cosserats deal with various matters that include
a “paradox” previously dealt with by Poincaré, Kirchhoff and others, notions on
stability, the choice of a natural state, the question of material symmetry, and the case
of infinitesimal deformations. The paradox referred to by the Cosserats concerns the
possible a priori existence of a function Φ of the gradient components Fi

.K such that

∫

V

δΦ dV − δTe = 0. (31)

This means that for an equilibrium position one must have Eqs. (27) and (30) with
W replaced by Φ, so that, for any part of the body, Eq. (27) must be written with W
replaced by Φ. But the quantities Fi

.K cannot be taken arbitrarily as they must obey
a set of three partial differential equations (Eq. (37) in p. I.49) of which the general
integral is an arbitrary function of the six components EKL of the finite deformation.
This is the requirement for Eq. (31) to be compatible with the existence of internal
forces. This was noticed by Poincaré in his lectures on elasticity (Poincaré 1892, p.
77) but also by Kirchhoff (1852), C. Neumann (1860), and closer to the Cosserats
by Cellérier (1893).

The second remark relates to the stability of equilibrium and the notions of “bifur-
cation” equilibrium and “limit” equilibrium of Poincaré. We must recall that the
years 1890s are fruitful as regards questions of stability. This is particularly true
of the works of Henri Poincaré with his marked interest in the stability of liquid
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masses in rotation, a subject also of interest to Paul Appell (1888) in his treatise
on rational mechanics, and the original work by Aleksandr Lyapunov (1857–1918)
with his Doctoral thesis (in Russian) on “The general problem of stability of motion”
at Kharkov, Ukraine (Love 1892). Although the Cosserats had some knowledge of
Russian, Lyapunov’s work came too late to influence them, but will influence Pierre
Duhem when the latter will have identified a potential akin to a Lyapunov function.
Thus, the Cosserats are mostly influenced by Poincaré and his considerations on
stability in his lectures on elasticity (Poincaré 1892), Chapters III and IV). Along
this line, one first notes that in the absence of external forces, the function W − Te
reduces toW . If the latter is minimum at the natural state, then one can only say that
the corresponding equilibrium is stable only in so far as deformations are concerned
(but it is not stable in a general way). But, now, if the externally applied forces vary
in a continuous way depending on a parameter y, assuming that Te exits for all values
of y, then one is led to a situation identical to that envisaged by Poincaré in his study
of the equilibrium of a fluid mass in rotation (Poincaré 1885), so that one has to
consider Poincaré’s notions of “bifurcation” and “limit” equilibria (cf. Cosserats,
p.I.69) and to imagine a linear series of equilibrium forms that correspond to a series
of real values of y related to the critical points of y functions defined by the system
of equilibrium equations. That is all for this remark.

The next remark relates to the choice of a natural state. In the absence of external
loading, one admits the existence of a natural state that corresponds to a vanishing
of the derivatives of the function W with respect to the strain components. We can
assume thatW can be expanded in the positive entire powers of the strain components,
providing thus an expression of the type (Cosserats, Eq. (67), p. I.70)

W = W2 + W3 + · · · , (32)

where Wk denotes a homogeneous polynomial of degree k, assuming that the con-
stant term has been set equal to zero without loss in generality. For a natural state
corresponding to a stable equilibrium from the point of view of deformations (see
above), it is sufficient thatW be positive for all infinitesimally small components of
the strain. This classically yields the definite positiveness of the quadratic formW2.
Following more generally Poincaré (1892), Sects. 27 through 30, one can assume
that there exists a first-order contribution W1 so that 27 elasticity coefficients—at
most—will be defined fromW1 andW2 in the absence of any specific symmetry. The
Cosserats then turn to the special case of isotropy for a homogeneous body. Invoking
the traditional three invariants of strains, W1 contains only one coefficient ν while
W2 contains the famous two Lamé coefficients, λ and μ, which have to satisfy the
inequality

3λ + 2μ > 0, μ > 0, (33)

to warrant stability about a natural state (for which ν = 0).
The chapter concludes with the formulation of equations in the case of infinitesi-

mal deformations. This brief analysis (pp. I.72–I.74) introduces an order parameter
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noted t by the Cosserats; this leads to an expansion of the displacement field in suc-
cessive positive integer powers of t. This is also the case of the function W. This
follows considerations of Darboux in his theory of surfaces (Darboux 1887–1896,
Vol. 4, p. 65 on) and Poincaré in his general approach to problems of mathematical
physics (cf. Poincaré 1894). The study ofW2 in fact follows the developments offered
by Poincaré (1892), pp. 46–58, that we shall not repeat. A theorem due to Kirchhoff
(1852) applies when forces vanish. Finally, the standard equilibrium equations are
deduced for infinitesimal strains (Cosserats, Eq. (80), p.I.77) rewritten in modern
intrinsic notation for the isotropic case as

(λ + μ)∇θ + μΔu + ρf = 0, (34)

where θ = ∇ · u denotes the dilatation.

3.4 On Curvilinear Coordinates

The long and final chapter IV must have been welcomed by most readers when
the paper was published. It deals with the basic problem of the formulation of the
equations of elasticity in curvilinear coordinates. This was approached by pioneers
such as Lamé and Beltrami and other scientists before the advent of tensor calculus.
But the Cosserat brothers are still living in a period where vector calculus still is
in development and is rarely applied (see Crowe 1967, for a historical perspective)
and tensor analysis is still in infancy with no clear-cut application but for the notion
of tensor introduced by W. Voigt (1898) and that of dyadic by J.W. Gibbs (1881–
1884). What the Cosserats propose is to implement the theory of the mobile triad
introduced by G. Darboux in his general studies of surfaces (Darboux 1887–1896).
This is not so surprising since this theory is in full blossom and “é la mode” in these
years 1890s. Furthermore, Eugène Cosserat was a disciple of Darboux, who in fact
belonged to his Doctoral thesis committee. The main point in this approach is the
consideration of a displacement field that depends on three independent parameters
(noted ρi , i = 1, 2, 3 by the Cosserats,) and the important role played by rotations.
Then one first envisages the case where the mobile system has a fixed point (it can
only rotate). But the interesting case for continuum mechanics is one where the
mobile triad of three rectangular axes moves in any way through space so that nine
new entities (related to translation) have to be adjoined to the nine rotation parameters
(director cosines). In all this is equivalent to a single motion but observed in different
systems of axes.Advance in the theory (p. I.83) ismade by followingGauss (1827) (in
2D) and Lamé (1859) (in 3D) in exploiting the geometric representation of a system
of curvilinear coordinates by considering three families of surfaces and looking for
the expression of an arc of any curve traced in space in terms of theρi’s, with a drastic
simplification if the curvilinear coordinates are rectangular. The change in surface
element is evaluated in the same conditions. The consideration of a referencemobile
triad is emphasized (cf. p. I.65). This allows one to deal with geometric questions
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related to surfaces and curves traced in space (problem of conjugated tangents on
one of the surfaces ρi = const. with i fixed, or the problem of establishing the
differential equation for curvature lines). This looks very much like exercises given
in the past to students in competition for admission to Grandes Ecoles. But for
applications to continuum mechanics in 3D, one must focus on kinematic formulas
where parameters ρi are none other than the original orthogonal coordinates (noted x,
y, z by the Cosserats, but simply XK , K = 1, 2, 3 in modern indicial notation). Then
translations are given by the displacement. The latter has to be projected on themobile
triad, and the strain components can be expressed in terms of this projection (cf.
Eq. (98) in p. I.91). External applied forces also are reported to themobile axes. In the
end one canwrite down the equations of equilibrium in this framework (SeeEq. (100),
p. I.92). The result is a set of partial differential equations satisfied byboth translations
and rotations, the knowledge of which is intimately related to the triple system of
surfaces in which the primitive rectangular coordinate planes have been transformed.
Then the Cosserats specialize to the case of infinitesimally small deformations with
corresponding expansions of various quantities in the already introduced ordering
parameter t, resulting in fact in expressions already given by Beltrami and Barré de
Saint-Venant. These are given byEq. (I.103) for a simple natural state and an isotropic
elastic body. The Cosserats mention that the case of thin straight rods and thin plates
would be treated in the likemanner, but the corresponding elaboration is postponed to
further works. The more general case where the body before deformation is reported
to an arbitrary triple system of surfaces (with parameters ρi) is then lengthily exposed
in the rest of the chapter together with equilibrium equations relative to the deformed
body. This is achieved with the help of the principle of virtual work (Eq. (32) in p.
I.101) for both finite and infinitesimally small deformations with, wemust say, rather
atrocious equations in terms of the ρi ’s (for illustration, see Eqs. (116)–(117) in p.
I.103 on).

In all, the contents of this chapter IV seem a bit obsolete to our modern eyes used
to reasoning with tensors. But in the circumstances of the period where both vector
and tensor analyses are not yet sufficiently developed and/or applied, the Cosserats’
efforts are certainly justified in spite of the obvious laborious feeling that we gather
from them and the somewhat old-fashioned geometric character that permeates them.
These may not have been felt as such by the contemporaries of the Cosserats.

4 Summary and Conclusion

This brief perusal of the long paper published by the Cosserat brothers in 1896 brings
us to the following general remarks and conclusion. First, the very length and detail of
the paper lean towards an interpretation of this paper as an aborted series of lectures
on a field of marked interest at the period. Indeed, the first chapters of the opus
support this interpretation, especially in the theory of deformations. However, the
detailed and accurate description with appropriate references reveals a typical trait of
the brothers’ style. They are clearly mathematical and, in spite of their professions,
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pay little attention, if any, to applications such as the strength of materials. This
is borne out by the primal consideration of finite deformations, small ones being
only viewed as perturbations. The original reference can only be one to the great
Cauchy and his memoir of 1827 and the notion of ellipsoids of deformation. But then
there are unavoidable references to more recent works, in particular by G. Green,
Kirchhoff,William Thomson (Kelvin), Barré de Saint-Venant, and Boussinesq. They
have clearly benefited from Poincaré’s lectures (Poincaré 1892). Often enriched by
astute remarks, this part is an excellent compuscus of the abstract level of description
reached in the 1890s without the use of tensor analysis. With the consideration
of the notion of internal forces (stresses), the Cosserats are in the main stream of
the approach to continuum mechanics in the second half of the nineteenth century.
Cauchy is only noted in passingwhile theCosserats favour the approach advocated by
Kirchhoff (1852), apparently one of their favourite sources, but also Clebsch (1883)
as revised and augmented by Barré de Saint-Venant. Strangely enough, they never
cite Gabrio Piola, who is now considered a precursor of Kirchhoff and a missing link
between the 1820 and the 1850s. The constitutive theory for (finite strain) elasticity
is fully thermodynamic with a strong influence of G. Green, Kelvin and the then
new rising star in phenomenological physics, Pierre Duhem. The Cosserats kept
very much aware of any recent developments in the 1880s–1890s. What is more
surprising to modern readers is the frequent reference to the lectures of Poincaré on
elasticity. Of course Poincaré is the acknowledged genius of the time and it seems
quite natural to pay him the respectful dues he deserves. But what is less known
is the nice critical view of elasticity that Poincaré offered in his lectures of 1892
(in fact redacted in a rather student style by two of the auditors; we have examined
this point in Maugin 2016). As a never tired inquisitive “student” of all what was
currently developed in mathematical physics, he applied in these lectures his usual
dexterity and easiness in grasping the totality of a field in a short time with spot on
critical comments, and this proved much useful to the brothers in their own analysis,
including original considerations on stability.

In all, the Cosserat brothers seem to have been strongly influenced by their own
formation, through the teaching at the School of Ponts et Chaussées and reference
to the lectures of other great renowned past members of this Corps of engineers
for the oldest brother, François, and through the works of Darboux and Koenigs for
Eugène. This last influence is particularly felt in their last chapter IV on curvilinear
coordinates. Their memoir is rather lengthy and one may wonder about its place
of publication, in a little publicized journal, the Annales of the Faculty of Sciences
in Toulouse—where Eugène Cosserat (1885) had already published the full text
of his doctoral thesis. Although the Cosserats had a rather unpredictable policy of
publication (clearly they were not preoccupied by matters of publication index and
impact factor!) one explanationmaybe that sinceEugènewas teaching inToulouse he
may have felt a duty to publish something in the local Annales and the brothers used
this opportunity to publish an unusually longmemoir that could have been welcomed
in a more known scientific periodical such as the Journal de Mathématiques Pures
et Appliquées or the Annales of the Ecole Normale Supérieure.
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Then the question remains of what was the influence of the Cosserats paper imme-
diately and much later on. We have noticed in other studies that this memoir was
dutifully cited by Pierre Duhem, Paul Appell and Ernst Hellinger who may be con-
sidered contemporaries of the brothers. It was dutifully cited by the most famous
authors on finite-strain elasticity in the transitional period of the 1920–1930s, e.g. L.
Brillouin, B.R. Seth, F.D. Murnaghan and A. Signorini. The most emblematic work
of the period was by Murnaghan (1937). As a matter of fact, perhaps with a nasty
will to belittle his work, Truesdell (1952b) claims that this work by Murnaghan was
essentially a rewriting of the Cosserats’ work of 1896 in the form of tensors. It was
indeed Truesdell (1952a, 1984), pp.148–150, who revived this work as well as those
of other scientists of the nineteenth century in his historical review. This was incor-
porated in the Truesdell–Toupin encyclopaedic article of the Handbuch der Physik
(Truesdell and Toupin 1960) with now full reference to both Kirchhoff and Piola.
From then on direct reference to the Cosserats’ paper of 1896 became extremely
rare, having become part of the accepted history of the field.
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On Equivalent Inhomogeneities for Particles
with Multiple-Component Interphases

Lidiia Nazarenko and Henryk Stolarski

Abstract A discussion of how the exiting formulas for the properties of equiva-
lent inhomogeneities associated with Gurtin–Murdoch and spring layer models of
interphases can be utilized to obtain the properties of equivalent inhomogeneities for
multicomponent interphases. It is shown that in the case of energy equivalent defin-
itions of equivalent inhomogeneities introduced recently by the present authors this
can be achieved by direct superposition of the solutions associated with each compo-
nent separately. General arguments are presentedwhen such superposition is possible
and it is argued that for some existing definitions of equivalent inhomogeneity this
is not possible.

1 Introduction

Interphases between the inhomogeneities and thematrixmay have a very pronounced
influence on the overall properties of composite materials. At the same time their
inclusion in mechanical (thermal, electric, etc.) analysis of those materials always
entails additional complications whose level depends on the complexity of the inter-
phase behavior and on the accuracy with which that behavior is to be captured
analytically. The interphases are typically three-dimensional continua but treating
them as such is feasible only for simple geometry of the inhomogeneities and for
simple loading conditions.

To covermore complex situations, most notably composites involvingmany inter-
acting inhomogeneities, some effort has been invested to develop various simplified
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models of interphases (Benveniste andMiloh 2001; Hashin 1962, 1990, 1991; Rubin
and Benveniste 2004; Dong et al. 2014, among other). The most practical and pop-
ular of them are (arguably) the Gurtin–Murdoch (Gurtin and Murdoch 1975) model
and the spring layer model (e.g., Benveniste and Miloh 2001 or Hashin 1962, 1990,
1991). However, with those simplified models the analysis of the effective proper-
ties of composite materials is also complicated, even with the use of computational
techniques. To make the problem more manageable analytically, various simplified
methods have been devised, one of which is based on the notion of equivalent inho-
mogeneity. The idea behind that notion is to replace the original inhomogeneities and
their interphases (however complex they may be) with uniform equivalent inhomo-
geneities with properly defined properties, embed them in the matrix material and
analyze the resulting composite as if there were no interphases.

The concept of equivalent inhomogeneity has a long history. Hashin (1962, 1990,
1991), in application of his composite sphere assemblage to analysis of the effective
bulk modulus, introduced a similar concept and discussed its possible extension to
multilayer systems. That idea has been subsequently followed within the so-called
differential scheme (Shen and Li 2005; Sevostianov and Kachanov 2007). In this
approach layers of infinitesimal thickness were added to the original spherical inho-
mogeneity to form an interphase with properties varying across its thickness. With
addition of each layer the properties of the system were defined either by the Mori–
Tanaka scheme or Hashin–Shtrikman (Hashin and Shtrikman 1963) upper bound
estimate. Equivalent inhomogeneities have also been presented in the contributions of
Duan et al. (2007) and Gu et al. (2014) in which three different models of interphases
were considered: the Gurtin–Murdoch material surface model, the spring layer, and
the continuum models. Their definitions were identical and based on equality of the
energy changes (introduced in Eshelby 1957) caused by insertion of a spherical inho-
mogeneity together with its interphase and the changes caused by insertion of the
equivalent inhomogeneity. While the bulk modulus of the equivalent inhomogeneity
obtained that way was identical as that of Hashin (1991) and depended only on the
properties of the original inhomogeneity and of the interphase, its shear modulus,
however, turned out to also include the moduli of the matrix. The formula defining
equivalent shear modulus expectedly reflects the properties of the entire system, not
just those of the inhomogeneity and its interphase that it is supposed to replace.
Thus, for a specific inhomogeneity and its specific interphase, the criterion adopted
by Duan et al. (2007) and Gu et al. (2014) leads to infinite number of “equivalent
inhomogeneities” which seems nonphysical, and it is unlike any of the previously
presented equivalent inhomogeneities (Hashin 1991; Shen and Li 2005; Sevostianov
and Kachanov 2007).

To the best knowledge of the Authors only the differential scheme of Shen and
Li (2005) and Sevostianov and Kachanov (2007) could lead to the equivalent inho-
mogeneity for interphase with properties varying piecewise continuously across its
thickness. Also Duan et al. (2007) considered interphase assumed to be a three-
dimensional continuum.All other effective inhomogeneities have been defined either
for the Gurtin–Murdoch interphase model or for the spring layer model. There are
however situations, such as coated particle composites for example, where there are
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three materials involved. Depending on the properties of those materials, a Gurtin–
Murdoch model may be appropriate on the boundaries between any pair of the
involved materials while the coating itself, being often soft, may be adequately mod-
eled by a spring layer. Consequently, there are three interphase mechanisms in the
space between the original inhomogeneity and the matrix: two (possibly different)
Gurtin–Murdoch models and one spring layer model, and the equivalent inhomo-
geneity for such interphase problem must include all three of them. That case is not
covered by any of the existing developments.

Another example of a situation where inclusion of multiple mechanisms in the
description of interphases is appropriate relates to the Carbon Nanotube (CNT) rein-
forced materials. In that case the CNT can be modeled as high-stiffness surface, and
Gurtin–Murdoch model is very adequate for its mathematical description. Outside of
CNT, however, there exists a zone of rather weak bonding with the matrix (typically
polymer) and various techniques used to improve that bonding (so-called function-
alization, Ma and Kim 2011; Tserpes and Silvestre 2014) have been only partially
successful. Such a weak (or soft) zone surrounding the CNT can be modeled by a
spring layer of some thickness h. In this case one Gurtin–Murdoch and one spring
layer model would need to be combined.

There is a definition of equivalent inhomogeneity that is easily adaptable to the
problems whose interphase may involve a combination of the Gurtin–Murdoch and
spring layer models. It is called the energy-equivalent inhomogeneity that has been
originally introduced by Nazarenko et al. (2015) for the Gurtin–Murdoch model and,
subsequently, by Nazarenko and Stolarski (2016) for the spring layer model. Pre-
sentation of how these two developments can be exploited in defining the equivalent
inhomogeneity for the problems whose interphases involve a combination of Gurtin–
Murdoch and spring layer models is the main goal of this contribution. To make this
presentation self-contained, however, the basic assumptions and results obtained in
the above two original contributions are outlined in Sects. 2 and 3. Section4 contains
the effective properties for the interphase composed of two Gurtin–Murdoch models
and one spring layer model, along with an explanation of how these results have
been arrived at. In Sect. 5 the developments presented herein are discussed in the
context of other definitions of equivalent inhomogeneities. Several conclusions are
presented in Sect. 6.

2 General Formulations of Equivalence

In principle, the overall methodology adopted in this work follows the idea pursued
in Duan et al. (2007), Gu et al. (2014), Hashin (1962, 1990, 1991), Nazarenko
et al. (2015), Nazarenko and Stolarski (2016), Sevostianov and Kachanov (2007),
Shen and Li (2005), and it consists of replacing the original inhomogeneity and the
surrounding interface (irrespectively of the model used to describe it) by uniform
equivalent inhomogeneity which is then perfectly bonded to the matrix. That way
the composites including interphases can be analyzed using techniques available
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for composites without interphases. What is substantially different in the presented
approach is the way the properties of the equivalent inhomogeneity are developed.
In this regard the typical method of homogenization is used as described below.

Consider the original inhomogeneity and any surrounding domain, which differs
from the matrix, as a single system. The boundary Γ2 of that system with the matrix,
Fig. 1, is subjected to displacements u2 = εeq · r2, consistent with a constant strain
εeq. The solution of that problem can be obtained by minimization of its potential
energy

E = 1

2

∫

V1

ε1 : C1 : ε1 dV1 + Eint, Eint = 1

2

∫

Ωint

εint : Cint : εint dΩint, (1)

where V1 is the domain of the inhomogeneity, Ωint is the surrounding domain and

ε = ε (u) = ∇symu, (2)

with continuous and piecewise differentiable displacements u. The domainΩint may
represent a volume or a surface, depending on its physical interpretation and the
associated mathematical description. The interpretation of the strains εint and of the
stiffness tensor Cint also needs to be adjusted accordingly.

The vanishing first variation of potential energy, δuE = 0, allows to determine
displacements u, if not exactly, then approximately, and—consequently—the strains
in Eq. (2) can be expressed in the form:

u ⇒ ε1 = T 1 : εeq, εint = T int : εeq, (3)

where T 1 and T int are fourth order tensors. Inserting the above formulas in Eq. (1)
yields the equilibrium energy of the system to be

E = 1

2
εeq :

(∫

V1

T T
1 : C1 : T 1 dV1 +

∫

Ωint

T T
int : Cint : T int dΩint

)

: εeq, (4)

Fig. 1 Schematic illustration of inhomogeneity with interphase and equivalent inhomogeneity
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were T T denotes the “major” transposition, i.e., for a tensor T whose components
(relative to an orthogonal coordinate system) are Tijkl, the components of T T are
Tklij. The above equation implies that the properties of equivalent inhomogeneity can
be described by the formula

Ceq =
∫

V1

T T
1 : C1 : T 1 dV1 +

∫

Ωint

T T
int : Cint : T int dΩint. (5)

The above general process covers all possible shapes of the inhomogeneities and
all possible types of interphases, including the continuous interphase. It will be
subsequently specified for the most commonly used types: the Gurtin–Murdoch
model of the interphase Gurtin and Murdoch (1975, 1978) and a simplified analysis
of the spring layermodel (Duan et al. 2007; Gu et al. 2014; Hashin 1962, 1990, 1991;
Nazarenko et al. 2016; Nazarenko and Stolarski 2016). It will also be argued that only
because of the proposed formulation of those problems, a very elementary process
allows to consider simultaneous presence of both of those interphase models, which
in some applications is necessary. It also allows to apply the differential scheme for
more complex inhomogeneous interphases.

3 Gurtin–Murdoch and Spring-Layer Interphase Models

Onepossible approximate solution of the aboveproblemmaybebasedon the assump-
tion that the displacements prescribed on Γ2 cause the original inhomogeneity to
undergo constant straining combined with rigid body motion. This approximation is
particularly suitable for small inhomogeneities and it has been shown in Nazarenko
et al. (2015) to render the effective properties of composites whose accuracy is on
par with those obtained by other approximate, or even formally exact, methods.
Mathematically, that assumption is described by the following equation:

u (r) = u0 + (ω1 + ε1) · r, (6)

where ε1 = const,ω1 and u0 are the parameters describing displacement field within
the original inhomogeneity, and r is the position vector relative to a reference point
O, Fig. 1. Consequently, the first part of Eq. (1) may be written in the form

1

2

∫

V1

ε1 : C1 : ε1 dV1 = V1

2
ε1 : C1 : ε1. (7)

The second part of Eq. (1) has the form dependent on the interphase model used.
For the Gurtin–Murdoch interphase model Ωint = Γ1 = Γ2, ε1 = εeq. Physi-

cally, the model can be interpreted as vanishing thickness isotropic membrane sep-
arating two different materials while preserving continuity of their displacements.
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Consequently, (neglecting the effects of the surfacedisplacement gradient,Nazarenko
et al. (2015)) the interphase part of the energy is

Eint = 1

2

∮

Γ1

[

2 (μs − τ0) εs : εs + (λs + τ0) tr (εs)
2
]

dΓ1, (8)

where λs andμs are the surface Lame parameters, τ0 is the deformation-independent
(residual) surface stress and εs represents the surface strains on Γ1 dependent on ε1

via the relation Nazarenko et al. (2015)

εs = Is : ε1, (9)

where Is is the fourth order surface identity tensor.
The spring-layer model of the interphase has been widely used to describe the

so-called “soft interphase” (Duan et al. 2007; Gu et al. 2014; Hashin 1962, 1990,
1991; Nazarenko et al. 2016; Nazarenko and Stolarski 2016). For that model the
interphase energy is expressed by the formula

Eint =
∮

Γ1

1

2

{

Kn |�un|2 + Kt |�ut|2
}

dΓ1 (10)

where Kn and Kt are the stiffnesses of the normal and tangential linear spring layers
and

�u = u2 − u1. (11)

In the above equation u1 is the displacement on the surface Γ1 defined by Eq. (6)
with r = r1 and u2 = εeq · [r1 + hn] the displacement on Γ2, expressed in terms of
the interphase thickness h and n, the unit normal to Γ1.

Whereas the above presentation is valid for arbitrary original inhomogeneities, the
involved integralsmay be difficult to evaluate analytically if their shapes are complex.
However, to illustrate the basic features of the proposed approach and its properties
it is sufficient to consider their simple geometry. Thus, spherical inhomogeneities
are discussed in the following sections.

3.1 Equivalent Inhomogeneity for the Gurtin–Murdoch
Interphase Model

The details of the development for this model of interphase (and the numerical
examples illustrating the accuracy of the approach) are presented in Nazarenko et al.
(2015). As shown there ε1 = εeq, the absence of ω1 and u0 eliminates the need for
minimization of energyE in this case, and the properties of equivalent inhomogeneity
are obtained simply by inserting Eq. (9) into Eq. (8), and subsequently into Eq. (1).
The result is
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Ceq = C1 + 1

2VI

∮

Γ1

[

2μ̄sI s + λ̄sIs ⊗ Is
]

dΓ1. (12)

Further evaluation of the above formula (Nazarenko et al. 2015) shows that for
spherical and isotropic inhomogeneities, and for isotropic surface properties tensor
Ceq is also isotropic and its bulk and shear moduli are

Keq = K1 + K̂s, μeq = μ1 + μ̂s, (13)

where K1 and μ1 are the original bulk and shear moduli of the inhomogeneity, while

K̂s = 2

[

2μ̄s + 2λ̄s
]

3r1
, μ̂s = 7μ̄s + λ̄s

5r1
, (14)

with λ̄s = λs + τ0, μ̄s = μs − τ0 appearing as a result of the surface contribution in
Gurtin–Murdoch surface model, and r1 being the radius of spherical inhomogeneity.

Via comparisons with the results obtained by other approaches it is also shown
in Nazarenko et al. (2015) that use of the energy-equivalent inhomogeneity leads to
remarkably accurate effective properties of compositeswithGurtin–Murdoch surface
model.

3.2 Equivalent Inhomogeneity for the Spring Layer
Interphase Model

The energy-based formulation of the spring layer interphase model has been intro-
duced in Nazarenko and Stolarski (2016) where, in contrast with all previous dis-
cussions of the spring layer model, its thickness h was assumed to be finite. Finite
thickness of the interphase is also assumed here.

In view of Eq. (11), in this case the potential energy depends on all parameters
involved in the description of the problem. The discretised form of energy is an
algebraic quadratic form and its minimization leads to a system of linear algebraic
equations. Their solution shows that ω1 = 0 and u0 = 0. The strain ε1 is, obviously,
linearly related to εeq which, as indicated in Eq. (4), leads to equilibrium potential
energy being the quadratic with respect to εeq.

Under the assumptions adopted here, the properties for the equivalent inhomo-
geneity for a spherical shape are also isotropic and the associated bulk and shear
moduli are (Nazarenko and Stolarski 2016)

Keq = r21
[r1 + h]

KnK1

[r1Kn + 3K1]
, 2μeq = 2r21

[r1 + h]

μ1 [2Kn + 3Kt]

[2r1Kn + 3r1Kt + 10μ1]
. (15)



56 L. Nazarenko and H. Stolarski

In the above equations r1 is the radius of spherical inhomogeneity and h is the
interphase thickness.

In Nazarenko et al. (2016) a different equivalent inhomogeneity approach was
persecuted, whereby the properties of equivalent inhomogeneity were evaluated on
the basis of Lurie solution (Lurie 2005). This resulted in

Keq = r21
[r1 + h]

KnK1

[r1Kn + 3K1]
, (16)

2μeq = 2μ1r
2
1

5 [r1 + h]

× 4μ1 [7 + 5ν1] [2Kn + 3Kt] + 5 [7 − 10ν1]KnKtr1
[

4μ2
1 (7 + 5ν1) + 2μ1 ((7 − 4ν1)Kn + (7 − ν1)Kt) + (7 − 10ν1)KnKtr1

] .

(17)

It is seen fromEqs. (15)–(17) that bulkmoduli for equivalent inhomogeneity obtained
on the basis of both approaches are identical. It should also be noted that expressions
for bulk modulus obtained in Duan et al. (2007) and Hashin (1991) are identical as
well. However, the expressions for shear moduli of equivalent inhomogeneity for
both the model proposed herein and the one based on Lurie solution are different.

4 Coated Particles and Complex Interphases

In some problems, such as coated particle composites, there are clearly identifiable
boundaries Γ1 and Γ2 between pairs of the three phases present in those cases. Each
of those boundaries may be associated with a different Gurtin–Murdoch model.
Assuming that the coating is soft and can be modeled by the spring layer of thickness
h, the development of the equivalent inhomogeneity for such problems may involve
variable number of interphase models. It may involve only one model (the spring
layer model, if the influence of the Gurtin–Murdoch models associated with both Γ1

and Γ2 is negligible), two models (if the influence of the Gurtin–Murdoch model on
only one surface is negligible) or three models (if none is negligible).

The energy-based approach described above, allows for an easy combination of
those models in one expression defining the properties of the equivalent inclusion,
irrespectively of how many (one, two or three) interphase mechanism are included.
That ease is crucially associatedwith the assumptionsmade in development of equiv-
alent inclusion for each of the interphase models separately. In particular, it is critical
to assume that in the spring layer model presented in Sect. 2 displacements on the
boundaryΓ1 are associated with ε1 = const. That allows for sequential (or hierarchi-
cal) inclusion of the models to obtain the final result. This can be done very formally
but an informal, descriptive explanation of the process leading to the final result is
outlined below.
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According to the development presented in Sect. 1 the original inhomogeneity and
the Gurtin–Murdoch model on Γ2 can be equivalently replaced by a homogeneous
inhomogeneity with the properties given by Eqs. (13) and (14). In the next step the
spring layer model is added to the previous system. The new problem consists of
the previously defined equivalent inhomogeneity and the new model of interphase,
namely the spring layer model. Thus, the properties of the subsequent equivalent
inhomogeneity describing equivalently this problem are defined by Eq. (15) in which
K1 and μ1 are replaced by the bulk and shear modulus for the previously defined
equivalent inhomogeneity. Inclusion of the Gurtin–Murdoch model on Γ1 involves
onemore step, following identical logic. This leads to the following formula involving
all three mechanisms possibly present in coated particle composites.

Keq = r21
[r1 + h]

Kn
[

3r1K1 + 2
(

2μ̄s[1] + 2λ̄s[1]
)]

[

3 (r1)
2 Kn + 3

(

3r1K1 + 2
(

2μ̄s[1] + 2λ̄s[1]
))]

+ 2

[

2μ̄s[2] + 2λ̄s[2]
]

3 [r1 + h]
, (18)

2μeq = 2r21
[r1 + h]

[2Kn + 3Kt]
[

5r1μ1 + 7μ̄s[1] + λ̄s[1]
]

[

10 (r1)
2 Kn + 15 (r1)

2 Kt + 10
(

5r1μ1 + 7μ̄s[1] + λ̄s[1]
)]

+ 7μ̄s[2] + λ̄s[2]

5 [r1 + h]
. (19)

where λ̄s[1], μ̄s[1] and λ̄s[2], μ̄s[2] are surface Lame parameters on the surfaces Γ1 and
Γ2, correspondently.

It is obvious that the Gurtin–Murdoch model on either or both surfaces Γ1 and Γ2

can be excluded simply by assuming that the associated material parameters vanish.

5 Discussion

One can, of course, define the equivalent properties for the original inhomogeneity
and an interphase of any complexity differently. For example, Duan et al. (2007) and
Gu et al. (2014) use for that purpose the Eshelby formula for the change of energy
when an inhomogeneity is inserted in a uniformly strained infinite medium (Eshelby
1957). In their work the properties of equivalent inhomogeneity are obtained by
equating such energy change associated with insertion of the original inhomogene-
ity and its single interphase and the one associated with insertion of the uniform
equivalent inhomogeneity. The equivalent bulk modulus they obtained was depen-
dent only on the properties of the original inhomogeneity and its interphase, and
identical with that developed by Hashin (1991) or Nazarenko and Stolarski (2016),
which is also reproduced in Eqs. (15)1 and (16). However, the shear moduls (quite
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expectedly) was also dependent on the properties of the infinite medium (matrix),
in addition to be very complex. For multiple mechanisms describing the interphase,
such an approach would clearly necessitate repetition of the entire analysis included
in Duan et al. (2007) and Gu et al. (2014). Given the complexity of that analysis
for a single interphase, it is difficult to anticipate its outcome in the case of multiple
interphase mechanisms.

In general, when the properties of equivalent inhomogeneity depend on the prop-
erties of the material outside of its domain, it is difficult to envision a process (if it
exists at all) allowing combination of the formulas obtained for individual interphase
models in order to develop properties for the equivalent inhomogeneity for problems
with multiple interphase mechanisms. In fact, even if the properties of equivalent
inhomogeneity depend only on the properties of the material within its domain such
combination may not be possible. For example, the equivalent properties for the
spring layer model based on the Lurie solution developed by Nazarenko et al. (2016)
and quoted inEqs. (16) and (17) cannot be combinedwith theGurtin–Murdochmodel
quoted in Eqs. (13) and (14) if such a model was to be appropriate to include between
the spring layer and the original interphase (i.e., boundary Γ1). The reason is that, in
the Lurie approach, the strains within the original inhomogeneity are not constant,
while the contribution of the Gurtin–Murdoch surface to the properties of equivalent
inhomogeneity in Eqs. (13) and (14) are based on the assumption of constant strains
However, Gurtin–Murdoch model on Surface Γ2 can be (additively) combined with
the spring layer model, as done in Eqs. (18) and (19).

The approach and the assumptions discussed in this work are not the only ones
allowing for easy combination of various models to develop properties of equivalent
inhomogeneities. For example, somewhat similar process is used in the work of
Sevostianov and Kachanov (2007), who employ Hashin–Shtrikman (Hashin and
Shtrikman 1963) upper bound estimate to add consecutive layer of different material
within the so-called differential scheme to find properties of equivalent inclusion for a
more complex interphase. However, in that approach the equivalent properties at any
stage of the process depend only on thematerial within the equivalent inhomogeneity
at that stage too.

The ability of the sequential addition of various interphasemodels in the evaluation
of the final equivalent inhomogeneity discussed herein, while advantageous, cannot
possibly be considered as the determining factor in evaluating the validity of the
approach. A balance between its accuracy and ability is of paramount importance.
Although examination of that balance requires additional investigations, a glimpse
into accuracy of the assumptions facilitating such sequential addition (energy-based
approach and properties ε1 = const in Sect. 2) can be gained from their application
to the cases of a single interphase model presented by Nazarenko et al. (2015),
Nazarenko et al. (2016) and Nazarenko and Stolarski (2016). It was documented
there that the effective properties of composites based on those assumptions were of
accuracy comparable with that of other popular methods, including formally exact
(series) numerical solutions.
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6 Concluding Remarks

It has been argued in this work that in some cases, such as coated particle composites,
modeling of interphasesmay necessitate inclusion ofmultiple known, and practically
useful, mechanisms. In this context it has been demonstrated that the approach of
Nazarenko et al. (2015), Nazarenko and Stolarski (2016) based on the concept of
equivalent inclusion can easily accommodate such need. For that case a closed-form
formula describing the effective properties of the equivalent inhomogeneity involving
an interphase combining the spring layer model and two Gurtin–Murdoch models is
presented.

In addition to the development of the closed-form expressions for a specific prob-
lem, general conditions that need to be fulfilled in order to be able to use the results
obtained for individual models in construction of some more complex models are
discussed. Those conditions happen to be fulfilled by the energy-based approach of
Nazarenko et al. (2015), Nazarenko and Stolarski (2016), even though the only goal
in those contributions was to obtain a simple and sufficiently accurate solution for
the effective properties of composites with simple interphases.

It is to be underscored that inclusion of multiple mechanisms in description of
interphases is not reserved only for coated particle composites. It is, for example,
very relevant in modeling Carbon Nanotube (CNT) reinforced materials. In that case
the CNT is a small radius, high-stiffness surface which can be very appropriately
described by Gurtin–Murdoch model. Even though it is not coated, the bonding
between CNT and the matrix material (e.g., polymer) is often weaker than the matrix
itself Ma and Kim (2011), Tserpes and Silvestre (2014) and can be adequately mod-
eled by a spring layer of some thickness h. These two distinct mechanisms can be
combined and the formula given in Eqs. (18) and (19) are very relevant in this case.

Acknowledgments LN and HS gratefully acknowledge the financial support by the German
Research Foundation (DFG) via Project NA1203/1-1.
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The Influence of Distributed Dislocations
on Large Deformations of an Elastic Sphere

Evgeniya V. Zhbanova and Leonid M. Zubov

Abstract From the point of view of nonlinear elasticity theory the equilibrium
problem for elastic sphere was considered taking into account distributed edge dislo-
cations.Weused the systemof equations that consists of the incompatibility equations
with a given dislocation density tensor, equilibrium equations, and constitutive equa-
tions of thematerial. For the isotropicmaterial and spherically symmetric distribution
of the edge dislocations, the problem was reduced to the second-order ordinary dif-
ferential equation. In the framework of harmonic (semi-linear) material, the exact
solution of this equation was found for any function which defines the edge dislo-
cation density. In particular, we studied the case of dislocations concentrated on a
spherical surface within a body. It was established that this surface was the discon-
tinuity surface of strains and stresses. In addition to eigenstress problem, we solved
a problem of the loading of a hollow sphere with external or internal hydrostatic
pressure. Influence of dislocations on resistance of the sphere to the compression or
blowing was investigated.

1 Introduction

Dislocations are the important and widespread element of the solids microstructure.
The dislocation models make it possible to describe various properties of modern
materials (Gutkin and Ovid’ko 2004; Besson et al. 2010; Clayton 2011; Maugin
2012). Moreover, they are used for the description of effects such as inelasticity,
inner friction, plastic flow, fatigue, destruction, crystal growth, and so on. In many
cases, the number of dislocations in a limited volume is large. For these cases, it
is appropriated to transit from the discrete set of dislocations to their continuous
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distribution, and to use the continual theory of continuously distributed dislocations.
Nowadays the theory of continuously distributed dislocations plays an important role
among other generalized models of continuum such as micropolar, micromorphic,
and strain-gradient models (Forest and Sedláček 2003; Forest 2008; Eremeyev et al.
2013; Clayton et al. 2006; Altenbach et al. 2011; Altenbach and Eremeyev 2013,
2014). Using the dislocation distribution, one can model various defects in crystal
and nanostructural materials. Although the equations of the nonlinear continual dis-
location theory are well known (Kondo 1952; Bilby et al. 1955; Kröner 1960; Zubov
1997; Derezin and Zubov 1999, 2011), there is just a small list (Yavary and Goriely
2012; Zelenina and Zubov 2013) of the known exact solutions of the boundary prob-
lems of the spatial nonlinear elasticity theory for bodies with dislocations distributed
with a special density. The importance of such problems is pointed out, in particular,
in the paper Kröner (1960). The exact solutions of the nonlinear continual dislocation
theory allow, in particular, to discover a new quantitative and qualitative effects of
the deformation of bodies with dislocations.

2 Input Relations

Let r = xsis and R = Xk ik be the radius vectors of a point in the elastic medium in
the reference and deformed configurations, respectively, xs and Xk (k, s = 1, 2, 3)
the Cartesian coordinates of the reference and final states of the body, ik the fixed
coordinate orts. Later on, the operators of gradient, rotor, and divergence in the
reference configuration will be used:

gradΨ = rs ⊗ ∂Ψ

∂qs
, rotΨ = rs × ∂Ψ

∂qs
,

divΨ = rs· ∂Ψ

∂qs
, rs = im

∂qs

∂xm
,

where qs are the curvilinear coordinates,Ψ is the arbitrary differentiable tensor field.
We consider the problem of finding the position R(r) of a point of the deformed
elastic body by the differentiable and single-valued field C = gradR given in the
domain v. In the case of the multi-connected domain, the vector field R(r) in general
cannot be uniquely defined, that implies the presence in the body of translational
dislocations, each of which is characterized by the Burgers vector. Following Nye
(1953), Eshelby (1956), Landau and Lifshitz (1975), let us come from the discrete
dislocations to their continuous distribution and define the dislocation density as the
second-rank tensor field α, whose flux across any surface yields the total Burgers
vector of the dislocations crossing this surface. This definition leads to the following
equation for the distortion tensor:

rotC = α. (1)
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If the tensor field of the dislocation density α(r), which should satisfy the
solenoidality condition divα = 0, is considered as specified, then (1), called the
incompatibility equation, with the equilibrium equation (Lurie 1990; Ogden 1997)

divD = 0, (2)

the constitutive equation for the elastic material

D(C) = dW(G)/dC, G = C·CT , (3)

and the boundary conditions, makes it possible to find the distortion tensor field,
and, consequently, the stress field in the body. In (2), (3),D is the Piola’s asymmetric
stress tensor, G is the metric tensor, W is the specific energy of deformation. Mass
forces are not taken into account. Note that there is no vector field R(r) for α �= 0.

Incompatibility equation (1) of the first order can be transformed (Derezin and
Zubov 1999, 2011) to nonlinear incompatibility equations of the second order with
respect to components of the metric tensor G. These equations compose the basis
of the classical continuum theory of dislocations (Kondo 1952; Bilby et al. 1955;
Kröner 1960) and, from the differential geometry point of view, represent the equal-
ity to zero of the Riemann–Cartan curvature tensor of the metrically connected space
with torsion. The torsion tensor of the specified space is expressed through the dis-
location density tensor. The incompatibility equations of the second order are quite
complex, and their use for solving the boundary value problems of the nonlinear
theory of dislocations is related to great difficulties. For this reason, we use further
the incompatibility equations in the form of (1).

3 Formulation of the Equilibrium Problem for the Sphere
with Continuously Distributed Dislocations

We consider an elastic body as a spherical shell with the outer radius r0 and the
inner radius r1. Let us introduce the spherical coordinates r, φ, θ by the following
formulas:

x1 = r cosφ cos θ, x2 = r sin φ cos θ, x3 = r sin θ.

We denote the unit vectors tangent to the coordinate lines by er , eφ , eθ . Suppose we
have the dislocation density tensor as follows:

α = β(r)
(

eφ ⊗ eθ − eθ ⊗ eφ

)

. (4)
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Spherically symmetric distribution of edge dislocations (4) satisfies the solenoidality
condition for any function β(r). We search the distortion tensor field in the form of

C = C1(r)er ⊗ er + C2(r)
(

eφ ⊗ eφ + eθ ⊗ eθ

)

. (5)

Substituting (4) and (5) into the incompatibility tensor Eq. (1), one can make sure
it reduces to a single scalar differential equation

C1 − C2

r
− dC2

dr
= β(r). (6)

Considering nonlinear elastic material of the sphere be isotropic, we write the
general constitutive equation for the isotropic elastic material (Lurie 1990; Ogden
1997):

D = a1C + a2G·C + a3C−T ,

ak = ak (I1, I2, I3) , k = 1, 2, 3, (7)

I1 = trG, I2 = 1

2

(

tr2G − trG2
)

, I3 = detG.

Here, I1, I2, I3 are the deformation invariants, ak are the certain functions of
invariants. From (5), (7) it follows that the Piola’s stress tensor has the representation
similar to (5):

D = D1(r)er ⊗ er + D2(r)
(

eφ ⊗ eφ + eθ ⊗ eθ

)

. (8)

In view of (8), the vector equation of equilibrium (2) can be brought into a form
of a single scalar equation

dD1

dr
+ 2(D1 − D2)

r
= 0. (9)

For the arbitrary isotropicmaterial, the systemofEqs. (6), (9) can be easily reduced
to a single nonlinear second-order ordinary differential equation for C2(r) by the
constitutive equations (3). For some material models, it is possible to reduce the
above system to the equation defining D1 stress.

From this point on, we will use the semi-linear (harmonic) compressible material
(John 1960; Lurie 1990; Ogden 1997), the state equation of which is given by

D = 2μ

1 − 2ν
(νtrU − 1 − ν)A + 2μC, (10)

where μ, ν are the constants, U and A are the elements of polar decomposition of
the distortion tensor: C = U·A, at what U is the symmetric positive defined stretch
tensor, A is the properly orthogonal rotation tensor. In the area of the small strains
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there is no difference between the constitutive equation (10) and the Hooke’s law,
with μ and ν being the shear modulus and the Poisson’s ratio.

4 Eigenstress Problem

Physically, deformation of the medium must satisfy the condition detC > 0, from
which, due to (5), we obtain the inequality C1(r) > 0. Distortion component C2(r)
may be both positive and negative. On this basis, Piola’s stress tensor (10) can be
written componentwise:

D1 = 2μ

1 − 2ν
(2ν |C2| + (1 − ν)C1 − 1 − ν) , (11)

D2 = 2μ(sgnC2)

1 − 2ν
(2ν |C2| + νC1 − 1 − ν) + 2μC2. (12)

Eigenstress problem has two solutions. In the first solution C2(r) > 0, and in the
second one C2(r) < 0. We consider cases of the sign of C2 component separately.

Solving (11), (12) for C1, C2 in the case of C2 > 0, we obtain:

C1 = D1 − 2νD2

2μ(1 + ν)
+ 1, C2 = D2(1 − ν) − νD1

2μ(1 + ν)
+ 1. (13)

Substituting (13) into (6), and taking into account (9), we have the second-order
differential equation for the D1 stress:

r2
d2D1

dr2
+ 4r

dD1

dr
= 4μ(ν + 1)

ν − 1
rβ(r). (14)

Next we consider a general case of spherically symmetric distribution of edge
dislocations, i.e., when β(r) is an arbitrary function. Equation (14) can be written in
the following form:

D′′
1 + 4

r
D′

1 = γ (r), γ (r) ≡ 4μ(ν + 1)

ν − 1

β(r)

r
. (15)

Solution is represented by

D1(r) = − 1

3r3

r∫

r1

ρ4γ (ρ)dρ + 1

3

r∫

r1

ργ (ρ)dρ + A1 + A2

r3
. (16)
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The boundary conditions for (25) follow from the requirement of non-loading sur-
faces of the sphere r = r1, r = r0

D1(r1) = 0, D1(r0) = 0 (17)

With the help of (17) we find the constants of integration:

A1 = −A2

r31
, A2 = r30r

3
1

3
(

r30 − r31
)

⎛

⎝

r0∫

r1

ργ (ρ)dρ − 1

r30

r0∫

r1

ρ4γ (ρ)dρ

⎞

⎠ .

Let us consider the case of dislocations concentrated on the surfaces of the sphere
with the radius r∗. In this case, we define the function β(r) as

β(r) = β0δ(r − r∗), r1 ≤ r∗ ≤ r0. (18)

where δ(r − r∗) is the Dirac delta function. Substituting (18) into (16), we obtain
solution in its final form:

D1 = 4μβ0(ν + 1)

3(ν − 1)

r30
(

r31 − r3
)

(

r30 − r31
)

r3

(

1 −
(
r∗
r0

)3
)

, r1 ≤ r < r∗; (19)

D1 = 4μβ0(ν + 1)

3(ν − 1)

(

r3∗ − r31
) (

r3 − r30
)

(

r30 − r31
)

r3
, r∗ < r ≤ r0. (20)

Based on (19) and (20), (11)–(13), one can find D2, C1, C2.

D2 = 2μβ0(ν + 1)

3(ν − 1)

r30
(

r31 + 2r3
)

(

r31 − r30
)

r3

(

1 −
(
r∗
r0

)3
)

, r1 ≤ r < r∗; (21)

D2 = 2μβ0(ν + 1)

3(ν − 1)

(

r3∗ − r31
) (

r30 + 2r3
)

(

r30 − r31
)

r3
, r∗ < r ≤ r0;

C1 = 1 + 2β0

3(ν − 1)

r30
(

(1 + ν) r31 − (1 − 2ν) r3
)

(

r30 − r31
)

r3

(

1 −
(
r∗
r0

)3
)

, r1 ≤ r < r∗;

C1 = 1 + 2β0

3(ν − 1)

(

r31 − r3∗
) (

(1 + ν) r30 − (1 − 2ν) r3
)

(

r30 − r31
)

r3
, r∗ < r ≤ r0;

C2 = 1 + β0

3(ν − 1)

r30
(− (1 + ν) r31 − 2 (1 − 2ν) r3

)

(

r30 − r31
)

r3

(

1 −
(
r∗
r0

)3
)

, r1 ≤ r < r∗;

C2 = 1 + β0

3(ν − 1)

(

r31 − r3∗
) (

2 (2ν − 1) r3 − (1 + ν) r30
)

(

r30 − r31
)

r3
, r∗ < r ≤ r0.
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(a) (b)

Fig. 1 Components of the Piola’s stress tensor in the case of β0 = 1

For plotting we will use μ = 1, ν = 0.3. Inspection of Fig. 1a reveals that the D1

stress is continuous. It follows from Figs. 1b–2b that the sphere of radius r∗ tends
to be the discontinuity surface of D2, C1, C2. Thus, dislocations concentrated on
the surface, which is inside a body, produce the discontinuous fields of stresses and
strains. The discontinuity surface is a surface, onwhich dislocations are concentrated.
This means that with the help of dislocations distributed on a surface, we can model
the discontinuous fields of strains in elastic bodies.

Note that the jump amount of the function C2(r) on the spherical surface r = r∗
is independent of material properties and expressed in terms of β0. Indeed, we
integrate the incompatibility equation (6) for β(r) = β0δ(r − r∗) over the interval

(a) (b)

Fig. 2 Components of the distortion tensor in the case of β0 = 1
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(r∗ − ε, r∗ + ε), where ε > 0. Taking into account the boundedness of the functions
C1(r), C2(r), and letting ε tend to zero, we obtain

C−
2 − C+

2 = β0, C−
2 = lim

ε→0
C2(r∗ − ε), C+

2 = lim
ε→0

C2(r∗ + ε).

Moreover, in virtue of (19), (21), if dislocations are concentrated on the outer
surface of the sphere (r∗ = r0) or on the inner surfaces of the sphere (r∗ = r1), then
D1 ≡ 0, D2 ≡ 0. This means that dislocations distributed on the boundary of body
do not produce a stressed state in it.

For the solid sphere, i.e., for r1 = 0, we obtain:

D1 = −4

3

ν + 1

ν − 1
μβ0

r30 − r3∗
r30

, 0 ≤ r < r∗; (22)

D1 = 4

3

ν + 1

ν − 1
μβ0

r3∗(r3 − r30)

r30r
3

, r∗ < r ≤ r0;

D2 = −4

3

ν + 1

ν − 1
μβ0

r30 − r3∗
r30

, 0 ≤ r < r∗; (23)

D2 = 2

3

ν + 1

ν − 1
μβ0

r3∗(2r3 + r30)

r30r
3

, r∗ < r ≤ r0;

C1 = 4νβ0
(

r30 − r3∗
) − 2β0

(

r30 − r3∗
) − 3(1 − ν)r30

3(ν − 1)r30
, 0 ≤ r < r∗;

C1 = −2β0ν
(

r30 + 2r3
)

r3∗ + 2β0
(

r30 − r3
)

r3∗ − 3(ν − 1)r30r
3

3(ν − 1)r30r
3

, r∗ < r ≤ r0;

C2 = 4νβ0
(

r30 − r3∗
) − 2β0

(

r30 − r3∗
) − 3(1 − ν)r30

3(ν − 1)r30
, 0 ≤ r < r∗;

C2 = −2β0(2ν − 1)r3r3∗ − β0(1 + ν)r30r
3∗ − 3(ν − 1)r3r30

3(ν − 1)r30r
3

, r∗ < r ≤ r0;

According to (22), (23), if β0 > 0, 0 < ν < 1, the sphere 0 ≤ r ≤ r∗ is in the state
of a full stretch, and a spherical stress tensor is constant.

In the case of unbounded medium (r1 → 0, r0 → ∞), we obtain:

D1 = −4

3

ν + 1

ν − 1
μβ0, 0 ≤ r < r∗,

D1 = −4

3

ν + 1

ν − 1
μβ0

( r∗
r

)3
, r∗ < r ≤ r0;

D2 = −4

3

ν + 1

ν − 1
μβ0, 0 ≤ r < r∗,
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D2 = 2

3

ν + 1

ν − 1
μβ0

( r∗
r

)3
, r∗ < r ≤ r0;

C1 = 1 + 2β0(2ν − 1)

3(ν − 1)
, 0 ≤ r < r∗,

C1 = 1 − 2

3

ν + 1

ν − 1
β0

( r∗
r

)3
, r∗ < r ≤ r0;

C2 = 1 + 2β0(2ν − 1)

3(ν − 1)
, 0 ≤ r < r∗,

C2 = 1 + β0

3

ν + 1

ν − 1

( r∗
r

)3
, r∗ < r ≤ r0.

Now, consider the second solution of the eigenstress problem in which C2 < 0.
Solving (11), (12) for C1, C2 in the case of C2 < 0, we obtain:

C1 = D1 + 2νD2

2μ(1 + ν)
+ 1, C2 = D2(1 − ν) + νD1

2μ(1 + ν)
− 1. (24)

Substituting (24) into (6), and taking into account (9), we have the second-order
differential equation for the D1 stress:

r2
d2D1

dr2
+ 4r

dD1

dr
+ 4ν

ν − 1
D1 = 4μ

ν + 1

ν − 1
(rβ (r) − 2) . (25)

The boundary conditions for (25) are (17).
For β(r) ≡ 0, the unstressed stateD1 ≡ 0 is obviously not a solution of the bound-

ary value problem (25), (17). This means that in an elastic spherical shell, stresses
exist when no dislocations and external forces are present. It is well known that this
phenomenon may be possible for eversion of a spherical shell. We shall show that for
β(r) ≡ 0, the boundary value problem (25), (17) describes a state of the sphere made
of semi-linear material and turned inside out indeed. In addition to the Lagrangian
spherical coordinates r, φ, θ , let us introduce Eulerian spherical coordinates R,Φ,Θ

X1 = R cosΦ cosΘ, X2 = R sinΦ cosΘ, X3 = R sinΘ, (26)

where X1, X2, X3 are the Cartesian coordinates of body’s points in the deformed state.
Deformation of turning inside out is given by Lurie (1990), Ogden (1997), Zubov
and Moiseyenko (1983)

R = R(r), Φ = φ, Θ = −θ. (27)

Instead of generally accepted expression (27), we will describe the sphere’s turning
inside out by the following coordinate transformation

R = R(r), Φ = φ + π, Θ = −θ. (28)
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Deformation (28) differs from the deformation (27) by the fact of the additional
rotation of the sphere as a perfectly rigid body by 180◦ about the X3-axis. It is
clear that this rotation does not affect the stress state of the sphere. Representation
(28) has a substantial advantage over (27), in that it leads the distortion tensor C
to particularly simple representation in the case of the sphere’s turning inside out.
Based on C = gradR, (26), (27), we have

C = ∂Xk

∂r
er ⊗ ik + 1

r cos θ

∂Xk

∂φ
eφ ⊗ ik + 1

r

∂Xk

∂θ
eθ ⊗ ik

= −dR

dr
er ⊗ er − R

r
eφ ⊗ eφ − R

r
eθ ⊗ eθ . (29)

Comparing (29) with the representation (5), one can obtain

C1 = −dR

dr
, C2 = −R

r
. (30)

Elimination of the function R(r) from the relation (30) leads to the compatibility
equation

dC2

dr
− C1 − C2

r
= 0. (31)

which coincideswith (6) forβ(r) ≡ 0. TheEqs. (9), (8) and the constitutive equations
(24) give the following equation defining D1(r):

r2
d2D1

dr2
+ 4r

dD1

dr
+ 4ν

ν − 1
D1 = −8μ

ν + 1

ν − 1
. (32)

The above equation coincides with (25) when β(r) ≡ 0. Thus, the case of β(r) �≡ 0,
C2 < 0 can be interpreted as a spherically symmetric distribution of edge disloca-

Fig. 3 The σR component of
the Cauchy stress tensor
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Fig. 4 The σΦ component
of the Cauchy stress tensor

tions in an elastic sphere turned inside out. Note that the problem of equilibrium and
stability of an elastic spheremade of semi-linear material and turned inside out, with-
out taking into account the dislocations, was solved earlier (Zubov and Moiseyenko
1983).

The solutionof the boundaryvalueproblem (17), (25), in the case ofβ(r) = β0r−1,
β0 = const, μ = 1, ν = 0.3, is shown in Figs. 3 and 4, where the distribution of the
Cauchy stress components σR = C−2

2 D1, σΦ = (C1C2)
−1D2 is represented.

5 Lame’s Problem

We consider the Lame’s problem for a sphere for the case of C2 > 0. The sphere
is supposed to be loaded by a constant pressure on the inside and from the outside.
Consequently, the boundary conditions can be written as follows:

D1(r0) = −p0C
2
2(r0), (33)

D1(r1) = −p1C
2
2(r1). (34)

Then, constants of integration in representation of D1 (16), that has been derived in
previous section, are

A1 = 1

1 − r−3
0 r31

⎛

⎝
1

3r30

r0∫

r1

ρ4γ (ρ)dρ − 1

3

r0∫

r1

ργ (ρ)dρ + r31
r30

p1C
2
2(r1) − p0C

2
2(r0)

⎞

⎠ ,

(35)

A2 = −A1r
3
1 − p1C

2
2(r1)r

3
1 (36)
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Let dislocation density have the form of

β(r) = β0r
κ , β0 = const, κ = const.

Then, having in mind (11)–(13), (16), we obtain

D1 = 4μβ0(ν + 1)

(κ + 1)(κ + 4)(ν − 1)
rκ+1 + A1 + A2r

−3, (37)

D2 = 2μβ0(ν + 1)(κ + 3)

(κ + 1)(κ + 4)(ν − 1)
rκ+1 + A1 − A2

2
r−3, (38)

C1 = 1 + 2β0 (1 − 2ν − ν (κ + 1))

(κ + 1)(κ + 4)(ν − 1)
rκ+1 + A1(1 − 2ν) + A2(1 + ν)r−3

2μ(1 + ν)
, (39)

C2 = 1 + (1 − 2ν)A1

2μ(1 + ν)
− A2

4μ
r−3 − β0

(κ + 4)(κ + 1)

(

κ + 3 + 2ν

ν − 1

)

rκ+1. (40)

Cases of loading on the inside and from the outside are separately considered.
If p0 = 0, p1 �= 0, then we have the nonlinear boundary condition (34), which

corresponds to blowing up the sphere.
If we solve a problem for all p1 values selected from a certain range, we will

be able to construct the relationship K1(p1), where K1 = C2(r1). This relationship
characterizes a nonlinear resistance of the sphere to application of internal pressure.
The construction of the relationship K1(p1) can be simplified by finding the inverse
function p1(K1). Finding of the relationship p1(K1) requires the solving of the linear
boundary value problem with the next boundary conditions

D1(r0) = 0, (41)

C2(r1) = K1, (42)

where K1 is a given value.

Fig. 5 Dependence of
C2(r1) on pressure p1



The Influence of Distributed Dislocations … 73

FromFig. 5, onemayobserve that positive dislocation density decreases resistance
of the sphere to blowing up, and the negative one increases it.

We have no difficulty to find components of the Cauchy stress tensor, which are
illustrated in Figs. 6 and 7. It is clear from Fig. 7 that there is a spherical surface,
circular stresses on which is independent of the dislocation density. The presence
of dislocations intensifies the unevenness of distribution of the σΦ stress along the
vessel thickness. Figures6 and 7 show that the negative dislocations increase stresses
σR, σΦ for its absolute value.

If p1 = 0, p0 �= 0, then we have the nonlinear boundary condition (33), which
corresponds to hydrostatic pressure on the sphere. As before, we first consider the
linear boundary condition for D1(r1). The boundary conditions take the form:

Fig. 6 The σR component of
the Cauchy stress tensor;
p1 = 0.1, κ = 1

Fig. 7 The σΦ component
of the Cauchy stress tensor;
p1 = 0.1, κ = 1
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Fig. 8 Dependence of
C2(r0) on pressure p0

D1(r1) = 0, (43)

C2(r0) = K0, (44)

where K0 is a given value.
FromFig. 8, onemayobserve that positive dislocation density decreases resistance

of the sphere to hydrostatic pressure, and the negative one increases it.
It is clear from Fig. 10 that, as in the case of blowing up, there is a spherical

surface, circular stresses on which is independent of the dislocation density. The
presence of dislocations intensifies the unevenness of distribution of the σΦ stress
along the vessel thickness. Figures9, 10 show that the negative dislocations increase
stresses σR, σΦ for its absolute value.

Fig. 9 The σR component of
the Cauchy stress tensor;
p0 = 0.1, κ = 1
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Fig. 10 The σΦ component
of the Cauchy stress tensor;
p0 = 0.1, κ = 1

6 Conclusion

In this paper we have investigated a spherically symmetric problem of nonlinear con-
tinual theory of dislocations. For the harmonic compressible material we have found
exact solutions, which describe eigenstresses in an elastic hollow sphere caused by
spherically symmetric distribution of edge dislocations. We ascertain that the eigen-
stress problem has two spherically symmetric solutions for the same dislocation
density. We have shown that dislocations concentrated on a spherical surface within
a body determine the discontinuous fields of strains and stresses. At the same time,
dislocations distributed over the boundary of the elastic body do not produce eigen-
stresses in a body. Also we have examined the influence of distributed dislocations
on large deformations of an elastic sphere loaded with internal or external pressure.
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A Closed-Form Solution for a Linear
Viscoelastic Self-gravitating Sphere

Wolfgang H. Müller and Elena N. Vilchevskaya

Abstract Following up on the classical solutions by Love for a linear-elastic
self-gravitating sphere, this paper presents the corresponding extension to a lin-
ear viscoelastic body of the Kelvin–Voigt type. The solution is expressed in closed
form by making use of Laplace transforms. Applications to the genesis of terrestrial
planets are sought and the evolution of the Love radius and possible extensions to
large deformations are discussed. As a new result, it turns out that in the early days
of planet formation there is no Love radius and that it takes time for the Love radius
to develop.

1 What This Paper Is About and What It Is Not

Viscoelasticity is of current interest to geology. Typically geologists investigate the
temporal evolution of deformation within the Earth’s outer crust caused by earth-
quakes or other gravitational load shifts such asmelting ice, using viscoelastic mater-
ial models, e.g., Campbell (1974), Ragazzo and Ruiz (2015) and Tanaka et al. (2009).

The present paper is not going in this direction at all. Rather it is a idealistic
continuum approach toward an understanding of the genesis of terrestrial planets
and the subsequent state of deformation in a large self-gravitating object. However,
there is also a certain esthetic aspect in the solution we are about to present, and in
order to quote Keats we may say that “beauty is truth, truth beauty.” More specifi-
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cally, our result is a follow-up on the classical solutions found by the great A.E.H.
Love for a self-gravitating linear-elastic sphere, see Love (1892, 1906, 1927). We
shall extend his beautiful formulae to a linear-elastic model of the Kelvin–Voigt
type. In other words, we will explore the temporal development of the static linear-
elasticity solution of a self-gravitating terrestrial planet. In particular, we shall look
at the temporal evolution of the Love radius, i.e., the position of the transition zone
between compression and tension within a self-gravitating “solid” sphere. This may
even be of practical use, since it is related to damage during the early stages of a
developing terrestrial planet. However, we shall not endeavor to investigate this in
full quantitative detail, at least not here. Surprisingly, our results will be of closed
form, thanks to the efforts of one of the authors in a completely different field of
research, cf. Frelova (2016). This shows the power of continuum theory: Everything
is connected, a maxim we chose to start our salute to our esteemed colleague Holm
Altenbach!

2 Literature Review and Putting the Problem
into Perspective

Today it is a commonly accepted opinion that terrestrial planets, such as Mercury,
Venus, Earth, and Mars, but also other huge solid celestial objects, specifically the
Moon,1 are the result of a coagulation process of “rocky” matter, a.k.a. “planetes-
imals,” to form so-called “protoplanets” during the early stages of the developing
solar system, cf., Wetherill (1990). In order to quote Lissauer (1993), pg. 134: “... in
this picture, planet formation is fundamentally different from star formation in that
planetary growth begins with the accumulation of solid bodies, with the accretion of
substantial amounts of gas occurring after a planet becomes sufficiently massive ...”
and, pg. 136, “... These planetesimals continue to agglomerate via pairwise mergers.
... Growth via binary collisions proceeds until the protoplanets become dynamically
isolated from each other.”

Hearing all this, wemight conclude that the mathematical modeling of the genesis
of a planet is exclusively numerical and within the field of discrete mechanics or
(better) discrete systems, since there will be thermodynamics aspects involved, see,
e.g., Kenyon (2006). However, it is always wise to look at a problem from different
angles and, consequently, we promote the continuum perspective in what follows.

Let us consider the following scenario: A spherical, initially homogeneous,
unstressed sphere (the planet in statu nascendi) undergoes self-gravity. We must
ask as to whether static equilibrium is possible and how it is reached? Two rather
idealized scenarios come to mind.

First, imagine that gravity is “suddenly switched on.” Then, we will essentially
face a situation similar to that of a moving masspoint connected to a linear-elastic

1It is said that also the gas giants initially need a rocky core of sufficient size which is then able to
attract gas, if available in the region of its formation.
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Hookean spring: Due to the inertial terms in the equation of motion and due to
the potential of a linear oscillator pertinent to a radially symmetric, self-gravitating
sphere, this sphere will begin to shrink below the radius determined by static equilib-
rium of forces. While doing so, stress-related forces will build up so that the sphere
will finally start to rebounce. Provided there is no dissipation it will reach its initial
radius again. This will happen over and over if we assume the material of the sphere
to be perfectly elastic without internal friction and without heat conduction, so that
isothermal conditions prevail. In other words, without dissipation there will be a con-
stant exchange between the elastic energy, the gravitational potential, and the kinetic
energies: The motion of the self-gravitating matter would never come to a standstill.
Of course, in the real world there are dissipative processes acting. The shrinking will
be accompanied by dissipation in terms of viscoelastic or viscoplastic deformation,
and there will be heat conduction. All of this will, in the end, bring motion to a
standstill, and the sphere will arrange itself in thermomechanical equilibrium, i.e.,
there will be equilibrium of gravitational and inner, stress-related forces in a state
of homogeneous temperature. It should be mentioned that the final equilibrium state
of a self-gravitating sphere has been modeled in closed mathematical form at the
end of the nineteenth century by Love (1892), who used linear elasticity at small
deformations for this purpose. The interested reader will find detailed information
about Love’s solution and interpretation in the Appendix.

In conclusion, we shall not attempt to model the dynamic transition toward that
equilibrium for various reasons. First of all, its treatment would be fully numerical
based on large deformations expressed in terms of velocities. This makes it difficult
if not impossible to compare it to Love’s analysis of equilibrium, which was based
on small strains. Moreover, choosing an adequate numerical technique would be
required. Surely there will be more than one, all of them with certain pros and cons.
Finally, the question which initial conditions are appropriate is difficult to answer,
since gravity is not simply “switched on” but always present. Hence in terms of
capturing reality our dynamic continuum model could not seriously compete with
the discrete mechanics approach of planetesimal masses bouncing into each other,
sticking together, and finally forming a primordial planet that relaxes stress- and
displacement-wise under the influence of their mutual gravitational attraction. In
short, the fully dynamic continuum model requires too much effort for little gain.

For all these reasons, we shall eat humble pie and turn alternatively to a quasistatic
treatment instead. Thisway inertial forces in the equations ofmotion can be neglected
and the self-gravitating spherewill quasistatically and isothermallymove into its final
state of deformation. Such a situation is frequently conjured up in so-called p dV -
thermodynamics, for example, if we allow the pressure on a piston to change very
slowly so that the gas which is trapped in the corresponding container has time to
accommodate pressure- and temperature-wise. However, in our approach the time
parameter will enter through a viscoelastic model used to connect stresses, strains,
and their corresponding rates. More specifically, in order to be able to study the
temporal development of the solution for the displacements, strains, and stresses
toward Love’s closed-form solutions we will make use of a linear viscoelastic model
of the Kelvin–Voigt type, i.e., small deformation theory will reappear.
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Fig. 1 Stress- versus displacement-controlled viscoelastic experiments (see text)

In this context recall the two fundamental types of quasistatic experiments always
mentioned in combination with quasistatic, linear viscoelasticity (see Fig. 1)2: In the
first one a linear-viscoelastic strip is suddenly subjected to a constant “dead load,”
i.e., a constant uniaxial tensile stress (the “cause”), σ0, is prescribed. Under such
circumstanceswe also speak of load-control. The “effect” consists of an elastic strain,
εi, instantaneously built up.After that the strip gradually creeps quasistatically toward
its final total strain, εf . The counterpart to this experiment consists of prescribing a
strain of a fixed amount (the “cause”), ε0, and to observe the stress response (the
“effect”). This is what we call a displacement-controlled test. It turns out that the
stress response immediately overshoots to a high level, σi, and is then reduced by
creeping quasistatically toward a final lower value, σf . This time we speak of stress-
relaxation.

In the following section we shall state and solve the linear-viscoelastic problem
for a self-gravitating sphere mathematically and study the behavior of the corre-
sponding solution which, surprisingly, will also be of closed-form. Moreover, we
shall also investigate as to whether this fits into the traditional pattern of stress or
strain controlled experiments.

3 A Viscoelastic Model of Self-gravitation

3.1 Viscoelasticity of the Kelvin–Voigt Type

Recall the 1D representation of the so-called Kelvin–Voigt model: AHookean spring
and a dashpot are arranged in parallel: Fig. 2. If we apply a displacement, δ, at the
outer points of this rheological model it will be transferred equally to the spring and
to the dashpot, δ = δ1 = δ2, whereas the resulting force is the sum of the forces due

2Some readers may want to consult Lakes (2009), pg. 4 or Müller and Müller (2009), pg. 370 for
more information.
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Fig. 2 The Kelvin–Voigt
model of 1D linear
viscoelasticity

to both elements, F = F1 + F2. In strength-of-materials-terminology we may say
that the strains and, hence, the strain rates are equal, ε = ε1 = ε2 ⇒ ε̇ = ε̇1 = ε̇2,
whereas the stresses are additive, σ = σ1 + σ2, and where the dot refers to a time
derivative. The spring is now modeled by Hooke’s law, σ1 = Eε1, and the dashpot
by a Newton–Navier–Stokes relationship, σ2 = η ε̇2. If we combine these equations,
we arrive at:

σ = E
( η

E
ε̇ + ε

)

. (1)

We can then introduce a strain-based relaxation time, τε = η/E, which will come
in handy once we turn to dimensionless equations.

One-dimensional rheologicalmodels allowus tofind three-dimensional analogues
if we accept the daring idea of replacing the 1D stress and strain simply by stress
and strain tensors. We proceed to illustrate this idea for the case of the Kelvin–Voigt
model, Eq. (1), and write:

σ = σ 1 + σ 2 , ε = ε1 = ε2. (2)

Now we assume that the planet can be modeled as a linear, isotropic medium. We
therefore consider the following customary constitutive equations for linear elasticity
and viscosity during further analysis (the acronyms “dil” and “dev” refer to dilatoric
and deviatoric parts of the strain (rate) tensors, respectively):

σ 1 = 3k εdil1 + 2μ εdev1 , σ 2 = 3η′ ε̇2dil + 2η ε̇2
dev , (3)

where k and μ refer to the bulk modulus and the shear modulus, respectively. More-
over, η′ and η are known as coefficients of bulk and shear viscosity.

If we now combine Eqs. (2) and (3) suitably we finally arrive at the following
relation:

σ = 3k

(
η′

k
ε̇dil + εdil

)

+ 2μ

(
η

μ
ε̇dev + εdev

)

. (4)

Hence, in principle, we must distinguish between two different relaxation times:
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τv,ε = η′

k
, τs,ε = η

μ
, (5)

where the indices v and s are supposed to remind us of the dilatoric (volumetric) and
deviatoric (shear) parts, and the index ε of the strain-related relaxation process.

However, it is known that the bulk viscosity is a rather elusive parameter and
very difficult to measure, see Gad-el Hak and Bandyopadhyay (1995). Therefore,
we will neglect it in what follows and obtain from the previous equations because of
εdil := 1

3 Tr εI and εdev := ε − εdil:

σ = 3k εdil + 2μ εdev + 2η ε̇dev ≡ λ Tr ε I + 2μ ε + 2η

(

ε̇ − 1

3
Tr ε̇ I

)

, (6)

I being the unit tensor.
Our main objective is to determine the displacement, u, in spherical coordinates

(for obvious reasons). We assume perfect spherical symmetry, hence u = ur (r)er ,
ur being its radial component and er being the radial unit vector. All necessary
equations will be written in spherical coordinates. Specifically, we recall Eqs. (37)
and (38) from the Appendix, which we complement by:

ε̇rr = u̇′
r , ε̇ϑϑ ≡ ε̇ϕϕ = u̇r

r
, ε̇rϑ = ε̇rϕ = ε̇ϑϕ ≡ 0 . (7)

Then we obtain analogously to Eq. (39):

σrr = (λ + 2μ)u′
r + 2λ

ur
r

+ 4

3
η

(

u̇′
r − u̇r

r

)

,

σϑϑ ≡ σϕϕ = λu′
r + 2(λ + μ)

ur
r

+ 2

3
η

(
u̇r
r

− u̇′
r

)

, (8)

σrϑ = σrϕ = σϑϕ ≡ 0.

The equilibrium conditions (34) hold and we arrive similarly to Eq. (40) at the
following Partial Differential Equation (PDE) for ur (r, t):

u′′
r + 2

u′
r

r
− 2

ur
r2

+ 4

3

η

λ + 2μ

(

u̇′′
r + 2

u̇′
r

r
− 2

u̇r
r2

)

= 4πρ2
0G

3(λ + 2μ)
r, (9)

where the dot means differentiation w.r.t time, t , and the dash differentiation w.r.t.
position, r .

This PDE must be solved in combination with two boundary conditions and one
initial condition. We will study the case of a viscoelastic sphere of outer radius, ro.
The boundary conditions state that the displacement stays finite and vanishes in the
center and that there is no traction at the outer boundary, ro:
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ur (r = 0, t) = 0 , σrr (r = ro, t) = 0. (10)

3.2 Solution in Dimensionless Form

Analogously to Eqs. (47) and (49)1 we define

u ≡ u(x, τ ) = ur
ro

, x = r

ro
, τ = λ + 2μ

η
t , α = 8πGρ2

0r
2
o

3(λ + 2μ)
. (11)

Then the PDE (9) assumes the form:

u′′ + 2
u′

x
− 2

u

x2
+ 4

3

(

u̇′′ + 2
u̇′

x
− 2

u̇

x2

)

= α

2
x, (12)

where the dot now refers to differentiation w.r.t. dimensionless time, τ , and the dash
means differentiation w.r.t. dimensionless position, x .

The nonvanishing stresses are normalized by λ + 2μ (identified by a tilde) and
read:

σ̃rr = u′ + 2ν

1 − ν

u

x
+ 4

3

(

u̇′ − u̇

x

)

, (13)

σ̃ϑϑ ≡ σ̃ϕϕ = ν

1 − ν
u′ + 1

1 − ν

u

x
− 2

3

(

u̇′ − u̇

x

)

.

The boundary conditions (10) take the following form:

u(0, τ ) = 0 , (14)

σ̃rr (1, τ ) ≡ u′(1, τ ) + 2ν

1 − ν
u(1, τ ) + 4

3

[

u̇′(1, τ ) − u̇(1, τ )

]

= 0,

and the initial condition reads:

u(x, 0) = 0 , x ∈ [0, 1], (15)

this is to say that we expect no displacements initially, because “gravitation has just
been switched on at τ = 0.”

We solve the PDE (12) by mapping it onto Laplace space w.r.t. time τ ↔ s and
then finding a solution of the corresponding Ordinary Differential Equation (ODE).
The Laplace transform of the displacement will be identified by a bar, ū = ū(x, s),
and we may write according to the usual rules of Laplace transforms:
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(

1 + 4

3
s

)(

ū′′(x, s) + 2
ū′(x, s)

x
− 2

ū(x, s)

x2

)

−
4

3

[

u′′(x, 0) + 2
u′(x, 0)

x
− 2

u(x, 0)

x2

]

= αx

2

1

s
. (16)

The term in brackets drops out. We can give two reasons for that. First, there is the
initial condition (15), according to which the displacement (and all its derivatives)
shall vanish initially. Second, we note that this very term represents the (stationary)
ODE of the gravitational problem provided gravitation is not present, see Eq. (40),
which is zero to begin with. The solution of the remaining ODE for ū(x, s) is com-
pletely analogous to the one presented in Eq. (41). We may write:

ū(x, s) = Ax + B

x2
+ α

20
x3

1

s
(

1 + 4
3 s

) , 0 ≤ x ≤ 1, (17)

In order to determine the constants of integration we have to transform the bound-
ary conditions (14) into Laplace space as follows:

ū(0, s) = 0 , (18)

(

1 + 4

3
s

)

ū′(1, s) +
(

2ν

1 − ν
− 4

3
s

)

ū(1, s) − 4

3

[

u′(1, 0) − u(1, 0)

]

= 0.

For the same reasons as before the term in parentheses in the second equation
drops out. The first equation requires us to put B = 0. Moreover, the remaining
linear equation for A in Eq. (17)2 can be solved and, after back transform into real
time space, the final result reads as follows:

u(x, τ = 0) = 0 , (19)

u(x, τ > 0) = − α

20
x

[
3 − ν

1 + ν
− x2

]
[

1 − exp
(− 3

4τ
)] − α

10

1 − ν

1 + ν
x exp

(− 3
4τ

)

.

Note that special attention has been given to the case τ = 0: If we consider the
limit case τ → 0 we find a nonvanishing initial displacement. Moreover, it can be
seen that the initial and boundary conditions from Eqs. (14), (15) are indeed satisfied.
For τ → ∞ the stationary relation shown in Eq. (48) is obtained.

We are now in a position to determine the dimensionless stresses from Eq. (13):

σ̃rr = − α

20

(

1 − x2
)
[
3 − ν

1 + ν
− 1 + ν

1 − ν
exp

(

−3

4
τ

)]

, (20)

σ̃ϑϑ ≡ σ̃ϕϕ = − α

20

3 − ν

1 − ν

[

1 − 1 + 3ν

3 − ν
x2 − 1 + ν

3 − ν

(

1 − 2x2
)

exp

(

−3

4
τ

)]

.
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It is easy to see that in the limit τ → ∞ the stresses of the stationary solution
from Eq. (52) result.

3.3 Evaluation and Discussion of the Results

Figure3 depicts the temporal evolution of the displacement as a function of radial
distance in dimensionless form as predicted by Eq. (19) for the choice ν = 0.3. Note
that immediately after “gravity has been switched on” the dependence is nearly
linear.3 Consequently, the minimum is located at the outer radius x = 1. It is an edge
minimum and not a “true” minimum with vanishing derivative.

In this context recall the notion of the “Love radius.” It indicates the position
where the radial strains within a self-gravitating sphere changes sign and it was first
discovered by A.E.H. Love. In equilibrium this (normalized) position is given by:

xLove =
√

3 − ν

3(1 + ν)
, (21)

and the details of the derivation of the formula can be found in the Appendix.

Fig. 3 Temporal
development of the
displacement as a function of
radial position (see text)

3The label τ = 0 in Figs. 3, 4 is to be understood in the sense τ ≈ 0 (i.e., very small but not equal
to zero). A more detailed discussion of this degenerated case can be found in Müller and Weiss
(2016).
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Fig. 4 Temporal
development of the Love
radius (see text)

Also recall that in the present case the radial strain is nothing else but the derivative
of the radial displacement w.r.t. position, i.e., the slope to that curve. Moreover, the
Love radius is defined by a true minimum of the radial displacement with zero slope.
Consequently, in the transient case, a tensile region does not exist initially. It takes
a certain while until the prominent feature of a true minimum corresponding to the
location of the Love radius evolves.

We can obtain the location of the Love radius by (formal) differentiation of the
displacement shown in Eq. (19) w.r.t. x . The result is:

xLove = 1√
3

√

3 − ν

1 + ν
+ 1 − ν

1 + ν

1

exp
(
3
4τ

) − 1
. (22)

It is easily seen that this expression tends to the “elastic” Love radius shown in
Eq. (21) if τ goes to infinity (Fig. 4).

Finally, Fig. 5 presents the (dimensionless) stresses. It is noteworthy that the radial
stress component relaxes monotonically without a qualitative change in the shape of
the curve. This is not so for the angular stresses, whose minima switch from x = 1
to x = 0 as time goes on.

Based on the results presented in Figs. 3 and 5, we must conclude that the process
of relaxation in a self-gravitating terrestrial planet is not as simple as in the textbook
example of a load and displacement-controlled viscoelastic strip shown in Fig. 1. This
is due to the fact that we face a three-dimensional state of stress after “switching on”
a spatially varying body force.
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Fig. 5 Temporal
development of the stresses
(see text)

4 Outlook and Conclusions

The main objective of this paper was to present an analysis of the temporal devel-
opment of the displacements, strains, and stresses in a self-gravitating sphere. The
model was based on a radially symmetric linear viscoelastic constitutivemodel of the
Kelvin–Voigt type. An analytical solution was found based on Laplace transforms.
It was shown how the displacement and stresses relax to the stationary linear-elastic
solution, originally due to Love, which was also reviewed in an appendix. In partic-
ular it was shown that the so-called Love radius, which marks the transition between
the regions of compressive and tensile strain, does not exist in the early stages. It
takes some time to develop.

In future work we will investigate alternative viscoelastic models, for example a
generalization of the Zener type. We will also attempt to predict the relaxation time
scales based on recent measurements of the viscosity of (liquid) iron and igneous
rock.
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Appendix: Love’s Solution—Its History in Modern Form

The following passages were primarily written for the benefit of readers who do not
solve linear-elastic problems on a daily basis. However, they also contain interpre-
tations not originally provided by Love, for example intuitive explanations of the
meaning of the normalizing coefficients for the displacements and for the stresses.

A.1 The Primary Assumptions of Love and Their Limitations

Love’s solution for the state of deformation in a self-gravitating sphere is a static
one. Hence the balance of momentum degenerates to the following equation:

∇ · σ = −ρ f , (23)

where ρ denotes the local current mass density, and σ the Cauchy stress tensor.
The specific body force, f , i.e., the gravitational acceleration, is conservative and
originates from self-gravity. Hence a gravitational potential U grav(x) exists, where
x denotes an arbitrary (current) position within the body, and we may write:

f (x) = −∇U grav(x). (24)

The gravitational potential obeys Poisson’s equation:

�U grav(x) = 4πGρ(x). (25)

For the stress tensor we initially assume that Hooke’s law holds, so that there are
no rate effects:

σ = λ Trε I + 2μ ε, (26)

where the linear strain tensor has been used:

ε = 1
2 (∇u + ∇u). (27)

u refers to the displacement vector, i.e., to u = x − X , X being the reference
position of a material point of the sphere. λ and μ are Lamé’s elastic constants.

At this point three remarks for putting Love’s approach in perspective are in order,
which are all related somehow. They all circle around the question “What happens if
the deformations prove to be large?” We shall see that they can be large, we want to
point out possible remedies, we will provide some citations for further reading, but
we shall not endeavor to work it all out in this paper.

The first comment concerns the nabla operator used in the aforementioned equa-
tions: Note that all nabla operators above indicate differentiation w.r.t. the current
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spatial position, x. This is how the theoryworks for “linear elasticians:” There is only
one gradient in linear theory of elasticity at small deformations, namely that one.
Hence for them putting an emphasis on it sounds trivial. However, there is a world
outside of linear elasticity as understood by Sokolnikoff (1956) or Timoshenko and
Goodier (1951), in order to quote just two references of that denomination. Indeed, it
is possible to understand linear elasticity as a limit case of nonlinear materials theory.
Then Hooke’s law results in a natural way written in terms of gradients with respect
to the reference configuration, X , see Wang and Truesdell (1973), pp. 170, or Müller
(1973), p. 72. However, in the next breath it is said, see Truesdell and Toupin (1960),
Sects. 57 and 301, that it does not really matter, and these gradients can be replaced
by derivatives w.r.t. the current position, since the deformations are so small. What
they do not say, though, is that it does matter from a principal, didactic point-of-view.

Second, from the standpoint of linear elasticity, the set of Eqs. (23)–(27) serves
only one purpose: It allows us to calculate the displacement u(x). To this end the
mass density ρ(x)must be considered as known, and for linear-elasticians it is, in the
simplest case, a space-independent constant, ρ = ρ0. If we relate it to our problem
we may consider it to be the mass density of the homogeneous sphere before gravity
has been switched on. However, recall that this does not mean that the current mass
density is also a constant, even if it is one in the reference state. It is dependent
on deformation and it can be determined from mass conservation. In general, now
turning back to nonlinear theory for a moment, it is well known that we may write:

ρ(x) = ρ0

detF(x)
, (28)

where F(x) ≡ ∇X x is the deformation gradient pertinent to a material point. Recall
once more that Eq. (28) is the result of the physical principle of local mass con-
servation and geometry, i.e., nonlinear kinematics, and, as such, it holds for arbi-
trary deformations. If we insist on studying small deformations, we must replace
Eq. (28) by:

ρ(x) ≈ ρ0
[

1 − Tr ε(x)
]

. (29)

Consequently, the argument now runs as follows: Once the linear strain ε(x) is
known from a linear-elastic analysis based on the (static) balance of momentum in
combination with Hooke’s law, during which the mass density is assumed to be spa-
tially constant, the spatial distribution of the current mass density in the strained body
can be calculated from Eq. (29). In other words, one does not solve a coupled prob-
lem and does not make use of the balances of mass and momentum simultaneously.
Indeed, in our problem we calculate the strains or rather the displacements from
Eqs. (23)–(27) after the current mass density in the body force has been replaced
by a constant reference mass density, hence mimicking homogeneous initial condi-
tions for the mass distribution of a terrestrial planet. For conciseness of this paper,
the question as to how the current mass density will look like and how it compares
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with today’s knowledge of the inner mass distribution of Earth will be discussed
elsewhere.4

Third, the use of a constant reference mass density in linear elasticity turns into
a very subtle point when applied to problems of self-gravity. Observe that in the
current local balance of momentum the current mass density appears explicitly and
linearly in three locations: (i) in the inertial term (not shown in Eq. (23), because
we restrict ourselves to quasistatic conditions); (ii) in the product of the term for the
body force density, and (iii) in the acceleration part of the body force density, if we
consider the case of full self-gravitational interaction. The latter will be demonstrated
explicitly in Subsection (A.2.1). Now recall once more that all of this is ignored in
linear elasticity where the current mass density is simply replaced by a constant value
ρ0, everywhere. We may rephrase it in the jargon of technical mechanics by saying
that the forces are applied to the undeformed structure and a first order theory is
used to calculate the resulting deformation. Thus we would like to reemphasize that
the model “linear elasticity” is defined by three prerequisites (also see, for example,
the beginning of Kienzler and Schröder (2009), namely, first, a linear relationship
between stress and strain, second, strains and displacements to be small and, third,
equilibrium of an undeformed element.

However, the use of linear elasticity in self-gravitational problems remains ques-
tionable. Indeed, we shall see that for certain celestial objects, in particular the Earth,
the strains we are about to predict from the linear theory of elasticity can become
very large. Probably the first to notice was A.E.H. Love after applying linear elas-
ticity in the way defined above and discovering what is known as the Love radius, a
radial transition point within a self-gravitating spherical body, where radial strains
switch from compression to tension and, consequently, may result in damage of the
body. Love muses in sudden attacks of self-doubt about his approach, namely in
Love (1892), Article 127: “There is another difficulty in the application of the result
[for the strains and for the breaking stress] to the case of the Earth. The necessary
limitation to the mathematical theory is that the strain found from it must always
be “small”. ...” and in Love (1927), Article 75: “The Earth is an example of a body
which must be regarded as being in a state of initial stress, for the stress that must
exist in the interior is much too great to permit of the calculation, by the ordinary
methods, of strains reckoned from the unstressed state as unstrained state.”

Consequently, we could come to the conclusion to abandon linear elasticity com-
pletely and to use a deformation-wise nonlinear theory instead. Indeed, this was done
in a series of papers from the school of Seth, who was one of the first to study and use
nonlinear deformation measures for elasticity problems, see, e.g., Chattarji (1953)
or Bose and Chattarji (1963). In principle, this requires solving the coupled problem,
namely the balances of mass and momentum, unless an empirical expression for the
(current) mass density distribution is assumed. The latter was the case in the afore-
mentioned papers from the school of Seth. One of their main conclusions was that
the position of the Love radius as predicted by linear elasticity at small deformations
does not change much when switching to large deformation theory.

4The interested reader is referred to Müller and Weiss (2016).
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This in mind, do we now feel completely reconciled by using the linear theory
elasticity in context with problems of self-gravity? The answer is unfortunately “no.”
Indeed, a detailed study of the nonlinear problem shows that there are many open
questions, ranging from numerical issues to the use of the proper nonlinear stress-
strain relationship.5 Nevertheless, this paper is not the place to explore this issue
completely.Wemust and will assume the position of Galileo’s Simplicio, who would
use the linear-elastic solution anyway, no matter how large the self-gravitating mass
really is. To quote Churchill: “Now this is not the end. It is not even the beginning
of the end. But it is, perhaps, the end of the beginning” or shall we say the dawn of
awareness?

In the next section we shall briefly summarize Love’s linear elasticity results at
small deformations and provide some additional comments for better explanation and
clarification of the problem. For example we shall introduce and interpret various
parameters in terms of their physical meaning, which can be used for normalization
of the solution. Moreover, we will show that for certain celestial objects, such as
Mercury, the linear elasticity solution with small deformations can be considered as
valid. It will also serve as a starting point as well as for comparison with the results
from linear viscoelasticity in Sect. 3.

A.2 Review of Love’s Linear-Elastic Model of Self-gravitation

A.2.1 Analysis of the Strictly Radially Symmetric Case

Westart from the Poisson equation describingNewtonian gravity as shown inEq. (24)
and assume purely radial dependencies:

1

r2
d

dr

(

r2
dU grav(r)

dr

)

= 4πGρ(r) ⇒ dU grav

dr
= G

m(r)

r2
, (30)

where m(r) denotes the total mass within a spherical region of radial extension r :

m(r) = 4π

r̃=r∫

r̃=0

ρ(r̃)r̃2dr̃ , 0 ≤ r ≤ ro, (31)

and ro stands for the current outer radius of the spherical body. Consequently, accord-
ing to Eq. (24), under these circumstances the volume density of body force is given
by:

ρ(r) f (r) = −G
ρ(r)m(r)

r2
er . (32)

5The interested reader may want to consult Müller and Weiss (2016) for further information.
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This includes the well-known high school result according to which the gravita-
tional force at a distance r within a homogeneous sphere is given by Newton’s law
of gravity for point masses: The attracting mass is given by all the matter below the
position r , i.e., m(r), and can be thought of as being concentrated in the origin of
the sphere, i.e., r = 0. The to-be-attracted mass at the radial position r is given by
dm = ρ(r) dV , dV being the corresponding volume element to be used for multipli-
cation in Eq. (24). Moreover, the gravitational force is attractive, as indicated by the
negative direction of the current radial unit vector, er . It should be pointed out that
in this equation the mass density within the sphere does not necessarily have to be
homogeneous. Rather it can be a function of the current radius, ρ(r), and the high-
school result still holds. This is very often not clearly stated in textbooks, especially
if use of the Poisson equation is avoided for mathematical simplicity.

However, as outlined before, it is customary in linear elasticity to use the body
force of an undeformed structure inEq. (23).More specifically,we pretend everything
is initially homogeneous and use a constant mass density, ρ0, such that:

ρ(r) f (r) ≈ −G
ρ0m(r)

r2
er ≈ −4πGρ2

0

3
r er . (33)

Note that a two-step approximation was involved here. First, the current mass
density, ρ(r), in Eq. (23) or in (32) was replaced by the reference mass density, ρ0.
Second, no distinction is made between the current and the reference radius on the
right hand side of Eq. (32). We will now use the approximation (33) in Eq. (23),
which reads in spherical coordinates as follows:

∂σrr

∂r
+ 1

r

∂σrϑ

∂ϑ
+ 1

rsinϑ

∂σrϕ

∂ϕ
+ 2σrr − σϑϑ − σϕϕ + σrϑ cot ϑ

r
= 4πGρ2

0

3
r,

∂σrϑ

∂r
+ 1

r

∂σϑϑ

∂ϑ
+ 1

rsinϑ

∂σϑϕ

∂ϕ
+ 3σrϑ + (

σϑϑ − σϕϕ

)

cotϑ

r
= 0, (34)

∂σrϕ

∂r
+ 1

r

∂σϑϕ

∂ϑ
+ 1

rsinϑ

∂σϕϕ

∂ϕ
+ 3σrϕ + 2σϑϕ cot ϑ

r
= 0.

Moreover, Hooke’s law reads in spherical coordinates as follows:

σrr = λ(εϑϑ + εϕϕ) + (λ + 2μ)εrr , σϑϑ = λ(εrr + εϕϕ) + (λ + 2μ)εϑϑ,

σϕϕ = λ(εrr + εϑϑ) + (λ + 2μ)εϕϕ , (35)

σrϑ = 2μεrϑ , σrϕ = 2μεrϕ , σϑϕ = 2μεϑϕ.

And finally the linear strain tensor is linked with spatial derivatives of the dis-
placements by:

εrr = ∂ur
∂r

, εϑϑ = 1

r

∂uϑ

∂ϑ
+ ur

r
, εϕϕ = 1

rsinϑ

∂uϕ

∂ϕ
+ ur

r
+ cotϑ

r
uϑ ,
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εrϕ = 1
2

(
1

rsinϑ

∂ur
∂ϕ

+ ∂uϕ

∂r
− uϕ

r

)

, (36)

εrϑ = 1
2

(
1

r

∂ur
∂ϑ

+ ∂uϑ

∂r
− uϑ

r

)

, εϑϕ = 1
2

(
1

rsinϑ

∂uϑ

∂ϕ
+ 1

r

∂uϕ

∂ϑ
− cotϑ

r
uϕ

)

.

We now proceed to solve these equations. To this end we make use of the semi-
inverse method. Because of symmetry it seems reasonable to seek for solutions with
the following ansatz:

ur = ur (r) , uϑ = 0 , uϕ = 0. (37)

Consequently, we find for the linear strains:

εrr = u′
r (r) , εϑϑ ≡ εϕϕ = ur

r
, εrϑ = εrϕ = εϑϕ ≡ 0 , (38)

where the dash refers to a differentiation w.r.t. r . Because of that Hooke’s law (35)
reduces to:

σrr = (λ + 2μ)u′
r + 2λ

ur
r

, σϑϑ ≡ σϕϕ = λu′
r + 2(λ + μ)

ur
r

, (39)

σrϑ = σrϕ = σϑϕ ≡ 0 .

Thus, the angular components of the balance of momentum shown in Eq. (34) are
identically satisfied and the first one results in an ordinary differential equation of
second order (a dash refers to differentiation with respect to the radius, r ):

u′′
r + 2

u′
r

r
− 2

ur
r2

= 4πρ2
0G

3(λ + 2μ)
r. (40)

The general solution consists of the full solution to the homogeneous part and
one particular solution of the inhomogeneous case. It reads with two constants of
integration, A and B, respectively, as follows:

ur = Ar + B

r2
+ 4πρ2

0G

30(λ + 2μ)
r3. (41)

Two conditions are needed in order to determine the two constants of integration.
First, we require that the solution does not become singular at r = 0 and, second, the
tractionmust be continuous at the outer radius, ro, of the sphere. Hence, σrr

∣
∣
r=ro

= 0,
because the influence of the outer atmospheric pressure of roughly 1bar is negligibly
small when it comes to the deformation of a solid. With Eq. (39)1 we find that:
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B = 0 , A = − 4πGρ2
0

30(λ + 2μ)

3 − ν

1 + ν
r2o ≡ −4πGρ2

o

90 k

3 − ν

1 − ν
r2o , (42)

because λ = Eν
(1−2ν)(1+ν)

and μ = E
2(1+ν)

, E being Young’s modulus and ν Poisson’s
ratio, respectively. Hence the radial displacement reads:

ur = − 2πGρ2
0r

2
o

15(λ + 2μ)

(
3 − ν

1 + ν
− r2

r2o

)

r ≡ −2πGρ2
0r

2
o

45 k

1 + ν

1 − ν

(
3 − ν

1 + ν
− r2

r2o

)

r.

(43)

For completeness, the nonvanishing stresses then follow from Eq. (39) as:

σrr = −2πGρ2
0r

2
o

15

3 − ν

1 − ν

(

1 − r2

r2o

)

, (44)

σϑϑ ≡ σϕϕ = −2πGρ2
0r

2
o

15

3 − ν

1 − ν

(

1 − 1 + 3ν

3 − ν

r2

r2o

)

.

Note the common factor 2πGρ2
0r

2
o

15 in front of all these expressions. On first glance
it does not allow for an easy intuitive interpretation. However, on second thought,
note that (within the approximations made) the total mass of the gravitating sphere,
m0, the gravitational acceleration on its surface, g, and its surface area, Ao, are given
by:

m0 = 4π

3
ρ0r

3
o , g = Gm0

r2o
, Ao = 4πr2o . (45)

Hence, we may write the ominous factor as:

2πGρ2
0r

2
o

15
≡ 3m0g

10Ao
, (46)

and interpret it, with the exception of the fraction 3
10 , as an average “pressure,”

namely the ratio between the “total gravitational force,” m0g, distributed over the
total surface area, Ao.

A.2.2 Dimensionless Formulation

For a numerical analysis it is best to work with dimensionless quantities. Since the
outer radius, ro, is the only length parameter in the problem, there is no other choice
for a dimensionless distance and a dimensionless displacement but to define:

x = r

ro
, u = ur

ro
. (47)
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This allows us to rewrite Eq. (43) as follows:

u = − α

20

(
3 − ν

1 + ν
− x2

)

x ≡ −αk

30

1 + ν

1 − ν

(
3 − ν

1 + ν
− x2

)

x, (48)

with two dimensionless factors:

α = 8πGρ2
0r

2
o

3(λ + 2μ)
, αk = 4πGρ2

0r
2
o

3 k
, (49)

because the bulk modulus is given by k = E
3(1−2ν)

.
Whilst the appearance of α is a straightforward consequence of Eq. (43) the need

for αk must be explained. To this end note that the dimensionless expressions in
the parentheses of Eq. (48) still contain Poisson’s ratio. However, Poisson’s ratio of
a terrestrial planet is not an immediately accessible parameter. A homogenization
technique has to be applied in order to find outwhich effective elastic parameters such
an object has. On the other hand, if we evaluate the parentheses in this equation at the
surface of the planet, i.e., at x = 1, we obtain twice the fraction 1−ν

1+ν
. Hence Poisson’s

ratio disappears completely in the expression for the normalized displacement if we
use the dimensionless factor αk . In this case one only needs to know the effective
compressibility of the planet, a parameter that can vary within certain physically
reasonable bounds.Andwhat ismore, since u(x = 1) can be interpreted as an average
strain characterizing the state of deformation of the planet, which we wish to access
numerically, it is very useful to have one elastic parameter less to worry about. A
final comment is in order in context with Eq. (48). It obviously provides a restriction
to the size of α so that small strain theory applies. However, as it was pointed out
above, we will discuss this issue in detail in Müller and Weiss (2016) and not here.

Later we shall be interested in a strain-based failure criterion. Hence it is useful
to know the strains explicitly:

εrr = − α

20

(
3 − ν

1 + ν
− 3x2

)

, εϑϑ ≡ εϕϕ = − α

20

(
3 − ν

1 + ν
− x2

)

. (50)

We now turn to the stresses given by Eq. (44). Differently from the case of length
related quantities there are various possibilities for normalization. First, as Eq. (44)

suggestively seems to indicate, we can use the factor 2πGρ2
0r

2
o

15 , which we have inter-
preted as an “average gravitational pressure” before. However, alternatively, we may
use combinations of (effective) elastic constants. There is λ + 2μ, which is related to

the velocity of P-waves
(

vP =
√

λ+2μ
ρ0

)

, and, hence, a physically accessible quantity.

Moreover, we may turn to the compressibility k, which is a direct measure of the
resistance of a planet’s response to its own self-gravity. However, in this paper we
restrict ourselves for simplicity to the choice:

σ̃ = σ

λ + 2μ
(51)
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Fig. 6 Normalized displacement versus dimensionless radius (see text)

and obtain:

σ̃rr = − α

20

3 − ν

1 − ν

(

1 − x2
)

, σ̃ϑϑ ≡ σ̃ϕϕ = − α

20

3 − ν

1 − ν

(

1 − 1 + 3ν

3 − ν
x2

)

.

(52)

A.2.3 Numerical Evaluation and Graphical Representation

Figure6 (left) illustrates the dependence of the normalized displacement, u ≡ ur
ro
per

αk , on x ≡ r
ro

for three different choices of Poisson’s ratio, ν = 0 (red), ν = 0.3
(green), and ν = 0.5 (blue). Note that, as it should be, the radial displacement is
negative and that the curves show aminimum. Because of Eq. (36)1 we may interpret
the slope of the curves as radial strain multiplied by αk . Hence the only positive
radial strains can be found to the right of the minimum. The transition point between
positive and negative strains (see Fig. 6, right), identifiable by locating the minimum
of the displacement, is a.k.a. the Love radius and given by:

rLove = r0

√

3 − ν

3(1 + ν)
. (53)

This result was first mentioned by Love in his books on linear elasticity, namely
in Article 127 of Love (1892) and later in Article 98 of Love (1906) or Love (1927).
An intuitive explanation for the necessity of its occurrence is as follows: Unlike a
homogeneous, isotropic sphere subjected to a constant external pressure, the state
of strain in our case is not homogeneous and not isotropic. We face a nonconstant
“external hydrostatic pressure,” so-to-speak, given by an effective gravitational force
depending linearly on the distance from the center. This in combination with Pois-
son’s effect, i.e., the ability of a radial strain “making up” for the lateral contractions,
εϑϑ and εϕϕ , which are purely compressive in nature everywhere: The contractive
force is proportional to r , the stretching stress (compensation of the lateral contrac-
tion) is proportional to r2. Hence from some r onward the force is not strong enough
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for compression, resulting in a transition from the negative to the positive, in other
words in the existence of a Love radius. In his later editions Love does no longer
comment on the physical significance of his radius. However, the first edition makes
it perfectly clear that he was aiming at a failure criterion, namely specifically at what
is known today as maximum principal strain theory. Love realized that the angular
strains are always negative, whereas the radial strains may become positive above
the Love radius, cf. Eq. (50) and Fig. 6 (right), and he provided an expression for the
maximum radial strain, which is the one at the surface:

εrr
∣
∣
x=1 = α

5

ν

1 + ν
. (54)

According to Love the corresponding tensile breaking stress is then given by:

T0 = Eεrr
∣
∣
x=1 = Eα

5

ν

1 + ν
. (55)

This is quite a daring concept, because a planet like Earth is heterogeneous,
and surely not perfectly linear elastic, and the materials it is made of might not be
susceptible to strain-based failure, and so on, and so on. But even if we accept his
idea in principle, what is the proper Young’s modulus to be used for a heterogeneous
object like Earth? On second glance, however, note that the factor α also contains
Young’s modulus in its denominator (cf. Eq. (49)1) since λ + 2μ = (1−ν)E

(1−2ν)(1+ν)
. Thus

we do not need to know E but only Poisson’s ratio, ν, which runs within well-known
bounds, namely 0 ≤ ν ≤ 0.5. Hence, we may rewrite Love’s result as follows:

T0 = ν(1 − 2ν)

1 − ν

8πGρ2
0r

2
o

15
. (56)

If we assume Poisson’s ratio to be that of iron, ν = 0.3, and the mean mass density
of Earth ρ0 = 5500 kg

m3 together with its (average) outer radius ro = 6370 km, we
obtain T0 > 30,000MPa, which is a value for a breaking stress far beyond physical

Fig. 7 Normalized
displacement versus
dimensionless radius for
Mercury and Earth (see text)
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credibility. It may be for that reason that Love did not present his original idea in
later editions of his book any more. Nevertheless, it is a fact that the quality of the
radial strain changes when passing the Love radius and it remains to be seen if the
breaking stress can be brought to physically reasonable values if a deformation-wise
nonlinear theory is used.

Figure7 shows a plot of Eq. (48)1 when data of Mercury (index M) and Earth
(index E) were used for evaluation. Specifically we have values for the average
mass densities of ρE

0 = 5500 kg
m3 and ρM

0 = 5400 kg
m3 and (average) outer radii of rEo =

6370 km and rMo = 2440 km, respectively. For the elastic data we assume in both
cases the values of iron, i.e., E = 210GPa and ν = 0.3. This leads to the red curve
for Mercury and to the blue one for Earth. Consequently, the strains for Mercury
are below two percent but the ones for Earth are huge and amount to a maximum of
fourteen percent. Hence, one may question the validity of the use of linear elasticity
in case of very large self-gravitating masses and turn to a nonlinear formulation
instead. Indeed, this has been done by the Indian school of Seth, who was one of the
pioneers in large strain measures. We will not discuss this in detail here and refer
the interested reader to Chap.3 of the upcoming publication by Müller and Weiss
(2016).
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Constitutive Modelling of the Glass
Transition and Related Phenomena:
Relaxation of Shear Stress Under Pressure

Alexander Lion, Michael Johlitz and Christoph Mittermeier

Abstract In industrial fabrication processes as well as in many applications of poly-
mer parts, the glass transition plays a significant role. This is due to high mechanical
processing speeds, high temperatures or large cooling rates. The mechanical, the
thermomechanical and the caloric properties of polymers differ below and above the
glass transition which is a thermoviscoelastic phenomenon. It depends on the ratio
between the intrinsic time scale of the polymer and that of the thermomechanical
loading process. If both scales are comparable, the material is in the glass transition
region. Otherwise it is in the equilibrium or in the glassy region. In the industry,
there are increasing demands to simulate fabrication processes in order to estimate
the resulting behaviour of the polymer parts before they are manufactured. To this
end, constitutive models of finite thermoviscoelasticity are needed which can rep-
resent the volumetric as well as the isochoric mechanical behaviour of the polymer
in combination with the caloric and the thermomechanical properties. In a recent
paper of the authors, the concept of a hybrid free energy has been developed. This
approachwill be applied in the current essaywhere the pressure-dependent relaxation
behaviour under shear deformations is of interest.

1 Introduction

In industrial production processes of polymer parts, under extreme temperature con-
ditions or under dynamic loadings in broad frequency ranges, the glass transition
plays an important role. It influences the mechanical properties of the polymer, its
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thermal expansionbehaviour aswell as its caloric properties (see e.g.Altenbach2015;
Jackle 1986 or Greiner and Schwarzl 1984). In order to understand the glass tran-
sition it is generally accepted to introduce two timescales. The first one is denoted
as τm (θ), corresponds to the typical relaxation time of the polymer and depends
on the temperature θ . The viscosity of the polymer is more or less proportional to
τm (θ) and the reciprocal value 1/τm (θ) can be linked to themolecularmobility.With
decreasing temperature, the characteristic timescale of the material τm (θ) increases
progressively. A well-known model to describe this behaviour is the WLF-equation
which has been developed by Williams et al. (1955). In another approach which is
also discussed in Williams et al. (1955) and can be related to the WLF-equation,
the relaxation time depends exponentially on the reciprocal value of the linearly
temperature-dependent free volume of the polymer. The free volume is the differ-
ence between the total volume of the polymer and that which is occupied by its
molecules. The second timescale τl is determined by the external thermomechanical
loading process. Based on its temporal characteristics, it can be the reciprocal value
of the frequency, the duration of a ramp or the holding time under constant mechani-
cal or thermal input. In the case of τl >> τm (θ), the external loading process is slow
in comparison with the response time of the material. Hence, the molecules respond
to changes in the load without any delay such that the polymer is in an equilibrium
state. In the opposite case of τl << τm (θ), the external loading is fast in comparison
with the response time of the material such that the molecules cannot follow. In other
words, the molecules are frozen and the polymer is in the glassy state. In the case
of comparable timescales τl ≈ τm (θ) the polymer is in the glass transition regime.
Since the characteristic time τm (θ) of the material is temperature-dependent, the
glass transition can be reached either by changing the temperature or, when the tem-
perature is constant, by the dynamics of the external loading process. Sometimes,
the terms “mechanical glass transition” and “thermal glass transition” are used.

In order to simulate glass transition-induced phenomena of polymer parts under
external thermomechanical loadings or in industrial production processes, constitu-
tive models in combination with the finite element method are required. Since stress-
or temperature-induced volume changes of polymers are demonstrably small, their
mechanical behaviour is slightly compressible. In order to implement such a model
into finite element software, formulations in which the stress tensor is the depen-
dent mechanical state variable are needed. Accordingly, the specific Helmholtz free
energy is a convenient thermodynamic potential. On the other hand, calorimetric
material properties and the thermal expansion behaviour are commonly considered
under constant hydrostatic pressure. In order to model such a material behaviour,
the specific Gibbs free energy is the naturally related thermodynamic potential (see
Lion et al. 2010; Peters et al. 2011 or Lion et al. 2011 and the citations therein). In
order to combine both approaches, a so-called hybrid free energy has been proposed
in Lion et al. (2014). It is a function of the hydrostatic pressure, the isochoric part of
the deformation gradient and the absolute temperature. To represent inelastic effects,
it can depend on additional internal state variables. This type of thermodynamic
potential is applied in the current article.
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In Sect. 2, themost essential fundamentals are introduced. In Sect. 3, a constitutive
model of finite nonlinear thermoviscoelasticity is proposed. Section4 shows some
simulations and theoretical considerations. Section5 closes with a short discussion.

2 Fundamentals

For the fundamentals of continuummechanics, the readers are referred, for example,
to the textbooks of Altenbach (2015), Haupt (2002), Altenbach andAltenbach (1994)
or Malvern (1969) and for details with regard to the constitutive representation of the
glass transition with thermoviscoelastic methods to Lion et al. (2011), Peters et al.
(2011) or Lion et al. (2014) and the citations therein.

The deformation gradient is denoted as F, its determinant as J = det (F) and
the volumetric strain as εvol = J − 1. Following Flory (1961), the isochoric and
volumetric parts of the deformation gradient F̂ and F̄ are introduced such that F
can be multiplicatively split as follows:

F = F̄ · F̂, F̂ = J−1/ 3F, F̄ = J 1/ 31 . (1)

Based on this approach, the classical right Cauchy–Green tensor C = FT · F and

an isochoric right Cauchy–Green tensor Ĉ = F̂
T · F̂ as well as their related Green

strain tensors are defined:

E = 1

2
(C − 1) , Ê = 1

2

(

Ĉ − 1
)

. (2)

Between these two Green strain tensors, the following relation holds:

E = J 2/ 3 Ê + 1

2

(

J 2/ 3 − 1
)

1 . (3)

The Cauchy stress tensor T is expressed as the sum of a spherical and a deviatoric
part:

T = −p1 + TD, p = −1

3
tr (T ) , TD = T − 1

3
tr (T ) 1 . (4)

The scalar p is the hydrostatic pressure. Taking these decompositions into account,
two stress tensors of the second Piola–Kirchhoff type are introduced:

T̃ = J F−1 · T · FT−1,
ˆ̃T = J F̂

−1 · TD · F̂
T−1

. (5)

A short calculation based on (4) and (5) leads to the following relation between them:
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T̃ = −pJ 1/ 3Ĉ
−1 + J−2/ 3 ˆ̃T . (6)

Considering (3) and (6), the total stress power decomposes additively into a volu-
metric and an isochoric term (cf. Lion et al. (2014)):

T̃ : Ė = −pε̇vol + ˆ̃T : ˙̂E . (7)

Following Lion et al. (2014), the specific hybrid free energy φ is introduced by a
Legendre transformation in which ψ is the Helmholtz free energy per unit mass and
ρR the density:

φ = ψ + 1

ρR
pεvol . (8)

As a result of the previous discussion, (7) and (8) are inserted into the classical
formulation of the Clausius–Duhem inequality (cf. e.g.Malvern 1969 orHaupt 2002)
which has to be nonnegative for arbitrary thermomechanical processes:

−ρRψ̇ + T̃ : Ė − ρRsθ̇ − qR · gR
θ

≥ 0. (9)

In this inequality, s is the specific entropy, the vectors qR and gR are the heat flux
and the temperature gradient and θ is the absolute temperature. Considering (7), (8)
and (9) the following result is obtained:

−ρRϕ̇ + ˆ̃T : ˙̂E + εvol ṗ − ρRsθ̇ − qR · gR
θ

≥ 0. (10)

It substantiates that the isochoric Green strain tensor Ê, the pressure p and the
temperature θ are the natural independent variables of the specific hybrid free energy.
In order to model the thermoviscoelastic behaviour of polymers in the vicinity of the
glass transition, additional variables are introduced:

ϕ = ϕ
(

p, Ê, θ, Q1, . . . , Qn, q1, . . . , qm
)

. (11)

The internal variables Qk and qk are second-order tensors and scalars. They are
introduced to represent history-dependent phenomena like the glass transition and
viscoelasticity. Inserting the time rate of (11) into (10) the following result is found
after a short calculation:

(

ˆ̃T − ρR
∂ϕ

∂ Ê

)

: ˙̂E +
(

εvol − ρR
∂ϕ

∂p

)

ṗ − ρR

(

s + ∂ϕ

∂θ

)

θ̇

−ρR

(
∂ϕ

∂ Qk
: Q̇k + ∂ϕ

∂qk
q̇k

)

− qR · gR
θ

≥ 0. (12)
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Applying the standard argumentation (see, e.g. Haupt 2002) for the evaluation of (12)

under consideration of the relation Ĉ
−1 : ˙̂C = 0 which holds for unimodular tensors

and is equivalent to Ĉ
−1 : ˙̂E = 0, the following potential relations are obtained:

ˆ̃T = ρR
∂ϕ

∂ Ê
+ ΦĈ

−1
, εvol = ρR

∂ϕ

∂p
, s = −∂ϕ

∂θ
. (13)

The residual inequality which has to be satisfied by the evolution equations for the
internal variables and the heat flux vector reads as follows:

−ρR

(
∂φ

∂ Qk
: Q̇k + ∂φ

∂qk
q̇k

)

− qR · gR
θ

≥ 0 . (14)

The parameterΦ in the potential relation for the stress tensor in (13) can be computed.

To this end, it has to be demanded that the tensor TD = F̂ · ˆ̃T · F̂
T
/J is deviatoric.

This leads to the following result:

Φ = −ρR

3

∂φ

∂ Ê
: Ĉ,

ˆ̃T = ρR

(
∂ϕ

∂ Ê
− 1

3

(
∂ϕ

∂ Ê
: Ĉ

)

Ĉ
−1

)

. (15)

The proposed approach which is based on the hybrid free energy leads to poten-
tial relations for the isochoric part of the second Piola–Kirchhoff stress tensor, the
volumetric strain and the specific entropy. In order to compute the total second Piola–
Kirchhoff stress tensor (6), the potential relation for the volumetric strain has to be
inverted such that a relation in the form of p = f (εvol, θ, . . .) is obtained. This
rearrangement can easily be done under the assumption of linearity with respect to
the dependence of the volumetric strain on the pressure.

3 A Simple Model for the Hybrid Free Energy in Finite
Thermoviscoelasticity

In order to model the thermoviscoelastic properties of polymers under large strains
isotropic material behaviour is assumed such that thermal expansion is a pure volu-
metric effect. Since caloric phenomena are usually studied under prescribed pressure
and temperature, the hybrid free energy density is additively split into the sum of
two contributions:

ϕ = ϕvol (p, θ, δ) + ϕiso

(

Ê, θ, Q1, . . . , Qn, δ
)

. (16)

In the case of calorimetric simulations, the strains are purely volumetric and the
stress tensor is spherical such that Ê ≡ 0 holds and φiso

(

0, θ, Q1, . . . , Qn, δ
) = 0

can be assumed. For the volumetric part of (16) the model proposed in Lion et al.
(2014) is applied:
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ϕvol = ϕ0 − cp0θ0 − s0 (θ − θ0) − θ
(

cp0 − β0θ0
)
(

ln
θ

θ0
− 1

)

− β0
(

θ2 − 2θθ0 − θ2
0

)

2
+ α0

ρR
(θ − θ0) p − p2

2ρRκ0

+ e (θ − θ0) δ − wδp + d

2
δ2. (17)

The constantsφ0, cp0, s0, β0, α0, κ0, ρR,w, d arematerial parameterswhose physical
meaning can be found in Lion et al. (2014); δ is a scalar internal state variable
to represent the glass transition and θ0 is a reference temperature which is in the
neighbourhood of the glass transition temperature of the polymer. The constitutive
equations for the specific entropy and the volumetric strain can be derived under
consideration of (13). Since the entropy is not needed in the current investigation,
only the volumetric strain is computed:

εvol = α0 (θ − θ0) − 1

κ0
p − ρRwδ . (18)

This relation depends linearly on three independent variables and can be rearranged
without problems if the pressure p is unknown and the volumetric strain εvol = J − 1
is given:

p = κ0 (α0 (θ − θ0) − εvol − ρRwδ .) (19)

In order to formulate a very first approach for the isochoric part φiso of the free energy
the concept of finite multiplicative viscoelasticity is applied. It has been originally
proposed by Lubliner (1985) and applied, for example, in Lion (1997), Reese and
Govindjee (1998), Haupt (2002) or Johlitz et al. (2010). To this end, the isochoric part
of the deformation gradient is multiplicatively decomposed into elastic and inelastic
parts and a set of left and right elastic and inelastic Cauchy–Green tensors is defined:

F̂ = F̂e · F̂i , (20)

Ĉe = F̂
T
e · F̂e, B̂e = F̂e · F̂

T
e , Ĉ i = F̂

T
i · F̂i, B̂i = F̂i · F̂

T
i . (21)

Based on this approach, the isochoric Green strain tensor can be computed and
reformulated such that the resulting strain tensor splits additively into pure elastic
and pure inelastic contributions:

Ê = 1

2

((

F̂e · F̂i

)T
F̂e · F̂i − 1

)

, (22)
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F̂
T−1
i · Ê · F̂

−1
i = 1

2

(

Ĉe − 1
)

+ 1

2

(

1 − B̂
−1
i

)

, (23)

ε̂ = ε̂e + ε̂i. (24)

The strain tensor ε̂ = F̂
T−1
i · Ê · F̂

−1
i as well as its elastic and inelastic parts ε̂e and

ε̂i operate on the inelastic intermediate configuration which is not visualised here.
The associated stress tensor can be formulated with the concept of dual variables:

τ̂ = F̂i · ˆ̃T · F̂
T
i . (25)

One of the invariance properties of dual stress and strain tensors is τ̂ : ε̂ = ˆ̃T : Ê.
For further details, the reader is referred to Haupt (2002) and the citations therein. For
physical reasons, the isochoric part of the hybrid free energy is assumed to possess
the following form:

ϕiso = ϕiso
(

ε̂e, θ
)

. (26)

In order to compute the related part of the stress tensor, the partial derivative ∂φiso/ ∂ Ê
is required. Considering (23) and (24) the elastic strain tensor can be written as
follows:

ε̂e = F̂
T−1
i · Ê · F̂

−1
i − ε̂i. (27)

Application of the standard rules of tensor analysis and algebra leads to the following
expression for the derivative we are looking for (cf. Haupt 2002):

∂

∂ Ê
ϕiso

(

F̂
T−1
i · Ê · F̂

−1
i − ε̂i, θ

)

= F̂
−1
i · ∂ϕiso

∂ F̂
T−1
i · Ê · F̂

−1
i

· F̂
T−1
i

= F̂
−1
i · ∂ϕiso

∂ ε̂e
· F̂

T−1
i . (28)

The Piola–Kirchhoff type stress tensor ˆ̃T and its dual stress tensor (25) can be
computed under consideration of (15):

ˆ̃T = ρR

(

F̂
−1
i · ∂ϕiso

∂ ε̂e
· F̂

T−1
i − 1

3

((

F̂
−1
i · ∂ϕiso

∂ ε̂e
· F̂

T−1
i

)

: Ĉ
)

Ĉ
−1

)

, (29)

τ̂ = ρR

(
∂ϕiso

∂ ε̂e
− 1

3

(
∂ϕiso

∂ ε̂e
: Ĉe

)

Ĉ
−1
e

)

. (30)
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Following Haupt (2002) or other literature with regard to finite multiplicative vis-
coelasticity, a thermodynamic consistent evolution equation for the inelastic right
Cauchy-Green tensor which satisfies the residual inequality (14) reads as follows:

d

dt
Ĉ i = 2

η
Ĉe · F̂

T
i · τ̂ · F̂i. (31)

The scalar η > 0 is an arbitrary viscosity function which be constant or can depend
on stress, temperature, deformation or internal state variables. In order to concretise
the constitutive model for the isochoric part of the hybrid free energy, a simple Neo-
Hookean type approach is used in which the material constant μ corresponds to a
shear modulus:

ϕiso = μ
(

Ĉe : 1 − 3
)

. (32)

Inserting (32) into (29) and (31) under consideration of (5), (17) in combination
with (18) leads to the following relations for the evolution of the inelastic isochoric
Cauchy-Green tensor, the internal state variable δ to model the glass transition, the
volumetric strain and the total second Piola–Kirchhoff stress tensor:

d

dt
Ĉ i = 4ρR

η

(

Ĉ − 1

3

(

Ĉ : Ĉ
−1
i

)

Ĉ i

)

, (33)

d

dt
δ̇ = −A (e (θ − θ0) + dδ − wp) , (34)

εvol = α0 (θ − θ0) − 1

κ0
p − ρRwδ, (35)

T̃ = −p (1 + εvol)
1/ 3 Ĉ

−1 + 2ρRμ

(1 + εvol)
2/ 3

(

Ĉ
−1
i − 1

3

(

Ĉ : Ĉ
−1
i

)

Ĉ
−1

)

. (36)

The functions A ≥ 0 in (34) and η > 0 in (33) are assumed to possess the dependence
on the free volume which was originally proposed by Doolittle (1951):

A = A0

a ( f )
, η = η0a ( f ) , a ( f ) = e

B
(

1
f − 1

fg

)

. (37)

In this study, the dimensionless function f is a phenomenological measure for the
free volume of the polymer and B ≥ 0 is a material constant. The parameter fg is its
value at the temperature θ = θ0 and the pressure p = 0 in an equilibrium state. In
Williams et al. (1955), it has been shown that the expression f = fg + αf (θ − θ0),
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in which αf is a material constant to fit the temperature dependence to experimental
data, in combination with in (37) leads exactly to the WLF-equation:

In (a ( f )) = B

(
1

f
− 1

fg

)

= B/ fg (θ − θ0)

fg/αf + θ − θ0
. (38)

In order to extend this approach with regard to the dependence of the free volume
on the pressure, the volumetric strain can be introduced as an additional argument:

f = fg + εvol + αf (θ − θ0) . (39)

This function increases with increasing volumetric strain and temperature and
decreases with pressure. In the equilibrium state at θ = θ0 and p = 0 the measure for
the free volume in the form of (39) is equal to fg. With regard to the representation
of the dependence of the free volume on temperature and pressure and related exper-
imental investigations the reader is also referred to Naumann and Stommel (2011).
Such a model enables, for example, representing the influence of the hydrostatic
pressure on the viscoelastic relaxation and creep behaviour under shear or uniaxial
tension and compression.

In the above system of equations it is assumed that the pressure and the isochoric
right Cauchy-Green tensor are the independent variables. The tensor Ĉ = J−2/ 3C
can simply be computed when the total deformation gradient F or the right Cauchy-
Green tensor is known. Since (35) is linear in the pressure and the volumetric strain,
the model can easily be evaluated for given pressure or for given volumetric strain.

4 Shear Processes Under Constant Pressure
and Temperature

In order to interpret some of the material parameters, a short study is performed. If
pressure and temperature are kept constant for all times, the internal variable δ is
also constant and its equilibrium value reads as follows:

δeq = wp − e (θ − θ0)

d
. (40)

Under these assumptions, the volumetric strain is temporally constant. Inserting (40)
into (35) leads to an explicit relation for its equilibrium value:

εvol_eq =
(

α0 + ρRwe

d

)

(θ − θ0) −
(
1

κ0
+ ρRw2

d

)

p. (41)
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Accordingly, the factors of pressure and temperature in (41) can be physically inter-
preted as equilibriumvalues of the reciprocal bulkmodulus and the thermal expansion
coefficient. If the material is in its equilibrium state and the pressure or the temper-
ature is changed with an infinitely high rate, the internal variable δ is frozen and
does not change. In this case, the material is in the glassy state and the spontaneous
response of the volumetric strain is as follows:

ε̇vol_0 = α0θ̇ − 1

κ0
ṗ. (42)

The factors of the temperature rate and the pressure rate are the glassy thermal expan-
sion coefficient and the related value of the reciprocal bulk modulus. Comparing (41)
with (42) and assuming nonnegative material constants, the equilibrium values of the
two coefficients are larger than their values in the glassy state. For the computation
as well as for numerical and theoretical investigations of the isobaric specific heat
of this model, the reader is referred to Lion et al. (2014) and the citations therein.
In this article, the behaviour of specific heat and volumetric strain is simulated for
temperature excitations with piecewise constant rates below and above the glass
transition.

For the simulations in the presentwork, the constitutiveEqs. (33)–(36)were solved
with the mathematical software MATLAB. To this end, the following constants were
used:

ρR = 1050
kg

m3
B = 0.1

fg = 0.1 αf = 4.8 × 10−4 1

K

A0 = 10−3 1

s
e = 7.9

J

kgK

d = 79.5
J

kg
η = 108Ns/m2

β0 = 3.6
1

K
α0 = 6 × 10−4 1

K

w = 1.1 × 10−5 m
2J

kgN
μ = 103Nm/ kg

cp0 = 103
J

kgK
θ0 = 333K

Their values were not experimentally identified but roughly estimated such that
the model can reproduce the typical behaviour of polymers in the vicinity of the glass
transition.

In order to provide explanatory simulations, deformation-controlled shear
processes under isobaric and isothermal conditions are studied. The tangent of the
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shear angle is described by the time-dependent shear ratio γ (t), the related shear
stress is τ (t), the pressure is p and θ is the absolute temperature. In order to express
the isochoric part of the deformation gradient, the related right Cauchy-Green tensor
and the Cauchy stress the dyads of the Cartesian unit vectors are used:

F̂ = e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3 + γ e1 ⊗ e2, (43)

Ĉ = e1 ⊗ e1 + (

1 + γ 2
)

e2 ⊗ e2 + e3 ⊗ e3 + γ (e1 ⊗ e2 + e2 ⊗ e1) , (44)

T = −p (e1 ⊗ e1 + e2 ⊗ e2 + e3 ⊗ e3) + τ (e1 ⊗ e2 + e2 ⊗ e1) . (45)

Based on the constitutive relation for the second Piola–Kirchhoff stress tensor (36),
the Cauchy stress (45) can be straightforwardly computed under consideration of (1)
and (5):

T = (εvol + 1)−1/ 3 F̂ · T̃ · F̂
T
. (46)

The inelastic isochoric right Cauchy-Green tensor is an internal state variable of the
model, has to satisfy the initial condition Ĉ i (0) = 1 and is expressed as follows:

Ĉ i = αie1 ⊗ e1 + βie2 ⊗ e2 + λie3 ⊗ e3 + γi (e1 ⊗ e2 + e2 ⊗ e1) . (47)

In order to implement the condition det
(

Ĉ i

)

= 1 the four scalar functions in (47)

depend on each other. If three of them a known, the fourth one can be calculated:

λi = 1

αiβi − γ 2
i

. (48)

In the following simulations, the evolution Eq. (34) for the internal variable δ is
solved for two different types of initial conditions:
Equilibrium w.r.t. θ and p:

δ (0) = wp − e (θ − θ0)

d
, (49)

Equilibrium only w.r.t. θ :

δ (0) = −e (θ − θ0)

d
. (50)

The initial condition (49) makes sure that the simulation starts in an equilibrium
state with regard to both pressure and temperature. During the application of the
time-dependent shear deformation both the internal variable δ and the volumetric
strain εvol remain temporally constant.
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Fig. 1 Volumetric strain as
function of time and
temperature for p = 0 and
start in equilibrium
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The initial condition (50) provokes that the simulation starts in an equilibrium
state with regard to temperature and vanishing pressure. If, at the very beginning of
such a simulation, the pressure is instantaneously changed from zero to a constant
value, the internal variable δ and the volumetric strain are evolving with time. Since
the volumetric strain alters the viscosity function η in the evolution Eq. (33) for the
inelastic right Cauchy-Green tensor, the viscoelastic response behaviour of the shear
stress is influenced. Such effects are known as physical ageing.

In all simulations, the shear ratio is increased with a constant rate of γ̇ = 1/ s to
the final value of γmax = 1. Then, it is kept constant for 103s. In Figs. 1, 3 and 5,
the simulated volumetric strain is plotted as function of the time for different values
of temperature and pressure and for the different initial conditions. The dependence

Fig. 2 Shear stress as
function of time and
temperature for p = 0 and
start in equilibrium
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Fig. 3 Volumetric strain as
function of time and pressure
for θ = 320K and start in
equilibrium
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of εvol on temperature and pressure which is depicted in Figs. 1 and 3 is physically
reasonable. In Fig. 5, the simulations started in a non-equilibrium state with regard
to the pressure such that εvol exhibits time-dependent creep behaviour just until the
related equilibrium values are reached. Since the viscosity function is influenced by
the free volume as described in (37) and (39) the stress relaxation and the evolution
of the inelastic strains depend on pressure too. Figures4 and 6 demonstrate that the
stress relaxation becomes slower with increasing hydrostatic pressure. Experimental
investigations of the pressure dependence of the creep modulus of three different
thermoplastics can be found in Naumann and Stommel (2011). The numerical simu-
lations depicted in Fig. 4 reproduce qualitatively the behaviour observed byNaumann
and Stommel (2011) (Fig. 2).

Fig. 4 Shear stress as
function of time and pressure
for θ = 320K and start in
equilibrium
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Fig. 5 Volumetric strain as
function of time and pressure
for θ = 320K and start in
non-equilibrium
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5 Discussion and Conclusion

In this investigation, a simple approach of finite nonlinear viscoelasticity which is
based on the concept of the hybrid free energy function is proposed. In Lion et al.
(2014), this conceptwas developed and applied to describe the thermal expansion and
the isobaric specific heat of glass-forming materials under temperature histories with
piecewise constant rates. In the current article, it is demonstrated that this concept is
also applicable to represent the isochoric behaviour of glass-forming polymers under
mechanical shear loads. In a recent approach developed by Naumann and Stommel
(2011), the stiffness parameters of their Maxwell series depend on the free volume.
In the present model, the viscosity depends on the free volume. The approach of

Fig. 6 Shear stress as
function of time and pressure
for θ = 320K and start in
non-equilibrium
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finite multiplicative viscoelasticity which has been used here to formulate the model
can easily be extended by introducing a larger set of multiplicative decompositions
of the deformation gradient in parallel. Due to more material parameters, such a gen-
eralisation enables the quantitative representation of the thermoviscoelastic material
behaviour of real polymers in the vicinity of the glass transition.

As a first practical conclusion, it is mentioned that the free volume as independent
variable of the viscosity (or the relaxation time) in the evolution equations of the
internal variables allows the representation of pressure- and temperature-dependent
viscoelastic effects in parallel. The second conclusion is that the constitutive approach
which is based on the hybrid free energy allows modelling the calorimetric material
behaviour (isobaric specific heat) under thermal loadings as shown in Lion et al.
(2014) and the isochoric mechanical behaviour under mechanical loads as shown in
this study.
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AMaterial Model for Electroactive Polymers

Kerstin Weinberg and Anna Pandolfi

Abstract In this contribution, a general formulation for constitutive equations of
electromechanical active media is presented. Motivated by experimental observa-
tions, our approach is based on an additive decomposition of the Helmholtz free
energy in elastic and inelastic parts and on a multiplicative decomposition of the
deformation gradient in passive and active parts. The derivation is thermodynam-
ically sound and accounts for geometric and material nonlinearities. Exemplarily,
we present the solution of a uniaxial electromechanical problem and discuss the
evolution of the active deformation.

1 Introduction

Electroactive polymers (EAPs) are part of the broad group of smart materials. They
have various attractive properties, such as being lightweight, inexpensive and easy
to manufacture and have been used for sometime as actuators and capacitors for
specialized applications such as medical devices and biomimetic-robotics, Karsten
et al. (2013), Rosenthal et al. (2008), Thiele (2013), Ogden and Steigman (2011),
Ask et al. (2012), Vogel et al. (2012), Miehe et al. (2011).

Electroactive systems exhibit a change in size or shape when stimulated by an
electric field or—vice versa—an imposed deformation changes their electric capac-
ity. The best known electromechanical systems are piezoelectric crystals which have
typically small deformations. Here it can be shown that an isotropic piezoelectric
immersed in an electric field develops internal stresses proportional to the square of
the electric field, and in reverse an imposed deformation induces an internal electric
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field proportional to themagnitude of the deformation, cf. Landau et al. (1984), Kittel
(2004), McMeeking and Landis (2005). Both effects can be described in linearized
kinematics so that the responses of the mechanical and the electrical field can simply
be added.

In contrast, EAPs typically exploit significant displacement levels to enablemove-
ment and to generate force. When stimulated by an electric field, the polymer under-
goes large elongations which require to sustain high stresses and voltages. As a
consequence limiting effects like material stability and dielectric breakdown also
play a role. The electromechanical interaction is evidently complex, and a model of
electroactive materials requires a fully nonlinear coupling of the electrical and the
mechanical field.

In this contribution, we propose a constitutive model for electroactive materials
based on amultiplicative decomposition of the deformation gradient into passive and
active components. Our model extends superposition approaches popular in recent
literature, cf. Ask et al. (2012), Klassen et al. (2012), Suo (2010), Zwecker and
Klinkel (2011); it is deduced from a consistent thermodynamic framework and relies
on an additive decomposition of the underlying Helmholtz free energy density of the
material. In addition, we suggest an evolution equation for the active deformation and
present a numerical study to illustrate its effect on the overall electroactive response.

2 Formulation of the Problem

We consider an EAP and denote a point in its material configuration B0 ⊂ IR3 by
X = (X1,X2,X3)

T . An electric field applied during a time interval [0, t̄] causes a
deformation and the material point is now located at position x(X, t) of the current
configuration Bt ⊂ IR3. The corresponding deformation mapping χ(X, t) : B0 ×
[0, t̄ ] → Bt is uniquely described by its material gradient,

F (X, t) = ∂χ

∂X
= ∇Xx (X, t) , (1)

whereas the electric field is given by the spacial gradient of a potential φ,

e (x, t) = −∂φ

∂x
= −∇xφ (x, t) . (2)

2.1 Mechanical Fields and Equilibrium

The local equilibrium reads with respect to the material configuration

∇X · P + f V0 = 0 in B0 × [0, t̄] , (3)
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where P is the first Piola–Kirchhoff stress tensor and f V0 , f A0 are body forces and trac-
tion. The boundary of B0 with outward normal N is denoted by ∂B0. Displacement
and traction boundary conditions are

x = x̄ on ∂B1
0 × [0, t̄], (4)

PN = f̄
A
0 on ∂B2

0 × [0, t̄]. (5)

Note that (3) is the static form of the linear momentum balance and the angular
momentum balance is satisfied through the symmetry of the product PFT = FPT .
The weak form of the momentum balance follows with admissible variations δx in
its standard form:

∫

B0

PδF dV =
∫

B0

f V0 δx dV +
∫

∂B0,2

f A0δx dV . (6)

For completeness, we state here the right Cauchy-Green deformation tensor C =
FTF and remind that the material’s volume change is measured by J = detF =
d�0/ d�, where �0 and � are the mass density per unit reference and deformed
volume, respectively.

2.2 Electric Fields and Equilibrium

The electric induction (or electric displacement) d is proportional to the electric field
e through the vacuum permittivity ε0,

d = ε0e + π , (7)

where π is the polarization tensor which depends on the dielectric material. For a
local volumetric charge density ρV

0 , the electric field (2) and the electric induction
must satisfy the equilibrium equations of electrostatics,

∇x × e = 0 and ∇x · d + ρV
0 = 0 in B0 × [0, t̄]. (8)

Surface charges are assumed to be absent. Let now E, D, and Π denote the corre-
sponding material fields. Then we deduce from the fields (1) and (2),

e = −∇xφ = (−∇T
Xφ F−1)T = −F−T∇T

Xφ = F−TE ,

which givesE = FTe. Correspondingly follows for thematerial electric induction the
transformation D = JF−1d and for the material polarization Π = JF−1π . Finally,
the material electric induction is expressed as
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D = Jε0C−1E + Π . (9)

Here the first term accounts for the distortion of the electric field due to material
deformation. From (8), we derive the weak form which—after a Legendre transform
of variables—becomes in the material configuration:

∫

B0

D·δE dV =
∫

B0

ρV
0 δφ dV . (10)

2.3 Energy Balance and Dissipation Inequality

The specific internal energy U of the system is composed from contribution of the
mechanical and electric energy. The local form of the rate reads

U̇ = P : Ḟ + E · D + �0Q − ∇X · HT (11)

where Q is the heat supply per unit mass and HT is the material energy flux vector.
The local Clausius–Duhem form of the second law of thermodynamics states the
non-negativeness of the total entropyproduction Π̇S ,

Π̇S = Ṅ + 1

T

(

∇X · HT − �0Q − 1

T
HT∇XT

)

≥ 0 . (12)

After multiplication with absolute temperature T and with (11), we state

TΠ̇S = TṄ − U̇ + P : Ḟ + E · D − 1

T
HT · ∇XT ≥ 0.

Following Landau et al. (1984), we now use a transformation of the equation of state
Ũ = U − D · E to write the energy balance (11)

˙̃U = P : Ḟ − D · E + �0Q − ∇XHT (13)

and the entropy production

TΠ̇S = TṄ − ˙̃U + P : Ḟ − D · Ė − 1

T
HT · ∇XT ≥ 0 . (14)
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3 Constitutive Model for the Electromechanical Problem

The equations of mechanical equilibrium (3) and of electrical equilibrium (8)—as
well as their variational counterparts (6) and (10)—are formulated independently and
presented in a decoupled form. Coupling between mechanics and electricity arises
from the constitutive relations which will be derived here from thermodynamical
considerations.

3.1 Equations of State

Following the classical approach of Coleman and Noll (1963), we assume the ther-
modynamic state of a material point at X and its infinitesimal neighborhood being
completely defined by the variables of state: deformation gradient F, electric field
E, entropy density N , and a set of internal variables Z. The latter may account for
dissipative phenomena such as damage or phase change. Then it holds for the local
energy U = U(F,N,E,Z) and the for temperature T = T(F,N,E,Z). Taking the
differential gives

U̇ = ∂U

∂F
: Ḟ + ∂U

∂N
Ṅ + ∂U

∂E
Ė − Y : Ż (15)

where we introduced the thermodynamic forces conjugated to Z, Y = −∂U/∂Z.
The first Piola–Kirchhoff decomposes into the equilibrium stress Pe and the rate
dependent viscous stress Pv,

P = Pe (F,N,E,Z) + Pv(F,N,E,Z, Ḟ). (16)

Plugging these relations into (14) gives

TΠ̇S =
(

Pe − ∂U

∂F

)

: Ḟ + Pv : Ḟ +
(

T − ∂U

∂N

)

Ṅ −
(

D + ∂U

∂E

)

Ė

− 1

T
HT∇XT + Y : Ż ≥ 0 . (17)

Since inequality (17)must hold for any admissible process, the terms in brackets need
to be zero. This defines equations of state for the equilibrium stress, the temperature
and the electric induction. The dissipation remains as

TΠ̇S = Pv : Ḟ − 1

T
HT∇XT + Y : Ż ≥ 0 . (18)

Here, as thermodynamic potential is alternative to (15), we use the Helmholtz
free energy density A, obtained through a Legendre transform: A(F,T ,E,Z) =
inf
N

{U(F,N,E,Z) − TN}. This results in the equations of state
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Pe = ∂A

∂F
, N = ∂A

∂T
, D = − ∂A

∂E
, (19)

and the thermodynamic force conjugate to Z becomes Y = −∂A/∂Z. The general
framework is completed with the definition of the kinetic relations that enable to
determine Pv, Z and HT .

In the following we are interested in isothermal and time-independent processes.
We simplify the expression of theHelmholtz free energy by dropping the dependence
on the internal variables and on the temperature; the equations of state will reduce
to (19)1 and (19)3.

3.2 Kinematics of Electromechanics

To define the constitutive equations of a coupled process, we assume a multiplicative
decomposition of the deformation gradient (1) into elastic and inelastic (i.e. active)
components,

F (X, t) = FeFa. (20)

The elastic part of the deformation gradient is related to the passive response of the
material, while the active part is introduced to describe the geometrical changes of
the initial configuration induced by the action of the electric potential. This decom-
position refers to a non-compatible intermediate configuration, where the inelastic
phenomena locally take place without inducing a stress state. The compatibility
requirement will relax the continuum from the intermediate configuration to the cur-
rent deformed configuration. Here equilibrium and compatibility conditions are fully
satisfied, see Fig. 1. We assume the active component to be volume preserving and
enhance the stretch in the direction of the electric field. Specifically, it follows a finite
evolution equation of the form

Fig. 1 Reference, current and non-compatible intermediate configuration of the body
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Fa = I + κ
E ⊗ E
|E|2 , (21)

where κ is a dimensionless material parameter. The multiplicative decomposition of
the deformation gradient is a convenient mathematical representation of the change
of configuration of a system undergoing multiphysics processes in large deforma-
tions Eckart (1948). The formal introduction in nonlinear continuum mechanics of
the multiplicative decomposition can be attributed to [70] in the case of thermoelas-
ticity, and to [39] in the case of phenomenological elastoplasticity. Also for active
biomechanical interactions the approach has seen successful applications recently,
Ambrosi et al. (2011), Gizzi et al. (2015), Nardinocchi and Teresi (2007).

3.3 Helmholtz Free Energy

We assume a separation of the arguments in the sense of relation (20) and decompose
the Helmholtz free energy additively,

A(F,Fe,E) = Ae(Fe) + Aa(F,E).

Here the first term represents the classical strain energy density of hyperelastic mate-
rials and the second term is an inelastic free energydensity that accounts for the effects
of the electric field. Additional energy contributions, e.g. due to eigendeformations,
may be added.

With (19)1 the equilibrium stress P follows as the sum of two terms, the passive
stresses Pp and active stresses Pa,

P = Pp + Pa = ∂Ae

∂Fe

∂Fe

∂F
+ ∂Aa

∂F
= PeFa−T + Pa (22)

The passive stress is the pulled-back elastic stress and the active stress is derived
from the active part of the free energy Aa; it is the Maxwell stress associated with
the presence of an electric field plus an additional contribution of the polarization.

Correspondingly, the electric induction follows from (19)3 as

D = − ∂A

∂E
= −∂AM(F,E)

∂E
− ∂AΠ(F,Fa(E),E)

∂Fi

∂Fa(E)

∂E
, (23)

where we implicitly state Aa(F,Fa,E) = AM(F,E) + AΠ(F,Fa,E). Here the first
term accounts for the electric induction in the absence of electric distortions carried
by the material, i.e. the one observed in the vacuum, and the second term is related
to the polarization Π. It accounts for the effects due to the presence of a material
through the electric distortions Fa, see Fig. 2 for an illustration.
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Fig. 2 Active and passive deformation in a dielectric

3.4 Neo-Hookean Dielectric EAP

Let us consider a sample material of neo-Hookean type with classical dielectric
properties. The latter corresponds to a polarization π = εre with constant relative
permittivity εr = 1 + χe. The elastic strain energy density is

Ae(Fe) = 1

4
(J2 − 1 − 2 log J) + μ

2

(

tr C̄
e − 3

)

, (24)

where K and μ are bulk and shear modulus and C̄ = J−2/3FeFe. It defines the
equilibrium stress in the intermediate configuration as

Pe = ∂Ae

∂Fe = K

2
(J2 − 1)Fe−1 + 2

3
J−2/3μFe, (25)

and the passive first Piola–Kirchhoff stress tensor is its pull-back to the reference
configuration.

The active part of the free energy for a classical dielectric is

Aa(F,E) = −1

2
ε0εrJ e · e

= −1

2
ε0(1 + χe)J EF−1 · F−TE, (26)

It defines the active first Piola–Kirchhoff stress

Pa = −ε0(1 + χe)J

[

EF−1 ⊗ F−TE − 1

2

(

EF−1 · F−TE
)

I
]

F−T , (27)

and with εr = 1 + χe, we obtain the mechanical stresses (22) in the form:

P = PeFa,−T + ε0εrJ

[

EF−1⊗ F−TE − 1

2

(

EF−1 · F−TE
)

I
]

F−T. (28)
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Note that here we assume a deformation independent permittivity, typical of clas-
sic dielectrics. More generally, a dielectric may be characterized by a permittivity of
the type χe = χe(F,Fa), which supports an additive density Aa = AM + AΠ , and
admits a derivative of the form (23).

Let us have a closer look at the true stresses in the material. By considering purely
deviatoric active effects, i.e. a purely elastic volumetric deformation J = Je, standard
transformation rules provide the passive Cauchy stress tensor:

σ p = J−1PpFT = J−1Jeσ eF−TFT = σ e. (29)

The active stress follows correspondingly from (27) as

σ a = J−1PaFT = ε0(1 + χe)

[

e ⊗ e − 1

2
(e · e) I

]

(30)

which for χe = 0 coincides with the well-known Maxwell stresses, Suo (2010),
Dorfmann and Ogden (2005).

Finally, we derive the electric induction from the free energy density (26).

D = − ∂A

∂E
= ∂

∂E

(
1

2
ε0εrJ EF−1 · F−TE

)

= Jε0εrC−1E (31)

Linearization of the relations (28) and (31) with respects to F and E gives the con-
sistent tangent of the coupled problem.

4 Parametric study

With the aim to adapt and optimize polymeric actuators, we performed several exper-
imental investigations on EAPs recently, see Gaida et al. (2013), Gaida et al. (2014).
Our observations motivated the derivation of the presented material model. In par-
ticular, the decomposition (20) of the deformation gradient, F = FeFa has been
introduced to account for the coupling of elastic and active effects. Equation (21)
determines the evolution of the inelastic part of deformation.

Fa = I + κ
E ⊗ E
|E|2

Thematerial-specific parameterκ ∈ (−1,∞) is introduced to control the coupling
intensity. In the limit case κ = −1, the tensorFamayhave undefined entries. The case
κ = 0 corresponds to an uncoupled model, where the reference configuration and
the intermediate configuration coincide, see also Fig. 1. This may be an appropriate
model for amaterial without inelastic deformations, cf. Dorfmann andOgden (2005),
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Suo (2010), Zwecker and Klinkel (2011). In practice, such a model may suffice if a
homogenous electric field is applied on a uniform isotropic EAP of simple geometry.

This corresponds well to our experimental observations where we used a sili-
con film kit provide by Danfoss Polypower A/S to prepare dielectric EAPs, Bien
(2015). The specimen have been slightly prestretched at 4.3% and then exposed
to an electric field with a voltage in the range of 500–1500V. For a rectangular
specimen, the difference of measured and theoretical stretch is small, with relative
error≤ 0.05%.When the used geometry, however, causes a non-homogenous defor-
mation, we observe a deviation from the ideal state which grows with the applied
voltage. This may be explained with non-uniform changes in the microstructure of
the polymer which locally enhance the deformation caused by the electric field via
Maxwell stress. Such microstructural changes may become permanent as well as
induced electric dipole moments in the material, see Fig. 2. The active part of the
deformation gradient Fa has been introduced to account for these local effects.

In the following, we study the proposed framework analytically and show the
effect of parameter κ on the stretch at given voltage. To this end, we assume the
material to be an incompressible neo-Hookean with strain energy density (24) and
J = 1. The deformation gradient is formulated in principle stretches λa, a = 1, 2, 3,
for the resulting equations see also Reppel et al. (2013).

Uniaxial State

The applied electric field is constant in one direction.

E =
⎡

⎣

0
0
E

⎤

⎦ (32)

With prescribed elongation λ = l/L, the elastic component of the deformation gradi-
ent Fe has a diagonal form, and with field (32) in (21) the active component follows
accordingly.

Fe =
⎡

⎣

λ−1/2 0 0
0 λ−1/2 0
0 0 λ

⎤

⎦ Fa =
⎡

⎣

1 0 0
0 1 0
0 0 1 + κ

⎤

⎦ (33)

The equilibrium stress (25) results in one component Pe
3 = μ(λ − 1/λ2), the

corresponding passive stresses follow asPp
1 = Pp

2 = 0 andPp
3 = μ(λ−λ−2)/F3. The

active stresses (27) evaluate to Pa
1 = Pa

2 = 0 and Pa
3 = ε0εrE2/F3

3 . We reformulate
in terms of true stresses to obtain the Cauchy stress tensor:

σ = σ p + σ a = μ

⎡

⎣

0 0 0
0 0 0
0 0 λ2 − 1

λ

⎤

⎦ + 1

2
ε0εr

⎡

⎣

0 0 0
0 0 0
0 0 E2

λ2(1+κ)2

⎤

⎦ (34)
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Presuming equilibrium, i.e. |σ p
33| = |σ a

33|, leads to:
(

λ4 − λ
)

(1 + κ)2 = ε0εr
E2

μ
. (35)

With different voltages, this equation has iteratively been solved for λ; the results
are displayed in Figs. 3 and 4. The chosen material parameters are: μ = 3.3MPa,
ε0 = 8.854 × 10−12 As/Vm, εr = 8 and an initial length of L3 = 40µm.

From Eq. (35) and the plotted results, it is clearly visible, that for κ < 0 the
electrically induced deformation of the strip is enlarged. Negative κ-values enhance
the electromechanical effect, λ(κ < 0) > λ(κ = 0). In our experiments, we also
observed a raise of stretch for the non-homogenous specimen; these results, however,
are preliminary at this point. On the opposite side, for κ > 0 the electrically induced
deformation reduces, λ(κ > 0) < λ(κ = 0). Positive κ-values in the evolution
equation (21) work against an active deformation. For large values of κ , we observe
a convergence against λ = 1. This means, the deformation is completely compen-
sated, there is no electroactive effect. For κ = −1 function (35) is not defined, the
material would be completely squeezed. We consider this to be the lower limit for κ .
Meaningful values, however, are much smaller and we specify the suggested range
of material parameters to −1 
 κ ≤ 1.
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Fig. 3 Principle stretch λ3 versus parameter κ at a voltage of 1000V, 2000V and 3000V; negative
values of κ are plotted in blue, positive values in red
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Fig. 4 Effect of variable κ on the stretch λ at in the uniaxial case
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Thermo-Elasto-Plasticity



Finite Elastoplasticity with Thermal
Effects—Some Unexpected Phenomena

Otto T. Bruhns

Abstract A thermomechanical cyclic process of heating and cooling with fixed
stresses and fixed plastic strains, respectively, at the corresponding half-cycles
is discussed within the frame of large deformations and a coupled theory of
Eulerian thermo-elastoplasticity. This discussion was stimulated by some comments
of unknown reviewers during an in parts annoying peer-reviewing process. Within
these comments, some effects observed in thermoplasticity were characterised as
“against physics” and thus were used to discredit the submitted paper. In this paper,
themain issues of these reviewers are re-examined for a simple uniaxial case.Accord-
ingly, the effects are named as “some unexpected phenomena”. It could be shown that
these phenomena are in accord with physics and, moreover, that comparable exper-
imental results underline this position. The underlying Eulerian theory of thermo-
elastoplasticity is associated with the recently introduced objective logarithmic rate.
This paper also discloses a hitherto not published motivation for introducing this
specific time derivative.

1 Introduction

In the past decades, the thermodynamic foundation of elastoplasticity was studied by
several researchers. For small deformations, e.g. by Ziegler (1958, 1963), Naghdi
(1960), Kestin and Rice (1970), Perzyna (1971), Lubliner (1972) and recently by
Maugin (1992), Houlsby and Puzrin (2000), Collins (2005) and many others. In the
presence of finite strain and large rotation, these endeavours were continued and
extended, e.g. by Green and Naghdi (1965, 1968), Kratochvíl and Dillon (1969),
Lee (1970), Lehmann (1972, 1984, 1989), Mandel (1972, 1974), Rice (1975),
Haupt (1977), Anand (1985), Anand and Lush (1987), Casey (1998), Rajagopal and
Srinivasa (1998), Bertram (2003), Anand et al. (2009), Bertram andKrawietz (2012).
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Numerous proposals were presented for formulations of elastoplastic behaviour at
finite deformation. Representative ideas and viewpoints till 1990 are summarised in
a critical review byNaghdi (1990). A common ground underlying them is employing
additional quantities or variables labelled as “elastic” or “plastic”, though the latter
may be introduced in many different ways. Thermo-elastoplastic behaviour at finite
deformation is treated in the same line, as can be seen in the references mentioned
before. Recently, a consistent Eulerian rate formulation of finite elastoplasticity has
been proposed for a general case covering the whole deformation range, which is
based upon the additive separation of the stretching D as well as two consistency
criteria for objective Eulerian rate formulations, namely the integrability for the
elastic rate equation of hypoelastic type for De and Prager’s yielding stationarity
with the vanishing of the stress rate. This formulation is developed in terms of
the stretching and the Kirchhoff stress and involves no additional deformation-like
variables. The basics of this formulation may be found in Xiao et al. (2006).

In Xiao et al. (2007b) the above Eulerian rate formulation is placed on thermody-
namic grounds by extending the aforementioned main ideas to a general case with
thermal effects, so that the consistency requirements both from the foregoing crite-
ria and from thermodynamic laws may be examined further in a broader sense. To
this end, a general Eulerian rate formulation of finite elastoplasticity with thermal
effects is established by means of the corotational logarithmic rate. Then simple
forms of restrictions are derived, and consequences are discussed. For a general case
of combined isotropic-kinematic hardening behaviour with the normality rule and
convex yield surface, a simple, explicit form of Helmholtz free energy function may
be constructed; so that the thermodynamic laws are satisfied for arbitrary forms of
constitutive functions included in the proposed constitutive formulation. With a free
energy function in explicit form, these facts eventually lead to a complete explicit
theory for the coupled fields of deformation, stress and temperature in elastoplastic
materials with thermal effects.

The main objective of the present article is twofold: First, the motivation for
introducing the above-mentioned logarithmic rate in conjunction with this Eulerian
formulation is explained with a special request derived from a more general dis-
cussion of work conjugacy—or work conjugated pairs of stress and strain—within
the scope of Eulerian formulations. We note that there is a controversial discus-
sion of whether the notion of work conjugacy is restricted to Lagrangean (material)
descriptions, or not (refer, e.g. to Bertram 2005 and Haupt 2002).

It appears to us that this question should be generalised to include also other
configurations.1 Thus for an Eulerian description, where spatial stresses and strains
are under discussion, the material time derivative has to be replaced by an (a pri-
ori) unknown objective time derivative. Searching for the work conjugated strain
of a specific Eulerian stress leads to the following dual unknown problem: Which

1A similar idea may have led Haupt (2002) to introduce different families of stress and strain at
different configurations. The different pairs of conjugated quantities are called dual variables. For
discussion within a spatial configuration, the material time derivative is replaced by the objective
non-corotational Oldroyd rates.
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objective time derivative (corotational or non-corotational) applied to a yet undeter-
mined Eulerian strain could furnish the stress power together with the given stress?
For the more specific case where the Cauchy stress σ or the Kirchhoff stress τ may
be given, this problem reduces to a similar question, where the above time derivative
of the unknown strain should give the deformation rate (stretching) tensor D. This
question will be discussed in Sect. 2.

Second, having in mind the above-mentioned development, it is believed that
nowadays thermo-elastoplasticity should be a well founded and generally accepted
extension of elastoplasticity to take into account thermal effects. Nevertheless, some
doubts may be allowed having submitted a paper to a well-known peer reviewed
journal. In this paper, the cyclic deformation and ratchetting effects observed for
a 316L stainless steel were discussed within a thermo-elastoplastic model at finite
deformations (refer to Zhu et al. 2016). The surprising and somewhat curious com-
ments2 of the reviewers inspired us to discuss their main issues, which then were
used as arguments to reject the publication of this paper. Two typical examples of
these comments are given below, andwill be discussed in Sects. 2 and 4. In the latter a
simplified model has been used to derive closed form solutions. The basic equations
of the more general model are introduced in Sect. 3.

Remark 1 (Unknown reviewer 1) The concept of elastic heat (i.e. the thermoelastic
coupling) is simply against the fundamental physical law.

Remark 2 (Unknown reviewer 2) On the other hand, coupled temperature and plas-
tic deformation may not be a correct concept in physics. Plastic deformation can
cause a change in temperature of a material if incomplete dissipation of the energy
created by inelastic deformation is considered. Such a change in temperature can
be taken into account by considering heat transfer of materials. However, a change
in temperature itself (through heating or cooling) should not produce stress and/or
plastic deformation in a material.

At the end of this introduction, we explain some notations that will be used. Let
a, b, A, B andL be two vectors, two second-order tensors and a fourth-order tensor.
In a Cartesian frame, the (single) dot product operation and the double dot product
operation would be defined as

a · b = aibi , (A · a)i = Ai ja j , (A · B)i j = Aik Bkj ,

A : B = Ai j Bi j , (A : L)i j = AklLkli j ,

(L : A)i j = Li jkl Akl, A : L : B = Ai jLi jkl Bkl .

2It is indeed in question whether the authors of these remarks are really familiar with the above-
mentioned development in thermo-elastoplasticity—and why they have been asked to review this
specific article. This has motivated us in the sequel to refer to the effects as “Some unexpected
phenomena”.
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2 Basic Relations

2.1 Energy Balance and Entropy Inequality

For a deformable body in the purely mechanical sense, as basic field variables the
deformation gradient F and the Cauchy stress σ at each particle characterise the
local deformation state relative to a reference configuration and the local stressed
state, respectively. Let X and x be the reference and the current position vector of a
material particle, respectively. Then the deformation gradient F is given by

F = ∂x
∂X

. (1)

In a general case with thermal effects, a further basic field variable is the temperature.
In addition, two quantities are introduced to describe the efflux or influx of heat as
well as the heat absorption or release. They are the heat flux vector q and the heat
supply r . Throughout, q is measured per unit area in the current configuration, and
r per unit reference volume.3 Locally, these two quantities together specify the heat
entering an infinitesimal volume element.

In a material body, there may exist complicated interactions among the differ-
ent fields of deformation, stress and temperature. In fact, a thermodynamic process
occurring in a material body is a rather involved process in which the mechanical
work and the heat are constantly converted into each other. In general, there may be a
strong coupling between deformation and heat. For various kinds of thermomechan-
ical behaviour of deformable material bodies, certain universal laws or principles
may be formulated for the description of common physical features. In the purely
mechanical case, there are the material objectivity or frame-indifference principle
and the laws of conservation for momentum and mass. The first requires that objec-
tive quantities should be employed in constitutive formulations, while the latter two
are represented by Cauchy’s law of motion and the continuity equation, respectively.
For these, refer, e.g. to Truesdell and Noll (1965) for details. In addition, further
universal laws or principles, namely, the three thermodynamic laws, are formulated
in a general case with thermal effects. Details may be found, e.g. in Truesdell and
Toupin (1960), Truesdell (1984), Müller (1985), Šilhavý (1997), Haupt (2002).

First, it is assumed that there exists a temperature quantity T , called the absolute
temperature, which is always positive,

T > 0. (2)

The above statement is sometimes referred to as the zeroth law of thermodynamics.
Second, from the observation on the interconvertibility of heat and mechanical

work, it is assumed that the mechanical work done by the external loadings and the

3Note that, unlike the usual treatment, here the so-called intensive quantities, such as the r above
and those introduced later, are not defined as quantities measured per unit mass.
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internal stress, and the non-mechanical work contributed by the heat flux and the heat
supply, are converted into the kinetic energy and the internal energy of the material
body. According to this fact, a new physical quantity, namely, the internal energy,
is introduced. Let ϕ represent the internal energy per unit reference volume. Then
from the foregoing energy balance, together with Cauchy’s law of motion and the
continuity equation, the following relation4 may be derived:

ϕ̇ = τ : D − J∇ · q + r, (3)

for all possible thermodynamic processes. Here and henceforth, J and τ are used to
denote the volume ratio (Jacobian) and the Kirchhoff stress, given by

J = detF, τ = Jσ . (4)

Moreover, the notation ∇ is used to designate the formal differentiation vector
with respect to the current position vector x, namely,

∇ = ∂

∂x
,

and D is the natural deformation rate (stretching), given by the symmetric part of
the velocity gradient,

D = 1

2

(

∇ ẋ + (∇ ẋ)T
)

= 1

2

(

Ḟ · F−1 + (Ḟ · F−1)T
)

. (5)

As indicated by Eq. (3), known as the first law of thermodynamics, the changing
rate of internal energy is furnished by the sum of the (internal) stress power and the
(internal) non-mechanical power due to heat flux and heat supply.

Next, on the basis of the observation on the irreversibility property ofmacroscopic
physical phenomena, it is assumed that there exists a scalar field quantity η measured
per unit reference volume, called specific entropy, so that the following inequality
holds

η̇ ≥ −J∇ ·
( q
T

)

+ r

T
(6)

for all possible thermodynamic processes. Physically, the quantity η represents the
total local dissipation.

The entropy η and the internal energy ϕ are related to each other through the first
and second laws, as expressed by Eq. (3) and inequality (6). To render this relation
clear and direct, alternate forms of Eq. (3) and the inequality (6) are derivable by
introducing the Helmholtz free energy per unit reference volume:

4Let n be the outward normal at a point on a closed material surface. We assume that q · n > 0
means the efflux of the heat through the material surface. Thus follows the minus sign in Eq. (3) for
the term contributed by the heat flux q.
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ψ = ϕ − Tη. (7)

Then the energy balance (3) may be reformulated as

ψ̇ = τ : D − J∇ · q + r − ηṪ − T η̇. (8)

Using this relation, we may recast inequality (6) in the form:

τ : D − (ψ̇ + ηṪ ) − J

T
q · ∇T ≥ 0. (9)

Inequality (6) or its alternate form (9), known as the second law of thermodynamics
or Clausius–Duhem inequality, expresses the entropy principle for the irreversibility
of macroscopic physical phenomena in deformable material bodies.

Furthermore, we introduce a quantity D by

D = T η̇ − (r − J∇ · q) = τ : D − (ψ̇ + ηṪ ). (10)

This quantity, known as internal dissipation, provides the remaining part after the
deduction of the total local heating from the total local entropy rate times the tem-
perature. The Planck inequality (cf., e.g. Truesdell 1984)

D ≥ 0 (11)

requires that the internal dissipation should always be non-negative. It should be
positive for a process of dissipative deformations such as elastoplastic deformations.

For a thermomechanical behaviour of a material body, there will be a strong
coupling between the different fields of deformation, stress and temperature, respec-
tively. Thematerial behaviour will be characterised by constitutive equations relating
these field quantities and their histories. The thermodynamic laws as expressed by
(2), (3) and (6), or their alternate forms (2), (8) and (9), place restrictions on various
kinds of material behaviour.

We note here that the stress power per unit volume in Eq. (3) plays an essential
role in continuum mechanics, especially when deriving constitutive relations. Since
τ and D constitute the stress power, the Kirchhoff stress and the deformation rate
may be regarded as pair of energetically conjugated quantities (refer to Hill 1968,
1978 and Macvean 1968). This assignment is, however, not unique, as the Kirchhoff
stress may be replaced by other stress measures and thus the stress power may be
formulated in different configurations (see Macvean 1968). For instance, τ and D in
this expression may be replaced by other stress measures and kinematical quantities.
Thus, we may arrive, e.g. at the following equivalent expressions:

τ : D = P : Ḟ = S : Ė, (12)

providing additional pairs of conjugated quantities, where
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P = τ · F−T , S = F−1 · τ · F−T (13)

are first and second Piola-Kirchhoff stress tensors, respectively, and

E = 1

2
(FT · F − 1) (14)

is the Lagrangean Green strain.

2.2 Some Additional Remarks About Deriving
the Logarithmic Rate

In the remaining part of this section, the motivation for deriving the logarithmic rate
is elucidated5 from the aforementioned thermodynamical considerations.

Similar as Zhilin did, we begin with the stress power τ : D and the equivalence
expressions (12). Kinematical tensors such as D, Ḟ and Ė herein express the rate
of the local shape change of the body. If one of these quantities equals the rate of a
local deformation tensor, this tensor is said to be work conjugated to the respective
conjugated stress tensor.

If now the thermodynamical consistency of a constitutive relation is analysed—
or in other words—if the bounds of such consistency with thermodynamics are
examined, the internal dissipation D should fulfil Planck’s inequality (11).

In a Lagrangean configuration, for which the material time derivative is objective,
the assignment of conjugated quantities is unique, such that P and F as well as S
and E form work conjugated pairs. For an isotropic thermoelastic material, e.g. with
state variables E and T , and the Helmholtz free energy ψ = ψ(E, T ), inequality
(11) becomes

D =
{

S − ∂ψ

∂E

}

: Ė −
{

η + ∂ψ

∂T

}

Ṫ ≥ 0. (15)

Since this inequality is assumed to hold true for all admissible processes, two equa-
tions of state can be deduced as

S = ∂ψ

∂E
and η = −∂ψ

∂T
. (16)

5It should be noted that in a recent book byAltenbach et al. (2013) an interesting and regrettably until
then unpublished idea of the late P.A. Zhilin is explained and commented in a particular Chapter on
“Material Strain Tensor”. In this contribution (pp. 321–331) a method is suggested to introduce a
so-called material strain tensor for inelastic continua, which will be conjugated to the Cauchy stress
σ . Starting from the definition of the stress power σ : D, a condition is derived which has to be
fulfilled by this strain. For some particular cases, e.g. isotropic elastic material, it is demonstrated
that the Hencky strain will fulfil this condition.
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For an Eulerian configuration, on the other hand, this procedure6 turns out to be
more complicated and ambiguous. The main reason for this more complex situation
is due to the natural deformation rate D incorporated in the definition of the stress
power τ : D, which should be expressible as a rate of an Eulerian strain tensor.
Moreover, in an Eulerian description the material time derivative loses its objectivity
and must be replaced by an objective one. Thus, a dual unknown problem has to

be solved: An unknown objective time derivative
o

(•) (say) of an unknown Eulerian
strain measure ē should give the deformation rate, i.e.

o
ē = D. (17)

This problem came up to the present author in the early eighties of last century,
and from the very beginning there was a strong conjecture that the solution of this
problem—if it would exist—should be related with the Hencky strain h.7

The infinite number of Eulerian strain measures and the many objective time
derivatives, which have been discussed in those days may underline the apparent
ambiguity of the requirement (17). Two classical solutions may be given with the
Eulerian Finger strain a and Almansi strain A, respectively,

a = 1

2
(B − I), A = 1

2
(I − B−1), (18)

where B = F · FT is the left Cauchy–Green tensor. Applying here, e.g. the non-
corotational lower and upper (convected) Oldroyd rates,8 respectively, to these strain
measures, leads us to the two solutions (see, e.g. Haupt 2002; Bruhns et al. 2004)

o
AOl = Ȧ + A · L + LT · A = D,

o
aOu = ȧ − a · LT − L · a = D,

(19)

where as usual L = ∇ ẋ = Ḟ · F−1 is the velocity gradient.
This result has been generalised in Bruhns et al. (2004), with the following con-

clusion: The deformation rate D is expressible as a Hill-type non-corotational rate
of any given Eulerian Seth-Hill strain e(m). Both equations (19) are two particular
cases of this general result, where m = ±1.

Next, in 1960, Prager made an interesting observation, which significantly should
affect the description of Eulerian elastoplasticity. He noted that the yield function
should be stationarywith the vanishing of the stress rates. This requirement, called the
yielding stationarity condition, has been shown to be necessary for the consistency of

6This procedure is sometimes attributed to Coleman and Noll (1963).
7See the definition of the Hencky strain at the end of Sect. 3.3. Moreover, reference is made to the
historical notes in Bruhns (2014a, b) and the remarks in the aforementioned Zhilin article.
8The former of these rates is sometimes called Cotter–Rivlin rate, refer to, e.g. Bruhns (2014b) and
the further remarks and references therein.
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the composite structure of Eulerian elastoplasticity (Prager 1960, Xiao et al. 2000).
One of the consequences of this criterion is that the use of non-corotational rates in
finite elastoplasticity should be excluded.9

For corotational rates, on the other hand, the requirement (17) can be reduced to

o
ē = ˙̄e + ē · Ω − Ω · ē = D. (20)

Here, Ω is a general skew-symmetric second-order Eulerian (or spin) tensor. The
well-known Zaremba–Jaumann rate provides an example of corotational rates with
Ω = W , where W is the vorticity tensor, given by the skew-symmetric part of the
velocity gradient W = 1

2 (L − LT ).
In a series of papers, starting from 1997,10 it has been shown that there exists a

unique solution for the requirement (20), namely the strain must be the Hencky strain
ē = h and the rate must be the logarithmic rate with the spin Ω = Ω log.11

It has been demonstrated further that this logarithmic rate has a remarkable prop-
erty, namely that a hypoelastic relation of grade zero with a logarithmic rate applied
to the stress and with the deformation rate can be integrated to give an elastic rela-
tion between this stress and the Hencky strain (see also Xiao et al. 1997c, 2007a
and Bruhns et al. 1999). Thus, with reference to the discussion initiated by Simó
and Pister (1984), contrary to the situation with the other then discussed objective
rates, a hypoelastic relation of this kind exhibits no dissipation (refer to Meyers
et al. 2000). This means that in an Eulerian description of elastoplasticity, where an
additive split of the deformation rate is used with a hypoelastic relation representing
the elastic part, there exists only one solution, where this elastic part runs without
dissipation, namely when the logarithmic rate is applied to the stress and the Hencky
strain is used. And, contrary to what is observed in numerous articles, the often used
Zaremba–Jaumann rate fails to have this property.

For an Eulerian thermoelastic material,12 e.g. with state variables h and T , and
the Helmholtz free energy ψ = ψ̂(h, T ), inequality (11) can be written as

D =
{

τ − ∂ψ̂

∂h

}

: o
h log −

{

η + ∂ψ̂

∂T

}

Ṫ ≥ 0, (21)

where
o
h log = D, and the two equations of state become

9We must note that the Zaremba–Jaumann rate was favoured in the discussion by Prager (1960),
since this was the only corotational rate in the four classical rates then known.
10Reference is made, e.g. to Xiao et al. (1997a, b, 1998b, a, 1999, 2000) and Bruhns et al. (2004).
Some historical remarks are also contained in Bruhns (2014b), especially in footnotes 44 and 46
therein.
11For the definition of the logarithmic spin Ω log, we refer to Eq. (36).
12We still confine our considerations here to an isotropic material.
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τ = ∂ψ̂

∂h
and η = −∂ψ̂

∂T
. (22)

As usual from these results, we may deduce the Gibbs relation

ψ̇ = τ : D − ηṪ . (23)

Introducing this with the help of the transformation (7) into the energy balance (3),
eliminates the stress power:

T η̇ = −J∇ · q + r. (24)

Finally, utilising the equations of state converts this expression to an evolution equa-
tion for the temperature (refer, e.g. to Haupt 2002)

cṪ = T
∂τ

∂T
: D − J∇ · q + r, (25)

where Eq. (22)1 has been applied, and

c = −T
∂2ψ̂

∂T 2

is the specific heat at constant strain. The first term of this heat conduction equation
(25) is representing the thermoelastic coupling effect. And this general result even
holds true for an elastoplastic behaviour, e.g. with a Helmholtz free energy form
ψ = ψ̂(he, T,α, κ).13 Then merely the D in Eq. (25) is replaced by a De. Thus,
it is absolutely not clear why and where this thermoelastic coupling effect, which
sometimes is also called elastic heat, should be “against the fundamental physical
law” (refer to Remark 1).

3 Elastoplastic Materials with Thermal Effects

3.1 Basic Features of Thermoelastoplastic Materials

Elastoplastic material behaviour is a combination or coupling of two disparate ide-
alised behaviours, namely, purely elastic and purely plastic. The former is spring- or
solid-like, whereas the latter is fluid-like. Although constitutive formulations may
be established for these two idealised behaviours in definite ways, it turns out that a
realistic, consistent constitutive formulation for finite elastoplasticity as inextricable
combination of these two has been a challenging task. Thermal effects would further

13See the Appendix.
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introduce considerable complexity. Certain typical features of elastoplasticity with
thermal effects may be summarised below.

1. There exists a yield limit expressed by a yield function f . The stress and the
temperature are always bounded by this limit, i.e.

f ≤ 0. (26)

The closed hypersurface in stress-temperature space determined by the equation
f = 0 is referred to as the yield surface.

2. If the stress and the temperature are kept within the region f < 0, a thermoelas-
tic behaviour is expected. In this case, including unloading, the stress work is
recoverable.Whenever the yield limit is attained andmaintained, coupled thermo-
elastoplastic behaviour is expected and irreversible plastic flow is induced. In this
loading case, the stress work is partly recoverable and partly irrecoverable (refer
to Farren and Taylor 1925), but usually the dissipated behaviour of fluid-like may
play a dominant role.

3. Except for some idealised considerations, the yield surface is changing and mov-
ing with plastic flow in the loading case. This phenomenon, known as hardening
behaviour, results from the micro-structural rearrangement due to the movement
and interactions of vast number of dislocations and other defects.

On account of the above features, a complete constitutive formulation of finite
elastoplasticity with thermal effects is a composition of constitutive ingredients in
several aspects, including the characterisation of the yield function, the loading–
unloading condition, the constitutive relations between stress and deformation rates
in both loading andunloading cases, aswell as the description of hardeningbehaviour.

As mentioned earlier, many proposals for elastoplastic formulations have been
made based on different starting-points and assumptions. We here propose an
Eulerian rate formulation by extending the main ideas as explained in Xiao et al.
(2006). With direct physical relevance to the fluid-like characteristics of elastoplas-
tic deformations, this formulation establishes direct relations between the Kirchhoff
stress τ and the stretching D.

3.2 Eulerian Rate Constitutive Formulations

We begin with the experimental result that the stress power τ : D is a composition
of two parts, namely a recoverable and an irrecoverable part. This leads us to the
following decomposition of the natural deformation rate D:

D = De + D p. (27)

With this intention, the part De is related to thermoelastic behaviour in the sense that
the quantity τ : De furnishes the recoverable part of the total stress power, whereas
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the part D p is associated with plastic flow and τ : D p gives the irrecoverable part
of the total stress power.14

In a fully general sense to describe the hardening behaviour, the yield function
f may be regarded as function of the current values of stress and temperature and
the deformation history. However, such a general form might hardly be tractable
for realistic purposes. Usually it is assumed that a set of internal variables may be
introduced to characterise the hardening behaviour with adequate accuracy. As is
widely done, we here introduce one scalar variable κ and a tensorial variable α. The
former is usually identified with the plastic work15:

κ̇ = τ : D p. (28)

This variable describes the isotropic hardening. The hardening variableα is an objec-
tive symmetric Eulerian tensor and usually called the back stress, which characterises
the kinematic hardening. The two hardening variables16 together describe combined
isotropic–kinematic hardening behaviour. They are changing with plastic flow in a
process of elastoplastic deformations. Constitutive relations governing their changes,
known as evolution equations, will be discussed later.

With these hardening variables, the yield function f for a thermo-elastoplastic
material is formulated as function of the set (τ , T,α, κ). As a result, the yield limit
(26) becomes17

f = f (τ , T,α, κ) ≤ 0. (29)

Now we are in the position to formulate the rate-type constitutive relation for the
two parts De and D p in (27). First, we propose an objective Eulerian rate formulation
for the part De for thermoelastic behaviour. This leads to an objective Eulerian rate
equation of hypoelastic type:

De = ∂2W̄

∂τ 2
: o
τ + ∂2W̄

∂τ∂T
Ṫ . (30)

where the scalar function
W̄ = W̄ (τ , T ) (31)

14We note that herein also use has been made of the so-called iso-stress assumption that the stresses
τ within these two products remain the same, which is common for most isotropic materials.
15The so-called equivalent plastic strain is also widely used. Unlike the plastic work, however, such
a quantity might not possess direct physical meaning related to the concepts of work and energy in
thermodynamics.
16More internal variables may be used and can be treated by following a way similar to the subse-
quent development.
17A usually treated form is, e.g.

f (τ − α) − y(T, κ) ≤ 0.

In this case, the yield surface moves about in stress-temperature space with the moving of the centre
represented by the back stress α, but changes its shape and size only in a uniform manner.
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is a complementary thermoelastic potential.18

Next, we formulate the flow rule for the plastic stretching D p. With the rate-
independence property, a general form may be given by (refer, e.g. to de Boer 1977)

D p = ξΦ(τ , T,α, κ; o
τ , Ṫ ) = ξA(τ , T,α, κ) :oτ +ξG(τ , T,α, κ)Ṫ , (32)

where A and G are fourth- and second-order constitutive tensors relying on the
variable set (τ , T,α, κ). Throughout, ξ is used to represent the plastic indicator,
taking values 1 and 0 for loading and unloading, respectively (details will be given
later).

Moreover, we formulate the evolution equations for the hardening variables κ

and α. The widely used evolution for κ has been presented with equation (28). A
reasonable generalisation of this relation may be given with:

κ̇ = C(τ , T,α, κ) : D p + ξD(τ , T,α, κ)Ṫ . (33)

For the back stress α, a general form of the evolution equation is as follows:

o
α = H(τ , T,α, κ) : D p + ξΘ(τ , T,α, κ) Ṫ . (34)

Here again, ξ is the plastic indicator, andC and D aswell asH andΘ are constitutive
tensors relying on the whole variable set (τ , T,α, κ).

3.3 Consistency Criteria and Logarithmic Rate

The specific rates just introduced in Eqs. (30), (32) and (34) have to fulfil the objec-
tivity requirement and, moreover, prior to the occurrence of yielding the rate for-
mulation (30) with D p = 0, i.e. De = D should be exactly integrable to deliver a
thermoelastic relation. This requirement, known as the exact integrability criterion,
is introduced in Bruhns et al. (1999) and Xiao et al. (1999) in the purely mechanical
case. Certain integrability conditions have to be treated, as exemplified in Bernstein
(1960) and Truesdell and Noll (1965) for the case of the Zaremba–Jaumann rate.
With integrability conditions, Simó and Pister (1984) demonstrated that none of the
then well-known classical rates could fulfil the exact integrability criterion even for
the simplest case, namely, the widely used hypoelastic equation of grade zero.

On the other hand, it is demonstrated by Bruhns et al. (1999, 2004) and Xiao
et al. (1999, 2005) that of all possible corotational rates there exists one and only

18As constitutive functions of objective Eulerian variables, the potential function W̄ and the yield
function f in the foregoing, as well as the constitutive functions introduced in the subsequent
development should be isotropic in accord with the requirement from the objectivity principle;
refer to, e.g. Simó and Hughes (1998). In this case, only initial isotropy would be permissible and,
accordingly, any kind of initial anisotropy would be excluded. We note further that this potential
may be one part of a more general complementary energy function g = g(τ , T,α, κ) for thermo-
elastoplastic behaviour (see the Appendix).
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one which can fulfil the exact integrability criterion. This rate is the logarithmic rate
introduced in Lehmann et al. (1991), Reinhardt andDubey (1996), Xiao et al. (1997b,
1998a, b).

Combining the above results and applying them to the general case with thermal
effects, it may be concluded that the above objective rates should be logarithmic rates

o
τ log = τ̇ + τ · Ω log − Ω log · τ ,

o
α log = α̇ + α · Ω log − Ω log · α,

(35)

where Ω log is the logarithmic spin

Ω log = W +
m

∑

r �=s

(
1 + (br/bs)

1 − (br/bs)
+ 2

ln(br/bs)

)

Br · D · Bs . (36)

In the above, bt and Bt are the m distinct eigenvalues and the corresponding eigen-
projections of the left Cauchy–Green tensor.

Thus, with the logarithmic rate, the exactly integrable Eulerian rate equation for
thermoelastic behaviour is reformulated as

De = ∂2W̄

∂τ 2
:oτ log + ∂2W̄

∂τ∂T
Ṫ . (37)

Prior to yielding, this rate equation with a natural state is integrable to deliver the
following finite thermoelastic relation:

h = ∂W̄

∂τ
. (38)

Here,

h = 1

2
ln(F · FT ) = 1

2

m
∑

r=1

(ln br )Br

is Hencky’s logarithmic strain.

3.4 Continuity for Plastic Flow and Unified
Loading–Unloading Conditions

For plastic flow, two consistency conditions must be considered. First, the flow rule
(32) must be continuous for the transition between loading and neutral loading as
expressed by (47) and (48) below throughout the stress-temperature space. That is
also the case for the evolution equations (33) and (34). From these and with the
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logarithmic rate, we reduce Eqs. (32)–(34) to (see, e.g. Green and Naghdi 1965 and
Appendix A of Xiao et al. 2007b)

D p = ξ f̂ P, (39)

κ̇ = C : D p, (40)

o
α log = H(τ , T,α, κ) : D p. (41)

Here, the symmetric second-order constitutive tensor P relies on the variable set
(τ , T, α, κ). Throughout, f̂ is a scalar rate-type quantity given by

f̂ ≡ ∂ f

∂τ
:oτ log + ∂ f

∂T
Ṫ . (42)

Furthermore, in terms of a plastic potential (see, e.g. von Mises 1928 and Hill 1950),
the flow rule (39) may be further reduced to

D p = ξ
f̂

h

∂p

∂τ
, (43)

where h, the plastic modulus, will be given later, and the scalar function

p = p(τ , T,α, κ), (44)

is the plastic potential.
The plastic flow D p, governed by the flow rule (43), is directed towards the

outward normal ∂p/∂τ of the plastic potential. This requires

D p : ∂p

∂τ
> 0

in the loading case (ξ = 1). Hence we infer

f̂

h
> 0 (45)

for loading.
Next, the second consistency condition for plastic flow is

ḟ = 0.

Formulating this condition in a log-rotating frame (refer to Xiao et al. 2007b) and
using Eqs. (40), (41) and (43), we derive the plastic modulus h as follows19:

19The plastic modulus here should not be mistaken with the Hencky strain, introduced before.
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h = −
(

∂ f

∂κ

(

C : ∂p

∂τ

)

+ ∂ f

∂α
: H : ∂p

∂τ

)

. (46)

Nowwe study the loading–unloading conditions for a judgement about the occur-
rence of plastic flow. As usual, three cases may be distinguished for elastoplasticity
with strain hardening and strain softening as well as perfect elastoplasticity, which
correspond to positive, negative and vanishing plastic modulus, namely, h > 0,
h < 0, h = 0, respectively. The classical conditions, formulated in terms of the
quantity f̂ given by (42), are known to apply only to the strain-hardening case and
fail to combine these three cases. A unified form of loading–unloading conditions in
purely mechanical case was presented earlier by Hill (1958, 1959). Its definite form
extended to the general case with thermal effects is suggested in Xiao et al. (2007b)

D p �= 0 (ξ = 1) if f = 0 and
f̂

h
> 0, (47)

D p = 0 (ξ = 1) if f = 0 and f̂ = 0, (48)

D p = 0 (ξ = 0) if f = 0 and f̂ < 0, (49)

D p = 0 (ξ = 0) if f < 0. (50)

Relatedwith conditions (47)–(50),we speakof loading, neutral loading, unloading
from an elastoplastic state, and a thermoelastic state, respectively.

It may be evident that the above conditions yield the classical conditions for
the strain-hardening case with h > 0, while both loading and unloading are pos-
sible whenever the stress rate and temperature rate are such that f̂ > 0 for the
strain-softening case. For the case of perfect elastoplasticity with h = 0, the above
conditions lead to f̂ = 0 for loading.

The loading–unloading conditions in the foregoing are in terms of the stress rate.
An alternate form is derivable in terms of the natural deformation rate. We therefore
refer to Xiao et al. (2007b).

Finally, combining Eqs. (37) and (43), we obtain the relation between the total
deformation rate and the total stress rate as follows:

D = ∂2W̄

∂τ 2
:oτ log + ∂2W̄

∂τ∂T
Ṫ + ξ

f̂

h

∂p

∂τ
. (51)

Now the plastic indicator may be given by

ξ =

⎧

⎪⎨

⎪⎩

1 if f = 0 and
f̂

h
≥ 0,

0 if f < 0 or ( f = 0, f̂ < 0).

(52)
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3.5 The Essential Structure with Associated Flow Rule

Just for simplicity, let us assume a description within the frame of classical ther-
moplasticity. If the plastic potential p is given in accord with the yield function f ,
which for a von Mises type description and with reference to footnote 17 may be
introduced in the form:

f (τ , T,α, κ) = (τ ′ − α) : (τ ′ − α) − y2(T, κ) = 0, (53)

the flow rule (43) is just the associated normality rule

D p = ξ
f̂

h

∂ f

∂τ
. (54)

Here a (•)′ designates the deviator of a second-order tensor (•), e.g.

τ ′ = τ − 1

3
tr(τ )I,

I is the second-order identity tensor, and the back stressα is introduced as a deviatoric
quantity, namely tr(α) = 0.

If the yield surface is convex, we have

(τ ′ − τ ′
0) : ∂ f

∂τ
> 0, (55)

for a regular point τ ′ on the yield surface and for any point τ ′
0 inside the yield surface.

In particular, we have

(τ ′ − α) : ∂ f

∂τ
> 0, (56)

since the back stress α assigning the centre of the yield surface should be included
in the yield surface, namely,

f (τ , T,α, κ) < 0.

The evolution equation (40) of the scalar valued internal variable κ is here with

C = 1

2

∂ f

∂τ
(57)

analogously reduced to

κ̇ = 1

2

∂ f

∂τ
: D p = (τ ′ − α) : D p. (58)
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where now the evolution of the plastic work of the effective (reduced) stresses is
described.

On the other hand, for metals and alloys, Prager’s hardening law is used. This
corresponds to a particular case of the evolution equation (41) as given by

o
α log = cD p. (59)

In the above, the kinematic hardening modulus c is constant for Prager’s classical
hardening law, while c depends on temperature and the plastic work, i.e. c = c(T, κ),
for an extension, where

H = c(T, κ)I

and I is the symmetric fourth-order identity tensor (see, e.g. Xiao et al. 2007b and
the literature mentioned therein).

Finally, the plastic modulus with p = f and Eqs. (53), (58) and (59) becomes

h =
(

c − 1

2

∂ f

∂κ

)
∂ f

∂τ
: ∂ f

∂τ
= 4y2

(

c + 1

2

∂y2

∂κ

)

. (60)

In summary, the general constitutive formulation with the essential structure
is characterised by the thermoelastic potential W̄ (τ , T ), the yield stress function
y2(T, κ), and the kinematic hardening modulus c(T, κ).

Let us now, more specifically, assume the yield stress as a function of temperature
and plastic work in the specific form20

y2 = (y20 + 2Bκ)(1 − ω(T − T0)), (61)

with y0 the yield stress at a reference temperature T0, say at room temperature, and
ω and B two material parameters, describing the softening of the material due to a
temperature increase and the isotropic work hardening, respectively. Let us further,
just for convenience, introduce the following abbreviation

s = τ ′ − α, (62)

where s characterises the so-called effective (deviatoric) stress. Then with

∂ f

∂τ
= 2s,

∂y2

∂κ
= 2B(1 − ω(T − T0)),

∂ f

∂T
= (y20 + 2Bκ)ω,

20This simple form allows to describe a linear isotropic hardening with a decreasing yield stress
and a decreasing hardening as the temperature increases. Moreover, analytical solutions for simple
examples as pure tension or a change of temperature after tension beyond yield can be given,
which allow more insight in the structure of the underlying model. For a more ambitious and
realistic description of the material behaviour, more sophisticated functions—with more internal
variables—should be used, which then have to be implemented into sufficient FE codes. Typical
examples may be found with Miehe (1995) and Zhu et al. (2014).
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we arrive at the following constitutive relations

κ̇ = ξ
f̂

h
2y2, (63)

o
α log = c ξ

f̂

h
2s, (64)

D p = ξ
f̂

h
2s, (65)

for thermoplastic flow, where

f̂ = 2s : o
τ log + (y20 + 2Bκ)ω Ṫ , (66)

and the plastic modulus is

h = 4y2[c + B(1 − ω(T − T0))]. (67)

We now make use of the classical notation of thermoelasticity, when introducing

∂2W̄

∂τ 2
= C−1,

∂2W̄

∂τ∂T
= A = −C−1 : M, (68)

whereC, A andM are a fourth-order and two second-ordermaterial tensors elasticity,
thermal expansion and stress-temperature tensor, respectively.

From Eqs. (51) and (65), we can derive

D = C−1 : o
τ log + A Ṫ + ξ

f̂

h
2s. (69)

Multiplying this relation from the left byC, we get for the loading and neutral loading
cases, i.e. ξ = 1

o
τ log = C : D + M Ṫ − C : s 4

h

(

s : o
τ log +

(1

2
y20 + Bκ

)

ω Ṫ

)

, (70)

where the term f̂ on the right-hand side (in the brackets) is still a function of the
stress rate. Thus, again multiplying Eq. (70) from the left side by s yields

s : o
τ log = s : C : D + s : M Ṫ − s : C : s 4

h

(

s : o
τ log +

(1

2
y20 + Bκ

)

ω Ṫ

)

.

(71)
From this we can derive
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s : o
τ log =

s : C : D + s : M Ṫ − s : C : s 4
h

(
1
2 y

2
0 + Bκ

)

ω Ṫ

1 + 4
h s : C : s , (72)

and finally introducing this expression into Eq. (70), the inverted form of the total
constitutive relation becomes

o
τ log = C : D + M Ṫ − 4C : s

s : C : D + s : M Ṫ +
(
1
2 y

2
0 + Bκ

)

ω Ṫ

h + 4s : C : s . (73)

For an isotropic material M takes the form M = m I , where m is the stress-
temperature modulus. Thus, expression (73) may be further reduced to

o
τ log = C : D + m I Ṫ − 4C : s

s : C : D +
(
1
2 y

2
0 + Bκ

)

ω Ṫ

h + 4s : C : s . (74)

since the product s : M vanishes.
It clearly turns out that a change in the temperature due to two different effects

may cause a change in the stress or strain. These effects are the thermal expansion,
or alternatively, the thermal stresses on the one side, and the influence of the thermal
softening during plastic flow on the other side. The latter is deviatoric and thus
related with an isochoric motion, whereas the former is associated to a purely elastic
volumetric motion.

4 Application to Simple Examples

Let us now discuss a simple example.21 A rod subject to a uniaxial tension with stress
τ and a fixed temperature T1 is loaded beyond the yield point and then the applied
load at τ ∗ is kept constant, whereas now the temperature is increased to reach a value
T2 > T1. This thermomechanical process is compared with the result of a direct
loading of the same rod at temperature T2.

Moreover, the influence of a cyclic process of heating and cooling on the behaviour
of the rod is touched in short.

21For the sake of simplicity, here a purely thermoplastic behaviour is assumed, i.e. the elastic parts
of the deformation are neglected. Moreover, the hardening of the material may be represented by
a linear isotropic model according to Eq. (61). Even for this simplified model, it turns out from
the subsequent calculations that the reviewer’s statement that: “coupled temperature and plastic
deformation may not be a correct concept in physics” (refer to Remark 2) seems to be disproved.
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4.1 Step 1, Isothermal Loading

The first step is described by an isothermal process with Ṫ = 0. For the sake of
simplicity, we adopt isotropic hardening with c = 0. In this specific case we have

f̂

h
= τ τ̇

3y2B(1 − ω(T1 − T0))
> 0,

and thus loading, provided the plastic modulus does not change its sign.
From Eq. (65), we find

ḣ p = τ̇

B(1 − ω(T1 − T0))
,

which can be integrated to give

τ − τ0(T1) = B(1 − ω(T1 − T0))h
p,

where h p is the plastic part of the (uniaxial) logarithmic strain and τ0(T1) is the yield
stress at T1, i.e.

τ0(T1) = y0

√

3

2
(1 − ω(T1 − T0)).

The first step is terminated at τ = τ ∗, which allows us to calculate h p
1 , the plastic

strain at τ ∗

h p
1 = τ ∗ − τ0(T1)

B(1 − ω(T1 − T0))
.

Moreover, the plastic work κ1 at τ ∗ is then calculated from Eq. (63)

κ1 = τ ∗2 − τ 2
0 (T1)

3B(1 − ω(T1 − T0))
.

An equivalent result can be given for loading at temperature T2, namely

τ − τ0(T2) = B(1 − ω(T2 − T0))h
p,

with

τ0(T2) = y0

√

3

2
(1 − ω(T2 − T0)).

The plastic strain and the plastic work at stress τ ∗ become

h p
2 = τ ∗ − τ0(T2)

B(1 − ω(T2 − T0))
, κ2 = τ ∗2 − τ 2

0 (T2)

3B(1 − ω(T2 − T0))
.
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4.2 Step 2, Heating at Fixed Stress

In the following two steps of the process, we are merely interested in a solution
for the underlying constitutive relations, rather than in the solution of a possible
initial-boundary value problem. Accordingly, the system will be treated as adiabatic.

We now keep the load τ ∗ fixed and increase the temperature from T1 to T2. Thus,
with τ̇ = 0,

f̂

h
= (y20 + 2Bκ) ω Ṫ

3y2B(1 − ω(T − T0))
> 0,

the system is in loading for Ṫ > 0.
From Eq. (65), we find

ḣ p = τ ∗ω Ṫ

2B(1 − ω(T − T0))2
,

and with the initial condition at h p
1 this can be integrated to give

h p = τ ∗

2B(1 − ω(T − T0))
+ τ ∗ − 2τ0(T1)

2B(1 − ω(T1 − T0))
.

and finally

h p
3 = τ ∗

2B(1 − ω(T2 − T0))
+ τ ∗ − 2τ0(T1)

2B(1 − ω(T1 − T0))
,

wherein h p
3 is the plastic strain at T = T2.

Using the initial condition κ1, the plastic work κ3 at T = T2 is determined

κ3 = τ ∗2

3B(1 − ω(T2 − T0))
− τ 2

0 (T1)

3B(1 − ω(T1 − T0))
.

4.3 Step 3, Cooling at Fixed Plastic Strain

In this third step, we keep the plastic strain constant (at the value h p
3 ) and decrease

the temperature back to the starting value, i.e. T2 → T1. Thus, with D p = 0, i.e.
h p = h p

3 and κ = κ3, this subsequent cooling process appears as neutral loading:
The conditions f = 0 and f̂ = 0 are fulfilled for

2

3
τ 2 = (y20 + 2Bκ3)(1 − ω(T − T0)), τ̇ > 0.
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Introducing here T = T1, the respective stress becomes

τ ∗∗ =
√

3

2
(y20 + 2Bκ3)(1 − ω(T1 − T0)).

To illustrate these results, we take the following material constants for thermo-
plastic behaviour:

y0 = 100MPa, B = 3000MPa,

T1 − T0 = 200K, T2 − T0 = 400K, ω = 1

6
× 10−2 K−1.

With these parameters, we get from the above-derived results:

τ0(T1) = y0, τ0(T2) = 1√
2
y0, τ ∗ = 120MPa, τ ∗∗ = 169.71MPa,

h p
1 = 1.0%, h p

2 = 4.93%, h p
3 = 4.0%,

κ1 = 0.73MPa, κ2 = κ3 = 3.13MPa.

The stress-plastic strain behaviour of the rod during the different processes is depicted
in Fig. 1.

This Figure shows the two isothermal stress-plastic strain curves at temperatures
T1 and T2 > T1. The functions of the underlying model have been chosen such that a
linear isotropic hardening is reproduced. Moreover, it is shown that the initial yield
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Fig. 1 Isothermal stress-plastic strain diagrams for T1 and T2 > T1, and non-isothermal loading
paths
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stress as well as the slope of the stress-plastic strain curve decrease as the temperature
increases.

Several different isothermal and non-isothermal loading paths have been calcu-
lated and compared in this Figure.

We first start an isothermal tension process at T1 increasing the load (from the
origin to point A and then from A to B). At point B the stress has reached the value
of τ = τ ∗ = 120MPa, and plastic strain and plastic work are h p = h p

1 = 1.0% and
κ = κ1 = 0.73MPa, respectively.

We now change the process to a non-isothermal heating, where as in a classical
creep test τ = τ ∗ is kept fixed during this process. The stress-plastic strain point is
moving fromB to C, with plastic strain h p

3 = 4.0% and plastic work κ3 = 3.13MPa,
respectively, at point C. It should be noted, however, that point C although here the
temperature T2 is reached does not reach point B’ on the isothermal stress-plastic
strain curve for temperature T2.

This process is compared with the isothermal tension test at T2. Again, the rod
is loaded up to τ = τ ∗ = 120MPa. Here the respective point moves from A’ with
initial yield stress τ0(T2) = 70.71MPa to B’, where plastic strain and plastic work
have reached the values h p

2 = 4.93% and κ2 = κ3 = 3.13MPa, respectively. This
result will not be altered if prior to this process a neutral loading (from point A to
A’) is added, i.e. a heating from T1 → T2, while D p = 0, h p = 0 and κ = 0.

The question may arise, what would happen in point C if subsequently the loading
is reversed to cooling. A direct reversal with τ = τ ∗ = const in the direction of point
B would be excluded22 since in this case f̂ < 0 and unloading would occur. The
same would happen for any other process with a negative plastic strain rate. There is
only one solution to this problem when the plastic strain and the plastic work remain
fixed. Then h p = h p

3 and κ = κ3 and a neutral loading moves point C to point D
with τ = τ ∗∗ = 169.71MPa. Again, the point does not reach the isothermal curve
for T1.

This sequence of processes may be continued as it is marked with the dashed line.
We then will observe a stepwise continuation of curves B-C-D towards larger values
of stress and plastic strain, bounded by the two stress-plastic strain curves for T1 and
T2. Thus, a sequence of heating (with fixed stress) and cooling (with fixed plastic
strain) between two temperatures T1 and T2 will produce a creep-like behaviour
during the first part of this cycle and a (necessary) increase of the stress during the
second part. In both cases, however, the values of stresses and plastic strains will not
reach the corresponding values of the isothermal curves. In other words, a process of
cyclic heating and cooling—subject to the above-mentioned conditions of stress and
plastic strain, respectively—will produce ratchetting, and stress ratchetting as well,
within the bounds of the isothermal stress-plastic strain curves.

22Unloading, indeed, could be a solution to this problem. However, here we are primarily interested
in plastic solutions, where the plastic indicator remains ξ = 1. Moreover, any process with further
increasing plastic strain should also be excluded.
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With reference to the remarks of the two unknown reviewers, we simply note that
as demonstrated with the equation of heat production23 three different effects may
contribute to the evolution of temperature: First, the heat flux aswell as the heat source
may change the temperature. The second contribution is due to the thermoelastic
coupling—which frequently is neglected.And the third contribution is a consequence
of the dissipation during plastic work and the work done by the internal variables as
representatives of micro-structural changes. Obviously, a change in temperature also
may affect these quantities. Thus, a sentence like: “A change in temperature itself
(through heating or cooling) should not produce stress and/or plastic deformation in
a material” does not reflect the behaviour of a thermo-elastoplastic model.

In the present thermoplastic case, where no heat flux is acting and the elastic strain
and rate of deformation are neglected, the right-hand side of equation (80) reduces
to the inelastic stress power or rate of plastic work—if further no additional internal
variables are used. This means that the plastic work increases as the temperature
increases (heating). If further during this process the stress is kept constant, the plastic
strain must increase. Comparable results have also been observed experimentally
during creep tests performed at low carbon steels under temperature variation (refer,
e.g. to Taira and Ohnami 1960 and Iwasaki et al. 1987). For creep additional effects
like thermal activation have to be considered. These phenomena are not discussed
in this short report. It should, however, be mentioned that possible recovery terms
introduced in the evolution equations of the back stress (59) would underline the
ratchetting of the material (refer, e.g. to Zhu et al. 2016).

Appendix

We introduce a free energy function ψ = ψ(he, T,α, κ) per unit reference volume,
where he may be understood as a formal Hencky strain.24

Then from the dissipation inequality (11), we may derive

D =
{

τ − ∂ψ

∂he

}

: De −
{

η + ∂ψ

∂T

}

Ṫ + τ : Dp − ∂ψ

∂α
: o

α log − ∂ψ

∂κ
κ̇ ≥ 0, (75)

and the corresponding equations of state

τ = ∂ψ

∂he
and η = −∂ψ

∂T
. (76)

With these results, the production of free energy turns out to be

ψ̇ = τ : De − ηṪ − Di , (77)

23See Eqs. (80) or (82) in the Appendix.
24See, e.g. Xiao et al. (2007b), Appendix B and footnote 9 therein.
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where

Di = −∂ψ

∂α
:oα log − ∂ψ

∂κ
κ̇ (78)

is the dissipation due to the inelastic deformation of the internal structure. Thus,
introducing the transformation (7), the entropy production may be reformulated as

T η̇ = τ : D p + Di − J∇ · q + r. (79)

The first term herein is the so-called inelastic stress power. In passing, we note that
for an adiabatic process, i.e. for −J∇ · q + r ≡ 0, due to the different sources of
dissipation the remaining thermodynamic process is not isentropic.

With the help of the equations of state (76), this result may be converted to
an evolution equation for the temperature. We thus arrive at the equation of heat
production:

cṪ = −J∇ · q + r + T
∂τ

∂T
: De + τ : D p + Di − T

∂Di

∂T
. (80)

where

c = −T
∂2ψ

∂T 2

is the specific heat at constant strain. Utilising the transformation

ϕ = ψ − T
∂ψ

∂T
(81)

the latter two terms in (80) may also be expressed as functions of the internal energy
ϕ:

cṪ = −J∇ · q + r + T
∂τ

∂T
: De + τ : D p − ∂ϕ

∂α
:oα log − ∂ϕ

∂κ
κ̇. (82)

In addition to the heat flux, the third term herein represents the thermoelastic
coupling effect. The last three terms describe the contributions of the plastic work
and the dissipation from the internal structure, respectively. For an adiabatic process
this expression reduces to

cṪ = T
∂τ

∂T
: De + τ : D p − ∂ϕ

∂α
:oα log − ∂ϕ

∂κ
κ̇. (83)

Following a procedure by Lehmann (1984), we also may introduce a complemen-
tary free enthalpy function g = g(τ , T,α, κ) per unit reference volume:

g = ϕ − Tη − τ : he. (84)



Finite Elastoplasticity with Thermal Effects—Some Unexpected Phenomena 161

containing a formal elastic Hencky strain he. Then the energy balance relation (8)
may be reformulated as

ġ = τ : D − J∇ · q + r − ηṪ − T η̇ − ˙
τ : he. (85)

This gives

T η̇ = τ : D − J∇ · q + r − (ġ + ηṪ ) − ˙
τ : he.

Hence, similar as before, we may recast the inequality (11) in the form:

D = τ : D p − (ġ + ηṪ ) − o
τ log : he ≥ 0. (86)

Upon introducing here

ġ = ∂g

∂τ
: o
τ log + ∂g

∂T
Ṫ + ∂g

∂α
: o
α log + ∂g

∂κ
κ̇, (87)

the above inequality takes the form

D = −
{

he + ∂g

∂τ

}

: o
τ log−

{

η + ∂g

∂T

}

Ṫ +τ : D p − ∂g

∂α
:oα log− ∂g

∂κ
κ̇ ≥ 0, (88)

and the corresponding equations of state are:

he = − ∂g

∂τ
and η = − ∂g

∂T
. (89)

The complementary thermoelastic potential W̄ (τ , T ) mentioned in Sect. 3.2 is part
of this free enthalpy function g.
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Crystal-Plasticity Simulation
of Micromachining of Single-Crystal
Metal: Methodology and Analysis

Qiang Liu, Srihari Dodla, Anish Roy and Vadim V. Silberschmidt

Abstract A crystal-plasticity modelling framework was implemented to simulate
micromachining of a single-crystal metal. A new shear strain-based criterion was
proposed to control material removal. This criterion was implemented in three dif-
ferent modelling techniques: element deletion, arbitrary Lagrangian–Eulerian (ALE)
adaptive remeshing and smooth particle hydrodynamics (SPH) in a general-purpose
finite-element software packageABAQUS.The three differentmodelling approaches
were compared in terms of their computational accuracy and efficiency. Based on
these studies, an optimized modelling strategy was proposed to simulate micro-
scratching of single-crystal copper. The validity of the suggested methodology was
corroborated through comparison between FE simulations and experimental data in
terms of cutting forces, chip morphology and pile-up patterns in the work-piece.

1 Introduction

The production of small-scaled componentswith complex features is gaining increas-
ing importance due to the trend of miniaturization of products. As a result there is
a growing need for fast, reliable, mass micromachining of functional components
(Engel and Eckstein 2002). In contrast to conventional macro-scale machining, a
process zone in micromachining is usually limited to one or several grains of a metal-
lic work-piece material. A component in the microscale exhibits different material
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behaviour when compared to its macro-scale counterpart (Greer and De Hosson
2011; Kraft et al. 2010). Consequently, a cutting response in the microscale differs
significantly from that of its macro-scale counterpart. For example, a cutting force
and chip morphology were found to depend on crystal orientation in several exper-
imental studies on micromachining of single-crystal metals (Lee et al. 2000; Mian
et al. 2011). To better understand local deformation processes at a tool–work–piece
interface in a micromachining process, a thorough analysis of deformation mecha-
nisms at grain level is required (Mian et al. 2011; Shi and Attia 2010).

In recent years, a finite-element (FE) method has been widely used to model
macro-scale machining of metallic materials, including analysis of chip morphology
and temperature effects (Buchkremer et al. 2014; Babitsky et al. 2004), influence
of cutting conditions on structure of machining subsurface (Arısoy and Özel 2015;
Jafarian et al. 2014) as well as optimization of machining parameters (Hokka et al.
2012; Elhami et al. 2015). Similar research was also conducted in the field of micro-
machining; for example, in thework of Jin andAltintas (2012), a relationship between
cutting forces and chip thickness and a tool edge radius was identified through series
of FE simulation results for micromilling. FE simulations could provide an in-depth
understanding of the underpinning micromechanisms during the micromachining
process that are difficult to capture experimentally. Liu and Melkote (2007) adopted
FE simulations to reveal a micromechanism of a size effect in metal microcutting,
i.e. a nonlinear increase in specific cutting energy with a decrease in the depth-of-cut.
The simulation results indicated that a strain-gradient effect in a deformation zone
was a dominating reason of the size effect. Parle et al. (2014) studied microcrack
formation in orthogonal machining of carbon steel and evaluated a contribution of
microcracks to the total specific energy of a shear zone under different machining
conditions. In the work of Zong et al. (2016), the FE method was used to capture
crack propagation in a process of chip formation in ZnS crystal, and then used to
predict critical cutting parameters.

However, in these FE simulations, anisotropy at the grain level, induced by crystal-
lographic structure, was not considered. To overcome this drawback, a single-crystal-
plasticity (SCP) theory, incorporating the effect of crystal orientation and activated
slip systems, was developed (Roters et al. 2010) to study inherently anisotropic defor-
mation behaviour at a smallest practical length scale ofmetallicmaterials. SCP-based
studies by Zahedi et al. (2013) and Tajalli et al. (2014) showed that chip formation
and cutting forces in single-crystal copper depend on the initial crystal orientations
in the work-piece with respect to a cutting direction.Moreover, the works byDemiral
et al. (2014) and Pal and Stucker (2013), based on strain-gradient crystal-plasticity
simulations, indicated that inhomogeneous plastic deformation could affect machin-
ability of a work-piece. In contrast to the extensive numerical studies, these crystal-
plasticity-based simulations still lack comprehensive experimental validations.

In FE simulations of micromachining, the modelling of material removal or chip
separation is an important issue in addition to anisotropic deformation behaviour at
the grain level. To our knowledge, three modelling methods are usually employed
to simulate the material removal: element deletion (Hibbitt et al. 2012), arbitrary
Lagrangian Eulerian (ALE) adaptive remeshing (Hibbitt et al. 2012) and smooth
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particle hydrodynamics (SPH) (Hibbitt et al. 2012; Monaghan 2005). For example,
element deletion was adopted by Demiral et al. (2014) and Arisoy and Ozel (2015),
the ALE adaptive remeshing was employed by Amini et al. (2008), Jin and Altintas
(2012) and Parle et al. (2014), while SPH was utilized in simulations of Zahedi et
al. (2013; 2015) and Zhang and Dong (2015). However, there is still a lack of direct
comparison among thesemodellingmethods,which is one of the primarymotivations
of this study.

This chapter is organized as follows: a theoretical framework of the SCP theory
and its numerical implementation are summarized in Sect. 2, followed by description
of the suggested modelling procedure in Sect. 3. Simulation results from different
modelling methodologies are analyzed in Sect. 4. An optimized modelling strategy
was chosen to predict the microscratching of single-crystal copper, and the com-
parison of simulations with experiment is discussed in the subsequent section. We
conclude with some remarks in last Sect. 6.

2 Constitutive Relations

2.1 Theory

In this section, a classical crystal-plasticity theory adopted in this study is reviewed.
A deformation gradient, F, can be decomposed into its elastic and plastic parts:

F = FeFp, (1)

where the subscripts ‘e’ and ‘p’ denote the elastic and plastic parameters, respectively.
By applying the product rule of differentiation, one can obtain the rate of the total
deformation gradient, Ḟ, as

Ḟ = FeḞp + FeḞp. (2)

Therefore, the velocity gradient, L, can be introduced following its definition L =
ḞF−1 as

L = ḞeF−1
e + Fe(ḞpF−1

p )F−1
e = Le + Lp. (3)

It is assumed that the plastic velocity gradient, Lp, is induced by shearing on each
slip system in a crystal. Hence, Lp is formulated as the sum of shear rates on all the
slip systems, i.e.

Lp =
N

∑

i=1

γ̇ αsα ⊗ mα, (4)



168 Q. Liu et al.

where γ̇ α is the shear slip rate on the slip system α, N is the total number of slip
systems, and unit vectors sα and mα define the slip direction and the normal to
the slip plane in the deformed configuration, respectively. Furthermore, the velocity
gradient can be expressed in terms of a symmetrically rate of stretching, D, and an
antisymmetric rate of spin, W ,

L = D + W = (De + W e) + (Dp + W p). (5)

Using Eqs. (3) and (4), it can be deduced

De + W e = ḞeF−1
e , Dp + W p =

N
∑

i=1

γ̇ αsα ⊗ mα. (6)

Following the work of Huang (1991), a constitutive law is expressed as the rela-
tionship between the elastic part of the symmetric rate of stretching, De, and the

Jaumann rate of Cauchy stress,
�
Σ , i.e.

�
Σ +Σ(I : De) = C : (D − Dp), (7)

where I is the second-order unit tensor, C is the fourth-order, possibly anisotropic,
elastic stiffness tensor. The Jaumann stress rate is expressed as

�
Σ= Σ̇ − W eΣ + ΣW e. (8)

On each slip system, the resolved shear stress, τα , is expressed by a Schmid law,

τα = sym(sα ⊗ mα) : Σ . (9)

The relationship between the shear rate, γ̇ α , and the resolved shear stress, τα , on the
slip system α is expressed by a power law proposed by Hutchinson (1976),

γ̇ (α) = γ̇0

∣
∣
∣
∣

τα

gα

∣
∣
∣
∣

n

sgn(τα), (10)

where γ̇0 is the reference shear rate, gα is the slip resistance and n is the rate-sensitivity
parameter. The evolution of gα is given by

ġα =
n

∑

i=1

hαβ |γ̇ β |, (11)



Crystal-Plasticity Simulation of Micromachining of Single-Crystal Metal … 169

where hαβ is the hardening modulus that is calculated from

hαα = (h0 − hs) sech
2

(
(h0 − hs)γ

τs − τ0

)

+ hs,

hαβ = qhαα(α �= β), γ =
∑

α

∫ t

0
|γ̇ α|dt. (12)

The proposed hardening relation is modified from the original relation proposed by
Asaro (1983). Here, h0 and hs are the initial and saturated hardening modulus, q is
the latent hardening ratio, τ0 and τs are the shear stresses at the onset of yield and
the saturation of hardening, respectively. γ is the accumulative shear strain over all
the slip systems.

2.2 Implementation in Explicit ABAQUS Environment

Implementation of the SCP theory in implicit FE environment, by means of a so-
called UMAT subroutine, was introduced in the work of Huang (1991), where a time
integration scheme and a stress update algorithm were presented as

γ̇ α�t = �γ α = �t[(1 − θ)γ̇ α|t + θγ̇ α|t+�t], (13)

�Σ = �
Σ �t. (14)

Here,�t is the time increment in the FE calculation; θ ranges from0 to 1, representing
different time integration schemes (as an example, setting θ = 0 yields a simple

Euler time integration scheme); the Jaumann stress rate,
�
Σ , was defined in Eq. (8).

In this chapter, the SCP theory is implemented employing a VUMAT subroutine in
the explicit ABAQUS environment. The time integration scheme was identical to
the one implemented in the UMAT; however, the stress update algorithm had to be
modified due to the difference of the defined stress rate for ABAQUS/standard and
ABAQUS/explicit formulations. The former employed the Jaumann stress rate, but
the latter was based on the Green–Naghdi stress rate (Hibbitt et al. 2012).

In contrast to the Jaumann stress rate defined in Eq. (8), the Green–Naghdi stress
rate was defined as

�
Σ= Σ̇ − ΩeΣ + ΣΩe. (15)

Here,Ω was found froma right polar decompositionof the total deformationgradient,
F, as

Ω = ṘRT , F = VR, (16)
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where R and V are the right rotation and stretch tensors, respectively. To evaluate
the stress update defined by the Green–Naghdi stress rate using the Jaumann rate,
one can use the Hughes–Winget algorithm (Hughes and Winget 1980), as

Σ |t+�t = �RΣ |t�RT + �Σ, (17)

�R =
[

I − 1

2
(�W − �Ω)

]−1 [

I + 1

2
(�W − �Ω)

]

, (18)

�W = W�t,�Ω = Ω�t, (19)

where �R is the relative spin increment tensor and I is the second-order unit tensor,
�Σ is the stress increment obtained with the Jaumann stress rate (Eq. (14)). Another
essential difference in ABAQUS/Explicit is that the stress and strain tensors are
definedbased on the spatial coordinate system (i.e.with respect to the local coordinate
system rotating with the volume), in contrast to the material coordinate system (i.e.
a fixed global coordinate system) used in ABAQUS/Standard. Therefore, during the
conversion of UMAT to VUMAT, the stress update algorithm in VUMAT should be
rewritten as

Σ |t+�t = �RΣ |t�RT + R�ΣRT . (20)

3 Modelling Procedure

3.1 Finite-Element Model

Without loss of generality, a single-crystal copper with a face-centred cubic (FCC)
crystallographic structure was used in the study. A FE model was developed to
simulate a microscratching processes as shown in Fig. 1a. A cutting tool had a wedge
angle of 60◦ and a clearance angle of 6.25◦. Deformation behaviour of single-crystal
copper was described with the SCP model introduced in Sect. 2.1, implemented in
the subroutine VUMAT formulated in Sect. 2.2. For FCC single-crystal copper, slip
was assumed to occur on the usual twelve [111]<110> slip systems, in which [111]
represents the normal to slip plane and<110> is the slip direction. In our simulations,
the cutting toolwas assumed to be rigid, and the contact condition between the cutting
tool and the work-piece was assumed to be frictionless. A cutting direction was in
the negative X direction (Fig. 1a), and a cutting velocity was 10mm/min. The groove
produced by microscratching is shown in Fig. 1b, which is a result of two stages of
microscratching: In Stage 1, a linearly increasing cutting depth (ranging from 0 to
18µm) was set for the cutting tool, while in Stage 2 a constant cutting depth (18µm)
was retained. To reduce a computational cost, the two stages were modelled using
two FEmodels. In the firstmodel, the length, height andwidth of thework-piecewere
340, 200 and 120µm, respectively. In the second model, the respective magnitudes
were 240, 200 and 120µm.
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Fig. 1 Finite-element model (a) for simulation of microscratching and groove geometry (b)

The work-piece was meshed using eight-node brick elements with reduced inte-
gration (C3D8R) in ABAQUS. For comparison of different modelling techniques
of material removal, a mesh with 2 × 105 elements was used for computational
efficiency. Here, Stage 2 of microscratching was considered, with a fixed cutting
depth of 18µm. For a full FE simulation replicating a physical experiment, a mesh
with 1 × 106 brick elements was used after an extensive mesh-sensitivity study.
To improve accuracy, a finer local mesh was used in regions near the cutting zone
with a height of 27µm. In this study, a normal to the top surface of the work-piece
has the [110] crystal orientation. Two orientations were chosen as cutting directions,
[1-10], and another rotated by an angle of 45◦ with respect to it. The cutting forces
were defined as follows: a force along the cutting direction (X direction) is called
the principal force, and those along the Y and Z directions are the thrust and lateral
forces, respectively (Fig. 1b).

3.2 Modelling of Material Removal

Three modelling techniques to simulate material removal in a machining scenario
were considered in our study. To determine chip separation in a FE simulation, a
criterion formaterial removal is required (Parle et al. 2014). Inmacro-scalemachining
studies, fracture-energy-based damage criteriawere typically used to controlmaterial
removal (Jin and Altintas 2012; Zhang et al. 2012), such as a widely used Johnson–
Cook model (Johnson and Cook 1985) (though its applicability came under some
noteworthy criticism (Zhang et al. 2015)). Modelling damage in single-crystal metal
remains a significant challenge due to its inherently anisotropic character of evolution
in these materials. Typically, a simplified isotropic damage model was used (Kim
and Yoon 2015), claiming that a shear strain-based damage model provides the most
accurate prediction based on experimental data. As extreme shear deformation occurs
at the interface between a cutting tool and a work-piece during machining, a shear
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strain-based criterion (i.e. the accumulative shear strain over all the slip systems,
γ ) was employed to control element deletion in the work of Demiral et al. (2014).
However, our studies indicate that using accumulated shear strain (Demiral et al.
2014) ormaximumshear strain (KimandYoon2015) as criterion formaterial removal
is insufficient to capture the effects of crystallographic orientation on the cutting
force. To overcome this drawback, a new shear strain-based criterion is proposed
here in the following form:

max(γ − γcr, γsl,min − γsl,cr) ≥ 0, (21)

γsl,min = min(γ α), α = 1, 2, . . .N (22)

where γsl,cr and γcr are the critical values of shear strain on a single slip system and
the accumulated shear strain on all the slip systems, respectively. That is, damage
in a single crystal is considered based on two scenarios of partial and full activation
of slip systems. In other words, both shear on individual slip systems as well as the
overall slip due to all slip systems are monitored. If either the critical value for an
individual slip system (γsl,cr) or the accumulated slip (γcr) is attained, the element is
removed. In our study, the values of γcr and γsl,cr were 6.0 and 0.068, respectively;
these parameters were chosen based on initial calibration tests. In a nominal sense,
these values imply that failure in single-crystal copper occurs easier for the full
activation of slip systems than for that of a partial one.

The proposed criterionwas implemented to control element deletion or conversion
of finite-elements into SPH particles. Such a criterion of material removal was not
required when the ALE adaptive remeshing technique was employed. In this case,
severely deformed elements in a shear zone of the work-piece could be re-meshed
with regular elements and simultaneously separated from the latter as a chip (Parle
et al. 2014; Hibbitt et al. 2012). In FE simulation of microscratching, a contact
interface between the cutting tool and the work-piece was more irregular compared
to that of microcutting. As a result, with acceptable levels of computational cost, the
process of chip separation in microscratching could not be well simulated when only
ALE adaptive remeshing was employed. Instead, material removal modelling using
both ALE adaptive remeshing and element deletion was considered as a case study.
The latter was compared to that with only element deletion so that the roles of ALE
adaptive remeshing in FE simulation could be elucidated.

4 Analysis and Discussion

4.1 Comparison of Implicit and Explicit Implementations
of SCP Theory

To validate the conversion of UMAT into VUMAT introduced in Sect. 2.2, sev-
eral numerical tests were carried out in ABAQUS/Standard and ABAQUS/Explicit,
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Fig. 2 Schematic of implicit and explicit FE simulations using SCP theory: a crystal orientation
of numerical sample; b deformation regime

respectively. Figure2 showed the schematic of numerical test, including a crystal
orientation of numerical sample (Fig. 2a) and a deformation regime (Fig. 2b). These
numerical tests were divided into three cases of deformation of the numerical sample:
tension, shear in the XY plane and shear in the XZ plane. The loading was realized by
employing a displacement boundary condition in ABAQUS, and the applied nominal
strain was up to 100% in order to check implementation of the SCP theory for large
deformations. In the explicit FE method, an inertial force was introduced into the
equation of force balance, which was one of the most important differences from
the implicit formulation. To eliminate a possible inertial effect, the increase in the
nominal strain, εnorm, with time, t, followed a smooth curve, introduced as

εnorm(t) = εfξ
3(10 − 15ξ + 6ξ 2), ξ = t

tf − t
(23)

where εf and tf are the final nominal strain and time, respectively. The variation of
with time is illustrated in Fig. 2b.

For the case of tension, stress–strain curves obtained with the implicit and explicit
FE simulations are compared in Fig. 3 (the inset shows shapes of themodelled sample
before and after deformation). To quantitatively demonstrate a difference between
the Jaumann stress rate (JSR) and the Green–Naghdi stress rate (GSR), the numer-
ical results obtained with VUMAT with account for the JSR are also provided for
comparison. Apparently, the two used VUMAT formulations yield the same tensile
response asUMAT. Therefore, for samples under tension (or compression), therewas
no difference between the JSR and GSR due to the absence of rotation deformation
(here R = I).

A similar comparison for shearing in theXYplane (Fig. 4a) andXZplane (Fig. 4b)
was carried out. As shown in the insets in Fig. 4, an elongation effect of the sample
became significant under large shear deformation. As a result, themagnitude of direct
stress becomes comparable to the level of shear stresses induced in shearing. Shear
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Fig. 3 Comparison of implicit and explicit implementations of SCP theory for tension

deformation are accompanied by inherent rotation in the computations; consequently,
a difference between the JSR and GSR is clearly observed on stress–strain curves
for shear deformation. Such a difference was significant only when shear strain was
relatively high, e.g. larger than 0.5. Thus, a special attention should be paid to the
difference for different FE formulations when the finite-deformation-based consti-
tutive theory is to be implemented. The stress–strain curves obtained with VUMAT
with the GSRmatched perfectly those fromUMAT under shearing deformation, thus
validating implementation of the explicit formulation of the SCP theory described
in Sect. 2.2.

Fig. 4 Comparison of implicit and explicit FE simulations in shearing in XY plane (a) and XZ
plane (b)
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4.2 Comparison of Material Removal Method

To compare different modelling techniques of material removal, a cutting force and
a computational time were used as primary parameter. All numerical tests were per-
formed in ABAQUS v.6.14. The ALE adaptive remeshing scheme was implemented
after every 50 increments, and 3 mesh sweeps were created to reduce element distor-
tion each time. In SPH-based simulations, a continuum finite-element was converted
into an SPH particle once the criterion of material removal was satisfied for it.

The cutting forces obtained with the three material removal methods are shown
in Fig. 5 for both 0◦ and 45◦ directions; both the principal and thrust forces are
presented. For all the modelling techniques of material removal, the cutting forces
initially increasedwith the engagement of the cutting tool, and approached a constant
level with the full tool engagement in the work-piece. For the studied directions, the
principal forces were much larger than the thrust forces. Compared to the case of
element deletion, the introduced ALE adaptive remeshing scheme had no signifi-
cant effect on the cutting forces in both 0◦ and 45◦ directions. Some differences
were observed between the cases of element deletion and use of SPH. Especially in
the engagement stage, the cutting forces obtained in the simulation with SPH were
larger than those from modelling incorporating only element deletion. A possible
reason was a continuing contribution of SPH particles to the overall cutting/reaction
forces even after the material removal criterion was satisfied. However, this differ-
ence became less significant at the full-engagement stage with relatively constant
cutting forces for the two cutting directions studied. The average cutting forces and
the relative computational times obtained with the three modelling techniques are
summarized in Table1.

The obtained simulation results indicate that the difference in average principal
and thrust forces is negligible. For comparability, the computational times for differ-
ent studied cases were normalized with that for the 0◦ direction simulation with the
element deletion method. Apparently, significant differences in computation time for

Fig. 5 Comparison of cutting forces obtained with different material removal methods for 0◦ (a)
and 45◦ (b) directions
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Table 1 Comparison of average cutting forces and computational times for different modelling
techniques of material removal

Parameter Element deletion ALE and element deletion SPH

0◦ 45◦ 0◦ 45◦ 0◦ 45◦

Average principal force (N) 0.269 0.329 0.265 0.323 0.277 0.327

Average thrust force (N) 0.074 0.089 0.073 0.087 0.076 0.090

Relative computational time 1 1.25 6.89 9.48 12.3 12.5

different techniques were observed. Among the three used methods, element dele-
tion resulted in the least computational time whilst SPHwas the most expensive. The
computational times for the ALE adaptive remeshing and SPH were about 7 and 10
times of that for element deletion. The computational cost estimation was based on
numerical experiments with 2 × 105 elements used to mesh the work-piece. Clearly,
the quantitative estimates with regard to computational costs are expected to vary
for meshes with different element densities; still, qualitatively, the element deletion
technique is computationally cheaper in comparison to two other used approaches.
Interestingly, the simulation for the 45◦ cutting direction was consistently more com-
putationally expensive than that for the 0◦ cutting direction.

In summary, the three modelling techniques of material removal produced almost
identical results for the cutting force, but element deletion was by far the most
computationally efficient.

5 Application of Crystal-Plasticity Simulation
to Experiment

In this section, experimental results from microscratching of single-crystal copper
were employed to validate current modelling methodology presented before. Here,
the Green–Naghdi stress rate and the element deletion method were chosen based
on the analysis in Sect. 4. First, experimental data on deformation in single-crystal
copper were employed to calibrate material parameters of the work-piece. The exper-
imental data for single-crystal copper under compression was reported by Takeuchi
(1975).As shown inFig. 6, numerical results obtained after calibration showan excel-
lent match with the experimental data for both [100] and [111] crystal orientations.
The calibrated model parameters are listed in Table2, and were used to simulate the
microscratching process of single-crystal copper.

The variation of cutting forces with time during a full microscratching process,
including its two stages-with increasing depth and constant depth, is shown for the 0◦
and 45◦ directions (Fig. 7). In the first stage, both principal and thrust forces increased
with time due to the continuing increase in the cutting depth. In the second stage,
cutting forces approached constant levels. In our FE simulation, the cutting process
was carried out for 1 s in the second stage. As the two stages in the microscratching
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Fig. 6 Comparison of experimental and numerical stress–strain behaviour under compression for
single-crystal copper

Table 2 Material parameters of single-crystal copper

Parameter Definition Value Unit

γ̇0 Reference shear rate 0.001 s−1

n Rate-sensitivity parameter 50 –

τ0 Initial slip resistance 4.0 MPa

τs Saturated slip resistance 52.0 MPa

h0 Initial hardening modulus 180.0 MPa

hs Saturated hardening modulus 24.0 MPa

q Latent hardening ratio 1.2 –

Fig. 7 Comparison of cutting forces for FE simulations and experimental data in microscratching
of single-crystal copper for 0◦ (a) and 45◦ (b) directions
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were simulated using two different FE runs, an apparent discontinuity was observed
on the cutting force-time curves (due to concatenation of two curves). The experi-
mental curves also show a clear discontinuity at the point of transition from Stage 1
to 2; this is due to the nature of the experiment, in which at the completion of Stage
1 the tool movement was stopped before the start of Stage 2. As shown in Fig. 7, the
simulation results correlate well with the experimental data for the principal forces
(with the exception of the discontinuous region between the stages). A significant
dependence of the principal force on crystal orientation was observed both in the
experiments and simulations. In Stage 2, the principal force for the 45◦ direction
was about 40% higher than that for the 0◦ direction. This anisotropy in the principal
force was accurately captured in the FE simulations, thus validating the suggested
criterion of material removal. Thrust force predictions were comparatively poorer.
A possible reason for this could be relatively low magnitudes of the thrust force.
The thrust forces showed a lower dependence on the cutting direction both in the
simulation results and the experimental data for the normal to work-piece surface
fixed at the [110] crystal orientation.

Another important aspect in FE simulations of metal machining is their capa-
bility of capturing chip morphology. The chip morphology obtained with our FE
simulations and experiment is compared in Fig. 8. When cutting was along the 0◦

Fig. 8 Comparison of chip morphology for FE simulations and experiments in microscratching of
single-crystal copper: a simulation in 0◦ direction; b experiment in 0◦ direction; c simulation in
45◦ direction; d experiment in 45◦ direction



Crystal-Plasticity Simulation of Micromachining of Single-Crystal Metal … 179

direction (i.e. [1-10] orientation), activated slip systems in the FCC crystallographic
structure were symmetrical with respect to it. Therefore, in the FE simulation, the
chip separated from work-piece symmetrically. The stress field was also symmetric
relative to the cutting plane (Fig. 8a). The simulated chipmorphology was verified by
the experimental results shown in Fig. 8b. In contrast, microscratching along the 45◦
direction yielded an asymmetrical stress field and chip formation (Fig. 8c, d) as the
cutting direction did not coincide with main axes of symmetry of the FCC structure.

Furthermore, distributions of displacement normal to the work-piece’s surface
are shown in Fig. 9 for both 0◦ and 45◦ directions (here, the chip was removed for
clarity). Again, symmetrical and asymmetrical deformation fields in the work-piece
were observed for the microscratching in the 0◦ and 45◦ directions, respectively.
Ahead of the chip, higher deformationwas observed for directions at about±45◦ with
respect to the cutting direction formicroscratching in the 0◦ direction; however, larger
deformations were found to the right of cutting plane for microscratching in the 45◦
direction. Consequently, the pile-up height to the right of groove was larger than that
to the left in the FE simulation for microscratching in the 45◦ direction. The surface

Fig. 9 Comparison of displacement fields inwork-piece for FE simulation and experimental data on
microscratching of single-crystal copper: a simulation in 0◦ direction; b experiment in 0◦ direction;
c simulation in 45◦ direction; d experiment in 45◦ direction
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Fig. 10 Pile-up morphology in cross section of work-piece in FE simulation for 0◦ (a) and 45◦
(b) directions

morphology of the deformed work-piece was measured in the experiments, and the
surface height is shown by contour plots in Fig. 9b, d. Clearly, the surfacemorphology
in the FE simulations was qualitatively consistent with that in experiment.

Based on the obtained simulation results, a representative cross section perpendic-
ular to the cutting direction was chosen for the deformed work-piece; the two cross
sections corresponding to the two cutting directions are shown in Fig. 10. Clearly, the
residual groove geometry and surface integrity of the work-piece depended signifi-
cantly on the cutting direction in the single crystal. The pile-up height corresponding
to four feature points (Points A through D) indicated in Fig. 10 was assessed; the
obtained results are listed in Table3. For both simulation and experimental results,
the pile-up height of points A and B was not exactly the same. It was due to the
complex deformation field in the work-piece during microscratching (in spite of the
full symmetry). In experiments, the asymmetry was more pronounced due to the dif-
ficulty in ensuring a perfect spatial orientation of the process due to inherent errors
and precision of the system. Therefore, in experiments, the chip separation was less
symmetrical than the groove’s morphology during microscratching in the 0◦ direc-
tion (Fig. 8a). In summary, the simulation results agreed well with the experimental
data for the pile-up height although there were some differences for Points A and C.

Table 3 Comparison of pile-up height for FE simulations and experiments

0◦ direction 45◦ direction

Point A Point B Point C Point D

Simulation (µm) 3.75 3.30 1.26 4.20

Experiment (µm) 4.00 3.40 1.0 4.25
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6 Conclusions

This chapter presented a methodology for crystal-plasticity-based simulations of
micromachining of single-crystal metals. Numerical implementation of the crystal-
plasticity theory in the explicit finite-element environment was introduced, and the
user subroutine incorporating the Green–Naghdi stress rate was shown to match
accurately the theoretical predictions. A new chip separation criterion, accounting
simultaneously for partial and full activation of slip systems, was proposed to con-
trol material removal. This criterion was implemented using three types of modelling
techniques: element deletion, ALE adaptive remeshing and SPH. These techniques
showed no significant effect on the predicted level of cutting forces; however, compu-
tationally the element deletion was much less expensive compared to others. Results
of numerical simulations of microscratching tests on single-crystal copper incorpo-
rating the Green–Naghdi stress rate and the element deletion technique were found
to correlate well with the experimental data. Furthermore, a quantitative agreement
in pile-up patterns of the machined work-piece surface was obtained between the
simulations and the experiments. The proposed modelling methodology could be
extended to simulate micromachining of other single-crystal metals.
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Warpage Variation Analysis of Si/Solder/Cu
Layered Plates Subjected to Cyclic Thermal
Loading

Nobutada Ohno, Satoshi Mizushima, Dai Okumura and Hisashi Tanie

Abstract In cyclic thermal tests of Si/solder/OFHC-Cu (silicon/solder/oxygen-free
high conductivity copper)-layered plates, the authors observed either the cyclic
growth or cyclic recovery of warpage to occur depending on the heat treatment
of the copper before soldering. In this study, the test results are numerically analyzed
by assuming three material models for the solder and two material models for the
copper. It is shown that the test results are reproduced well if proper material models
are used in finite element analysis. It is revealed that the so-called multiaxial ratch-
eting was induced in the solder, while the uniaxial type of ratcheting or cyclic strain
recovery occurred in the copper. As a result, the Armstrong and Frederick model is
suggested to be valid for the multiaxial ratcheting in the solder at such low strain
rates as in the cyclic thermal tests, whereas the Ohno and Wang model is shown to
be appropriate for the copper. To confirm this unexpected result for the solder, the
Armstrong and Frederick model is applied to the multiaxial ratcheting of another
solder at three strain rates.
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1 Introduction

Inverter power modules developed for hybrid and electric cars have multilayered
structures to meet the requirements for high power density, heat dissipation, and
reliability (Ishiko 2004; Wada et al. 2010; Kimura et al. 2014). Layers such as Si
dies, insulators, brazing metals, solders, and metallic baseplates are mounted in this
type of power modules. Since these layers have considerably different CTEs (coeffi-
cients of thermal expansion), warpage can occur under soldering and thermal load-
ing. Warpage may affect the heat radiation from power modules to heat extractors.
Warpage is, therefore, regarded as one of the important issues in designing inverter
power modules for hybrid and electric cars.

Tanie et al. (2011) studied a fundamental subject for the warpage issue mentioned
above. In that study, cyclic thermal tests of Si/solder/OFHC-Cu layered plates were
performed to confirm the computational findings of Nakane et al. (2008, 2010).
The Cu layer was either as-received or fully annealed before soldering. Cyclic
growth/recovery of warpage was thus experimentally observed to occur with an
increase in the number of thermal cycles. The cyclic growth occurred when the Cu
layer was fully annealed before soldering and was relatively thick in comparison with
the Si and solder layers. Tanie et al. (2011) also performed finite element analysis to
simulate the cyclic thermal tests. In the analysis, however, no strain hardening in the
solder was assumed to simplify the analysis, although the solder exhibited notice-
able strain hardening at low temperatures under cyclic thermal loading in the tests.
Moreover, the modes of ratcheting in the solder and copper layers were not shown
as results of the analysis, although the validity of a material model for ratcheting
depends on the mode to be simulated.

Material modeling for ratcheting has greatly advanced especially in the 1990s
and 2000s, leading to the following understanding, as reviewed by Ohno (1997),
Kang (2008) and Chaboche (2008). The nonlinear kinematic hardening model of
Armstrong and Frederick (1966) usually overpredicts ratcheting. This deficiency is
improved to a considerable extent by sophisticating the dynamic recovery of back
stress evolution (e.g., Chaboche 1991; Ohno and Wang 1993a, b, 1994; Jiang and
Sehitoglu 1996a, b; Abdel-Karim and Ohno 2000; Bari and Hassan 2002; Kang
2004). The multi-mechanism models proposed by Cailletaud and Saï (1995) can
be effective for simulating ratcheting (Taleb and Cailletaud 2010; Saï 2011). The
multiplicative AF (Armstrong–Frederick) model proposed by Dafalias et al. (2008)
can be also effective for simulating ratcheting (Dafalias and Feigenbaum 2011).
Hence, one can now say that ratcheting is simulated well, or fairly well, using a
proper material model though its validity may be limited to a certain type and range
of loading conditions.

Ratcheting of solders has been studied by Chen et al. (2007), Bai and Chen (2009),
and Kobayashi and Sasaki (2009). It has thus been observed that, even at room
temperature, solders exhibit more significant ratcheting under lower rate loading, as
observed in the ratcheting tests of SS304 at 700 ◦C by Kang et al. (2006). To simulate
such rate-dependent ratcheting of solders, it was proposed to take into account the
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rate-dependence in the dynamic recovery of back stress (Chen et al. 2007; Bai and
Chen 2009). Chen et al. (2007) thus showed that the multiaxial ratcheting of Pb-63Sn
solder under lower rate loading was more properly simulated using the Armstrong
and Frederick model. However, they used a rate-independent material model despite
the rate-dependence of ratcheting. It is therefore worthwhile to examine their finding
using a rate-dependent material model for Pb-63Sn and also for other solders. It is
noted that, to the best of the authors’ knowledge, no data of multiaxial ratcheting
have been published with respect to solders other than those of Pb-63Sn reported by
Chen et al. (2007).

In this study, the cyclic thermal tests of Si/solder/Cu layered plates (Tanie et al.
2011) are analyzed by assuming three material models for the solder and two material
models for the copper. Strain hardening and rate-dependence in the solder are taken
into account in the three material models using the test data of Yamada and Ogawa
(1996). The material parameters in the two models for the copper are identified in
as-received and annealed states using the test data of Tanie et al. (2011), Wada et al.
(2010), and Zhang and Jiang (2008). It is thus demonstrated that the cyclic growth
and cyclic recovery of warpage observed in the cyclic thermal tests are simulated
well if proper material models are used for the solder and copper in finite element
analysis. It is shown that multiaxial ratcheting occurred in the solder in contrast to
the uniaxial type of ratcheting or cyclic strain recovery in the copper. It is also shown
that the Armstrong and Frederick model unexpectedly works well for the multiaxial
ratcheting in the solder. To verify this unexpected finding, the multiaxial ratcheting
of Pb-63Sn (Chen et al. 2007) is simulated using a rate-dependent material model
with the Armstrong and Frederick model.

2 Cyclic Thermal Tests of Layered Plates (Tanie et al. 2011)

Figure 1 illustrates the Si/solder/Cu layered plates tested by Tanie et al. (2011). Each
layered plate consisted of a Si chip and an OFHC-Cu plate that were bonded using
a solder sheet of 0.1 mm thickness. The Si chips had their (111) surfaces parallel
to the Cu plates. The Si chips had a constant thickness of 0.19 mm. The following
three thicknesses were chosen for the Cu plates: HCu = 0.2, 0.5, and 1.0 mm. The
Cu plates were either as-received or fully annealed, and had 5µm thick Ni coating
before soldering.

Fig. 1 Shape of the
Si/solder/Cu layered plates
tested by Tanie et al. (2011);
size in mm
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Fig. 2 Cyclic variation in warpage δ of Si/Pb-5Sn-1.5Ag/OFHC-Cu with HCu = 1.0 mm; a exper-
imental data (Tanie et al. 2011) and b schematic illustration

The layered plates were subjected to cyclic thermal loading in a test chamber
with a temperature controller. The temperature input to the controller was set so as
to induce temperature cycling between Tmin = −40 ◦C and Tmax = 150 ◦C with a
period of 3000 s, which consisted of temperature dropping for 600 s, holding at Tmin

for 1200 s, rising for 600 s, and holding at Tmax for 600 s. The temperature cycling
started from room temperature. The warpage δ of each layered plate was measured
before and during testing. To measure δ at room temperature, the temperature cycling
was interrupted to take out the layered plates from the test chamber at each end of
the 5, 10, 15, 30, and 60th temperature cycles. A laser displacement sensor with a
resolution of 0.2 µm was used to measure δ along a longitudinal center line 20 mm
long in the central region on the back surface of the Cu layer at room temperature.
This led to defining δ to be the maximum deflection along this 20-mm-long center
line (Fig. 2b). When the back surface of the Cu layer was concave, δ was taken to be
positive.

Figure 2a shows the cyclic variations in δ measured for the Si/Pb-5Sn-1.5Ag/Cu
plates with HCu = 1.0 mm. As depicted in the figure, the growth and recovery of δ
occurred with an increase in the number of temperature cycles when the Cu plates
were annealed and as-received, respectively. Figure 2b exaggeratedly illustrates the
cyclic growth and recovery of δ.

3 Material Models

This section describes the material models that were used to analyze the cyclic
variations in warpage δ shown in Fig. 2a. In the analysis, three and two material
models were considered for the solder and Cu layers, respectively, and the strain ε
was additively decomposed into thermal, elastic, and (visco)plastic parts based on
the assumption of small deformation:

ε = εt + εe + εp. (1)
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Table 1 Material parameters
of Si layer; stress in MPa

Young’s modulus Poisson’s ratio CTE

E = 1.69 × 105 ν = 0.262 α = 3.0 × 10−6

In this section, direct notations are used for tensors, and inner products between them
are indicated by colons (e.g., σ : ε = σi jεi j ). A superposed dot denotes differen-
tiation with respect to time t , and ‖ ‖ signifies the Frobenius norm of second rank
tensors (e.g., ‖σ‖2 = σi jσi j ).

3.1 Si Chips

The Si chips were presumed to be thermalelastic (Table 1). It is noted that the Si chips
had in-plane elastic isotropy because the Si chips had their (111) surfaces parallel to
the Cu plates (Sect. 2). It is also noted that a plane stress state almost prevailed in the
Si chips in the cyclic thermal tests. Accordingly, the (111) in-plane isotropic elastic
constants were used for the elastic behavior of the Si chips.

3.2 Solder Layer

Solders usually exhibit significant rate-dependence and negligible cyclic hardening
under cyclic inelastic loading (Busso et al. 1992; Kanchanomai et al. 2002; Bai and
Chen 2009). For the solder layer shown in Fig. 1, therefore, only kinematic hardening
was taken into account through a power-law viscoplastic equation:

ε̇p = 3

2
ε̇0

(
σe

σ0(T )

)n(T )−1 s − a
σ0(T )

, (2)

where ε̇0 is a reference strain rate, σ0(T ) and n(T ) are temperature-dependent mate-
rial parameters, s and a denote the deviatoric parts of stress and back stress, respec-
tively, and σe indicates the effective stress defined as

σe =
√

3

2
‖s − a‖. (3)

The following three kinematic hardening models were assumed for the evolu-
tion of a in the solder: the linear kinematic hardening (LK) model, the Armstrong
and Frederick (AF) model, and the multilinear kinematic hardening (MLK) model
proposed by Ohno and Wang (1993a). For all three models, a was supposed to be
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expressed as1

a = h(T )b, (4)

where h(T ) is a temperature-dependent material parameter, and b is the nondimen-
sional back stress. Then the LK and AF models, respectively, have

ḃ = 2

3
ε̇p, (5)

ḃ = 2

3
ε̇p − ζb ṗ. (6)

Here, ζ is a temperature-independent material parameter, and ṗ denotes the accu-
mulated (visco)plastic strain rate expressed as

ṗ =
√

2

3
‖ε̇p‖. (7)

The MLK model of Ohno and Wang (1993a) can have

b =
M

∑

i=1

b(i), (8)

ḃ
(i) = 2

3
ε̇p − ζ(i)H( f (i))

〈

ε̇p : b(i)

b(i)
e

〉

b(i), (9)

where M and ζ(i) are temperature-independent material parameters, H denotes Heav-
iside’s step function, 〈 〉 indicates Macaulay’s brackets, and f (i) and b(i)

e are defined
as

f (i) = b(i)
e − 1

ζ(i)
, b(i)

e =
√

3

2
‖b(i)‖. (10)

Table 2 gives the material parameters used for the solder layer in this study. These
parameters were identified by fitting the tensile stress–strain curves of Pb-5Sn at
ε̇ = 0.01 and 0.001 %/s at −40, 25, 80, and 120 ◦C (Fig. 3). All stresses and strains
are nominal in this study based on the assumption of small deformation. It is noted

1For the nonisothermal uniaxial AF model expressed as α̇ = (∂α/∂εp)ε̇p + (∂α/∂T )Ṫ with h =
h(p, T ) and ζ = ζ(p, T ), the temperature-history-independent evolution condition of back stress
α under thermal-mechanical tensile loading is expressed as ∂2(ln h)/∂εp∂T = −∂ζ/∂T (Ohno
and Wang 1991). This condition is satisfied if h = h1(p)h2(T ) and ζ = ζ(p). Consequently, when
Eqs. (4) and (6) are assumed, the evolution of back stress depends on T but not on the history of T .
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Table 2 Material parameters of solder layer; stress in MPa, strain in mm/mm, time in s, and
T in K

Elastic constants E(T ) = 31.1 − 0.049T , ν = 0.35

CTE α = 29.2 × 10−6

AF model ε̇0 = 1.00 × 10−4

σ0(T ) = −0.0533T + 31.4, n(T ) = −0.0303T + 19.1

h(T ) = 50353 exp(−0.0153T ), ζ = 75

LK model ε̇0 = 1.00 × 10−4

σ0(T ) = 69.9 exp(−0.00470T ), n(T ) = 46.1 exp(−0.00469T )

h(T ) = 18388 exp(−0.0157T )

MLK model ε̇0 = 1.00 × 10−4

σ0(T ) = −0.0511T + 30.1, n(T ) = −0.0355T + 20.6

h(1)(T ) = 11917 exp(−0.0130T ), ζ(1) = 4.00 × 102

h(2)(T ) = 4974.0 exp(−0.0130T ), ζ(2) = 2.00 × 102

h(3)(T ) = 6217.5 exp(−0.0130T ), ζ(3) = 1.00 × 102

h(4)(T ) = 3005.1 exp(−0.0130T ), ζ(4) = 5.00 × 10

h(5)(T ) = 5699.3 exp(−0.0130T ), ζ(5) = 0.00

that Pb-5Sn is regarded as having an equivalent chemical composition to Pb-5Sn-
1.5Ag because Pb-10Sn and Pb-5Sn-2.5Ag provided almost completely the same
tensile curves as each other at room temperature and 0.7 Tm (melting temperature in
K) (Schoeller et al. 2009).

The LK, AF, and MLK models expressed as Eqs. (5), (6), and (9) have no material
parameter to control ratcheting. These models were chosen because no experimental
data have been available with respect to the ratcheting of Pb-5Sn. It is emphasized
that, before starting the finite element analysis described in Sect. 4, the AF model
and the LK and MLK models were supposed to be the extreme models to overpredict
and underpredict ratcheting of Pb-5Sn. This was because the AF model usually
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Fig. 3 Tensile stress–strain curves of Pb-5Sn; experiment (Yamada and Ogawa 1996) and simula-
tion; a ε̇ = 0.01 %/s and b ε̇ = 0.001 %/s
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Fig. 4 Tensile and cyclic
stress–strain data of
as-received and annealed
OFHC-Cu; •, × and +
indicate the tensile and cyclic
data of annealed OFHC-Cu
by Wada et al. (2010) and
Zhang and Jiang (2008)
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over-predicts ratcheting, while the LK and MLK models underpredict it (Ohno 1997;
Kang 2008; Chaboche 2008).

3.3 Cu Plates

Tanie et al. (2011) performed tensile tests of the as-received and fully annealed,
1.0 mm thick OFHC-Cu plates used in the cyclic thermal tests, and found that the
copper was almost identical to those tested by Wada et al. (2010) and Zhang and Jiang
(2008), as illustrated in Fig. 4. The plastic flow stress of the as-received copper was
suggested to have much smaller dependence on temperature than the viscoplastic
flow stress of the solder.2 For the Cu plates, therefore, we assumed temperature-
independent plasticity based on the normality to the Mises-type yield surface with
its center a and radius Y :

ε̇p = 3

2
ṗ
s − a
Y

, (11)

F = 3

2
(s − a) : (s − a) − Y 2, (12)

where F denotes the yield function, and ṗ is defined by Eq. (7). It was further
assumed that a is decomposed into M parts (Chaboche 1989):

a =
M

∑

i=1

a(i). (13)

2The saturated uniaxial hysteresis loops of OFHC-Cu at Δε = 1.0 % and ε̇ = 0.1 %/s suggest that
the peak stress at 125 ◦C is about 15 % smaller than that at room temperature (Freed 1988). Almost
the same temperature dependence was found by performing tensile tests of the as-received copper
at 140 ◦C in addition to that at room temperature in this study. This temperature dependence is much
smaller than that of the solder shown in Fig. 3.
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By expressing each a(i) as

a(i) = h(i)b(i), (14)

the cyclic thermal tests described in Sect. 2 were analyzed using the following two
evolution equations of b(i) based on Armstrong and Frederick (1966) and Ohno and
Wang (1993a):

ḃ
(i) = 2

3
ε̇p − ζ(i)b(i) ṗ, (15)

ḃ
(i) = 2

3
ε̇p − ζ(i)(ζ(i)b(i)

e )k
(i)

〈

ε̇p : b(i)

b(i)
e

〉

b(i), (16)

where h(i), ζ(i), and k(i) are material parameters, and b(i)
e is defined by Eq. (10)2.

Equations (15) and (16) are referred to as the AF (Armstrong–Frederick) and OW
(Ohno–Wang) models hereafter.

Table 3 provides the material parameters used for the Cu plates in this study. The
material parameters except k(i) were identified by fitting the tensile and cyclic data
shown in Figs. 4, 5, and 6. A procedure to identify the material parameters, except

Table 3 Material parameters of Cu layer; stress in MPa

Elastic constants E = 1.23 × 105, ν = 0.34

CTE α = 17.0 × 10−6

Annealed (AF) Y0 = 12.55

h(1)
0 = 9.60 × 104, ζ(1) = 5.00 × 103

h(2)
0 = 9.33 × 103, ζ(2) = 1.00 × 103

h(3)
0 = 3.85 × 102, ζ(3) = 1.67 × 102

h(4)
0 = 7.77 × 102, ζ(4) = 1.00 × 102

ρ(p) = 1.0 + 2.11[1.0 − exp(−9.41p)]
Annealed (OW) Y0 = 12.55

h(1)
0 = 6.91 × 104, ζ(1) = 1.10 × 104, k(1) = 3.0

h(2)
0 = 2.68 × 104, ζ(2) = 3.61 × 103, k(2) = 3.0

h(3)
0 = 1.00 × 104, ζ(3) = 1.49 × 103, k(3) = 3.0

h(4)
0 = 3.57 × 103, ζ(4) = 7.50 × 102, k(4) = 3.0

h(5)
0 = 1.09 × 103, ζ(5) = 3.60 × 102, k(5) = 3.0

h(6)
0 = 9.38 × 102, ζ(6) = 1.00 × 102, k(6) = 3.0

ρ(p) = 1.0 + 2.11[1.0 − exp(−9.41p)]
As-received (AF, OW) Y0 and h(i)

0 in the above columns are replaced by Y = 3.11Y0 and

h(i) = 3.11h(i)
0 , and ρ(p) = 1.0
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Fig. 5 Hysteresis loops of
annealed OFHC-Cu in
saturated state of cyclic
hardening; experiment
(Wada et al. 2010) and
simulation
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for k(i), in the OW model was described in the appendix by Nakane et al. (2008). It
is noted that, for the annealed copper, the material parameters Y and h(i) in Eqs. (12)
and (14) were taken to be dependent on accumulated plastic strain p to represent the
cyclic hardening depicted in Fig. 6:

Y = ρ(p)Y0, h(i) = ρ(p)h(i)
0 . (17)

The AF and OW models provided almost the same results in Fig. 6. For the as-
received copper, on the other hand, no cyclic hardening was assumed, because the
tensile curve of the as-received copper was close to the saturated cyclic data on
stress and strain amplitudes (Δσsat/2 and Δε/2) of the annealed copper as far as we
considered Δε/2 ≤ 0.5 % (Fig. 4).

The OW model has k(i) to control ratcheting. This material parameter was identi-
fied by fitting the ratcheting data shown in Fig. 7. Since these data were obtained by
performing stress-controlled tests after the saturation of cyclic hardening in strain-
controlled cyclic tests (Zhang and Jiang 2008), the ratcheting in the figure was sim-
ulated using the material parameters in the saturated state of cyclic hardening (i.e.,
the material parameters of the as-received copper).

It is worthwhile to point out that, as seen from Fig. 6, the strain-range-dependent
cyclic hardening of the annealed copper at Δε/2 ≤ 0.5 % was simulated well without

Fig. 6 Variation in tensile
peak stress of annealed
OFHC-Cu under uniaxial
cyclic loading of constant
strain range; experiment
(Wada et al. 2010) and
simulation; almost identical
results by AF and OW
models
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Fig. 7 Uniaxial ratcheting
strain of OFHC-Cu;
experiment after saturation
of cyclic hardening (Zhang
and Jiang 2008), and
simulation for as-received
OFHC-Cu; experimental
data corrected by subtracting
the initial scatters
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introducing any memory surface such as those proposed by Chaboche et al. (1979)
and Ohno (1982), which were reviewed by Ohno (2015). The saturated stress–strain
hysteresis loops at Δε/2 ≤ 0.5 % were also reproduced well without any memory
surface (Fig. 5). The strain-range-dependent cyclic hardening at Δε/2 ≤ 0.5 % is
explained by the fact that the saturated amplitude of back stress, Δαsat/2, depends
on Δε/2 though the saturated value Ysat of Y has no dependence on Δε/2.

4 Analysis Method

The tested layered plates with HCu = 1.0 mm were divided into finite elements in a
quarter model based on the geometric symmetries. The finite element analysis was
performed using Abaqus. Twenty-node quadratic brick elements with reduced inte-
gration (C3D20R) were used for the quarter model (Fig. 8). The number of elements
was 2300. The material models of the solder and copper, described in Sects. 3.2 and
3.3, were fully implicitly implemented in Abaqus with a user subroutine UMAT
(Ohno et al. 2013, 2016). Hereafter, we use the abbreviations such as AF-sol and
OW-Cu which, respectively, indicate “the AF model used for the solder” and “the
OW model used for the copper”.

The temperature variation shown in Fig. 9 was uniformly applied to the quarter
model under the following boundary conditions: ux = uy = uz = 0 at the origin

Fig. 8 Finite element
division of a quarter of
layered plate with
HCu = 1.0 mm



196 N. Ohno et al.

Fig. 9 Temperature
variation

O, ux = 0 at x = 0, and uz = 0 at z = 0. This temperature variation consisted of an
initial drop and a subsequent cyclic variation, which are indicated by dashed and solid
lines in Fig. 9. The initial drop was introduced in the analysis for simulating the initial
warpage induced by soldering, although no actual temperature data were available
for the initial drop. The subsequent cyclic variation was determined by piecewise
linearly approximating the actual temperature variation that was measured with an
accuracy of ±0.6 ◦C using a thermocouple attached to one of the layered plates in
the test chamber.

The finite element analysis described above was performed in the following 12
cases: the three solder models, two copper models, and two heat treatment conditions
of the copper. An initial time increment of 10 s was used in all analysis cases, and
was found successful under the default convergence condition in Abaqus.

5 Analysis Results

5.1 Cyclic Variations in Warpage

In each analysis case, the warpage δ along the 20-mm-long longitudinal center line
on the back surface of the Cu layer was outputted at 25 ◦C at the end of every
temperature cycle in accordance with the experimental measurement described in
Sect. 2. The cyclic variations in δ thus computed are plotted in Fig. 10 to show the
following.

• The cyclic variations in δ significantly depended on the material models assumed
for the copper and solder layers. In other words, both the copper and solder layers
need to have proper material models for predicting the cyclic variations in δ.

• Using the pair of OW-Cu and AF-sol, the observed cyclic growth and cyclic recov-
ery of δ depicted in Fig. 2a were reproduced well except for the initial values of δ
(Fig. 10a).
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Fig. 10 Warpage δ of Si/Pb-5Sn/OFHC-Cu with HCu = 1.0 mm; a OW model and b AF model
for OFHC-Cu

It is noted that it was hard to predict the initial values of δ correctly, because no actual
data were available with respect to the temperature change in the soldering process;
nevertheless, the initial values of δ were predicted passably well.

As described above, the cyclic variations in δ were predicted well by assuming the
pair of OW-Cu and AF-sol in the analysis. Hence, the computational results obtained
using the pair of OW-Cu and AF-sol are used below to show ratcheting in the copper
and solder layers.

5.2 Ratcheting in the Copper Layer

Figure 11 illustrates the deformed configurations of the longitudinal, middle cross
section at the end of the 60th cycle in the analysis. As seen from the figure, the
annealed copper plate had larger deflection as a result of the cyclic growth of δ than
the as-received copper plate in which the cyclic recovery of δ occurred. Figure 12
shows the hysteresis loops of σxx and εm

xx at point A in the copper layer. Point A is
close to the top surface of the copper layer (Fig. 11). Here, εm

xx denotes the mechanical
part of εxx , i.e., εm

xx = εe
xx + ε

p
xx . Point A also had the hysteresis loops of σzz and εm

zz
that were almost the same as those of σxx and εm

xx .
It is seen from Fig. 12 that significant ratcheting occurred in the annealed cop-

per plate while the mean values of σxx and εm
xx decreased to some extent in the

Fig. 11 Deformed configuration and γxy contour map at the end of 60th temperature cycle; layered
plate with a annealed and b as-received OFHC-Cu; displacement multiplied by three
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Fig. 12 Hysteresis loops of σxx and εm
xx at point A in copper in layered plates with a annealed and

b as-received OFHC-Cu; analysis using OW and AF models for Cu and solder

as-received copper plate with the increase in the number of temperature cycles. This
ratcheting was caused by the positive mean values of σxx that were induced by the
CTE mismatch and the temperature dependence of viscoplastic flow stress in the
solder layer under cyclic thermal loading, as described in detail in an axisymmetric
case by Nakane et al. (2008). The ratcheting can be classified as uniaxial ratchet-
ing, though mean stress is not constant. On the other hand, the cyclical decrease
in σxx and εm

xx was brought by the CTE-mismatch-induced elastic bending energies
in the Si and Cu layers; these energies allowed the warpage to recover cyclically
as viscoplastic deformation cyclically proceeded in the solder layer (Nakane et al.
2010). Obviously, the elastic bending energy in the as-received copper plate was
much larger than that in the annealed copper plate, because the as-received copper
had much higher plastic flow stress than the annealed copper (Fig. 4). It is thus con-
cluded that the uniaxial-type of ratcheting and cyclic strain recovery occurred in the
copper layer to induce the cyclic growth and cyclic recovery of δ, respectively, under
cyclic thermal loading.

5.3 Ratcheting in the Solder Layer

The above-mentioned strain variations at point A in the copper layer suggested check-
ing the hysteresis loops of σxx and εm

xx at point B in the solder layer (Fig. 13). Point
B is close to point A (Fig. 11). As seen from Fig. 13, the solder layer had certain
amplitudes of εm

xx that were caused by the CTE mismatch between the Si and solder
layers. However, the mean value of εm

xx had no marked variations with the increase in
the number of temperature cycles. In other words, noticeable ratcheting did not occur
with respect to εm

xx in the solder layer even in the layered plate with the annealed
copper layer.
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Fig. 13 Hysteresis loops of σxx and εm
xx at point B in solder in layered plates with a annealed and

b as-received OFHC-Cu; analysis using OW and AF models for Cu and solder

The γxy contour maps on the longitudinal, middle cross section at the end of the
60th cycle are also sown in Fig. 11. Here, γxy denotes engineering shear strain, i.e.,
γxy = 2εxy . As seen from the figure, γxy was negative in the solder layer when the
cyclic growth of δ occurred in the analysis with the annealed copper plate; on the
other hand, γxy was positive in the solder layer when the cyclic recovery of δ was
properly simulated by considering the as-received copper for the copper layer. The
opposite signs of γxy in the solder layer are thus considered to be a key point to
explain the cyclic growth and cyclic recovery of δ.

Figure 14 shows the hysteresis loops of σxy and γxy at point B in the solder layer. It
is seen that ratcheting occurred in the solder layer to result in the opposite signs of γxy

depending on the heat treatment conditions of the copper layer. Needless to say, the
cyclic variations in σxy and γxy in the solder layer were caused by the CTE mismatch
between the silicon and copper layers under cyclic thermal loading, and the opposite
signs of γxy are regarded as consequences of the cyclic growth and cyclic recovery
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Fig. 14 Hysteresis loops of σxy and γxy at point B in solder in layered plates with a annealed and
b as-received OFHC-Cu; analysis using OW and AF models for Cu and solder
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Fig. 15 Hysteresis loops of εm
xx and γxy at point B in solder in layered plates with a annealed and

b as-received OFHC-Cu; analysis using OW and AF models for Cu and solder

of δ predicted by the pair of OW-Cu and AF-sol. However, it must be pointed out
that the magnitudes of σxy in the figure, which are only about 1.0 MPa at the end
of the 60th cycle, are considerably small in comparison with the tensile viscoplastic
flow stresses of the solder shown in Fig. 3. Therefore, it cannot be said that the cyclic
variations in σxy solely governed the ratcheting in the solder layer, although the mean
values of σxy were obviously nonzero (Fig. 14). In short, the ratcheting in the solder
layer is not classified as the uniaxial type.

Figure 15 depicts the strain trajectories concerning εm
xx and γxy at point B in the

solder. It is clear from the figure that multiaxial ratcheting occurred in the solder;
i.e., γxy developed either negatively or positively with the increase in the number
of cyclic changes in εm

xx . This was because the mean values of σxy , which were
combined with the cyclic changes in εm

xx , were either negative or positive depending
on the heat treatment conditions of the copper layer (Fig. 14). It is emphasized that the
ratcheting in the solder was multiaxial in contrast to the uniaxial type of ratcheting
in the copper.

6 Multiaxial Ratcheting of Pb-63Sn Solder

It was described in Sect. 5 that the pair of OW-Cu and AF-sol provided good predic-
tions for the cyclic variations in warpage δ observed by Tanie et al. (2011). How-
ever, good performance of the AF model for the ratcheting in the solder was not
expected, because the AF model usually overpredicts ratcheting (Ohno 1997; Kang
2008; Chaboche 2008). This section is, therefore, devoted to examining the AF model
using the multiaxial ratcheting data of Pb-63Sn solder reported by Chen et al. (2007).
It is noted that, to the best of the authors’ knowledge, only their data were published
with respect to multiaxial ratcheting of solders.

Figure 16 depicts the shear stress–strain hysteresis loops obtained in the multi-
axial ratcheting tests of Pb-63Sn in which constant tensile stress of σ = 5 MPa was
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Fig. 16 Shear hysteresis
loops in multiaxial ratcheting
tests of Pb-63Sn; γ̇ = 1.0,
0.1, 0.01 %/s, Δγ = 0.52 %,
σ = 5 MPa; experiment
(Chen et al. 2007) and
simulation
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Table 4 Material parameters
of AF model for Pb-63Sn
solder; stress in MPa, strain in
mm/mm, and time in s

Elastic constants E = 2.80 × 104, ν = 0.37

AF model ε̇0 = 1.00 × 10−4

σ0 = 21.3, n = 9.30

h = 9.80 × 103, ζ = 8.00 × 102

combined with cyclic shear straining at γ̇ = 1.0, 0.1, and 0.01 %/s at room temper-
ature (Chen et al. 2007). As shown in the figure, the shear stress–strain hysteresis
loops were simulated well using the AF model represented in Sect. 3.2. The material
parameters used for the simulation are given in Table 4.

Figures 17 and 18 compare the predicted and experimental increases in tensile
strain ε in the multiaxial ratcheting at γ̇ = 1.0, 0.1 and 0.01 %/s under σ = 5 MPa.
Obviously, the AF model gave better predictions for the multiaxial ratcheting when
γ̇ was smaller, as clearly seen from Fig. 18; i.e., the difference of experiments and
predictions became about three times smaller as γ̇ decreased from 1.0 to 0.01 %/s.
The data in the figure imply that the difference could be negligible if γ̇ ≈ 0.001 %/s.

Fig. 17 Multiaxial
ratcheting of Pb-63Sn; γ̇ =
1.0, 0.1, 0.01 %/s,
Δγ = 0.52 %, σ = 5 MPa;
experiment (Chen et al.
2007) and simulation
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Fig. 18 Effect of shear
strain rate on multiaxial
ratcheting rate of Pb-63Sn;
Δγ = 0.52 %, σ = 5 MPa;
experiment (Chen et al.
2007) and simulation
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Point B in the solder in the Si/solder/Cu layered plates had the equivalent strain
range equal to about 0.75 % in the analysis results described in Sect. 5, and the tem-
perature cycling had the period of 3000 s (Fig. 9). Consequently, the equivalent strain
rate at point B was about 5.0 × 10−4 %/s. This equivalent strain rate corresponds to
γ̇ ≈ 0.001 %/s. Therefore, the multiaxial ratcheting data shown in Fig. 18 imply that
the AF model could be appropriate for the multiaxial ratcheting in the solder in in
the Si/solder/Cu layered plates.

7 Conclusions

In this study, the cyclic thermal tests of Si/Pb-5Sn-1.5Ag/OFHC-Cu layered plates
(Tanie et al. 2011) were analyzed by assuming three material models for the solder
and two material models for the copper. Strain hardening and rate-dependence in
the solder were taken into account in the three material models using the tensile test
data of Yamada and Ogawa (1996) on Pb-5Sn, noting that Pb-10Sn and Pb-5Sn-
2.5Ag provided almost completely the same tensile curves as each other at room
temperature and 0.7Tm (Schoeller et al. 2009). The material parameters in the two
models for the copper were identified in as-received and fully annealed states using
the tensile and cyclic test data of Tanie et al. (2011), Wada et al. (2010), and Zhang
and Jiang (2008). The following findings were thus obtained:

• The cyclic growth and cyclic recovery of warpage observed in the cyclic ther-
mal tests were reproduced well when the Armstrong and Frederick (1966) model
and the Ohno and Wang (1993a) model were assumed for the solder and copper,
respectively.

• Multiaxial ratcheting occurred in the solder in contrast to the uniaxial type of
ratcheting or cyclic strain recovery in the copper. For this multiaxial ratcheting in
the solder, the Armstrong and Frederick model unexpectedly worked well.

To confirm the above-mentioned unexpected finding, the Armstrong and Frederick
model was applied to the multiaxial ratcheting of Pb-63Sn (Chen et al. 2007). It was
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thus suggested that the Armstrong and Frederick model could be appropriate for the
multiaxial ratcheting at such slow strain rates as in the solder in the cyclic thermal
tests of Tanie et al. (2011).
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A Note on Plasticity with Additional Internal
Variables

Michael Wolff and Michael Böhm

Abstract This note deals with plastic behavior, more precisely with the role of
possible additional internal variables for the description of observable effects. Based
on the experimental experience, models in use are sometimes modified in order to
capture new effects which cannot be described by the original version of the model.
This modification can be done with additional internal variables. In doing so, one
has to take care that the modified models remain thermodynamically consistent. We
discuss this issue on the basis of two phenomena in cyclic plasticity. Moreover, we
show how the concept of two-mechanism models can be used for the description of
interactions between the arising phenomena.

1 Introduction

In many cases, complex material behavior is modeled with the aid of internal vari-
ables. An alternative concept uses functionals (see Haupt 2002 for a detailed dis-
cussion of both approaches). Sometimes, existing models of material behavior are
modified to take special observable effects into account. For instance, in cyclic plas-
ticity the strain-memory effect (see Nouailhas et al. 1985, e.g.) and an additional
hardening due to nonproportional loading (see Benallal andMarquis 1987, e.g.) may
occur. In Taleb and Cailletaud (2010), a current modeling of both phenomena was
presented in order to achieve a good agreement between simulations and ratcheting
experiments. However, a strong thermodynamic foundation of the approach was not
in the focus there. This note aims to fill the gap.

A further important tool for modeling complex material behavior are multimech-
anism models (abbreviated as MM-models) which have been investigated for about
25 years. In applications, one encounters mostly two-mechanism models. In the case
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of small deformations, the characteristic trait of serial multimechanismmodels (with
m mechanisms) is the decomposition of the inelastic strain into a weighted sum of
m parts (plastic or viscoplastic, e.g.). These parts are sometimes called mechanisms.
We refer to Saï (2011), Wolff et al. (2011, 2015), Taleb and Cailletaud (2011), Taleb
(2013), Kröger (2013) for current overviews and further references. In comparison
with rheological models (see Palmov 1998, 2008, e.g.), there can be an interac-
tion among the inelastic mechanisms. This leads to new possibilities in modeling.
The interaction among mechanisms allows a good description of important observ-
able effects (inverse strain-rate sensibility, e.g.). We refer to Contesti and Cailletaud
(1989) and Cailletaud and Saï (1995). As a consequence of the coupling among
the mechanisms, the thermodynamic consistency of an MM-model generally does
not follow from the thermodynamic consistency of the single components. It can
be ensured by sufficient conditions involving the material functions (see Wolff and
Taleb 2008; Wolff et al. 2011, 2015).

In this theoretical note, we model two phenomena in the cyclic plasticity men-
tioned above in a thermodynamically consistent way with the aid of additional vari-
ables which do not occur directly in the free energy (in Sect. 2). In Sect. 3, we demon-
strate how a possible interaction of these phenomena can be described within the
framework of two-mechanism models.

2 Modeling of Elastoplastic Behavior and Some Extensions

After providing some basics concerning plasticity with hardening and damage in
Sect. 2.1, we consider two extensions to the phenomena in cyclic plasticity in
Sect. 2.2.

2.1 A Model with One Mechanism Including Damage

Considering a serial material behavior in small-deformation setting, we assume an
additive split of the full strain ε as well as the free energy ψ into their corresponding
thermoelastic and inelastic parts εte, εin and ψte, ψin, i.e.,

ε = εte + εin, ψ = ψte + ψin. (1)

Here, plastic behavior is of our focus. Thus, instead of “inelastic” we mostly employ
“plastic” abbreviated by the index “p”. A clear distinction between both partial
strains will follow from (6). The thermoelastic and inelastic parts of the free energy
are assumed to have the following structure (for comments and references see
Remark 1).
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ψte(εte, θ, dE) : = (1 − dE)

2�0
E(θ)εe : εe + ψcal(θ)

= (1 − dE)

2�0
E

(

εte − (θ − θ0)G(θ)
) : (

εte − (θ − θ0)G(θ)
)

+ ψcal(θ), (2)

ψin(α, q, θ, dα, dq) := (1 − dα)

2�0
C(θ)α : α + (1 − dq)

2�0
Q(θ) q2. (3)

ψcal is the purely temperature-dependent part of the free energy (calorimetric func-
tion, e.g., see Helm and Haupt 2003), not of further interest here, E-fourth-order
elasticity tensor, εe-pure elastic strain, �0 > 0-mass density in the reference con-
figuration, θ , θ0-temperature, reference temperature, G-(symmetric) second-order
heat-dilatation tensor, α-tensorial internal variable related to kinematic hardening,
q-scalar internal variable related to isotropic hardening, dE , dα , dq scalar internal
damage variables related to elasticity, kinematic and isotropic hardening, respec-
tively, Q > 0, C > 0-kinematic and isotropic hardening moduli. (We exclude the
simple casesC = 0 andQ = 0.)Q expresses the initial sloop of the curve of isotropic
hardening. The parameter C allows an analogous interpretation for kinematic hard-
ening in the case of uniaxial direction. The fourth-order elasticity tensor E = (E ijkl)

has the following properties for all admissible temperatures θ as well as in all body
points x (see Haupt 2002; Altenbach 2012; Bertram and Glüge 2015, e.g.).

E ijkl(θ, x) = E jikl(θ, x) = Eklij(θ, x) = E ijlk(θ, x) ∀ i, j, k, l ∈ {1, 2, 3}, (4)

∃ c0 > 0 : E(θ, x)α : α ≥ c0‖α‖2 for all symmetric (5)

second-order tensors α.

The current stress tensor σ is assumed to be a function of εte, θ , and dE , but not of
εin, α, q, dα , dq (see Remark 1 (iii) for reasoning and references):

σ = σ (εte, θ, dE) (6)

Moreover, it is assumed that for a given θ and dE this function is invertible with
respect to εte. Here we exclude the case of εte ≡ 0 like for pure creep without an
elastic domain.

In a standard way, we define the thermodynamic forces associated with hardening
and damage:

X = �0
∂ψin

∂α
= (1 − dα)C(θ)α, R = �0

∂ψin

∂q
= (1 − dq)Q(θ) q, (7)

Yα = �0
∂ψin

∂dα

= −1

2
C(θ)α : α, Yq = �0

∂ψin

∂dq
= −1

2
Q(θ) q2, (8)

YE = �0
∂ψte

∂dE
= −1

2
E(θ) εe : εe. (9)
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Usually, X is called back stress, R—isotropic hardening. In a standard way, we
formulate evolution equations for α, q, dE , dα , dq, as well as initial conditions and
restrictions for the damage variables:

α̇ = ε̇p − D

C
Xṡp, α(0) = 0, q̇ = ṡp − b

Q
Rṡp, q(0) = 0, (10)

ḋi = fdi, di(0) = 0, 0 ≤ di ≤ 1, i = E, α, q. (11)

The generally temperature-depending material functions D ≥ 0, b ≥ 0 and fd ≥ 0
may depend on internal variables and on stress. The plastic (generally inelastic)
accumulation sp is defined by

sin(t) = sp(t) =
∫ t

0

√

2

3
ε̇p(s) : ε̇p(s) ds. (12)

Thus, sp can be considered as a further internal variable. Differentiation of (12) yields
its evolution equation. In the case b ≡ 0, sp coincides with q, and one gets linear
isotropic hardening. Otherwise, the free energy does not depend directly on sp (see
Remark 1 (iv)).

The standard evolution equation for the plastic strain εp reads as

ε̇p = λ

√

3

2

σ ∗ − X∗

‖σ ∗ − X∗‖ =: λn, εp(0) = 0. (13)

σ ∗ is the deviator of σ , n—outer normal to the stress sphere. The plastic multiplier
λ is defined via the flow rule in plasticity (see (16)), or it is directly defined in
viscoplasticity or creep. Due to the von Mises approach, the flow function is defined
by

f (σ ,X,R, σ0) =
√

3

2
(σ ∗ − X∗) : (σ ∗ − X∗) − (σ0 + R), (14)

with the initial yield stress σ0(θ) > 0. Note that there may be an implicit dependence
on damage via σ , X, R. In plasticity, a general constraint occurs (see Remark 1 (v)),

f (σ ,X,R, σ0) ≤ 0, (15)

and the plastic multiplier is defined by

λ ≥ 0, if f (σ ,X,R, σ0) = 0,

λ = 0, if f (σ ,X,R, σ0) < 0.
(16)
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Here we assume the usual Fourier law of heat conduction (see Altenbach 2012, e.g.).
Since heat conduction is not in our direct focus here, we omit formulas and details.
Performing the standard approach of evaluation of the entropy inequality (Clausius–
Duhem inequality) (see Haupt 2002; Besson et al. 2010, e.g.), one obtains the usual
stress relation

σ = �0
∂ψte

∂εte
= (1 − d)E

(

εte − (θ − θ0)G(θ)
)

, (17)

the usual entropy relation which we omit as well as the Clausius–Planck inequality
(i.e., the remaining inequality without heat dissipation)

σ : ε̇p −
(

X : ε̇p − D

C
X : Xṡp

)

−
(

Rṡp − b

Q
R2ṡp

)

+ −Yαfdα − Yqfdq − YEfdE

= σ0ṡp + D

C
X : Xṡp + b

Q
R2ṡp + fdα

2
Cα : α + fdq

2
Qq2 + fdE

2
Eεe : εe ≥ 0

(18)

In the first line in (18), the first part represents the dissipated power of plastic defor-
mation, the brackets (without minus sign) represent the rate of the stored energy due
to kinematic and isotropic hardening, respectively, and, finally, the remaining parts
stand for the dissipated power due to damage. Obviously, under the given restrictions
to the material functions, the inequality is always fulfilled. Or, in other words, the
sum of the dissipated power is not smaller than the rate of stored energy. Thus, the
model presented is thermodynamically consistent.

Remark 1 1. In this note, the mechanical part of the thermoelastic free energy
ψte in (2) is assumed to be a quadratic form of the pure elastic strain εe =
εte−(θ −θ0)G as in Lemaitre and Chaboche (1990). As a consequence, the force
YE defined in (9) is not positive, and the thermodynamic consistency is ensured
for a nondecreasing damage variable dE (corresponding to a nonnegative fdE).
For a widely spread alternative, we refer to Haupt (2002). In Wolff et al. (2015),
these aspects have been discussed in more detail.

2. For simplicity only scalar damage variables are considered here. For more com-
plex approaches, we refer to Naumenko and Altenbach (2007) and Murakami
(2012), e.g.

3. Based on experimental experience, the stress tensor σ is usually assumed to
depend only on purely elastic quantities like εte (and possible on θ and dE), but
not on εin as well as on internal variables like α and q associated with inelas-
tic phenomena (hardening, e.g.) (see Haupt 2002; Bertram 2012; Bertram and
Glüge 2015, e.g.). An exception is pure inelastic behavior like pure creep with-
out an elastic domain or some kinds of viscoelasticity, which requires a special
consideration.

4. Note: Actually, besides α, q, dα , dq, de in the model above, the two additional
internal variables sp and εp arise. However, the free energy does not depend
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directly on them. (An exclusion is the special case of linear hardening (Prager’s
model, see Besson et al. 2010) with D ≡ 0 and b ≡ 0, yielding α = εp and
q = sp.) The occurrence of internal variables “outside of the free energy” formally
contradicts the rule of equipresence (see Truesdell and Noll 1965; Coleman and
Gurtin 1967). We think that this is not a real drawback, since we could define
the free energy as a function which is constant with respect to these additional
internal variables. Clearly, these additional internal variables do not change the
structure of the remaining inequality.
In this context, the thermodynamical forces defined in (7)–(9) are not internal
variables, they can be regarded as abbreviations.

5. Plastic behavior expressed by (14)–(16) can be equivalently described with the
aid of variational inequalities. We refer exemplarily to Duvaut and Lions (1976),
Han and Reddy (1999), Simo and Hughes (1998) for theory and to Boettcher et al.
(2015) for an application to complex material behavior.

Remark 2 (An estimate of the isotropic hardening) Using (7)2 and (10)2, we can
solve the Cauchy problem for q (assuming the remaining quantities known) and
obtain

q(t) =
∫ t

0
ṡp(s)e

− ∫ t
s (1−dq(τ ))b(τ )ṡp(τ ) dτ ds. (19)

Assuming

b ≥ b1 > 0 for all admissible arguments, (20)

0 ≤ dq(t) ≤ d1 < 1, (21)

one obtains from (19) the global estimate for q:

0 ≤ q(t) ≤ 1

b1(1 − d1)
(1 − e−b1(1−d1)sp(t)). (22)

Using (7)2, we get the estimate:

0 ≤ R(t) ≤ Rmax := Q1

b1(1 − d1)
, (23)

where

0 < Q0 ≤ Q(θ) ≤ Q1 for all admissible θ. (24)

In particular, if b depends only on θ , for isothermal processes without damage one
obtains

R(t) = Rθ (t) = Q(θ)

b(θ)
(1 − e−b(θ)sp(t)). (25)
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That means, R is a function of the plastic accumulation sp alone, and its curve has
the typical form with the initial sloop of Q and the asymptotic value of Q

b .

2.2 An Extension of the Model Presented

In cyclic plasticity, special phenomena are observed which require extensions of the
above approaches. In the usual model presented above, the parameter Q(θ) (=initial
sloop of the isotropic hardening curve) does not undergo an increase due to cyclic
hardening. In order to model this and other phenomena within the framework devel-
oped above, one can use additional internal variables which do not occur in the free
energy. See Remark 1 (iv) for discussion.

2.2.1 Strain-Memory Effect

Experiments show that themaximumvalue of the isotropic hardeningRmay increase
under a strain-controlled regime (see Nouailhas et al. 1985 for details as well as Fig. 1
for an illustration). To realize this increase andmotivated by (23) and (25),we propose
a decrease of the parameter b via

ḃ = (b1 − b)μ τ̇ , b(0) = b0 > b1 > 0. (26)

Thus, b turns into an internal variable, τ is a further internal variable which will be
dealt with later,μ > 0 is amaterial parameter possibly depending on θ , b0 = b0(θ) is
the initial value of b (for fixed θ ). It is maximal and can be obtained from amonotone
tension testwith theoriginalmaterial. Thequantityb1(θ) is an assumedminimal value
of b. The approach (26) is a slight modification of the one in Nouailhas et al. (1985)

Fig. 1 Illustration of the
strain-memory effect: Cyclic
hardening with step-wise
increasing strain amplitudes
in a strain-controlled regime
(taken from Haupt 2002,
Fig. 11.4, p. 447).
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and in Taleb and Cailletaud (2010). Besides, in these contributions, instead of the
letter τ , the letter q is used which is the isotropic internal variable in our description.
Comparing (26) with the analogous formula (23) in Taleb and Cailletaud (2010), it
will be clear that these authors deal with the evolution of 1

b in actuality.
In Haupt (2002) (Sect. 11.2), the strain-memory effect is also addressed and mod-

eled with additional internal variables, however alternatively to the approach in the
references cited above as well as to our approach.

Now we will describe the evolution of τ , following the original approach in
Chaboche et al. (1979) (see also Nouailhas et al. 1985 for details). This approach
consists in using a sphere in the strain space to take the strain-memory effect into
account. To this end, we introduce the following function F.

F(εp, ζ , τ ) := I(εp − ζ ) − τ :=
√

2

3
(εp − ζ ) : (εp − ζ ) − τ, (27)

where the second-order tensor ζ is a further internal variable. Defining the unit
outward normal vector n on the sphere I = const > 0 via

n =
√

2

3

εp − ζ

I(εp − ζ )
= 2

3

εp − ζ

‖εp − ζ‖ (28)

(‖ · ‖—Euclidian norm). We assume evolution equations for τ and ζ as well as their
initial conditions as follows:

τ̇ = (

η1 H(F) + η2(1 − H(F))
)

H(n · n)ṡp, τ (0) = 0, (29)

ζ̇ = (1 − η1)H(F)
〈

n · n〉

nṡp, ζ (0) = 0. (30)

Here η1 > 0 and η2 > 0 are material parameters possibly depending on θ . In Taleb
and Cailletaud (2010) one has η2 = 0.1η1. The Heaviside function H is usually
defined (H(s) = 1, if s > 1, H(s) = 0, if s ≤ 0), the Macaulay brackets < · > can
be easily defined as the product of the Heaviside function and its argument.

The interpretation of (29) and (30) is that τ and ζ can only change, if there is
a plastic deformation characterized by ṡp > 0. Moreover, τ cannot decrease and
is nonnegative. Thus, b cannot increase. And finally, this increase is higher, if the
equivalent strain of the plastic strain overcomes the last maximum of the equivalent
strain of εp − ζ .

The internal variables b, τ and ζ do not appear in the free energy, and, as explained
in Remark 1 (iv) they are not relevant for the evaluation of the Clausius–Planck
inequality.
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2.2.2 Hardening Effects Due to Nonproportional Loading

Experiments show that nonproportional loading may lead to an additional isotropic
hardening (see Benallal and Marquis 1987; Taleb and Cailletaud 2010 for a detailed
explanation). Again, as in the case above of the strain-memory effect, we model
this phenomenon by a decreasing parameter b, regarding it as an additional internal
variable. Rewriting the approach in Taleb and Cailletaud (2010) to our setting with
a decreasing b instead of an increasing quotient Q

b , we assume (see Remark 3 for
comments):

ḃ = {

(c0 − c1)A + c1
}

(bs − b)ṡp, b(0) = b0 > 0. (31)

The dimensionless material parameters c0, c1 possibly depending on temperature are
assumed to fulfil

0 ≤ c1(θ) < c0(θ) for all admissible θ. (32)

H is the Heaviside function (see the previous subsection), σV and εV are von Mises’s
equivalence stress and strain, respectively, defined by

σV (σ ) :=
√

3

2
σ ∗ : σ ∗, εV (ε) :=

√

2

3
ε : ε. (33)

The quantity bs is defined via further quantities. For it, we define auxiliary quantities
for abbreviation

cos(α) := σ̇ ∗ : ε̇p

σV (σ̇ ) εV (ε̇p)
H(σ̇ ∗ : ε̇p), A := 1 − cos2(α). (34)

After that, bs is given via

bs := c2(1 − A)b0 + Ab1
A + c2(1 − A)

, (35)

where c2 = c2(θ) ≥ 0 is a further material parameter, and b1 with b0 > b1 > 0 is
the assumed minimum of b, possibly temperature-dependent. Obviously, there holds

b1(θ) ≤ bs(θ) ≤ b0(θ) for all admissible θ. (36)

Indeed, the only additional internal variable is b. The quantities cos(α), A, bs only
play an auxiliary role as abbreviations.

Taleb and Cailletaud (2010) present a simplification of this approach. Translated
into our setting, it corresponds to c1 ≡ 0 and c2 ≡ 0 and reads as

ḃ = c0 A(bm − b)ṡp, b(0) = b0 > 0. (37)
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Remark 3 1. In our setting (in contrast to Taleb andCailletaud 2010), theHeaviside
function H is used. The quotient in (34) is bounded, however not defined if one
of its arguments becomes zero. Using the Heaviside function in this case, cos(α)

is zero. In doing so, a drawback mentioned in Taleb and Cailletaud (2010) can
be overcome.

2. In the case of proportional loading, the rates of the deviatoric stress σ̇ ∗ and of
the plastic strain ε̇p are collinear. Thus, cos(α) = 1 and A = 0, yielding the
constant solution b = bs = b0 to (31). Clearly, there is no hardening due to
nonproportionality. On the contrary, the case of cos(α) = 0 and A = 1 (“full
nonproportionality”) causes the fastest decrease of b, corresponding to the best
hardening.

3. The dependence of the internal variable b on the derivative of the deviatoric stress
σ̇ ∗ is nonstandard. Although the free energy does not depend on b, the internal
variable q depends via (11) on b. Thus, when exploiting the entropy inequality
to obtain sufficient conditions for thermodynamic consistency, there may arise
some difficulties. In this case, the derivative σ̇ ∗ can be temporarily changed by
a difference quotient. At the end, a limiting process can be performed returning
the derivative. This work is in progress.

3 An Application of Multimechanism Models

After providing some basics of multimechanism models in Sects. 3.1, 3.2, we will
consider a possible coupling between the two cyclic-plastic-phenomena presented
above in Sect. 2.2. This coupling will be realized with the aid of a two-mechanism
approach.

3.1 Preparations

In a small deformation setting, the characteristic trait of multimechanism models (in
series) is the additive decomposition of the inelastic strain εin into a weighted sum.
For 2M-models this means

εin = A1 ε1 + A2 ε2 (38)

where A1 > 0, A2 > 0 are real numbers (see Wolff et al. 2015 for extensions). The
full strain ε and the free energy ψ are additively decomposed as in (1). After that,
partial stresses are defined:

σ i = Aiσ i = 1, 2. (39)
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For theory and applications of multimechanismmodels we refer to Saï (2011), Wolff
et al. (2011, 2015), Taleb and Cailletaud (2011), Taleb (2013), Kröger (2013), as
well as to the references therein.

In the sequel, we deal with a special two-mechanism model with one common
flow criterion (abbreviated by 2M1C) and with two isotropic variables (see Remark
4 (i)), considering only plastic behavior. Thus, instead of the index in we use p. In
Taleb and Cailletaud (2010), a 2M1C-model with two isotropic hardenings R1 and
R2 has been considered to take the two special effects mentioned above into account.
However, no possible coupling between R1 and R2 was dealt with. It is now the aim
to extend the approach in Taleb and Cailletaud (2010), bringing it into in a clear
thermodynamic setting. The thermoelastic part of the free energy ψte is defined as in
(2). The inelastic part of the free energy is assumed as follows:

ψin = ψkin + ψiso = (1 − dα)

2�0

(

C11(θ)α1 : α1 + 2C12(θ)α1 : α2 + C22(θ)α2 : α2

)

+ (1 − dq)

2�0

(

Q11(θ) q21 + 2Q12(θ) q1q2 + Q22(θ) q22
)

. (40)

ψkin stands for kinematic, ψiso for isotropic hardening. Now, one has two kinematic
internal tensorial variables α1 and α2 as well as two isotropic scalar internal variables
q1 and q2. Besides, there are three kinematic and three isotropic hardening moduli
C11,C12,C22 andQ11,Q12,Q22, respectively, all are possibly temperature-dependent.
We assume for all admissible temperatures θ

C11(θ) > 0, C22(θ) > 0, C2
12(θ) ≤ C11(θ)C22(θ), (41)

Q11(θ) > 0, Q22(θ) > 0, Q2
12(θ) ≤ Q11(θ)Q22(θ) (42)

Therefore, the symmetric matrices

(

C11 C12

C12 C22

)

,

(

Q11 Q12

Q12 Q22

)

are positive semidefinite. However, they may be singular. The singularity of the first
matrix C causes ratcheting phenomena in plasticity (see Cailletaud and Saï 1995)
and in special sorts of viscoelasticity (seeWolff et al. 2012). The conditions (41) and
(42), respectively, mean that ψkin and ψiso are nonnegative and convex. Thus during
hardening, energy cannot be received from the material structure. This would have
no physical sense (see Wolff and Taleb 2008 for further discussion and numerical
examples).

The thermodynamic force YE is defined in (9). In analogy with (7), (8) the back
stresses, isotropic hardenings and the remaining thermodynamic force related to
damage are defined by
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Xi = �0
∂ψkin

∂αi
= (1 − dα)

(

Ci1(θ)α1 + Ci2(θ)α2

)

, i = 1, 2, (43)

Ri = �0
∂ψiso

∂qi
= (1 − dq)

(

Qi1(θ) q1 + Qi2(θ) q2
)

, i = 1, 2, (44)

Yα = �0
∂ψin

∂dα

= −1

2

{

C11(θ)α1 : α1 + 2C12(θ)α1 : α2 + C22(θ)α2 : α2

}

, (45)

Yq = �0
∂ψin

∂dq
= −1

2

{

Q11(θ) q21 + 2Q12(θ) q1q2 + Q22(θ) q22
}

. (46)

Based on the von Mises plasticity, we introduce further quantities:

Ji =
√

3

2
(σ ∗

i − X∗
i ) : (σ ∗

i − X∗
i ) = σV (σ i − Xi), i = 1, 2, (47)

J =
(

Jβ

1 + Jβ

2

) 1
β

where β > 1 is a further parameter (see Wolff et al. 2015). The flow function for the
2M1C-model under consideration is defined by (see Remark 4 (i))

f (σ i,Xi,Ri,R0) = J − (R1 + R2 + R0), (48)

where the quantity R0 is given by

R0 = 2
1
β σ0, (49)

where σ0 = σ0(θ) is the initial yield stress (see Taleb and Cailletaud 2010; Wolff
et al. 2015). In the case under consideration, the general constraint reads as

f (σ i,Xi,Ri,R0) ≤ 0 (50)

Defining the direction vectors ni of the partial strains via

ni = 3

2

σ ∗
i − X∗

i

Ji

(Ji
J

)β−1
, i = 1, 2, (51)

one supposes the following evolution equations for the partial strains by

εi = λni, i = 1, 2. (52)

λ is the common plastic multiplier fulfilling

λ ≥ 0, if f (σ i,Xi,Ri,R0) = 0,

λ = 0, if f (σ i,Xi,Ri,R0) < 0.
(53)
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Clearly, one has the relation

λ =
(

ṡ
β

β−1

1 + ṡ
β

β−1

2

) β−1
β

, (54)

where the rates of accumulation of the partial strains are given by

ṡi =
√

2

3
ε̇i : ε̇i = εV (ε̇i), i = 1, 2. (55)

The evolution equations for the kinematic internal variables α1, α2 are given by
(see Wolff et al. 2015)

α̇1 = ε̇1 − D11

C11
X1λ − D12√

C11C22
X2λ,

α̇2 = ε̇1 − D21√
C11C22

X1λ − D22

C22
X2λ,

(56)

For several extensions, we refer to Cailletaud and Saï (1995), Taleb et al. (2006), and
Wolff et al. (2015). We assume the following evolution equations for the isotropic
internal variables: q1, q2.

q̇1 = λ − b11
Q11

R1λ − b12√
Q11Q22

R2λ,

q̇2 = λ − b21√
Q11Q22

R1λ − b22
Q22

R2λ,

(57)

There arise two new matrices D and B of parameter functions

(

D11 D12

D21 D22

)

,

(

b11 b12
b21 b22

)

.

These matrices are generally nonsymmetric; their entries may be functions of tem-
perature and further quantities. More general, in analogy to the considerations in
Sects. 2.2.1 and 2.2.2, these functionsmay play the role of additional variables having
own evolution equations. Up to now, diagonal matrices are mostly in use (see Taleb
and Cailletaud 2010; Saï 2011). However, further even “nonsymmetric” couplings
between the mechanisms are possible, using nonsymmetric matrices (seeWolff et al.
2011 for an example). In order to keep a good analogy to the case of models with
one mechanism (1M-models) like in Sect. 2.1, the evolution equations (56) and (57)
are written in this special form, using quotients like b11

Q11
(see Wolff et al. 2015). The

evolution equation for the damage variables di (i = E, α, q) is assumed as above as
shown in (11) for the case of a 1M-model. The difference may be in the concrete
form of the nonnegative functions fdi.



218 M. Wolff and M. Böhm

Assuming the usual Fourier law of heat conduction and performing the standard
approach again, the Clausius–Planck inequality reads as

σ 1 : ε̇1 + σ 2 : ε̇2 − X1 : ε̇1 − X2 : ε̇2 +
2

∑

i,j=1

Dij
√

CiiCjj
Xj : Xiλ+

− R1λ − R2λ +
2

∑

i,j=1

bij
√

QiiQjj
RiRjλ − YEfdE − Yαfdα − Yqfdq

= R0λ +
2

∑

i,j=1

Dij
√

CiiCjj
Xj : Xiλ +

2
∑

i,j=1

bij
√

QiiQjj
RiRjλ+

− YEfdE − Yαfdα − Yqfdq ≥ 0. (58)

In order to ensure thermodynamic consistency, the matrices D and B must be a
positive semidefinite for all admissible arguments. Obviously, this is equivalent to

(D12 + D21)
2 ≤ 4D2

11D
2
22, (b12 + b21)

2 ≤ 4b211b
2
22 (59)

for all admissible arguments. Using (43)2 and (57), one obtains evolution equations
for the isotropic hardenings R1 and R2:

Ṙ1 = Q11λ − b11R1λ −
√

Q11

Q22
b12R2λ + Q12λ − Q12√

Q11Q22
b21R1λ+

− Q12

Q22
b22R2λ + θ̇

∂Q11

∂θ
q1 + θ̇

∂Q12

∂θ
q2, (60)

Ṙ2 = Q12λ − Q12

Q11
b11R1λ − Q12√

Q11Q22
b12R2λ + Q22λ −

√

Q22

Q11
b21R1λ+

− b22R2λ + θ̇
∂Q12

∂θ
q1 + θ̇

∂Q22

∂θ
q2. (61)

Remark 4 1. The 2M1C-model introduced in this subsection has one common
flow criterion and two associated isotropic internal variables. This extension of
previous MM-models allowing several isotropic variables for one criterion was
introduced in Wolff et al. (2015). In this context, the hardenings Ri (i = 1, 2)
can be regarded as partial ones, and their sum R1 + R2 can be understood as
hardening related to the flow criterion. In an analogous manner (Wolff et al.
2015), a mechanism in MM-models may have several kinematic variables as in
the so-called Chaboche models with one mechanism (see Chaboche 2008).

2. The concept of two- and multimechanisms can be also applied to viscoplastic
behavior (e.g., Wolff et al. 2015) as well as to some sorts of creep (e.g., Wolff and
Böhm 2010; Bökenheide 2015) and viscoelasticity (e.g.,Wolff et al. 2012).More-
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over, if mechanisms do not belong to the same criterion, they may be different,
plastic and viscoplastic, e.g.,

3.2 Modeling of Special Effects in Cyclic Plasticity

Now it is the aim to use the two-mechanism approach for a simultaneous modeling of
the strain-memory effect and of the nonproportional loading effect like in Taleb and
Cailletaud (2010). In addition, we propose a coupling between the two effects, using
the possibilities due to a generally nondiagonal matrix B. For this reason, we relate
the isotropic hardening R1 to the strain-memory effect and R2 to the nonproportional
loading effect. The material function b11 is assumed to be an internal variable satis-
fying an evolution equation as in (26). After that, we proceed as above in Sect. 2.2.1.
The only difference is that now the direction vector n of the full inelastic strain εp is
given by

n = A1n1 + A2n2. (62)

Analogously, the material function b22 is assumed to be an internal variable having
the evolution equation as in (31). If one setsQ12 ≡ 0 and b12 = b21 ≡ 0, the situation
in Taleb andCailletaud (2010) is reproduced in a different setting. However, choosing
suitable quantities Q12 and b12, b21, possible coupling phenomena can be taken into
account.

Setting Q12 ≡ 0 from (60) and (61), we get

Ṙ1 = Q11λ − b11R1λ −
√

Q11

Q22
b12R2λ + θ̇

∂Q11

∂θ
q1, (63)

Ṙ2 = Q22λ −
√

Q22

Q11
b21R1λ − b22R2λ + θ̇

∂Q22

∂θ
q2. (64)

Now the roles of b12 and b21 become clear. b12 expresses the influence of the isotropic
hardening due to nonproportional loading on the evolution of the isotropic hardening
due to the strain-memory effect. Analogously, b12 expresses the reverse effect. Note
that due to the possible nonsymmetry of the matrix B, these both influences may be
different. The only restriction (within the frame of this modeling) is that this matrix
is positive semidefinite. Thus, b12 and b21 can be chosen as (possibly temperature-
dependent) parameters or as functions with own evolution equations so long as there
holds

(b12 + b21)
2 ≤ 4b211b

2
22 for all admissible arguments. (65)



220 M. Wolff and M. Böhm

Clearly, a simple case consists in choosing b12 = b12(θ) and b21 = b21(θ) in accor-
dance with

(b12(θ) + b21(θ))2 ≤ 4b21,s−m(θ)b21,n−p(θ) for all admissible θ, (66)

where b1,s−m is the minimum of b11 associated with the strain-memory effect (see
(26)), and b1,n−p is the minimal b1 in (35).

4 Conclusion

In this note, we have dealt with a thermodynamically consistent modeling of observ-
able effects in cyclic plasticity within the framework of two-mechanism models,
using additional internal variables. These effects are the strain-memory effect (see
Nouailhas et al. 1985, e.g.) and an additional hardening due to nonproportional load-
ing (see Benallal and Marquis 1987, e.g.). In Taleb and Cailletaud (2010), a current
modeling of both phenomena was presented in order to achieve a good agreement
between simulations and ratcheting experiments. However, a strong thermodynamic
foundation of the approach was not in the focus there but this note aims to fill the
gap.

Adetailed verification based on experimental data aswell as a detailed comparison
with the results by Taleb and Cailletaud (2010) remains for further work.
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Finite Inelastic Deformations
of Compressible Soft Solids
with the Mullins Effect

Heng Xiao, Hao Li, Zhao-Ling Wang and Zheng-Nan Yin

Abstract It is shown that finite inelastic behavior of soft solids with the Mullins
effect may be directly simulated by establishing finite elastoplastic J2-flow models.
New results in three respects are presented, including (i) general compressible defor-
mations are taken into account for the purpose of bypassing limitations of the usual
incompressibility constraint; (ii) any damage-like variables and associated evolution
equations are not involved; and (iii) any given number of unloading curves of any
given shapes in the Mullins effect may be simulated by direct, explicit procedures.

1 Motivation and Introduction

Soft solid materials, such as biological tissues and polymeric materials, are widely
used in engineering. Unlike usual solids with small elastic deformations, such mate-
rials exhibit very complex inelastic deformation behavior coupled with large elastic
deformations, such as the well-known Mullins effect associated with the stress soft-
ening at unloading and the permanent set after unloading, etc. In the past decades,
many efforts have been made to establish constitutive models for soft solids. Results
have been given based on damage-like variables, e.g., earlier in Simo (1987) and
later in Miehe (1995), Lion (1996), Ogden and Roxburg (1999), Miehe and Keck
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(2000), Beatty and Krishnaswamy (2000), Laiarinandrasana and Piques (2003), Lin
and Schomburg (2003), Chagnon et al. (2004), Dorfman and Ogden (2004), Diani
et al. (2006a), and Li et al. (2008). Results based on similar approaches may be found
in Besdo and Ihlemann (2003a), Qi and Boyce (2004), De Tommasi et al. (2006), etc.
On the other hand, micro-mechanical models based on macromolecular mechanisms
were proposed earlier in Govindjee and Simo (1991) and later by Marckmann et al.
(2002) , Besdo and Ihlemann (2003b), Drozdov and Dorfman (2003), Göktepe and
Miehe (2005), Diani et al. (2006b), Ayoub et al. (2010), Itskov et al. (2010), Zaïri
et al. (2011), Dargazany et al. (2014), and many others.

Irrespective of numerous results, there are issues that need to be treated (cf., Diani
2009). In fact, a large number of parameters should be introduced in each existing
model. For a given material sample, complicated numerical procedures should be
performed to find out such parameters, in a sense of fitting test data given for this
sample as closely as possible. Whenever the model applicability is validated for a
material sample, it may not be clear that it will be the case for another material sam-
ple. On the other hand, the incompressibility constraint is usually assumed in order
to reduce undue complexities involved. Although this usual assumption may provide
meaningful results, it leaves two issues outstanding. The one is that particular pro-
cedures treating this constraint have to be carried out in numerical implementation,
which may give rise to possible errors and instabilities (see, e.g., Simo and Hughes
1998). The other is that soft solid materials may display appreciable compressibility.
In this case, the incompressibility constraint may not be suitable.

In this study we are going to address the above issues. Toward this objective, we
are going to demonstrate that finite inelastic behavior of soft solids may be simulated
by establishing finite elastoplastic J2-flow models with nonlinear hardening. New
results in three respects are presented, including (i) general compressible deforma-
tions are taken into account for the purpose of bypassing limitations of the usual
incompressibility constraint; (ii) any damage-like variables and associated evolution
equations are not involved; and (iii) any given number of unloading curves of any
given shapes in the Mullins effect may be simulated by means of direct, explicit
procedures.

The main content is arranged as follows. In Sect. 2, a rate-independent J2-flow
model will be proposed, with compressible elastic behavior evolving with the plastic
work. In Sect. 3, the evolving elastic potential and the yield limit incorporated in
the proposed model will be determined by means of direct, explicit procedures, so
that any given sets of data for the stress softening in the uniaxial unloading case
may be automatically, accurately fitted and, in the meantime, the proposed model
with identified multiaxial constitutive quantities is ready in use for general case of
multiaxial deformation. In Sect. 4, numerical examples in fitting test data will be
presented for the purpose of model validation. Finally, remarks for further studies
will be given in Sect. 5.

To conclude this introduction, some notations that will be used are explained as
follows. The notations (·) and (:) placed between two tensors mean the single dot
product and the double dot product, respectively, and trS represents the trace of
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second-order tensor S. Moreover, the superimposed dot ˙
( ) represents the material

time rate. Finally, sgn(x) denotes the sign function of x that takes values 1, 0,−1
for x > 0, x = 0, x < 0, respectively.

2 Finite Strain J2-flow Model with Evolving Rubberlike
Elasticity

The starting point is to establish a new J2-flow model of finite elastoplastic defor-
mations with evolving elastic behavior. The consistent Eulerian rate formulation of
finite elastoplasticity based on the corotational logarithmic ratewill be applied.Detail
in this respect may be found in Bruhns et al. (1999) and Xiao et al. (2006, 2007).
Toward our objective, we are going to extend this formulation to a broader case with
evolving rubberlike elasticity. Such a formulation in the incompressibility case has
been suggested in a most recent study (Xiao 2015). In what follows, a broader case
for general compressible deformations will be treated.

Let F and FT be the deformation gradient and its transposition and let h and
D be Hencky’s logarithmic strain and the stretching. Moreover, let τ and τ̃ be the
Kirchhoff stress and its deviatoric part, namely, τ = Jσ where σ is the Cauchy stress
(true stress) and J = detF is the volumetric ratio..

2.1 Separation of the Stretching

It is assumed that the stretching D is composed of an elastic part, De, and a plastic
part, D p, as shown below:

D = De + D p. (1)

An objective rate equation should be given for the elastic part De, which governs
finite hyperelastic behavior of soft solids. Moreover, a flow rule should be given for
the plastic part D p, which governs dissipated inelastic behavior of soft solids.

Below the two Eulerian rate type constitutive equations indicated above will be
presented, separately.

2.2 Elastic Rate Equation with Evolving Elastic Potential

To determine the elastic part De, a Eulerian rate equation is given to establish a linear
relationship between the elastic part De and an objective stress rate:



226 H. Xiao et al.

De = ∂2W

∂τ 2
: o
τ log + ∂2W

∂τ∂κ
κ̇, (2)

where
o
τ log is the logarithmic rate of the Kirchhoff stress τ and, besides,

W = W (τ , κ), (3)

is a complementary elastic potential characterizing compressible hyperelastic behav-
ior of soft solids.

As a departure from usual treatment, here the potentialW (cf. Eq. (3)) will evolve
with the plastic work κ (see Eq. (8) given slightly later). This idea will prove essential
in simulating the stress softening behavior.

It may be demonstrated (Xiao et al. 2007) that, with the logarithmic stress rate
o
τ log, the elastic rate equation Eq. (2) prior to the initial yielding, i.e., at De = D, is
exactly integrable to deliver a finite hyperelastic relation, namely,

h = ∂W

∂τ
. (4)

This renders the meaning of the complementary potential W clear. Since the latter
relies on the plastic work κ , it may be also clear that the elastic behavior will be
different for different cases of unloading, as is the case in the Mullins effect.

2.3 Normality Flow Rule

The plastic part D p is governed by the following normality rule (Bruhns et al. 2003,
2005 and Xiao et al. 2007):

D p = ξ

ĥ

(
∂ f

∂τ
: oτ log

)
∂ f

∂τ
. (5)

Here, the yield function f is of von Mises type:

f = 1

2
trτ̃ 2 − 1

3
r2. (6)

A simple, direct approach will be proposed to treat tension–compression asym-
metry, as will be shown in the next section. In the above, the yield limit r relies on
the plastic work κ and a well-designed stress invariant, χ , and is taken to be of the
following form:

r = r(κ, χ) = 1

2
(r+ + r−) + 1

2
sgn(χ)(r+ − r−), (7)
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where

κ̇ = τ : D p. (8)

In the above, the stress invariant χ is introduced for the purpose of characterizing
the tension–compression asymmetry and in this sense the r+ and r− are the yield
limits in the cases of tension and compression, respectively, and both are dependent
merely on the plastic work κ , namely,

χ = √
6

J3
J 1.5
2

, (9)

and

r+ = r+(κ), r− = r−(κ). (10)

Here and henceforward, J2 and J3 are used to signify the second and third basic
invariants of the deviatoric Kirchhoff stress τ̃ , viz.,

J2 = trτ̃ 2, J3 = trτ̃ 3. (11)

It may readily be shown that −1 ≤ χ ≤ 1. In particular,

χ =
{+1 for uniaxial tension,

−1 for uniaxial compression.
(12)

Moreover, the ξ in Eq. (5) is the plastic indicator taking values 1 and 0 for the loading
and unloading cases (cf. Bruhns et al. 2003; Xiao et al. 2007), viz.,

ξ =
⎧

⎨

⎩

1 for
[

f = 0, 1
ĥ

∂ f
∂τ

: oτ log ≥ 0
]

,

0 for f < 0 or
[

f = 0, 1
ĥ

∂ f
∂τ

: oτ log ≤ 0
]

.
(13)

The plastic modulus ĥ may be derived from the plastic consistency condition ḟ = 0
and given by

ĥ = 4

9
r3r ′ (14)

with

r ′ = ∂r

∂κ
. (15)
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2.4 On the Thermodynamic Consistency and Others

Since pronounced intrinsic dissipation is a typical feature of inelastic deformations,
a physically sound model for inelastic behavior should be placed on the ground of
thermodynamic principles. In continuum thermodynamics, the second law is formu-
lated by the Clausius–Duhem inequality with restrictions on the entropy production
in every possible thermodynamic process. In a sense of thermodynamic consistency,
a constitutive model should identically fulfill the Clausius–Duhem inequality. Most
recently, the thermodynamic consistency of Eulerian elastoplastic rate models has
been demonstrated (Xiao et al. 2007 and Xiao 2013, 2014a, b, 2015) in an explicit
sense of presenting both the specific free energy function and the specific entropy
function which identically meet the Clausius–Duhem inequality. Following the same
procedures proposed in these recent studies, results may be derived for the model
proposed here. Detail is not pursued here and may be referred to the aforementioned
references.

A J2-flow model with nonlinear combined hardening has been established most
recently (Xiao 2015) for incompressible deformations. The model proposed here
is for general compressible deformations but simpler in the sense that nonlinear
anisotropic hardening is not incorporated. It will be demonstrated that this simplified
model in a broader case may provide good simulation of the complicated stress
softening behavior of soft solids displaying the Mullins effects.

The deformation features of the proposed model are characterized by two consti-
tutive quantities, namely, the evolving elastic potential W (cf., Eq. (3)) and the yield
limit r (cf., Eq. (7)). The form of the potentialW should be well chosen, so that large
rubberlike elastic deformation behavior may be characterized at unloading. Further-
more, the yield limit r should be such that it joins the potentialW to characterize the
inelastic deformation behavior. Detail will be given in the next section.

3 Explicit Procedures for Determining Constitutive
Quantities

When the two constitutive quantities, namely, the potential W and the yield limit r ,
are given for general multiaxial cases, the proposed model is ready for use in treating
various multiaxial deformation problems. Except for some degenerate cases, how-
ever, it might be far from being trivial to obtain suitable forms of the constitutive
functions in a model. Usually, specific forms of constitutive functions with a num-
ber of unknown parameters have to be chosen on an ad hoc basis. To validate the
applicability of chosen forms of constitutive functions, it should be known whether
or not suitable values of these unknown parameters may be found by means of trial-
and-error procedures, in a sense of fitting adequate test data as closely as possible.
For given trial values of the parameters at each step, the response for each process of
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Fig. 1 Uniaxial
strain-stiffening curve at
monotone loading

deformation should be determined from the model by means of complicated numer-
ical procedures.

For soft solids, usually test data for uniaxial responses are given both for the
monotone loading case and for various cases of unloading, as shown in Fig. 1 for
the loading curve and in Fig. 2 for unloading curves. Responses from model predic-
tions for given trial values of parameters should be compared with test data for the
purpose of model validation. For a reasonable model, by means of trial-and-error
procedures of searching for suitable forms of the constitutive functions and para-
meters, reasonable accord with test data may be eventually achieved after iterative
numerical procedures. Since both the loading curve and each unloading curve dis-
play complicated nonlinearities coupled with large strain and, in particular, a number
of unloading curves should be taken into consideration and any two of them may
be of different shapes, usual implicit procedures for both searching for reasonable
forms of constitutive functions and identifying a set of unknown parameters would
be unduly complicated.

Itwill be demonstrated in this section that, for the purpose of representing the stress
softening behavior of a soft solid material, explicit procedures may be introduced
to obtain the two constitutive functions in the proposed model, in the sense that the
predictions from the proposed model can automatically, accurately fit any given sets
of data both for the uniaxial monotone loading case and for various unloading cases.

Fig. 2 Uniaxial unloading
curves displaying the stress
softening effect
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3.1 Uniaxial Stress–Strain Curves at Loading and Unloading

As shown in Fig. 1, the uniaxial stress–strain curve of a soft solid material under
monotone loading is of S-shape. Here and henceforward, τ and h are used to repre-
sent the axial Kirchhoff stress and the axial Hencky strain, respectively. Two notice-
able features of such a curve may be noticed, namely, (i) the stress τ may grow very
rapidly as the strain h is approaching either a compression limit,−v∞, or an extension
limit, u∞, and (ii) the stress response may display pronounced tension–compression
asymmetry. The former arises from limiting extensibility of long chain-like macro-
molecules and is known as the strain-stiffening effect.

On the other hand, the well-known Mullins effect is in association with the stress
softening at unloading. When a sample is loaded to a certain point (h∗, τ ∗) and then
unloaded, there emerges the stress softening effect as described below (cf., e.g., Xiao
2015):

(i) After the unloading is completed, nearly the whole of the strain may be recovered, but,
nevertheless, a very small residual strain (permanent set) may be induced. The stress–strain
curve in an unloading process may appreciably deviate from the monotone loading curve
up to the unloading point (h∗, τ ∗) at the onset of unloading;
(ii) for each strain h ∈ [0, h∗), the stress on the unloading curve is always lower than the
stress on the monotone loading curve, referred to as stress softening at unloading;

(iii) when reloading is introduced, the part of the reloading curve till the point (h∗, τ ∗) is
nearly coincident with the unloading curve in the foregoing, but the part of the reloading
curve after the point (h∗, τ ∗) follows the monotone loading curve after a transition at the
point (h∗, τ ∗);
(iv) and, finally, the larger the strain h∗ at the unloading point is, the more pronounced the
stress softening effect becomes.

As shown in Fig. 2, a family of unloading curves is associated with different
unloading points (h∗, τ ∗) (the loading curve is shown only for the tension case). An
unloading curve covering both compression and tension is sketchily shown in Fig. 2.
It should be noted that the stress softening behavior under tensionmay differ in nature
from that under compression, namely, the unloading curve need not be symmetric
under tension and compression.

For a soft material sample of interest, test data are given for the loading curve and
for a certain number of unloading curves. For the latter, consider M data sets for the
unloading curves associated with M unloading stresses τ ∗

1 < τ ∗
2 < · · · < τ ∗

M , which
correspond toM values of the plastic work below: κ1 < κ2 < · · · < κM . Specifically,
for the unloading curve associated with the unloading stress τ ∗

s or the plastic work
κs for each s ∈ {0, 1, . . . , M}, a set of strain–stress data is given below:

(h(s)
0 , τ

(s)
0 ), (h(s)

1 , τ
(s)
1 ), . . . , (h(s)

Ns
, τ

(s)
Ns

). (16)

In the above, the first point (h(s)
0 , τ

(s)
0 ) (cf., Fig. 2) is just given by the strain h∗

s and
the stress τ ∗

s at the onset of unloading, and, moreover, the residual strain (permanent
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set) at vanishing stress, i.e., the point (h p
s , 0), should be incorporated in the above

set of data.
Given a data set for the loading curve and data sets for a certain number of

unloading curves, as described in the above, the main effort is to find out the evolving
elastic potentialW (cf., Eq. (3)) and the yield limit r (cf., Eq. (7)) such that the model
established in Sect. 2 fits these data as closely as possible. In what follows, we
are going to show that explicit procedures may be introduced to obtain these two
constitutive quantities in a sense of accuratelymatching test data for any given shapes
of loading and unloading curves.

3.2 Multiaxial Elastic Potential in Explicit Form

We first present the evolving elastic potential W . The main procedures will follow
those suggested in a most recent study (Xiao 2015).

A single-variable function for the unloading curve associated with the unloading
point (h∗

s , τ
∗
s ) or the plastic work κs may be obtained in a sense of accurately fitting

any given date set as shown in Eq. (16). Indeed, it may be given by an interpolating
function, such as a Lagrange interpolant and an other form of function. Let such a
function be designated by h = gs(τ ). Then, we have

gs(0) = h p
s , gs(τα) = hα, α = 0, 1, . . . , Ns . (17)

It may readily be shown that in the uniaxial case, the evolving potential Eq. (3)
reduces to a function of the axial Kirchhoff stress τ and the plastic work κ , denoted
as

w = w(τ, κ). (18)

For the unloading curve associated with each unloading point (h∗
s , τ

∗
s ) or each plastic

work κs , the elastic rate equation (2) yields

ḣ =
˙(

∂w

∂τ

)

.

For the unloading curve with number s, the plastic work is held fixed and given by
κs . Then, the integration of this equation from the point (h p

s , 0) to the point (h, τ ) in
an unloading process gives rise to

h − h p
s = dws

dτ
. (19)

In the above, we denotews = w(τ, κs). Moreover, the following property is assumed:
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∂w

∂τ

∣
∣
∣
∣
τ=0

= 0. (20)

From Eqs. (19) and (27) we deduce

dws

dτ
= gs(τ ) − h p

s . (21)

Hence we obtain

ws = ws(τ ) =
∫ τ

0

(

gs(τ ) − h p
s

)

dτ. (22)

From the above procedures we obtain M uniaxial potentials w1, . . . ,wM for the
M unloading curves at issue. However, each of them is restricted to the uniaxial case.
Now we show that, by means of the multiaxial invariants χ (cf. Eq. (9)) and the three
basic stress invariants, the sought multiaxial potential W (cf., Eq. (3)) is obtainable
from the foregoing M uniaxial potentials. To this end, a crucial step is to extend each
uniaxial potential ws(τ ) to a multiaxial potential below:

Ws = 1

3
(1 − 2ν)ws(I ) + 2

3
(1 + ν)ws

(

sgn(χ)
√

1.5J2
)

, (23)

where

I = trτ (24)

is the first stress invariant. In the above, ν > 0 is a parameter characterizing the
compressibility effect and may be referred to as generalized Poisson ratio. Detail in
this respect may be found in Yuan et al. (2015). In particular, the incompressibility
case is incorporated as a special case when ν = 0.5. It may be verified that, in the
uniaxial case, each function Ws for general multiaxial compressible deformations,
given by Eq. (23), exactly supplies its uniaxial counterpart ws .

We then present the sought multiaxial potential W (τ , κ) in unified form which
exactly gives the M multiaxial potentials W 1, . . . ,WM for the M plastic works
κ1, . . . , κM . Such a potential may be given by an interpolating function with the M
interpolating nodes (κs,Ws) for s = 1, . . . , M . For instance, it may be given by a
Lagrange interpolant below:

W = W (τ , κ) =
M

∑

s=1

Ws Ls(κ) (25)

with the Lagrangian base functions

Ls(κ) = P(κ)

(κ − κs)P ′(κs)
, s = 1, . . . , M, (26)
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P(κ) =
M

∏

s=1

(κ − κs). (27)

From Eqs. (12) and (23)–(27) it may be concluded that, in the uniaxial case, the
evolving potential Eq. (25) with Eqs. (22)–(44), (26) and (27) exactly supplies the M
uniaxial potentials w1(τ ), . . . ,wM(τ ) given by Eq. (22) and, therefore, can exactly
fit any given M sets of data for M unloading curves (cf. Eq. (16), (17)). In fact, for
the uniaxial case with the uniaxial stress τ , by utilizing Eq. (12) and 1.5J2 = τ 2 we
deduce

Ws =
{

ws(|τ |) = ws(τ ) for uniaxial tension τ ≥ 0,

ws(−|τ |) = ws(τ ) for uniaxial compression τ ≤ 0.
(28)

From this and Eqs. (25)–(27), we then infer that W = ws(τ ) for the uniaxial case at
κ = κs . Thus, it follows from Eqs. (22) to (27) that the multiaxial potential W given
can automatically reproduce each unloading curve.

The above results show that, with single-variable functions for unloading curves,
as shown by Eq. (17), the multiaxial potential W may be determined by the explicit,
direct procedures proposed.With sufficient test data for a certain number of unloading
curves, each such single-variable function may be given directly by an interpolating
functionor by choosing another suitable formof function. It isworthwhile to point out
that no adjustable parameters need be identified in the former case, while parameters
of physical meanings may be introduced and readily determined in the latter case,
as will be shown in subsequent development.

3.3 Determination of the Yield Limit

Next we are going to explain how to determine the stress limit r . According to Eq. (7),
it needs to determine the yield limits r+ and r− for the tension and compression
cases. To this end, we first treat the uniaxial extension case for the loading case. In
this case, the yield limit is just r+ (cf., Eqs. (7) and (10)). Let a set of data be given
for a monotone uniaxial stress–strain curve starting at the initial yield point (h+

0 , τ+
0 )

at extension (cf. Fig. 2). Then, a single-variable function for this curve may be given
also by an interpolating function or an other form of function, denoted as

{

h = f +(τ ), τ ≥ τ+
0 ,

h0 = f +(τ+
0 ),

(29)

In a process of monotone loading in the uniaxial extension, the following relations
may be derived (cf., Xiao 2015):
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{

τ = r+ = r+(κ),
d
dκ

(

f +(τ ) − ∂w
∂τ

) = 1
τ
,

(30)

where w = w(τ, κ) is the elastic potential for uniaxial extension and given by

w =
M

∑

s=1

ws(τ )Ls(κ̃). (31)

where ws(τ ) and Ls(κ) are given by Eqs. (22) and (26), (27). Thus, by working
out Eq. (30)2 we infer that the stress limit r+ = τ is determined by the following
first-order differential equation:

dτ

dκ
=

d f +
dτ

− ∂2w
∂τ 2

1
τ

+ ∂2w
∂τ∂κ

(32)

with τ |κ=0 = τ+
0 .

Results for the compression case may be derived following the same procedures
in the above. The only difference is that Eq. (30)1 should be replaced by τ = −r−.
Let f −(τ ) be a function representing the monotone loading curve in the uniaxial
compression case, namely,

{

h = f −(τ ), τ ≤ τ−
0 < 0,

h−
0 = f −(τ−

0 ),
(33)

with the initial yield point (h−
0 , τ−

0 ) under compression. Given test data, the above
function may be given by an interpolating function or an other form of function, as in
the monotone tension case. Then, the yield limit r− = −τ in the compression case
may be determined by

dτ

dκ
=

d f −
dτ

− ∂2w
∂τ 2

1
τ

+ ∂2w
∂τ∂κ

(34)

with τ |κ=0 = τ−
0 .

3.4 Shape Functions for Uniaxial Loading and Unloading

In the above results in explicit forms, it needs to input the two shape functions f ±(τ )

for the two monotone loading curves in both cases of extension and compression.
Either of them may be directly given by interpolating functions, which is also the
case for the shape functions gs(τ ) (cf., Eq. (17)) for each unloading curve. As such,
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any given data may be exactly fitted without involving usual procedures of identify-
ing unknown parameters. As mentioned before, these shape functions may also be
given by other forms of functions. Sometimes, simple forms of shape functions with
parameters of physical meanings may be instrumental.

Soft solid materials display two noticeable deformation features, namely, the
strain-stiffening effect and the tension–compression asymmetry, as indicated in
Sect. 3.1. It has been found (Xiao 2012) that a simple form of shape function with
strain limits may accurately characterize complex nonlinearities of rubberlike elas-
ticity with tension–compression asymmetry. Here, we are going to show that a new,
simpler form may be introduced to represent each elastic unloading curve and given
below:

τ = (1 − γ +)E(h − h p)

1 − h−h p

u

+ γ + E(h − h p) for h − h p ≥ 0 (τ ≥ 0), (35)

and

τ = (1 − γ −)E(h − h p)

1 + h−h p

v

+ γ − E(h − h p) for h − h p ≤ 0 (τ ≤ 0). (36)

Hence, we have

h − h p = g(τ ) = 1

2
(g+ + g−) + 1

2
sgn(τ )(g+ − g−) , (37)

where g+ and g− are given by inverting the two functions given by Eqs. (35)–(36)
and of the forms below:

⎧

⎪⎪⎨

⎪⎪⎩

g+ = 2uτ

τ + Eu + √

(τ + Eu)2 − 4γ +Euτ
,

g− = −2vτ

τ − Ev − √

(τ − Ev)2 + 4γ −Evτ
.

(38)

In the above, h p is the plastic strain after unloading, E is the Young’s modulus
at infinitesimal strain, u and v are strain limits in extension and compression, as
shown in Fig. 1, and γ + < 1 and γ − < 1 are dimensionless factors characterizing
the growth degree of stress at the strain limits. Each of them may rely on the plastic
work κ , viz.,

E = E(κ), u = u(κ), v = v(κ), γ ± = γ ±(κ). (39)

For each unloading curve associated with a value of the plastic work, values of the
above parameters may be determined by fitting the two functions given by Eqs. (37)–
(38) to test data. As such, a set of parameter values may be obtained for a family
of unloading curves. Then, each of the foregoing κ-dependent parameter may also
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be given directly by an interpolating function. It may be noted that the parameters
introduced directly represent the very features of each elastic unloading curve at
issue, as indicated in Fig. 1, and, accordingly, are determinable from each unloading
curve in an uncoupled manner.

In particular, the unloading curve starting at the initial yield points (h±
0 , τ±

0 ) is
associated with κ = 0 and coincident exactly with the initial elastic curve linking the
just mentioned two initial yield points. This curve may be given simply by a linear
relation between the axial stress τ and the axial Hencky strain h, namely,

{

h = g0(τ ) = τ/E0, τ−
0 ≤ τ ≤ τ+

0 ,

κ = 0,
(40)

where E0 = E(0) is the initial Young’s modulus.
On the other hand, the twomonotone loading curves (cf. Eqs. (29) and (33)) under

tension and compression start at the initial yield points (h±
0 , τ±

0 ) and may also be
given by the same form of function, as shown below:

τ = τ+
0 + E+

0 (h − h+
0 )

⎛

⎝
1 − m

1 − h−h+
0

u∞

+ m

⎞

⎠ , (41)

for the monotone loading curve under extension, and

τ = τ−
0 + E−

0 (h − h−
0 )

⎛

⎝
1 − n

1 + h−h−
0

v∞

+ n

⎞

⎠ , (42)

for themonotone loading curve under compression.Here, E±
0 are the two slopes at the

two initial yield points (h±
0 , τ±

0 ) (cf. Fig. 2) under tension and compression, u∞ >

0 and v∞ > 0 are the extension limit and the compression limit under monotone
loading, as shown in Fig. 1, and m < 1 and n < 1 are two dimensionless factors.

From the inverted forms of the last two functions we obtain

h = f +(τ ) = h+
0 + 2(τ − τ+

0 )

E+
0 + τ−τ+

0
u∞ +

√

(E+
0 + τ−τ+

0
u∞ )2 − 4mE+

0
τ−τ+

0
u∞

(43)

and

h = f −(τ ) = h−
0 + 2(τ − τ−

0 )

E−
0 − τ−τ−

0
v∞ +

√

(E−
0 − τ−τ−

0
v∞ )2 + 4nE−

0
τ−τ−

0
v∞

. (44)
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4 Numerical Examples

With the proposed model in which the constitutive functions are given in explicit
forms, as established in Sects. 2 and 3, an explicit, accurate simulation of the stress
softening effect for any given test data for both monotone loading behavior and
unloading behavior may be achieved. Toward this objective, it is sufficient to specify
the two shape functions f ±(τ ) (cf. Eqs. (43)–(44)) for the monotone loading case
and a family of shape functions, g±

s (τ ) (cf. Eq. (38)), for various unloading cases. As
indicated before, it may be straightforward to present these shape functions by usual
interpolating procedures. However, they may be given by other forms of functions.
As illustrative example, in this section the simple forms of shape functions given in
Sect. 3.4 will be used to fit test data in literature.

In what follows, test data will be fitted using the initial elastic curve equation (40)
and the monotone loading curve equation (41) for the tension case, as well as the
unloading curve equation (35) in the tension case. Here the compression case will
not be involved, since no test data for this case are given in the treated examples.
The values of the parameters incorporated in the equations just mentioned will be
determined following the scheme explained in Xiao (2015).

Model predictions will be compared with two sets of data in literature. In the two
examples below, the generalized Poisson ratio is taken to be as follows: ν = 0.4999.
Since now the model is free of the incompressibility constraint, the incompressibility
condition is rendered irrelevant.

4.1 Simulation of Data from Dorfman and Ogden (2004)

We first consider the data provided by Dorfman and Ogden (2004). These data are
concerned with a particle-reinforced compound with 60 phr of carbon black for the

Fig. 3 Comparing model
predictions with test data by
Dorfman and Ogden (2004)
(the initial yield stress is
indicated by circle o)
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monotone loading case till the stretch λ = 3 and then for the unloading case starting
at this stretch.

For themonotone loading case, results are almost the same as those inXiao (2015).
The shape function for the monotone loading curve is given by Eq. (41) with the
parameter values below: h+

0 = ln 1.248, τ+
0 = 0.905MPa, E+

0 = 3.3MPa, m =
−2.3, u∞ = ln 3.6. For the unloading case, the unloading curve is presented by
Eq. (35) with h p = ln 1.12, E = 2.2MPa, u = ln(3.05/1.12), γ + = 0.77. More-
over, the initial elastic curve till the initial yield point (h+

0 , τ+
0 ) is given by Eq. (40)

with h+
0 = ln 1.128, τ+

0 = 0.905MPa, E0 = 4.08MPa.Results are shown in Fig. 3
by plotting the curves of the axial nominal stress P against the axial stretch λ. Accu-
rate simulation is achieved.

4.2 Simulation of the Data from Mullins and Tobin (1957)

We next consider the data from Mullins and Tobin (1957) for a vulcanizate sample,
which are concerned with the monotone loading case till the stretch λ = 5 and the
unloading cases starting at λ = 3, 4, 5, separately.

For the initial elastic curve (cf., Eq. (40)) till the initial yield point (h+
0 , τ+

0 ), the
relevant parameter values are given by E0 = 38.086MPa, h+

0 = ln 1.541, τ+
0 =

16.470MPa, Moreover, for the monotone loading curve starting at the foregoing
initial yield point is simulated by Eq. (41) with h+

0 = ln 1.541, τ+
0 = 16.470MPa,

E+
0 = 32.8MPa, m = −3.66, u∞ = ln 5.18. Finally, the three unloading curves

are simulated by applying Eq. (35) with the parameter values listed in Table1.
Results are shown in Fig. 4 by plotting curves of the axial nominal stress P against

the axial engineering strain λ − 1. Again, accurate simulation is achieved.

Table 1 Parameter values for three unloading curves

Parameters E(MPa) u h p γ

1st curve 25.00 ln
3.566

1.14
1.14 0.42

2nd curve 23.00 ln
4.5

1.24
1.24 0.24

3nd curve 20.00 ln
5.35

1.3
1.3 0.1
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Fig. 4 Comparing model
predictions with test data by
Mullins and Tobin (1957)
(the initial yield point is
indicated by circle o)

5 Concluding Remarks

New J2-flow elastoplasticitymodels with evolving rubberlike elasticity has been pro-
posed to achieve an explicit, accurate simulation of complicated inelastic behavior
of soft solid materials displaying the Mullins effect. Explicit, direct procedures are
proposed to obtain the constitutive quantities incorporated in the proposed model
from suitable uniaxial data. It has been demonstrated that the constitutive quanti-
ties may be determined for general multiaxial deformations and, in the meantime,
extensive test data for any given shapes of loading and unloading curves may be
accurately, automatically fitted for the first time. Results are applicable for a broad
case of tension–compression asymmetry. In particular, it has been demonstrated that
all may be done in the scope of classical elastoplasticity and, therefore, that no addi-
tional variables need be introduced and treated. As a consequence, not only usual
implicit, complicated procedures both in searching for suitable forms of constitutive
functions and in identifying values of unknown parameters may be bypassed, but
also, in the meantime, an explicit, accurate simulation may be achieved for any given
sets of test data.

This study represents a development of the model suggested in a most recent
study (Xiao 2015), in the sense that simpler results are derived in a sense free of
the usually assumed incompressibility constraint. However, rate effects and fatigue
effects under cyclic loading are not treated and will be studied by developing the
free, smooth elastoplasticity models in (Xiao et al. 2014) and (Xiao 2014b). These
respects will be studied in elsewhere.
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Effect of Geometric Dimension
on the Dissipative Property
of the Structures Consisting of NiTi
Shape Memory Alloy Wires

Chao Yu, Guozheng Kang and Qianhua Kan

Abstract Effect of the geometric dimension of NiTi shape memory alloy (SMA)
wires on the dissipative property of their structural components is predicted by a
physical mechanism-based thermo-mechanically coupled constitutive model in this
work. Two types of NiTi SMA structural components, i.e., the single-wire and multi-
wire ones, are considered. The dissipative property of the component is measured by
its accumulated dissipation energy obtained during cyclic deformation. The calcu-
lated results show that at low (lower than 1× 10−5/s), moderate (from 5× 10−5/s to
1.5×10−4/s), and high strain rates (higher than 5×10−4/s), the accumulated dissipa-
tion energy decreases, changes non-monotonically, and increases with the increasing
number of wires, respectively.

1 Introduction

Owing to the solid-to-solid diffusionless thermo-elastic martensite transformation,
NiTi SMA can exhibit super-elasticity, shape memory effect, high damping capacity,
and excellent biocompatibility. Recently, the structures made by NiTi SMA wires
had been often used as the energy absorber (Jani et al. 2014). To evaluate the design
of structures, the dissipative property is one of the most important factors, which is
determined by the deformation characteristics of NiTi SMA.
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In the past three decades, many experimental observations were conducted to
investigate the deformation of super-elastic NiTi SMA. Two main features were
observed and are listed as follows:

1. Strong thermo-mechanical coupled effect. During the inelastic deformation of
NiTi SMA, an internal heat production will come from the mechanical dissipa-
tion and transformation latent heat, which might cause a temperature variation.
The extent of temperature variation depends on the competition of internal heat
production against the heat transfer/convection, which is basically determined
by applied loading rate, environmental medium, and the geometric dimension of
tested specimen (ShawandKyriakides 1995;He andSun 2010a, b, 2011;Yin et al.
2014; Morin et al. 2011a). Meanwhile, the start stress of martensite transforma-
tion strongly depends on temperature. Thus, NiTi SMA exhibits strong thermo-
mechanical coupled deformation. The transformation hardening increases with
the increasing loading rate; but the dissipation energy (area of the hysteresis loop
in the stress–strain curve) changes non-monotonically with the varied loading
rate, i.e., when the loading rate is relatively low (e.g., lower than 1× 10−5/s), the
dissipation energy of NiTi SMA increases with the increasing loading rate, while
it decreases with the increasing loading rate as the loading rate is relatively high
(e.g., higher than 5 × 10−4/s).

2. Super-elasticity degeneration. In practice, the structural components made from
NiTi SMA are often subjected to a cyclic thermo-mechanical loading. Miyazaki
et al. (1986) first found the super-elasticity degeneration of NiTi SMA during the
pure mechanical cyclic deformation. It is reported that the martensite transforma-
tion and its reverse result in a progressive increase in the peak/valley stains and
transformation hardening, but a decrease in the start stress of martensite transfor-
mation and the dissipation energy per cycle with the increasing number of cycles.
All the observed evolutions tend to be saturated after a certain number of cycles.
The super-elasticity degeneration of NiTi SMA is further investigated by many
researchers and more factors are considered, i.e., the applied stress level (Kang
et al. 2009; Song et al. 2014a), proportional and non-proportional loading path
(Wang et al. 2008; Song et al. 2014b), grain size (Delville et al. 2010, 2011),
precipitated phase (Gall and Maier 2002), and the atomic ratio of Ni element
(Strnadel et al. 1995a, b). More recently, the effect of loading rate on the cyclic
deformation of NiTi SMA was investigated by Morin et al. (2011b) and Kan
et al. (2015), and the super-elasticity degeneration aggravated with the increasing
loading rate.

In order to simulate and predict the deformation of materials and structures, a
constitutive model is needed. In recent years, many phenomenological constitutive
models havebeen constructed in themacroscopic scale to describe the super-elasticity
degeneration of NiTi SMA. The representative works can be referred to Auricchio
et al. (2003, 2007), Lagoudas and Entchev (2004), Zaki and Moumni (2007), Saint-
Sulpice et al. (2009), Hartl et al. (2010), Kan and Kang (2010), Morin et al. (2011b),
Saleeb et al. (2011). Based on the existing literature (Miyazaki et al. 1986; Norfleet
et al. 2009; Simon et al. 2010; Delville et al. 2010, 2011), the physical mechanism
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of super-elasticity degeneration was outlined by Yu et al. (2014) as the interaction
between martensite transformation and dislocation slipping, and then a physical
mechanism-based thermo-mechanically coupled constitutive model was constructed
by Yu et al. (2014, 2015). The temperature- and rate-dependent super-elasticity
degeneration was reasonably described by the constitutive model proposed by Yu
et al. (2014, 2015). However, the thermo-mechanical cyclic deformation of NiTi
SMA structural components has not been touched now due to the lack of suitable
constitutive model to address the important thermo-mechanical coupled effect.

Therefore, in thiswork, based on the three-dimensional thermo-mechanically cou-
pled constitutive model of NiTi SMA proposed by Yu et al. (2014, 2015), the effect
of geometric dimension of NiTi SMA wires on the dissipative property of their
structural components is discussed theoretically by addressing the rate-dependent
thermo-mechanical coupled cyclic deformation of the NiTi SMA. Two types of NiTi
SMA structural components, i.e., the single-wire and multi-wire ones, are consid-
ered. The dissipative property of the component is measured by its accumulated
dissipation energy obtained during the cyclic deformation. It is shown that at low
(1×10−6/s, 5×10−6/s, and 1×10−5/s),moderate (5×10−5/s, 7.5×10−5/s, 1×10−4/s,
and 1.5 × 10−4/s), and high strain rates (5 × 10−4/s and 1 × 10−3/s), the accumu-
lated dissipation energy decreases, changes non-monotonically, and increases with
the increasing number of wires, respectively. The geometric dimension-dependent
dissipative property of the wire-type structural components comes from the strong
thermo-mechanically coupled effect of NiTi SMA. The predicted results can provide
some good advices for the better design of NiTi SMA devices.

2 Constitutive Model

The physical mechanism-based thermo-mechanically coupled constitutive model
proposed by Yu et al. (2014, 2015) is outlined in this section to keep the integrity
of the content, and the detailed derivation process can be referred to Yu et al. (2014,
2015).

By the assumption of small deformation, the total strain tensor at amaterial point ε
can be decomposed into four parts: i.e., the elastic strain tensor εe, thermal expansion
strain tensor εϑ , transformation strain tensor εtr , and plastic strain tensor εp:

ε = εe + εϑ + εtr + εp (1)

The elastic strain–stress and thermal expansion strain–temperature relations can
be written as

σ = C : εe (2)

εϑ = α(ϑ − ϑ r) (3)
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where α and ϑ r are the second-ordered thermal expansion tensor and the reference
temperature (hereafter, which is set as room temperature), respectively. C is the
isotropic fourth-ordered elastic tensor, and can be written as

C = Eν

(1 − 2ν) (1 + ν)
δ ⊗ δ + E

(1 + ν)
I (4)

Ii jkl = 1

2

(

δilδ jk + δikδ jl
)

(5)

test, where E and ν are the elastic modulus and Poisson’s ratio, respectively. δ and
I are the second-ordered delta and fourth-ordered identity tensors, respectively.

The transformation strain rate and plastic strain rate can be written as

ε̇tr = gtrN tr ξ̇ (6)

ε̇ p = Npγ̇ (7)

where N tr and Np are the direction tensors of martensite transformation and plastic
deformation, respectively. gtr is the magnitude of transformation strain generated in
full forward transformation. ξ̇ and γ̇ are the rate of martensite volume fraction and
dislocation slipping, respectively. Referring to Lagoudas and Entchev (2004), N tr

and Np can be given as follows:

N tr =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

√

3

2

σ dev + B
∥
∥σ dev + B

∥
∥

ξ̇ > 0

εtr
recent

gtrξrecent
ξ̇ < 0

(8)

Np =
√

3

2

σ dev
∥
∥σ dev

∥
∥

(9)

where σ dev is the deviator of stress tensor σ . εtr
recent denotes the transformation strain

at the current transformation reversal (i.e., the point at which the current forward
transformation is ended) and the scalar ξrecent is the martensite volume fraction at the
current transformation reversal. B is the internal stress tensor, and can be written as

B = Bn
N tr

‖N tr‖ (10)

where ‖N tr‖ is the norm of Ntr , i.e., ‖N tr‖ = √
N tr : N tr . It is seen that the direction

of B is assumed to be identical to that of martensite transformation, where the scalar
Bn is the norm of B.

By the second law of thermodynamics and the constructed Helmholtz’s energy
(Yu et al. 2014, 2015), the driving forces ofmartensite transformation and dislocation
slipping can be defined as
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πtr = gtr (σ + B) : N tr + Δη0 (ϑ − ϑ0) − X (11)

πp = σ : Np − τc (12)

X and τc are the transformation and slipping resistances, respectively. Δη0 is a
material parameter reflecting the entropy difference between austenite andmartensite
phases.

The evolution equations for martensite transformation can be written as

ξ̇ =
( πtr

Y

)mtr

if πtr > 0 and ξ < 1 − ξd (13)

ξ̇ = −
(−πtr

Y

)mtr

if πtr < 0 and ξ > ξr (14)

ξ̇ = 0 other conditions (15)

where Y is a positive variable controlling the width of stress–strain hysteresis loop,
and evolves during the cyclic deformation. Under the isothermal condition, m tr rep-
resents the viscosity of martensite transformation. Here, m tr is set as a large number
(e.g., m tr = 100) to reflect the weak viscosity of super-elastic NiTi SMA discussed
by Grabe and Bruhns (2008). ξd is the volume fraction of remained austenite phase
which cannot be transformed into themartensite one due to the restraint of dislocation
slipping occurred in the austenite phase near the interface between the austenite and
induced-martensite phases. Thus, the term 1−ξd in Eq. (13) represents themaximum
volume fraction of austenite phase which can be transformed into the martensite one.
ξr is the residual volume fraction of martensite phase.

Based on the experimental observations, the transformation resistance X is intro-
duced into the constitutive model to describe the transformation hardening presented
during the cyclic deformation of super-elastic NiTi SMA, and can be written as

X =
{

X0 + Hfor ξ̄ + h1
(

ξ̄
)n

ξ̇ ≥ 0

X0 + Hrevξ̄ + h1
(

ξ̄
)n

ξ̇ < 0
(16)

where X0 is the initial transformation resistance, and Hfor and Hrev are the linear
hardening moduli during the forward and reverse transformations, respectively. In
order to describe the increased hardening modulus during the cyclic deformation,
Hfor and Hrev are assumed to be changeable. The term h1

(

ξ̄
)n

reflects the nonlinear
transformation hardening occurred at the end of forward transformation and in the
beginning of reverse transformation. h1 and n (n > 1) are two material parameters.
ξ̄ is the effective martensite volume fraction, and is defined as

ξ̄ = ξ − ξr

1 − ξd − ξr
(17)

It should be noted that the range of volume fraction ξ (ξr < ξ < 1 − ξd) will be
changed during the cyclic deformation, since the ξd and ξr are not constants. However,
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from Eq. (17), it is seen that the range of effective martensite volume fraction ξ̄ keeps
unchanged (i.e., from 0 to 1).

As discussed by Yu et al. (2014, 2015), the super-elasticity degeneration of NiTi
SMA during the cyclic deformation is caused by the increased dislocation density in
the austenite phase. Thus, the evolutions of B, ξd and ξr are dependent on the current
dislocation density ρ, and are assumed to be governed by the following equations:

Ḃn = d1
(

c1
√

ρ − Bn
) ∣
∣ξ̇

∣
∣ (18)

ξ̇d = d1
(

c2
√

ρ − ξd
) ∣

∣ξ̇
∣
∣ (19)

ξ̇r = d1
(

c3
√

ρ − ξr
) ∣

∣ξ̇
∣
∣ (20)

where d1, c1, c2, and c3 are material parameters.
For the internal variable Y , it can be decomposed into two parts, i.e.,

Y = Yf + Yρ (21)

where Yf is the value of Y under the dislocation-free condition and is a constant;
while Yρ represents the effect of dislocation slipping on the stress–strain hysteresis
loop and is a function of current dislocation density. The evolution equation of Yρ

can be written as

Ẏρ =
{

−d1
(

c4
√

ρ + Yρ

) ∣
∣ξ̇

∣
∣ if Yρ > −Ylim

0 if Yρ ≤ −Ylim
(22)

where c4 is a material parameter, Ylim is the limited value of Yρ and is used to ensure
the nonnegativity of the variable Y .

For the internal variables Hfor and Hrev, they can be, respectively, decomposed
into two parts, i.e.,

Hfor = H f
for + Hρ

for (23)

Hrev = H f
rev + Hρ

rev (24)

where H f
for and H f

rev are the values of Hfor and Hrev under the dislocation-free con-
dition, respectively, and are constants; while Hρ

for and Hρ
rev represent the effects of

dislocation slipping on the forward and reverse transformation hardening moduli,
and are functions of current dislocation density. The evolution equations of Hρ

for and
Hρ

rev are given as follows:

Ḣρ
for = d1

(

c5
√

ρ − Hρ
for

) ∣
∣ξ̇

∣
∣ (25)

Ḣρ
rev = d1

(

c6
√

ρ − Hρ
rev

) ∣
∣ξ̇

∣
∣ (26)



Effect of Geometric Dimension on the Dissipative Property … 249

where c5 and c6 are two material parameters.
The dislocation slipping law of super-elastic NiTi SMA is given as follows:

γ̇ = (1 − ξ)γ0

(
σ : Np

μ

)2

exp

(−ΔGslip

kbϑ

(

1 −
(

πp

τ0

)p)q)
∣
∣ξ̇

∣
∣ if πp > 0

(27)

γ̇ = 0 if πp ≤ 0
(28)

where γ0, p and q are material parameters with the constraints of 0 < p ≤ 1 and
1 < q ≤ 2; μ is the shear modulus and μ = E

2(1+ν)
, ν is the Poisson’s ratio, ΔGslip is

the activation energy of dislocation slipping in a stress-free configuration, kb is the
Boltzmann’s constant, and τ0 is the resolved shear stress required to overcome the
Peierls obstacles at ϑ = 0K. The term

∣
∣ξ̇

∣
∣ in Eq. (27) reflects that the plasticity is

induced by the martensite transformation and its reverse.
The evolution equation of dislocation density is described by the equation pro-

posed by Mecking and Kocks (1981), i.e.,

ρ̇ = (

k1
√

ρ − k2ρ
)

γ̇ (29)

where k1 and k2 are twomaterial parameters. The slipping resistance τc progressively
increases during the cyclic deformation which is caused by the increasing density of
forest dislocation, and can be written as (Franciosi 1985)

τc = 1

2
μb

√
ρ (30)

where b is the magnitude of Burgers vector.
In order to reflect the internal heart production (caused by the transformation

latent heat and mechanical dissipation), the equilibrium equation of heat in the form
of temperature is derived from the first and second laws of thermodynamics and the
constructed Helmholtz’s energy (Yu et al. 2015):

cϑ̇ − k∇2ϑ = πtr ξ̇ + πpγ̇ − Δη0ϑξ̇ − σ̇ : αϑ (31)

where c and k are the specific heat at constant volume and the heat conductivity
coefficient, respectively. From Eq. (31), it is seen that the first and second terms in
the right side are themechanical dissipations caused by themartensite transformation
and dislocation slipping, respectively; the third one is the transformation latent heat;
and the fourth one is caused by the thermal expansion.
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3 Theoretical Analysis for NiTi SMAWire-Type
Components

In this section, two types of NiTi SMA wire-type structural components are consid-
ered, i.e., the single-wire andmulti-wire oneswith the same length. For themulti-wire
one, the geometric dimension of each wire is assumed to be identical, as shown in
Fig. 1. Then, the geometry of the component can be simply characterized by the
number of wires, i.e., N. When N = 1, it represents the single-wire structure; when
N ≥ 2, it represents the multi-wire one.

Since only the NiTi SMA wire is used here, the constraint condition is written as
follows:

πr2s = Nπr2m (32)

where rs and rm are the radii of the wires in the single-wire and multiple-wire com-
ponents, respectively, and rm = rs√

N
.

Fig. 1 Thermo-mechanical boundary conditions of single-wire and multiple-wire structures
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The initial and boundary conditions of heat analysis in the wire-type structures
are written as

⎧

⎪⎨

⎪⎩

q · ncol = h (ϑ − ϑr) in Scol
q · ncro = βk

L (ϑ − ϑr) in Scro
ϑ (t = 0) = ϑr in Ω

(33)

where Ω is the domain occupied by the NiTi SMA wires. ncol and ncro are the
surface normal vectors of the columnar surface Scol and cross-sectional surface Scro,
respectively. ϑr is set as the room temperature. The first term in Eq. (33) reflects
the heat convection through the wire’s columnar surface, and h is the heat exchange
coefficient of ambient media. The second term reflects the heat conduction through
the wire’s cross-sectional surface by referring to Yin et al. (2014), and β is a constant.

Integrating Eq. (31) in the cross section of the ith NiTi SMAwire in the structure,
it yields

"
Ai
cro

[

cϑ̇ (x, y, z, t) − k

(

∂2ϑ (x, y, z, t)

∂x2
+ ∂2ϑ (x, y, z, t)

∂y2
+ ∂2ϑ (x, y, z, t)

∂z2

)]

dy dz

=
"

Ai
cro

[Deff (x, y, z, t)] dydz (34)

where Ai
cro is the cross section of ith NiTi SMAwire. Deff = πtr ξ̇ +πpγ̇ −Δη0ϑξ̇ −

σ̇ : αϑ . The second term in the left side of Eq. (34) can be written as

"
Ai
cro

k
∂2ϑ (x, y, z, t)

∂x2
dydz = k A

∂2ϑav (x, t)

∂x2
(35)

where ϑav (x) is the average temperature in the cross section x and is a function of the
x-coordinate. A is the area of cross section Ai

cro (noted that the geometric dimension
of each wire is assumed to be identical), i.e.,

A = πr2m = πr2s
N

(36)

ϑav (x) = 1

A

"
Ai
cro

ϑ (x, y, z, t) dydz (37)

The third and fourth terms in the left side of Eq. (34) can be written as follows
using Gauss theory:

"
Ai
cro

k

[
∂2ϑ (x, y, z, t)

∂y2
+ ∂2ϑ (x, y, z, t)

∂z2

]

dydz

=
˛
li

k

[

ny
col

∂ϑ (x, y, z, t)

∂y
+ nzcol

∂ϑ (x, y, z, t)

∂z

]

dl (38)
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where li is the boundary curve of cross section. n
y
col and n

z
col represent the components

of ncol in the directions of y- and z-axes.
Considering the boundary condition (Eq. (33)), Eq. (38) can be rewritten as

˛
li

k

[

ny
col

∂ϑ (x, y, z, t)

∂y
+ nzcol

∂ϑ (x, y, z, t)

∂z

]

dl

= −
˛
li

h [ϑ (x, y, z, t) − ϑr] dl

= −2πhrs√
N

[

ϑ̄av (x, t) − ϑr
]

(39)

where ϑ̄av (x, t) is the average temperature in the boundary curve of the cross section,
and is defined as

ϑ̄av (x, t) =
√
N

2πrs

˛
li

ϑ (x, y, z, t) dl (40)

By Eqs. (35) and (39), the heat equilibrium equation (Eq. (34)) can be rewritten
as

"
Ai
cro

[

cϑ̇ (x, y, z, t)
]

dydz − k A
∂2ϑav (x, t)

∂x2

= 2πhrs√
N

[

ϑr − ϑ̄av (x, t)
] +

"
Ai
cro

[Deff(x, y, z, t)] dydz (41)

In general, the temperature field in the wire-type structure is three-dimensional,
i.e., ϑ = ϑ (x, y, z, t). However, since the size of the wire-type component in the
direction of length is much larger than that in the direction of cross section, the
temperature field in the NiTi SMA wires can be regarded as one-dimensional for
simplicity. By this assumption, the temperature of each material point in the cross
section of the wire and its boundary curve can be considered to be the same as the
average temperature in the cross section, i.e.,

ϑ(x, y, z, t) = ϑ(x, t) = ϑav(x, t) = ϑ̄av(x, t) (42)

It should be noted that the stress field is also uniform in the cross section since
the wires can be only subjected to a uniaxial loading, and the temperature field is
assumed to be uniform in such cross section. Thus, all the internal variables can be
regarded as uniform in the cross section. Finally, it yields

Deff(x, y, z, t) = Deff(x, t) (43)
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Using these simplifications, the heat equilibrium equation, initial and boundary
conditions (Eqs. (31) and (33)) can be expressed in an one-dimensional (1D) form,
i.e.,

cϑ̇ − k
∂2ϑ

∂x2
= 2

√
Nh

rs
(ϑr − ϑ) + πtr ξ̇ + πpγ̇ − Δη0ϑξ̇ − σ̇ : αϑ 0 < x < L

(44)

k
dϑ

dx
= βk

L
(ϑ − ϑr) x = 0 (45)

−k
dϑ

dx
= βk

L
(ϑ − ϑr) x = L (46)

ϑ(x, 0) = ϑr (47)

From Eq. (44), it is seen that the evolution of temperature field in the NiTi
SMA wire depends on the geometric parameter N. In this work, these 1D thermo-
mechanically coupled equations are solved using the finite difference method, and
31 equally spaced nodes are used in the calculation.

4 Results and Discussions

The length of the wire-type structures is set to be 100mm, and the radius of the
single-wire is set to be 5mm. The thermo-mechanically coupled constitutive model
proposed by Yu et al. (2015) had been verified by simulating the super-elasticity
degeneration of NiTi SMA at various loading rates. The material parameters used
in the model (Yu et al. 2015) can be obtained from the cyclic stress–strain curves at
specific loading rates. In this work, the parameters are set to be the same as those in
Yu et al. (2015), and are listed in Table1.

Table 1 Material parameters

Thermo-elastic constants:
E = 35GPa, v = 0.3, α = 22 × 10−6/K

Parameters related to martensite transformation:
gtr = 0.0748, Δη0 = −0.45MPa/K, c1 = 115.58N/m, c2 = 1.04 × 10−7 m,
c3 = 9.04 × 10−8 m, c4 = 4.46N/m, c5 = 5.52N/m, c6 = 2.30N/m; Y0 = 10.26MPa,
Ylim = 8MPa, X0 = 29.9MPa, H f

for = −1.41MPa, H f
rev = 3.68MPa, h1 = 7MPa, n = 10,

mtr = 100, d1 = 0.3

Parameters related to dislocation slipping:
ΔGslip = 2.5 × 10−19J, b = 3.6 × 10−10m; k1 = 20 × 107 m−1, k2 = 5, γ0 = 1000, p = 0.1,
q = 1, τ0 = 1000MPa, ρ0 = 1 × 1010 m−2

Parameters related to heat transfer:
cA = 2.86MJ/(m3K), cM = 2.86MJ/(m3K), k = 18Wm−1K−1, h = 5Wm−2K−1, β = 3
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All the calculations are performed under the cyclic strain-controlled tension but
stress-controlled unloading conditions and at room temperature (299K, which is
higher than the austenite finish temperature Af of 285.4K). In the tensile part,
nine strain rates, i.e., 1× 10−6/s, 5× 10−6/s, 1× 10−5/s, 5× 10−5/s, 7.5× 10−5/s,
1× 10−4/s, 1.5× 10−4/s, 5× 10−4/s, and 1× 10−3/s, are prescribed, respectively; in
the unloading part, the stress rate is kept as a constant in each cycle, but varied cycle
by cycle according to the requirement that the total unloading time should be equal
to the total tensile time. So, the variation of loading rates in different loading cases
can be represented only by the strain rates used in the corresponding tensile parts. At
each loading rate, the calculations for the single-wire and multi-wire structures are
performed with different number of wires (i.e., N = 1, 10, 50, 100, 500, and 1000).
The maximum tensile strain and number of cycles are set as 9% and 50 for each
loading case, respectively.

In order to measure the dissipative property of the structures, the accumulated
dissipation energy D is introduced here, i.e.,

D(N ) =
ncycle
∑

n=1

N
∑

i=1

˛
n
Fi dli (48)

where ncycle = 50 is the number of loading cycles; n and i represent the nth loading
cycle and ith NiTi SMAwire in the structures, respectively; and Fi and li are the end
force and end displacement of the ith NiTi SMAwire. It is seen that the accumulated
dissipation energy is a function of the geometric parameter N.

Figure2a–c shows the predicted cyclic stress–strain curves at a strain rate of
1× 10−5/s with the geometric parameter N = 1, 100, and 1000, respectively. It is
seen that super-elasticity degeneration occurs, i.e., the residual strain accumulates,
the transformation hardening modulus increases, but the start stress of martensite
transformation and thewidth of hysteresis loop decreases with the increasing number
of cycles. After certain cycles, a saturated state is reached too. Also, it is seen that the
differences between the cyclic stress–strain curves are not obvious at the low strain
rate. Figure2d shows the evolution curves of the average temperature for the whole
wire versus the number of cycles. The average temperature is obtained by averaging
the temperatures at all finite difference nodes. It is seen that a temperature oscillation
occurs during the cyclic deformation, which is caused by the release/absorption of
transformation latent heat. The oscillation amplitude decreases with the increasing
geometric dimension parameter N.

Figures3 and 4 show the corresponding predicted results of the NiTi SMA struc-
tures at the strain rates of 1× 10−4/s and 1× 10−3/s, respectively. It is seen that the
super-elasticity degeneration aggravates with the increasing strain rate, i.e., the sat-
urated residual strain, the decrement in the start stress of martensite transformation,
and the width of stress–strain hysteresis loop, and the increment in the transfor-
mation hardening modulus increases with the increasing strain rate. Meanwhile, the
differences between the cyclic stress–strain curves with various geometric dimension
parameters N become more and more apparent.
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(a) (b)

(d)(c)

Fig. 2 Cyclic deformation of the super-elastic NiTi SMA structures at the strain rate of 1 ×
10−5/s: a the end force–displacement curves of the single-wire structure (N = 1); b the end force–
displacement curves of the multiple-wire structure (N = 100); c the end force–displacement curves
of the multiple-wire structure (N = 1000); d the evolution curves of the average temperature of
structures

Figure5a–c shows the evolution curves of the accumulated dissipation energy
versus the values of geometric dimension parameter N at low (e.g., 1× 10−6/s,
5× 10−6/s, and 1× 10−5/s),moderate (e.g., 5× 10−5/s, 7.5× 10−5/s, 1× 10−4/s, and
1.5× 10−4/s), and high strain rates (e.g., 5× 10−4/s, and 1× 10−3/s), respectively.
It is concluded that when the strain rate is low, the accumulated dissipation energy
decreases with the increasing N, which means the dissipative property of the single-
wire structure is much more advantageous than that of the multi-wire structure;
at the moderate strain rates, the accumulated dissipation energy changes non-
monotonically with the increasing N, the peak values occur at N = 10, 50, 100,
and 500 at the strain rates of 5× 10−5/s, 7.5× 10−5/s, 1× 10−4/s, and 1.5× 10−4/s,
respectively; when the strain rate is high (e.g., 5× 10−4/s, and 1× 10−3/s), the accu-
mulated dissipation energy increases with the increasing N ; in the other word, the
dissipative property of the multi-wire structure is much more advantageous than that
of the single-wire one.
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(a) (b)

(d)(c)

Fig. 3 Cyclic deformation of the super-elastic NiTi SMA structures at the strain rate of 1 ×
10Z−4/s: a the end force–displacement curves of the single-wire structure (N = 1); b the end
force–displacement curves of the multiple-wire structure (N = 100); c the end force–displacement
curves of the multiple-wire structure (N = 1000); d the evolution curves of the average temperature
of structures

To sum up, it is concluded that in the practical design process of the NiTi SMA
wire-type devices, if the range of applied loading rate is known in advance, the
optimized dissipative property of the devices can be readily obtained by suitably
choosing the number of wires matched with the prescribed loading rate.

5 Conclusions

1. The effect of geometric dimension on the dissipative property of NiTi SMAwire-
type structures is predicted by a physical mechanism-based thermo-mechanically
coupled constitutive model proposed by Yu et al. (2014, 2015). A three-
dimensional equilibrium equation of heat is simplified to a one-dimensional form
by the assumption of uniform temperature field in the cross section of the wires,
and it is seen that the temperature field in the wire depends on its geometric
dimension.
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(a) (b)

(d)
(c)

Fig. 4 Cyclic deformation of the super-elastic NiTi SMA structures at the strain rate of 1 ×
10−3/s: a the end force–displacement curves of the single-wire structure (N = 1); b the end force–
displacement curves of the multiple-wire structure (N = 100); c the end force–displacement curves
of the multiple-wire structure (N = 1000); d the evolution curves of the average temperature of
structures

2. Two types of NiTi SMA structural components are considered, i.e., the single-
wire and multi-wire ones. The dissipative property of the structure is measured
by its accumulated dissipation energy during cyclic deformation.

3. At low (1× 10−6/s, 5× 10−6/s, 1× 10−5/s), moderate (5× 10−5/s, 7.5× 10−5/s,
1× 10−4/s, 1.5× 10−4/s), and high strain rates (5× 10−4/s, 1× 10−3/s), the accu-
mulated dissipation energy decreases, changes non-monotonically, and increases
with the increasing number of wires, respectively.

4. In practice, if the range of loading rate is known in advance, the optimized dis-
sipative property of NiTi SMA wire-type structures can be obtained by choosing
the number of wires suitably.

It should be noted that only the predicted results are provided in this work, but
the results are still useful to design the NiTi SMA devices addressing the dissipation
property. More solid analysis is needed further with the help of relative experimental
observations in future work.
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(a) (b)

(c)

Fig. 5 Accumulated dissipation energy-geometric parameter (N) curves of super-elastic NiTi SMA
wire-type structures: a at low strain rates; b at moderate strain rates; c at high strain rates
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Part IV
Continuum Damage and Phase Fields



A Discussion on Gradient Damage
and Phase-Field Models for Brittle Fracture

René de Borst and Clemens V. Verhoosel

Abstract Gradient-enhanced damage models find their roots in damage mechanics,
which is a smeared approach from the onset, and gradients were added to restore
well-posedness beyond a critical strain level. The phase-field approach to brittle
fracture departs from a discontinuous description of failure, where the distribution
function is regularised, which also leads to the inclusion of spatial gradients. Herein,
we will consider both approaches, and discuss their similarities and differences.

1 Introduction

The numerical modelling of fracture can be approached from different points of view.
Discrete models for fracture, where the geometrical discontinuity is modelled, i.e.
by modifying the geometry of the original, intact structure, are perhaps intuitively
the most appealing, and have been pursued since the late 1960s (Ngo and Scordelis
1967). Remeshing (Ingraffea and Saouma 1985) and the eXtended Finite Element
Method, e.g. Belytschko andBlack (1999),Moës et al. (1999), Remmers et al. (2003),
Réthoré et al. (2007) have provided ways to decouple the crack path from the initial
discretisation. Also, isogeometric finite element analysis beholds promise to flexibly
model propagating cracks (Verhoosel et al. 2011).

Yet, issues remain such as the proper modelling of curved crack fronts in
three dimensions, while the robust implementation of discrete cracks in a three-
dimensional setting is a non-trivial task. Hence, smeared, or distributed, crack
approaches have been put forward, where the discontinuity is distributed over a
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finite width. Another interpretation is that the Dirac function that arises for the strain
at a discontinuity is replaced by a smooth function. The smearing out of the disconti-
nuity is accompanied by the introduction, at a local continuum level, of a stress-strain
relation in which the limit strength is gradually reduced. The strain-softening that is
introduced in this manner leads to a change of the character of the governing partial
differential equations: loss of ellipticity in case of quasi-static analyses, and loss of
hyperbolicity for dynamic calculations.

This change causes a loss of well-posedness of the rate boundary value problem,
which in turn causes a complete dependence of the numerical results on the discreti-
sation, not only with respect to mesh refinement, but especially with respect to mesh
alignment, since failure zones exhibit a strong tendency to propagate along lines of
discretisation. To avoid this loss of well-posedness, the standard, rate-independent
continuum must be enhanced, e.g. using higher order spatial gradients as in gradient
damage models (Peerlings et al. 1996; de Borst et al. 1996; Comi 1999).

Another class of continuum descriptions has been developed in the context of
brittle fracture. Pioneering work has been done by Francfort and Marigo (1998) and
Bourdin et al. (2000, 2008), who proposed a phase-field approximation of the varia-
tional formulation for Griffith’s theory of brittle fracture. A resembling formulation
has been derived by Miehe et al. (2010a, b).

However, the point of departure of both models is different. In gradient damage
models intrinsically a mechanical approach is adopted, and the damage model is
regularised by adding gradients to restore well-posedness of the boundary value
problem in the post-peak regime. The basic idea of phase-field models, on the other
hand, is to replace the zero-width discontinuity by a small, but finite zone with
sharp gradients in amathematically consistent manner. Indeed, the latter requirement
inevitably leads to the inclusion of spatial derivatives in the energy functional, similar
to gradient damage models.

To provide a proper setting, we start by giving a brief outline of damage models,
and their extension to nonlocality. An important issue in gradient damage models is
the observation that in the wake of the crack tip there is a broadening of the damage
field. To eliminate this broadening, it has been proposed to make the internal length
scale parameter a function of the local strain or damage level (Geers et al. 1998).
Next, a brief review of the phase-field approach to brittle fracture is given. It is shown
that in this approach no broadening is observed of the damage zone. A discussion
on the differences and similarities between gradient-enhanced damage models and
the phase-field approach to brittle fracture follows.

2 Nonlocal and Gradient-Enhanced Damage Models

In this section, a concise overview will be given of damage models, including the
nonlocal and gradient-enhanced extensions, and a numerical example will be given
of broadening of the damage zone.
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2.1 Damage Models

Herein, we restrict ourselves to an isotropic damage evolution. Assuming that Pois-
son’s ratio remains constant during the damage process, the following total stress–
strain relation is obtained:

σσσ = (1 − d)De : εεε (1)

with d a scalar damage variable which grows from zero to one (at complete loss of
integrity) and De the fourth-order elastic stiffness tensor. For strain-based damage
models, the total stress–strain relation, Eq. (1), is complemented by a damage-loading
function

f = f (ε̃, κ) (2)

with ε̃ a scalar-valued function of the strain tensor, and κ a history variable. The
damage-loading function f and the rate of the history variable, κ̇ , have to satisfy the
discrete Kuhn–Tucker loading–unloading conditions

f ≤ 0, κ̇ ≥ 0, κ̇ f = 0 (3)

The history parameter κ starts at a damage threshold level κi and is updated by the
requirement that during damage growth f = 0. Damage growth occurs according to
an evolution equation, such that:

d = d(κ) (4)

which can be inferred from a uniaxial test.

2.2 Nonlocal Damage Models

In a nonlocal generalisation, the equivalent strain ε̃ is normally replaced by a spa-
tially averaged quantity in the damage-loading function (Pijaudier-Cabot and Bažant
1987):

f (ε̄, κ) = ε̄ − κ (5)

where the nonlocal strain ε̄ is computed from

ε̄(x) = 1

Ψ (x)

∫

Ω

ψ(y, x)ε̃(y)dΩ, Ψ (x) =
∫

Ω

ψ(y, x)dΩ (6)

with ψ(y, x) a weight function. Often, the weight function is assumed to be homo-
geneous and isotropic, so that it only depends on the norm

r =‖x − y‖ (7)
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In this formulation, all the other relations remain local: the local stress–strain relation,
Eq. (1), the loading–unloading conditions, Eq. (3), and the dependence of the damage
variable d on the history parameter, Eq. (4). As an alternative to Eq. (6), the local
history parameter κ may be replaced in the damage-loading function f by a spatially
averaged quantity κ̄ , such that

f (ε, κ̄) = ε − κ̄, κ̄(x) = 1

Ψ (x)

∫

Ω

ψ(y, x)κ(y)dΩ (8)

2.3 Gradient-Enhanced Damage Models

Nonlocal constitutive relations can be considered as a point of departure for construct-
ing gradientmodels, althoughwewish to emphasise that the latter class ofmodels can
also be defined directly by supplying higher order gradients in the damage-loading
function. Yet, we will follow the first-mentioned route to underline the connec-
tion between integral- and differential-type nonlocal models. This is done either by
expanding the kernel ε̃ of the integral in Eq. (6) in a Taylor series, or by expanding of
the history parameter κ in Eq. (8) as a Taylor series. If we truncate after the second-
order terms and carry out the integration implied in Eq. (6) under the assumption of
isotropy, the following relation ensues:

ε̄ = ε̃ + g∇2ε̃ (9)

where g is a gradient parameter of the dimension length squared.
Equation (9) bears the disadvantage that it requires the computation of second-

order gradients of the local equivalent strain ε̃. Since this quantity is a function of
the strain tensor, and since the strain tensor involves first-order derivatives of the
displacements, third-order derivatives of the displacements have to be computed,
which would necessitate C2-continuity of the shape functions. To obviate this prob-
lem, Eq. (9) is differentiated twice and the result is substituted again into Eq. (9).
Again neglecting fourth-order terms leads to

ε̄ − g∇2ε̄ = ε̃ (10)

In Peerlings et al. (2001) it has been shown that the implicit gradient formulation,
Eq. (10), becomes formally identical to a fully nonlocal formulation when, in three
dimensions, the weighting function is chosen as:

ψ(y, x) = 1

4πgr
exp

(

− r√
g

)

(11)

Indeed, the ‘implicit gradient’ formulation has a truly nonlocal character, which is
different from the ‘explicit gradient’ formulation, Eq. (9).
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In a fashion similar to the derivation of the gradient damage models based on the
averaging of the equivalent strain ε̃, we can elaborate a gradient approximation of
Eq. (8), i.e. by developing κ̄ in a Taylor series. For an isotropic, infinite medium, and
truncating after the second term, we have (de Borst et al. 1996)

κ̄ = κ + g∇2κ (12)

Similar to the second-order gradient model where the nonlocal strain has been
expanded, an ‘implicit’ version can be developed by differentiating Eq. (12) twice
and substituting the result back into Eq. (12). Neglecting fourth-order terms then
yields

κ̄ − g∇2κ̄ = κ (13)

A spatially averaged damage field d̄ is now defined as a function of κ̄: d̄ = d̄(κ̄).
Taking the special case of a linear relation between d̄ and κ̄ (de Borst et al. 1996;
Comi 1999):

d̄ = κ̄0 + aκ̄ (14)

Equation (13) becomes

d̄ − g

a
∇2d̄ = κ̄0 + aκ (15)

or, setting d = κ̄0 + aκ and g′ = g/a,

d̄ − g′∇2d̄ = d (16)

In the remainder, the prime will be omitted for notational convenience—noting that
the gradient parameter g will have a different meaning depending on the exact gra-
dient formulation—and we will write for the averaging equation of the nonlocal
damage field:

d̄ − g∇2d̄ = d (17)

2.4 Broadening of the Damage Zone

We now consider the three-point bending beam of Fig. 1 (Askes et al. 2000). The
beam has the dimensions 2000 × 300mm2 and a thickness of 50mm. It is supported
by hinges on the left and right bottom corners, and is loaded by a distributed load t̄
over the central section (100mm) of the specimen.

A linear isotropic material is considered with modulus of elasticity E = 20GPa
in the undamaged state and Poisson’s ratio ν = 0.2. Plane–strain conditions have
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Fig. 1 Three-point bending specimen. The thickness of the specimen is 50mm

been assumed, and the local equivalent strain is given by

η(ε) =
√

〈εi 〉2 =
√

〈ε1〉2 + 〈ε2〉2 (18)

where ε1 and ε2 are the principal strains, and the Macaulay brackets distinguish
between tension and compression. The damage law proposed by Geers et al. (1998)
has been used

d(κ) =
{

0 κ ≤ κ0

1 − κ0
κ

{(1 − α) + α exp [β(κ0 − κ)]} κ > κ0
(19)

with κ0 = 10−4, α = 0.99 and β = 500. The gradient parameter is taken as g =
200mm.

The computations have been done on quadrilateral meshes with 2,388 elements
and 9,552 elements, respectively. In the central region of the beam, where the damage
zone evolves, hierarchical refinement (Vuong et al. 2011) has been used to improve
the resolution. The total number of degrees of freedom with bilinear basis functions
for both the displacement field and damage field is 7,246 for the coarse mesh and
28,816 for the fine mesh.

A force F is defined as the distributed load t̄ times the area to which it has been
applied. The displacement ū has been taken as the average downward displacement
of the loading region, see Fig. 1. This displacement has been used as the constraint in
the path-following method used to trace the equilibrium path. The results obtained
for the second-order gradient formulation are shown in Fig. 2. As can be seen, the
results obtained using the coarse mesh are in good agreement with that of the fine
mesh.

Upon propagation, the damage zone not only extends, but also broadens. The
broadening effect is clearly visible in Fig. 3 and is insensitive to the mesh size.
This artefact was first observed by Geers et al. (1998) and makes standard gradient
damage formulations less suitable to mimick a sharp crack. As indicated in Geers
et al. (1998) the broadening effect is a consequence of the continued increase of the
local and nonlocal equivalent strain after damage has fully developed. The problem
can be remedied bymaking the internal length scale a function of the local equivalent
strain.
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Fig. 2 Mesh convergence study for the three-point bending beam using the second-order gradient
formulation

3 The Phase-Field Approach to Brittle Fracture

Below we shall give a succinct summary of phase-field models as applied to brittle
fracture, including an example.

3.1 Formulation

The basic idea of phase-fieldmodels is to approximate a discontinuityΓ by a smeared
surface Γ�. In a one-dimensional setting, the exponential function

d̄(x) = e− |x |
2� (20)

Fig. 3 Damage profiles for a ū = 0.875mm, and b ū = 2.00mm obtained using the second-order
gradient formulation. Undamaged material is indicated in blue, fully damaged material in red
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Fig. 4 a A sharp crack, and b smeared crack modelled with the length scale parameter �

is used to approximate the discontinuous function of Fig. 4a, with � the internal
length scale parameter. The phase-field variable d̄ ∈ [0, 1] describes the phase field.
Following the earlier discussion on gradient-enhanced damage models, the bar indi-
cates that a regularised (or spatially averaged) quantity is considered, and d̄ is defined
such that d̄ = 0 characterises the intact state of the material, while d̄ = 1 represents
the fully broken material, similar to the definition commonly adopted in damage
mechanics. In one dimension, Eq. (20) is the solution to:

d̄ − 4�2d̄,xx = 0 (21)

where a comma denotes differentiation, subject to the boundary conditions: d̄(0) = 1
and d̄(±∞) = 0. This can be demonstrated simply by applying the Ansatz function
d̄ = e−|λ||x | to Eq. (21), solving for λ and subsequently using the boundary conditions
to determine the constant parameter. Using Eq. (21) the discontinuity Γ can be
approximated by the functional Γ�

Γ� =
∫

Ω

1

4�

(

d̄2 + 4�2d̄2
,x

)

︸ ︷︷ ︸

γ�

dV (22)

with γ� the crack surface density function (Miehe et al. 2010b) for details. In a
multi-dimensional setting γ� can be expanded as follows:

γ� = 1

4�

(

d̄2 + 4�2∇d̄ · ∇d̄
)

(23)

We consider a volumeΩ with an internal discontinuity boundaryΓd . As a starting
point, we consider the potential energy for the case of a discrete description of brittle
fracture in the Griffith sense (Francfort and Marigo 1998):
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Ψpot =
∫

Ω

ψe(ε) dV +
∫

Γd

Gc dA (24)

with the elastic energy densityψe a function of the infinitesimal strain tensor ε:ψe =
ψe(εεε). The elastic energy density is expressed by Hooke’s law for an isotropic linear
elastic material asψe(ε) = 1

2λεi iε j j + μεi jεi j , with λ andμ the Lamé constants, and
the summation convention applies. In Eq. (24) the fracture energy, i.e. the amount
of energy dissipated upon the creation of a unit of fracture surface, is denoted by Gc.
In the spirit of a regularised crack topology, the work required to create a unit crack
area is expressed as a volume integral which depends on the phase field variable d̄
and the fracture energy Gc:

∫

Γd

GcdA =
∫

Ω

Gcγ�(d̄,∇d̄) dV . (25)

The next step is inspired by damagemechanics concepts and relies on the assump-
tion that the evolution of the phase field is directly related to crack growth. As such,
it can be thought of as a way to model the loss of stiffness of the bulk of the solid.
For this purpose, a degradation function h = h(d̄) is introduced, which must satisfy
the following conditions:

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

h : [0, 1] → [0, 1]
h(0) = 1 , h(1) = 0

h′(d̄) < 0 d̄ ∈ [0, 1[
h′(1) = 0

(26)

These properties ensure damage propagation and provide an upper bound to the phase
field d̄ variable of one (Miehe et al. 2010a). A quadratic polynomial is widely used:

h(d̄) = (1 − d̄)2 (27)

Bourdin et al. (2000) have multiplied the degradation function h by the elastic energy
density of the undamaged state, ψ0, such that the elastic energy density of the dam-
aged state reads

ψe(εεε, d̄) = h(d̄)ψ0(εεε) (28)

This formulation was refined to account for the fact that damage evolution occurs
under different straining modes (Amor et al. 2009; Miehe et al. 2010b), and it was
assumed that the elastic energy of the undamaged state can be additively decomposed
into a damaged and an intact part,ψ0 = ψd

0 + ψ i
0, such that the degradation function

h only acts on the damaged part:

ψe(εεε, d̄) = h(d̄)ψd
0 (εεε) + ψ i

0(εεε) (29)
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Substitution of Eqs. (25) and (29) into Eq. (24) yields the total potential energy of
the smeared formulation for brittle fracture:

Ψpot =
∫

Ω

(

h(d̄)ψd
0 (εεε) + ψ i

0(εεε) + Gcγ�(d̄,∇d̄)
)

dV (30)

Minimisation of Ψpot and introduction of a history field κ to enforce irreversibility
(Miehe et al. 2010a) lead to the equilibrium equation:

divσσσ = 0 (31)

and

h′(d̄)κ + Gc

2�

(

d̄ − 4�2∇2d̄
) = 0 (32)

subject to the boundary conditions n · σσσ = t̄, u = ū, n · ∇d̄ = 0, with t̄ and ū the
prescribed boundary tractions and displacements, respectively. We note that in the
phase-field literature often the symbol H is used instead of κ to denote the history
variable. The present notation is preferred, however, as it emphasises the similarity
with gradient-enhanced damage models. The Cauchy stress σσσ and the driving force
F are derived according to standard thermodynamic arguments:

σσσ = ∂ψe

∂εεε
= h(d̄)

∂ψd
0

∂εεε
+ ∂ψ i

0

∂εεε
(33)

and

F = −∂ψe

∂ d̄
= −h′(d̄)κ (34)

with ψe as defined in Eq. (29). The history field reads

κ = maxψd
0 (εεε) (35)

3.2 Numerical Example

We consider the single-edge notched specimen of Fig. 5 with pure shear boundary
conditions. A prescribed horizontal displacement, ūs , is applied to the top boundary.
Plane–strain conditions and linear elasticity have been assumed with the Lamé para-
meters λ = 121.15 kN/mm2 and μ = 80.77 kN/mm2. The critical energy release
rate Gc = 2.7 × 10−3 kN/mm. The fracture length scale is equal to � = 0.015mm.
To accurately capture the evolution of the phase field, the mesh is refined along the
anticipated crack path, Fig. 5. In phase-field models for brittle fracture, the length
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Fig. 5 Problem set-up and finite element mesh for the single-edge notched pure shear test

scale must be taken as small as possible to obtain an accurate approximation to the
underlying linear elastic fracture mechanics problem. Evidently, very fine grids are
then required. In this case, the characteristic element size in this refinement region
helem = �/4 = 0.00375mm, which results in 26,472 elements.

Figure6 gives the solution when the shear crack has developed almost completely.
The force–displacement diagrams are shown for various step sizes. The overestima-
tion of the amount of dissipated energy for large step sizes is a direct consequence
of the employed staggered solution procedure (Vignollet et al. 2014). Most notewor-
thy, however, is that, different from the gradient damage model, the crack does not
broaden in the wake of the crack tip upon propagation

Fig. 6 Phase-field solution and step size study (Δūs ) for the staggered algorithm (edge notched
pure shear test)
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4 Gradient Damage Models and Phase-Field Models
for Fracture: Similarities and Differences

Below we shall give a comparison of the various formats of the diffusion equation
for the damage/phase field that ensues for the different formulations and a discussion
of the importance of the specific form of the driving force for the broadening of the
damage zone.

4.1 The Diffusion Equation in Gradient Damage Models

The Euler–Lagrange equations that govern the phase-field evolution are, cf. Eq. (32):

d̄ − 4�2∇2d̄ = −2�h′(d̄)κ

Gc
(36)

where implicit use has been made of the natural boundary condition nΓ · ∇d̄ = 0. In
the context of phase-field models for fracture, this can be interpreted as a condition
requiring cracks to be perpendicular to the external boundaries of the domain. The
history parameter κ obeys the Kuhn–Tucker loading–unloading conditions with the
loading function defined as

f (ε, κ) = ψd
0 (ε) − κ (37)

The partial differential equation that governs the evolution of the phase field, Eq.
(36), is closely related to gradient damage models. In fact, when defining the local
damage field as

d = −2�h′(d̄)κ

Gc
(38)

and the gradient parameter g = (2�)2, the implicit form of the damage equation (17)
is recovered: d̄ − g∇2d̄ = d.

4.2 One-Dimensional Solution for Phase-Field Models
Under Homogeneous Deformations

The behaviour of the phase-field model can further be illustrated from the homoge-
neous solution to the one-dimensional problem. Taking ψd

0 = 1
2 Eε2, σ = Eε and

h(d̄) = (1 − d̄)2, the homogeneous solution to Eq. (36) shown in Fig. 7 is obtained.
Hence, after a sufficient amount of damage has accumulated, i.e. for d̄c = 1

4 , a critical
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Fig. 7 Homogeneous solution to the one-dimensional phase-field formulation in brittle fracture
for the degradation function h(d̄) = (1 − d̄)2

load level is reached, with

σc = 9

16

√

GcE

6�
εc =

√

Gc

6�E
(39)

after which softening occurs. In the phase-field formulation, unloading occurs using
a secant stiffness, similar to damage models. From the expression for the critical
stress it is clear that when the internal length scale � goes to zero, the critical stress
goes to infinity. This behaviour of the phase-field model correctly replicates linear
elastic fracture mechanics, which is also not capable of nucleating fractures in the
absence of singularities.

4.3 The Driving Force

As discussed, a marked difference between gradient-enhanced damage models and
the phase-field approach to brittle fracture is the observation that the latter class of
models does not lead to a broadening of the damage zone in the wake of the tip
of the fracture process zone. This can be directly explained when comparing the
expressions that result from the driving force, defined in Eq. (34).

For damage models, the degradation function typically has the format

h(d̄) = 1 − d̄ (40)

Substitution into Eq. (34) then results in

F = κ (41)
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Hence, F does not vanish at complete loss of integrity, i.e. when d̄ = 1, which
explains the continued broadening of the damage zone. This is different for phase-
field models. Indeed, the conditions that are imposed on the degradation function, in
particular Eq. (26)3, make that the driving force vanishes when d̄ = 1. For instance,
the quadratic degradation function of Eq. (27), h(d̄) = (1 − d̄)2, results in:

F = (1 − d̄)κ (42)

which becomes zero when d̄ = 1, and ensures a constant band width in the wake of
the crack tip.

5 Concluding Remarks

The gradient damage and the phase-field approach to brittle fracture are almost iden-
tical in terms of their mathematical structure, and therefore the difference between
gradient damage models and phase-field models is mainly in their interpretation.
Whereas in gradient damage models, the left-hand side of Eq. (17) can be interpreted
as a spatial averaging operator, the left-hand side in phase-field models, Eq. (36),
follows from the regularised energy variation due to fracture evolution. The right-
hand-side in Eq. (17) can therefore be interpreted as a local damage field, while that
in Eq. (36) mimicks the thermodynamic driving force for the smeared fracture. It is in
this right-hand side that the most relevant differences enter between gradient damage
models and phase-field models for brittle fracture. From Eq. (38) we observe that
the phase-field formulation naturally introduces a length scale into the driving force
for the damage field. In combination with the vanishing derivative of the degradation
function at complete loss of integrity this ensures that, once a phase-field fracture
has fully developed, it does not broaden. Equation (38) suggests that the vanishing
derivative of the degradation function is key to driving the internal length scale to
zero, which closely resembles a strategy proposed in gradient damage modelling to
avoid damage zone broadening (Geers et al. 1998).
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Experiments on Damage and Failure
Mechanisms in Ductile Metals at Different
Loading Conditions

Michael Brünig, Steffen Gerke and Marco Schmidt

Abstract This paper deals with a phenomenological damage and failure model for
ductile metals. The anisotropic continuum approach takes into account the effect
of stress state on damage condition and damage rule corresponding to different
mechanisms acting on the micro-scale. Different branches of the criteria are formu-
lated depending on stress intensity, stress triaxiality, and the Lode parameter. A new
experimental program will be discussed in detail to validate the proposed continuum
framework. Experiments with aluminum alloys are performed using a biaxial testing
machine allowing individual loading of flat specimens in two directions. Loads are
recorded during loading of the specimens and digital image correlation technique
has been used to analyze the strain states in critical regions of the specimens. The
biaxial experiments cover a wide range of stress states in shear-tension and shear-
compression regimes. Theywill extend understanding of stress-state-dependent dam-
age and failure mechanisms in ductile metals.

1 Introduction

Damage and failure prediction is an important issue in analysis and design of metal
forming processes. For example, it has been observed in many experiments with
ductile metals that during loading or forming of material samples large, often local-
ized inelastic deformations occur which may be accompanied by damage and failure
processes acting on the micro-scale. In this context, theoretical models also taking
into account negative stress triaxialities are of special interest since many industrial
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processes like rolling and forging involve compressive hydrostatic stress states. In
these industrial processes, formation of damage and failure on the micro-level may
then lead to macro-cracks and, thus, to final failure of structural elements. Many
theoretical approaches are able to simulate in a phenomenological way growth and
coalescence of micro-defects as well as corresponding macroscopic material soften-
ing under general loading conditions. They are based on internal scalar or tensorial
damage variables whose increase is governed by evolution laws. Critical values of
these damage variables may be seen as major parameters characterizing onset of
fracture.

Recent investigations have elucidated that damage and failuremechanisms depend
on the stress state acting in amaterial point. For example, during tension loading con-
ditions with high positive stress triaxialities damage is mainly caused by nucleation,
growth and coalescence of micro-voids, whereas during shear and compression load-
ings with small positive or negative stress triaxialities the prevailing damage mecha-
nisms are formation and growth of micro-shear-cracks. In addition, combination of
these basic microscopic mechanisms has been observed for moderate positive stress
triaxialities, whereas no damage occurs in ductile metals for high negative stress
states (see, for example, Bao and Wierzbicki 2004; Brünig et al. 2008, 2011). Thus,
development of accurate and realistic phenomenological models requires detailed
experimental analyses covering a wide range of tension, compression, and shear
loading conditions. However, it is difficult to carry out experiments with negative
stress triaxialities testing thin metal sheets and further research activities are also
necessary in this field.

A number of experiments with carefully designed metal specimens has been
proposed and discussed in the literature. For example, uniaxial tension tests with
unnotched and differently notched specimens and corresponding numerical simula-
tions have been performed to investigate dependence of damage and fracture on stress
triaxiality (Becker et al. 1988; Bao andWierzbicki 2004; Bonora et al. 2005; Bai and
Wierzbicki 2008; Brünig et al. 2008, 2011; Gao et al. 2010; Dunand andMohr 2011).
However, these experiments on ductile metals with flat specimens showed stress tri-
axialities only in a small positive region. Thus, new geometries of uniaxially loaded
specimens have been developed to analyze nearly zero stress triaxialities (Bao and
Wierzbicki 2004; Brünig et al. 2008; Gao et al. 2010; Driemeier et al. 2010) where
shear mechanisms occur in the critical regions. Furthermore, Driemeier et al. (2015)
proposed a bi-failure specimen tested in a uniaxial tension machine generating first
local failure at high stress triaxiality followed by final failure at low stress triaxiality.

Moreover, for other regions of stress triaxialities butterfly specimens with com-
plex geometry have been developed (Mohr andHenn 2007; Bai andWierzbicki 2008;
Dunand and Mohr 2011) which can be loaded in uniaxial tension tests in differ-
ent directions using special experimental equipment. Alternatively, two-dimensional
experiments and different geometries of cruciform specimens have been investi-
gated to analyze anisotropic plastic behavior of metal sheets for different loading
paths (Demmerle and Boehler 1993; Müller and Pöhland 1996; Kuwabara 2007;
Kulawinski et al. 2011). Further aspects for design of biaxially loaded specimens
have been taken into account to develop stress-state-dependent damage criteria. In
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Brünig et al. (2015a, b, c) biaxial experiments with new shear-tension specimens
have been proposed to study in detail the stress-state-dependent damage and failure
processes.

Since strain-based forming limit diagrams are strongly dependent on strain paths
the application of stress-based fracture criteria is required to solve practical prob-
lems. Therefore, based on data taken from various experiments different continuum
damage models have been proposed in the literature, see Chow and Wang (1987),
Chaboche (1988), Lemaitre (1996), Voyiadjis and Kattan (1999), Brünig (2003),
Naumenko et al. (2011), Altenbach et al. (2013), and Brünig et al. (2015b) among
many others. It has been shown that anisotropic approaches based on tensorial dam-
age variables are more suitable to model stress-state-dependent behavior but their
practical applicability is often limited by large number of parameters and difficulties
in their identification. Therefore, in the present paper a phenomenological continuum
approach will be discussed taking into account stress-state-dependent damage func-
tions. To validate the proposed framework a new experimental program is proposed
where tests with biaxially loaded specimens are performed covering a wide range
of two-dimensional loading conditions. Load–displacement curves are recorded and
digital image correlation technique is used to analyze current strain states in critical
regions of the specimens.

2 Continuum Damage Model

Anextended version of the anisotropic continuumdamagemodel proposed byBrünig
(2003) is discussed predicting the inelastic deformation behavior as well as the evo-
lution of ductile damage and failure in ductile metals. Phenomenological modeling
of macroscopic damage and failure behavior corresponding to different processes
acting on the micro-level caused by various loading conditions is based on combina-
tion of microscopic and macroscopic investigations. They take into account results
of numerical simulations on the micro-level (Brünig et al. 2013, 2014) as well as
results of various experiments with carefully designed specimens under different
loading conditions (Brünig et al. 2008, 2015b, 2016; Driemeier et al. 2010). This
phenomenological approach is briefly summarized in the present paper.

In the proposed continuum model the damage process is governed by the evolu-
tion of damage strains on the macro-level caused by various stress-state-dependent
mechanisms on the micro-level. The continuum framework is based additive decom-

position of the strain rate tensor into elastic, Ḣ
el
, effective plastic, ˙̄H pl

, and damage

parts, Ḣ
da
. In addition, free energy functions with respect to undamaged and dam-

aged configurations are introduced leading to an elastic law taking into account the
deteriorating effect of damage on elastic material properties. Plastic behavior of duc-
tile metals is governed by a yield condition and a flow rule and, in a similar way,
damage behavior is characterized by a damage condition and a damage rule which
will be discussed in more detail in the present paper.
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Determination of onset and continuation of damage is based on the concept of
damage surface formulated in stress space (Chow and Wang 1987; Brünig 2003).
Thus, the damage condition

f da = α I1 + β
√

J2 − σ = 0 (1)

is expressed in terms of the stress invariants I1 and J2 of the stress tensor and the
damage threshold σ represents the material toughness to micro-defect propagation,
whereas the variables α and β denote damage mode parameters corresponding to the
different damage mechanisms acting on the micro-level: shear modes for negative
stress triaxialities, void-growth-dominated modes for large positive triaxialities and
mixed modes (simultaneous growth of voids and evolution of micro-shear-cracks)
for lower positive stress triaxialities. Therefore, the damage mode parameters α and
β in Eq. (1) depend on the stress intensity σeq = √

3J2, the stress triaxiality

η = σm

σeq
= I1

3
√
3J2

(2)

defined as the ratio of the mean stress σm and the von Mises equivalent stress σeq as
well as on the Lode parameter

ω = 2T̃2 − T̃1 − T̃3

T̃1 − T̃3
with T̃1 ≥ T̃2 ≥ T̃3 (3)

expressed in terms of the principal stress components T̃1, T̃2 and T̃3.
Based onmicro-mechanical calculationswith aluminum alloys considering defor-

mation behavior ofmicro-defects in three-dimensionally loaded void-containing unit
cells (Brünig et al. 2013) as well as on results of experiments with biaxially loaded
specimens (Brünig et al. 2015b, 2016) the parameter α is taken to be

α(η) =
{−0.15 for η ≤ 0
0.33 for η > 0

(4)

and the parameter β is given by the nonnegative function

β(η, ω) = β0(η, ω = 0) + βω(ω) ≥ 0, (5)

with

β0(η) = −1.28 η + 0.85 (6)

and

βω(ω) = −0.017ω3 − 0.065ω2 − 0.078ω . (7)
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Furthermore, the damage strain rate tensor is given by

Ḣ
da = μ̇

(

ᾱ
1√
3
1 + β̄ N

)

(8)

where μ̇ is a nonnegative scalar-valued factor and N = 1
2
√
J2
devT̃ represents the

normalized stress related deviatoric tensor. The parameters ᾱ and β̄ are kinematic
variables describing the portion of volumetric and isochoric damage-based deforma-
tions. They are given by

ᾱ(η) =
⎧

⎨

⎩

0 for η ≤ 0
0.5714 η for 0 < η ≤ 1.75
1 for η > 1.75

(9)

and

β̄(η, ω) = β̄0(η) + fβ(η) β̄ω(ω) (10)

with

β̄0(η) =
⎧

⎨

⎩

0.87 for η ≤ 1
3

0.97875 − 0.32625 η for 1
3 < η ≤ 3

0 for η > 3
, (11)

fβ(η) = −0.0252 + 0.0378 η (12)

and

β̄ω(ω) =
{
1 − ω2 for η ≤ 2

3

0 for η > 2
3

. (13)

It can be seen that the macroscopic damage rule (8) takes into account volumetric
parts (first term in Eq. (8)) corresponding to isotropic growth of voids on the micro-
scale as well as deviatoric parts (second term in Eq. (8)) corresponding to anisotropic
evolution of micro-shear-cracks, respectively. Therefore, both basic damage mech-
anisms discussed above (growth of isotropic voids and evolution of micro-shear-
cracks) acting on the micro-level are involved in the macroscopic damage rule (8)
of the phenomenological continuum model. In addition, it should be noted that the
parameters α and β as well as ᾱ, β̄ and δ̄ correspond to damage processes on the
micro-level which are nearly identical for many ductile metals and, thus, can be used
for this class of materials.
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3 Biaxial Experiments

A new experimental program has been presented by Brünig et al. (2015a, b, 2016) to
analyze the effect of stress state on inelastic behavior, damage and fracture in ductile
metals. The experiments are performed using the biaxial test machine type LFM-
BIAX20kN (produced byWalter&Bai, Switzerland) shown inFig. 1 containing four
electromechanically, individually driven cylinders with load maxima and minima of
±20 kN (tension and compression loading are possible). This allows individual
biaxial loading of flat specimens where clamped and hinged boundary conditions
can be realized.

The investigated material is an aluminum alloy of series 2017 and specimens
have been extracted from sheets with 4mm thickness. Details of the geometry of the
flat specimen are shown in Fig. 2. To realize localization of inelastic deformation,
damage, and fracture during the tests notches in thickness direction have been milled
in the center of the specimen, Fig. 2b, c. During the experiments, the specimens are
simultaneously loaded in horizontal and vertical direction with F1 and F2, respec-
tively (Fig. 3). In particular, the load F2 leads to shear mechanisms in the center of the
specimen and simultaneous loading with F1 leads to superimposed tension or com-
pression modes. These loads cause combined shear-tension or shear-compression
deformation modes and corresponding failure mechanisms in the center of the spec-
imen. In recent studies (Brünig et al. 2015a, b, 2016) specimen’s behavior for load
ratios between F1 : F2 = 1 : 1 and F1 : F2 = −1 : 1 has been considered. However,
since many metal forming processes are carried out under larger tensile or compres-
sive hydrostatic stress states, there is remarkable experimental evidence of inelastic
deformation behavior as well as of damage and failure in these positive and negative
stress triaxiality regimes. Therefore, in the present investigation further load ratios
between F1 : F2 = 2 : 1 and F1 : F2 = −3 : 1 will be analyzed in detail performing
further tests.

The principal idea of the experimental technique is that the ratio between the
forces α = F1 : F2 is kept constant during the experiment. Since all cylinders are

Fig. 1 Biaxial testing
machine
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Fig. 2 aDrawing of the specimen geometry;b detail of the notched part as indicated in (a); c section
A–A of the notch as indicated in (b); all measures in (mm)

regulated independently and slight imperfections—due to fabrication tolerances of
the specimens, misalignment of the machine or unsymmetric clamping, among
others—cannot be avoided, a special procedure for the biaxial loading of the
specimens is applied. The leading machine displacement uM

2.1 of cylinder 2.1 is

(a) (b)
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Fig. 3 Nomenclature of a displacements and forces at bolts; b at DIC measurement points;
c displayed with speckle pattern



286 M. Brünig et al.

continuously increased by the velocity of 0.04mm/min while the same displace-
ment is applied on the cylinder 2.2 on opposite side of the same axis, see Fig. 3a.
The generated force F2.1 is now taken, multiplied by the factor α, and applied on the
cylinder 1.1 as F1.1 causing the machine displacement uM

1.1. In continuation the same
displacement is applied as uM

1.2 on the cylinder 1.2 on the opposite side of the same
axis. By applying this mainly displacement driven technique, a very stable procedure
is achieved allowing to maintain an almost constant load ratio F1 : F2 throughout
the entire experiment.

Within the experimental program discussed above digital image correlation (DIC)
technique has been applied to analyze deformation behavior in the critical zones of
the specimens. The full three-dimensional displacement field of the specimen surface
was measured with a Q-400 digital 3D image correlation system provided by Dan-
tec/Limess. The stereo setting consists of two 2.0Mpx cameras equipped with Ricoh
FL-CC7528-2M 75mm F/2.8 lenses and extension tubes of 10mm. The evaluation
was realized with the corresponding Istra 4D software provided with the system.
One side of the specimen was first sprayed with a white acrylic lacquer and then
the speckle pattern shown in Fig. 3c was sprayed on with a black acrylic lacquer
using an air brush system to achieve a sufficiently fine pattern. Specimen preparation
was realized shortly before the experiment was performed to avoid excessive curing
and, thus, no exfoliation of the coating was observed during the experiment. Further-
more, the biaxial test machine equipment was augmented by an interface allowing
the export of eight signals to the DIC system. Consequently, the displacements as
well as the forces in axes directions were transferred and stored with the data sets
of the image correlation system at a frequency of 0.25Hz while the velocity of the
machine was 0.04mm/min. The respective loads are recorded during the tests. To
analyze the behavior of the inelastically strained part of the specimen for different
loading conditions the displacements are taken from movements of the red points
in Fig. 3b, c: the horizontal displacement is u1 = u1.1 + u1.2 and the vertical one is

Fig. 4 Load–displacement
curve F1 − u1 for tension
loading
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Fig. 5 Strains a εxx , b εyy before fracture and c fracture pattern under tension loading

u2 = u2.1 + u2.2. Furthermore, the logarithmic strains given by the Istra 4D software
with respect to the coordinate system indicated in Fig. 3a are studied shortly before
fracture occurrence.

First experiment is the uniaxial tension test with the load ratio F1 : F2 = 1 : 0.
The corresponding load–displacement curve F1 − u1 is shown in Fig. 4. After elastic
loading smaller increase in load is observed caused by inelastic behavior due to
plastic and damage processes in the material. The load maximum of F1 = 2560 N
is reached at the displacement u1 = 0.30mm and after this point small decrease
in load corresponds to fast increase in damage leading to fracture of the specimen
at u1 = 0.38mm. In addition, for this tension test distributions of different strains
shortly before fracture occurs analyzed by DIC are shown in Fig. 5. In particular,
localization of the normal strains εxx in loading direction in the center of the specimen
is observed with maximum strains of about 30% (Fig. 5a). In this zone negative
strains εyy perpendicular to the loading direction can be seen indicating necking of
the specimen in this part (Fig. 5b). In this zone of localized normal strains fracture
occurs. Figure5c shows the fracture line nearly normal to the loading direction which
is characteristic for failure of notched tensile specimens made of ductile metals.

For combined shear-tension and shear-compression tests load–displacement
curves F1 − u1 are shown in Fig. 6. In particular, for the shear-tension test with
F1 : F2 = 2 : 1 load maximum of F1 = 2100N is reached shortly before fracture

Fig. 6 Load–displacement
curves F1 − u1 for different
loading conditions
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occurs at the displacement u1 = 0.30mm whereas for F1 : F2 = 1 : 1 with larger
amount of shear loading the specimen failed at F1 = 1500Nand u1 = 0.20mmbut—
surprisingly—no decrease in load is observed. The load–displacement curve for the
pure tension test discussed above is also included in Fig. 6. It can be seen that increas-
ing effect of shear leads to smaller maximum loads F1 and smaller displacements
u1 at failure. In addition, load–displacement curves for experiments under shear-
compression loading conditions are also shown in Fig. 6. In particular, for the shear-
compression test with F1 : F2 = −3 : 1 loadminimum of F1 = −2600, N is reached
at the displacement u1 = −0.52mm. Then, a small increase in load is observed up to
fracture at the displacement u1 = −0.66mm. For F1 : F2 = −2 : 1 the load min-
imum is F1 = 2100N at u1 = −0.44mm and fracture occurs at u1 = −0.64mm
whereas for F1 : F2 = −1 : 1 the minimum is F1 = 1250 N at u1 = −0.40mmwith
final fracture at u1 = −0.56mm. Thus, higher superimposed shear leads to smaller
load minima and smaller displacements at fracture. In comparison with the shear-
tension experiments the behavior of shear-compression loaded specimens is more
ductile.

In addition, different load–displacement curves F2 − u2 for the biaxially loaded
specimens are shown in Fig. 7. For the simple shear test (F1 : F2 = 0 : 1) the F2 − u2
curve even in the inelastic regime shows an increase in load and final fracture occurs
at the load maximum of F2 = 1800 N and at the fracture displacement u2 = 1.90
mm. Decrease in load maxima is observed when the shear test is superimposed by
tension loading. For example, for the load ratio F1 : F2 = 1 : 1 the maximum load
is F2 = 1550 N with the fracture displacement u2 = 1.06 mm and for F1 : F2 =
2 : 1 it is only F2 = 1050 N with the fracture displacement u2 = 0.76 mm. This,
again, indicates thatwith increasing superimposed tension loading the behavior of the
biaxially loaded specimen becomes more brittle. On the other hand, decrease in load
maxima is also observedwhen the shear test is superimposed by compression loading.
In particular, for the load ratio F1 : F2 = −1 : 1 the maximum load is F2 = 1300 N
with the fracture displacement u2 = 1.36 mm, for the load ratio F1 : F2 = −2 : 1
the maximum load is F2 = 1050 N with the fracture displacement u2 = 1.16 mm
and for the load ratio F1 : F2 = −3 : 1 the maximum load is only F2 = 900 N with

Fig. 7 Load–displacement
curves F2 − u2 for different
loading conditions
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Fig. 8 F1 − F2 curves for
different loading conditions
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the fracture displacement u2 = 1.06 mm. In these shear-compression experiments
the F2 − u2 curves show pronounced maximum plateaus and shortly before fracture
a slight decrease in load can be observed. Scattering in the curves may be caused by
resistances between the grains during the shear processes on the micro-level.

Caused by the biaxial loading process discussed above the ratio of forces F1 : F2

remains constant during the entire respective experiment, see Fig. 8. Consequently,
due to nonlinear material behavior the ratio of displacements u1 : u2 shown in Fig. 9
is a nonlinear function. In detailed analyses of the experimental results constant ratio
of forces is required because this will lead to nearly constant stress states in the
material sample. Then, the test data can be used to study the stress-state-dependent
damage and failure behavior of ductile metals in an efficient way.

Distribution of different strain components in the notched central part of the spec-
imens are shown in Figs. 10, 11 and 12 for the investigated loading conditions. For

Fig. 9 u1 − u2 curves for
different loading conditions
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Fig. 10 Shear strains εxy for different loading conditions before fracture

example, localized bands of the shear strains εxy occur for each loading condition
with values up to 54% for F1 : F2 = 0 : 1, slightly smaller values in the shear-
compression range and smaller values for shear-tension loading showing earlier fail-
ure as discussed above (Fig. 10). In these bands with larger shear strains the normal
strains εxx also reach their extreme values. In the shear-compression range localized
strain components up to −50% can be seen for F1 : F2 = −3 : 1 whereas under
shear-tension loading normal strains up to 34% occur in the experiments (Fig. 11).
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Fig. 11 Strains εxx for different loading conditions before fracture
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Fig. 12 Strains εyy for different loading conditions before fracture

(e) (f)

(a)

(d)

(b) (c)

Fig. 13 Fracture patterns for different loading conditions
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Similar behavior can be seen in Fig. 12 showing the distributions of the strain com-
ponent εyy for the investigated loading conditions. For shear-compression loading
strains up to 26% can be observed in the experiments in the localized bands whereas
under shear-tension conditions negative strains up to −14% have been measured
corresponding to the necking behavior in this region.

The localized bands of shear strains (Fig. 10) nicely correspond the fracturemodes
shown in Fig. 13. All tests are dominated by shear loading leading to shear fracture
mechanisms which are superimposed by compression and tension modes. This leads
to different angles of the fracture lines.

4 Conclusions

The paper has discussed a phenomenological continuum model taking into account
the effect of stress state on damage and fracture mechanisms acting on different
scales. Damage mode functions have been proposed which are able to simulate all
relevant effects observed in different experiments.

A new experimental program has been proposed and series of tests with biax-
ially loaded specimens have been performed. Tests with shear-tension and shear-
compression conditions cover a large range of positive and negative stress states.
Digital image correlation technique has been used to visualize the strain fields in criti-
cal regions of the tested specimens. Detailed information on load-deformation behav-
ior as well as on strain states have been delivered especially in the critical regions of
the specimens where large inelastic deformations and ductile failure occurred. The
results of the presented experimental program can be used to validate the proposed
stress-state-dependent constitutive equations of the proposed continuum model. In
addition, the experimental results and observations based on biaxially loaded speci-
mens have enriched the understanding of stress-state-dependent damage and fracture
processes in ductile metals.
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Modeling of Damage Deactivation
in Concrete Under Cyclic Compression

Artur Ganczarski and Marcin Cegielski

Abstract This paper was directly inspired by the presentation of Prof. Rodrigo
Desmorat during The Second International Conference on Damage Mechanics,
Troyes 2015 and the fruitful discussions between the first author and Profs. Holm
Altenbach and Andre Dragon. The main goal of the work is not modeling the initial
loading curve for concrete, but presenting the model of continuous damage deacti-
vation able to capture subsequent unloading/reloading loops accompanying cyclic
compression. A combination of conventional formulation of the universal curve of
initial loading combined with Chaboche’s type damage evolution law and the con-
tinuous damage deactivation of frictional character allows for a proper quantitative
and qualitative mapping of the experimental data by Sinha et al. (1964).

1 Introduction

Concrete is a composite material consisting of the coarse aggregate and matrix of
mortar which itself comprises a mixture of cement and sand. The physical behavior
of concrete is very complex and generally depends on its structure determined by the
ratio ofwater to cement, ratio of cement to aggregate, shape and size of aggregate, and
the kind of cement. From the point of view continuummechanics, the microstructure
of concrete is ignored and is treated as the homogeneous and initially isotropic
material.

Concrete belongs to the class of brittle materials, for which strain–stress curve
strongly depends on the microcracks concentration (in sense of the continuous dam-
age mechanics) and macrocracks (in sense of the fracture mechanics) existing both
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Fig. 1 Uniaxial cyclic compression of concrete, after Sinha et al. (1964)

inside and at the surface of the material. In particular, concrete containing initially lot
of microcracks at the interfaces between coarse aggregates and the mortar exhibits
strong segregation, shrinkage, and thermal expansion of a cement paste. Under
applied loading, further microcracks appear at the aggregate and mortar interface,
resulting in the macroscopic nonlinear behavior, which finally leads to macrocracks.

2 Test of the Uniaxial Cyclic Compression of Concrete,
by Sinha et al. (1964)

The uniaxial compressive curve ε − σ of concrete obtained by Sinha et al. (1964) is
shown in Fig. 1. According to a convention used in the theory of brittle and granular
materials, stress and strain corresponding to compression are considered as positive,
hence the whole scheme was moved from the third quarter to the first quarter of the
coordinate system. Curves referring to subsequent unloading/reloading phases are
not straight line segments but loops that change size and have decreasing average
slopes. If one assumes that the average slope is equal to a slope of straight line
passing turning points and that the material behavior under unloading and reloading
is linear elastic (dotted line in Fig. 1), then the average elastic modulus decreases
with increasing strain. The above stiffness degradation behavior is strictly related to
the damage growth, especially strongly manifesting in the post peak range.

3 Constitutive Model of a Material with Strain Softening

Many engineering materials such as concretes, rocks, and solids exhibit essential
strain softening effect beyond the peak of maximum stress. Exemplary ε − σ curves,
obtained from the uniaxial compressive strain-controlled tests by Wischers (1978),
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Fig. 2 Curves ε − σ for
uniaxial compression of
concrete specimens, after
Wischers (1978)

are presented in Fig. 2. The higher magnitude of maximum stress σc is the curves are
characterized by the sharper decreasing of maximum stress at its right-hand branch.
This effect strictly related to strain localization was mentioned by van Mier (1984),
who concluded that the branch referring to material softening does not reflect true
material behavior, but rather response of the specimen as a whole.

Although above remarks are true, in conventional formulation of the finite element
method dedicated to concrete the effect of strain localization is not described by a
separate theory, but considered in the equation of the universal curve of initial loading.
One can distinguish two strain ranges corresponding to the beginning of crushing
ε � εc and the ultimate compressive strain ε � εu, see Fig. 3, such that the following
relation can be used to describe the above curve (Bathe 1992)

Fig. 3 Schematic curve of
initial loading (envelope) for
concrete
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Table 1 Magnitudes of material constants describing curve of initial loading of concrete

E0 [MPa] εc [%] εu [%] σc [kPa] σu [kPa]

24.8 −0.25 −0.85 −27.2 −6.3

dσ

dε
= E0

1 − B
(

ε
εc

)2 − 2C
(

ε
εc

)3

[

1 + A
(

ε
εc

)

+ B
(

ε
εc

)2 + C
(

ε
εc

)3
]2

A =
E0
Eu

+ (

p3 − 2p2
) E0

Es
− (

2p3 − 3p2 + 1
)

p
(

p2 − 2p + 1
)

B = 2
E0

Es
− 3 − 2A, C = 2 − E0

Es
+ A

Es = σc

εc
, Eu = σu

εu
, p = εu

εc

(1)

Taking themagnitudes ofmaterial constants presented inTable1, the followingfitting
of the curve of initial loading, given by Eq. (1) to the experimental data by Sinha
et al. (1964), is seen in Fig. 4.

4 Equation of Damage Evolution

Concrete belongs to the class of materials characterized by plastic softening since it
exhibits plastic behavior accompanied by the stiffness degradation. In order to con-
sider both these effects, Baz̆ant andKim (1979) formulated the theory of a progressive
plastic fracturing, in which plastic deformation is defined in a traditional plastic flow
theory fashion, but stiffness degradation is modeled like in the Dougill (1975, 1976)
theory, see Fig. 5a. However, the application of this theory is rather difficult since the

Fig. 4 Fitting of initial loading curve (red line) to results by Sinha et al. (1964)



Modeling of Damage Deactivation … 299

(a) (b)

Fig. 5 Typicalmodels of cyclic compression for concrete: a progressive plastic fracture afterBaz̆ant
and Kim (1979), b elastic-plastic with stifness degradation accompanying to both hardening and
strain softening, after Chen and Han (1988)

yield criterion is defined in the stress space, whereas the fracture criterion is defined
in the strain space. In order to avoid this problem, Chen and Han (1988) suggested
a consistent approach to elastic–plastic material with stiffness degradation accom-
panying both strain hardening and softening called plastic-fracturing behavior, in
which both criteria are defined in the strain space, see Fig. 5b. The corresponding
equation of damage evolution, analogous like in theory by Lemaitre–Chaboche, can
be derived from Gibbs’ potential (Murakami and Kamiya 1997; Al-Gadhib et al.
2000; Skrzypek and Kuna-Ciskał 2003; Voyiadjis et al. 2008).

An original model of concrete reinforced by the high-strength steel armature
subjected to cyclic tension was proposed by Sun and Wagoner (2011). It was based
onChaboche’s concept of themixed isotropic-kinematic hardening generalized to the
case of two limit surfaces defined in the stress space. Plastic potential was associated
with Helmholtz’s free energy, but not with Gibbs’ complementary energy like in the
traditional formulation. Results of numerical simulation compared to experimental
data of cyclic tests are shown in Fig. 6.

0 00 0.0690.025 0.0720.05 0.075 0.0750.01 0.078

200 200
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800 800
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Fig. 6 Results of cyclic tension for reinforced concrete, after Sun and Wagoner (2011)



300 A. Ganczarski and M. Cegielski

Fig. 7 Microcrack pattern
of concrete specimen under
compression

Previously presented general formulations are simultaneously too complicated,
when compared to the uniaxial cyclic compression problem under consideration.
Hence, authors of thiswork suggest simplified formulation based on the experimental
tests done on concrete specimens that exhibit microcrack system in the direction
perpendicular to compression σz caused by a positive hoop strain εϕ (see Fig. 7).

The appropriate equation of damage evolution proposed by Chaboche (1985,
1988) takes the following format

dD

dε
=

⎧

⎨

⎩

(
ε

ε0

)s

if ε � εc ∧ dε < 0

0 if ε > εc ∨ dε � 0
(2)

which is valid for positive strain εϕ. The application of Eq. (2) to modeling of micro-
crack system presented in Fig. 7, which depends on strain εϕ, leads to

dD

dε
=

⎧

⎨

⎩

(−νε

ε0

)s

if ε � εc ∧ dε < 0

0 if ε > εc ∨ dε � 0
(3)

where the following assumptions: ε = εz and εϕ = −νεz were done, and the symbol
ν stands for Poisson’s ratio.

5 Effect of Continuous Damage Deactivation in Concrete

A discussion on the classical, non-continuous damage deactivation effect should be
initiated by invoking the concept by Lemaitre (1992). In the case of uniaxial tensile
stress and scalar damage, the effective stress is defined as follows:

σ̃ = σ

1 − D
(4)

whereas the corresponding effective modulus of elasticity takes a format

Ẽ = E (1 − D) . (5)

Aforementioned relations are also valid in the case when microcracks stay opened
under uniaxial compressive stress. However, in the case of a broad class of materials
subjected to compressive stress microcracks close. This effect is characteristic for
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brittle materials and has nothing to do with the crushing effect in concrete. In the
case when microcracks close completely, two sets of conditions must be defined, one
for tensile stress and other for compressive stress

σ̃ =
{ σ

1 − D
σ

Ẽ =
{

E (1 − D) if σ > 0
E if σ < 0 .

(6)

Microcracks appearing in a real material are usually of sophisticated shape such that
complete closure is not possible. In order to take into account this effect, a crack
closure parameter h (0 � h � 1) is introduced and it modifies the conditions for
compressive stress

σ̃ =
⎧

⎨

⎩

σ

1 − D
σ

1 − Dh

Ẽ =
{

E (1 − D) if σ > 0
E (1 − Dh) if σ < 0 .

(7)

The application of such model to the description of unloading path leads to a linear
relation between drop of stress and corresponding drop of strain, which is character-
ized by the modulus Ẽ+. An entering to the compressive range is accompanied by
the switch to another branch of unloading path characterized by modulus Ẽ−, see
Fig. 8.

A real material does not exhibit such bilinear path. The concept of a continuous
damage deactivation by Hansen and Schreyer (1995), eliminating switch between
Ẽ+ and Ẽ−, includes in a change of parameter h by function h(ε) according to the
rule

h (ε) =

⎧

⎪⎪⎨

⎪⎪⎩

0.0 if ε ≤ εl

0.5

[

1 − cos

(

π
ε − εl

εh − εl

)]

if εl < ε < εh

1.0 if εh ≤ ε,

(8)

what graphically corresponds to a change of Heaviside’s function by a smooth func-
tion presented in Fig. 9.

The effect of continuous damage deactivation in concrete hasmore complex nature
when compared to conventional metallic materials. This is mainly due to the fact that
microcracks are caused by positive strain along direction perpendicular to the axis

Fig. 8 Bilinear unloading
path
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Fig. 9 Concept of
continuous damage
deactivation by Hansen and
Schreyer (1995)

of a compressed specimen and their edges are very rough so the effect of continuous
damage deactivation has frictional nature, which is directly associated with both pos-
itive strain ε and its increment sign dε. The graphical interpretation of the proposed
effect of a continuous damage deactivation in a concrete is shown in Fig. 10, whereas
the corresponding mathematical relations are given below

Ẽ = E0 (1 − D) for initial loading curve given by Eq. (1)

dσ

dε
= E0 (1 − Dh) where h(ε) =

⎧

⎨

⎩

1 − ε

εb
unloading path ÂB in Fig. 10

ε

εb
reloading path B̂A in Fig. 10

(9)

Let us follow in detail the sequence of phenomena modeled by subsequent segments
of the ε − σ curve. In the virgin state, a material is free from damage D = 0, what

Fig. 10 Graphical interpretation of continuous damage deactivation effect for concrete
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manifests by the slope of the tangent line at the origin 0 equal to E0. Next, following
the gradual increase of a load, concrete characteristics becomes step by step more
nonlinear, what is obviously the consequence of damage growth D > 0. After that
the peak stress curve of initial loading significantly decreases hence in this range
both strain ε > 0 and its increment dε > 0 are positive, what corresponds to damage
activation h = 1. In case of the unloading process, a real material exhibits certain
effect of “inertia,” which results in the fact that strain increment is still positive
dε > 0; however, its magnitude is smaller than the increment following the curve of
initial loading. Consequently, the initial range of unloading process follows an arc
colored in red, see details magnified in the upper window of Fig. 10. However, from
the continuous damage deactivation point of view, this material behavior is modeled
in a discrete way, such that the unloading process begins at point A, after passing of
which the strain increment instantaneously changes sign dε < 0, what corresponds
to damage deactivation h = 0 and simultaneous initial stiffness recovery E0 by the
material. Further stage of unloading follows the arc ÂB and is accompanied by a
linear increase of the damage deactivation parameter, which achieves the value h = 1
at point B. At this point the reloading process begins, which is accompanied by the
change of sign by strain increment dε > 0 and instantaneous damage deactivation
h = 0, see details in the lower window of Fig. 10. As a consequence, for point B, they
obey all conditions that have been defined for point A. Further stage of reloading
process follows the arc B̂A and is accompanied by a linear increase of the damage
deactivation parameter, which attains value h = 1 at point A. This point belongs
to the curve of initial loading; hence, the damage deactivation parameter saves its
magnitude h and the strain increment does not change sign dε > 0.

Multiple application of the abovemodel leads to the subsequent unloading/reload-
ing loops that are characterized by decreasing average slope, which depends on the
current damage

E0 < Ẽ1 = E0(1 − D1) < Ẽ2 = E0(1 − D2) < · · · < Ẽ4 = E0(1 − D4) (10)

The progressivemagnitude of dissipated energy per unit volumeon i th loop is equal to

�i =
̂BiAi∮

̂AiBi

σdε =
εei∫

εbi

E0

(

1 − Di
ε − εbi

εbi − εei

)

εdε

+
εbi∫

εei

E0

(

1 − Di
ε − εei

εei − εbi

)

εdε = E0Di
ε2bi − ε2ei

2
(11)

Introduction results shown in Table2

�1 = 21.68 Pa < �2 = 40.10 Pa < �3 = 73.86 Pa < �4 = 134.44 Pa (12)

leads to the scheme presented in Fig. 11.
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Table 2 Magnitudes of strain at initial εbi and final εei points of i th unloading/reloading loop and
corresponding damage parameter Di

Loop number i εbi [%] εei [%] Di

1 0.25 × 10−2 0.12 × 10−2 0.26352

2 0.35 × 10−2 0.22 × 10−2 0.43653

3 0.45 × 10−2 0.33 × 10−2 0.63640

4 0.55 × 10−2 0.42 × 10−2 0.85991

Fig. 11 Evolution of average slope and dissipative energy in subsequent loops of unload-
ing/reloading

6 Results

Both numerical integration of Eqs. (1) and (2) by the use of routine odeint.for (Press
et al. 1993) and implementation to FEM code bar.for (Owen and Hinton 1980;
Ganczarski and Skrzypek 2009), based on the initial stiffness matrix method (partly
cited byBathe 1992), presented in Table3 allows tomodel ε − σ curve for an uniaxial
cyclic compression of concrete specimen as shown in Fig. 12. All characteristic
details of initial loading curve ε − σ, being an envelope of the diagram presented
in Fig. 1 as well as the subsequent unloading/reloading loops, which exhibit both a
progressive increase of the area of a surface referring to dissipative energy per cycle
and the simultaneous drop of the average slope of the line connecting turning points,
are well mapped.

Table 3 Material constants
for damage model of concrete

ν ε0 [%] s

0.25 2.5 × 10−6 0.5
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Fig. 12 Curve ε − σ of uniaxial cyclic compression for concrete with continuous damage deacti-
vation effect included (3), after Ganczarski and Cegielski (2008)

7 Conclusions

The following conclusions can be formulated:

• the proposed model including effects of plastic softening and Chaboche’s type
damage evolution can successfully be applied to model a cyclic compression of
concrete,

• the original concept of strain-controlled continuous damage deactivation is effi-
cient in modeling the subsequent unloading/reloading paths,

• the precise identification of material parameters allows to capture, not only quali-
tatively but also quantitatively, good agreement with experimental evidences com-
prising distinction between loading and reloading paths, which form loops of the
progressive increase of areas of a surface referring to dissipative energy per cycle
and decreasing average slopes.
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Phase-Field Modelling of Damage
and Fracture—Convergence and Local
Mesh Refinement

Markus Kästner, Paul Hennig, Thomas Linse and Volker Ulbricht

Abstract In this contribution, we outline the combination of a phase-field model of
brittle fracture with adaptive spline-based approximations. The phase-field method
provides a convenient way to model crack propagation without topological updates
of the used discretisation as the crack is represented implicitly in terms of an order
parameter field that can be interpreted as damage variable. For the accurate approxi-
mation of the order parameter field that may exhibit steep gradients, we utilise locally
refined hierarchical B-splines in conjunctionwith Bézier extraction. The latter allows
for the implementation of the approach in any standard finite element code. More-
over, standard procedures of adaptive finite element analysis for error estimation and
marking of elements are directly applicable due to the strict use of an element view-
point. Two different demonstration problems are considered. At first we examine the
convergence properties of the phase-field approach and explain the influence of the
domain size and the discretisation for the one-dimensional problem of a bar. After-
wards, results of the adaptive local refinement are compared with uniformly refined
Lagrangian and spline-based discretisations. In the second example, the developed
algorithms are applied to simulate crack propagation in a two-dimensional single-
edge notched, shear loaded plate.
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1 Introduction

Phase-field models have become a powerful tool for the simulation of phase transfor-
mations and morphological changes in different fields of physics as well as materials
and engineering science. Compared to sharp interface models, their advantage is that
topological changes are avoided. Instead, interfaces are treated in a diffuse manner
in terms of an order parameter that varies continously in the complete domain. Typ-
ical applications include the modelling and simulation of solidification processes,
spinodal decomposition, coarsening of precipitate phases, shape memory effects, re-
crystallisation, and dislocation dynamics as summarised in the reviews of, e.g. Chen
(2002); Emmerich (2008); Moelans et al. (2008); Steinbach (2009). More recently,
the phase-field approach has also been used to model crack propagation which is
in the focus of this contribution as reviewed by, e.g. Ambati et al. (2015). Different
from standard sharp crack representations, the discrete crack is smeared in terms of
a phase-field order parameter which can be interpreted as damage variable.

In all these examples, the phase-field approach allows to fully capture the physics
of the individual interfaces without the need to explicitly track them. However, the
variability of the approach comes at the cost of highly refinedmeshes that are required
to properly resolve the transition zone in a numerical finite elementmodel. In this con-
tribution, we therefore utilise spline-based approximations to discretise a phase-field
model of fracture. Compared to Lagrangian polynomials, the spline basis provides
a more efficient resolution of steep gradients (Kästner et al. 2016a). Moreover, the
higher order continuity of the basis allows for a direct discretisation of weak forms
containing higher than first-order derivatives that may result form surface energy
contributions. In this way, mixed formulations which introduce additional degrees
of freedom and are prone to stability issues can be avoided.

The efficiency of the numerical solution procedure is further increased by a local
refinement of the mesh in the vicinity of a crack based on hierarchical splines.
An implementation developed in Hennig et al. (2016), which is based on Bézier
extraction (Borden et al. 2011), allows for a strict element viewpoint and hence the
application of standard adaptive finite element procedures.

The paper is organised as follows: in Sect. 2, we briefly review the phase-field
approach to fracture and explain the hierarchical spline approximation used to resolve
the crack phase field. The numerical properties of the phase-field representation
and the adaptive discretisation are studied in Sect. 3. In particular, we present a
numerical Γ -convergence study and explain certain peculiarities observed by May
et al. (2015) using a one-dimensional example. Then, the efficiency of the hierarchical
approximation is analysed and the developed algorithms for local refinement are
applied to a two-dimensional demonstration problem. The paper is completed by
conclusions in Sect. 4.
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2 Adaptive Phase-Field Modelling of Brittle Fracture

The modelling of crack propagation, using standard finite elements in conjunction
with a sharp crack representation, requires an update of the mesh topology if the
crack evolves. This restriction can be partly resolved with the extended finite element
method (XFEM) (Moës et al. 1999; Belytschko et al. 2001; Wells and Sluys 2001;
Fries and Belytschko 2010; Kästner et al. 2016b), that uses a nodal enrichment of the
approximation, or element-based enrichments (Ortiz et al. 1987; Simo et al. 1993;
Jirásek 2000; Linder et al. 2011) to model the displacement discontinuity across a
crack. Although thesemethods are used in principal non-conforming regular meshes,
topological updates are still required, e.g. for integration purposes or to update the
position of the crack tip. Consequently, the simulation of complex crack patterns that
involve branching and coalescence is problematic, in particular for three-dimensional
problems.

Different from these approaches, the diffuse phase-field approximation used in the
following does not involve the crack topology in an explicit way. Instead, the sharp
crack representation, Fig. 1a, is regularised in terms of a phase-field order parameter
d which can be interpreted as damage variable. The transition zone between the
undamaged (d = 0) and the fully broken material (d = 1) is characterised by an
internal length scale �0, Fig. 1b, which has to be considered as a material parameter.
By coupling the scalar phase-field to a mechanical boundary value problem, the
initiation and propagation of the crack are described by the evolution of the crack
phase-field and the cumbersome numerical tracking of the crack path is avoided,
Fig. 1c.

(a)
(c)

(b)

Fig. 1 Phase-field approach to brittle fracture: a one-dimensional sharp crack, b diffuse crack
representation in terms of the order parameter d ∈ [0, 1], and c phase-field representation of a crack
in the two-dimensional domain Ω
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2.1 Phase-Field Modelling of Brittle Fracture

The phase-field modelling of fracture in brittle materials can be perceived as a reg-
ularised version of the variational formulation of the Griffith theory presented by
Francfort and Marigo (1998)

Π =
∫

Ω

ψdV +
∫

Γ

GcdA (1)

where ψ is the bulk free energy, Gc is the fracture energy required to create a new
crack surface of unit area, Ω is the domain of the body under investigation and Γ

is the newly created fracture surface, see Fig. 1c. Bourdin et al. (2000) suggested to
regularise the sharp crack representation

∫

Γ

GcdA ≈
∫

Ω

Gcγ�0(d) dV (2)

where γ�0(d) represents a crack surface density. This function depends on the regular-
isation of the sharp crack in terms of the phase-field variable d ∈ [0, 1], i.e. a purely
geometrical feature. In a one-dimensional setting, the exponential approximation

d(x) =
{

e
x
�0 x ≤ 0

e− x
�0 0 < x

(3)

according to Fig. 1b is used which is the solution to the differential equation

d − �20d
′′ = 0 in Ω = [−∞;+∞] (4)

subject to the boundary conditions

d(0) = 1 and d(±∞) = 0 . (5)

Miehe et al. (2010b) introduced a functional

Γ�0 = 1

2�0

∫

Ω

(

d2 + �20d
′2) dV = 1

2�0

∫

Ω

γ�0(d) dV (6)

which is interpreted as the crack surface. Hence, the crack surface density γ�0(d) =
d2 + �20d

′2 can be related to the phase-field order parameter d. It is noted that Eq. (6)
is exact for one-dimensional problems, i.e.
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Γ�0 = 1

2�0

+∞∫

−∞

(

d2 + �20d
′2) Adx = A = Γ, (7)

independent of �0 for a function d(x) that satisfies the boundary conditions according
to Eq. (5). Note that the fracture surface of one-dimensional problem (e.g. of a broken
bar) is identical to the cross section area, therefore the identity A = Γ has been
used in (7). However, the finite size of the domain Ω and the discretisation of the
numerical model will introduce errors that are examined numerically in Sect. 3.1. A
generalisation of the crack surface density to a multi-dimensional setting reads

γ�0(d) = d2 + �20|∇d|2. (8)

As a consequence of the regularisation of the discrete crack in terms of the order
parameter d, the crack is smeared over the complete domain Ω . The effect of d on
the bulk material is accounted in terms of a transition rule (Miehe et al. 2015)

F(d) = (1 − d)mFs + dmFc (9)

between the constitutive tensors Fs of the intact solid (s) and the cracked (c) material
Fc. Contributions Fc from the cracked domain may exist for non-mechanical prob-
lems, e.g. for heat conduction. In the purely mechanical case, Fc = 0 holds and the
similarity of Eq. (9) with a degradation law of damage mechanics becomes obvious.
Most frequently, the exponent m = 2 is used in phase-field approaches to fracture
but Borden et al. (2012) have found that a cubic degradation function might be more
suitable for brittle fracture as it yields a more abrupt failure.

Eventually, the regularised energy functional is given by

Π�0 (u, d,∇d) =
∫

Ω

(1 − d)2 ψ(u) dV + Gc

�0

∫

Ω

[

d2 + �20|∇d|2] dV . (10)

It contains contributions from the elastic energy in the damaged bulk material and
the fracture energy which is smeared across the transition zone of length �0.

In order to complete the phase-field model, an evolution equation for crack prop-
agation has to be defined. Miehe et al. (2015) suggest the general form

d

dt
Γ�0 = 1

�0

∫

Ω

[(1 − d)H − R] ḋ dV (11)

with H a local crack driving force, and R a local viscous crack resistance. For
the crack surface density defined in Eq. (8) and the constitutive assumption of R =
ηḋ, η ≥ 0, the evolution of the crack phase-field is given by

ηḋ = (1 − d)H − (

d − �20Δd
)

(12)
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and the homogeneous boundary condition ∇d · n = 0 on ∂Ω . Miehe et al. (2015)
present different choices for the crack driving forceH, that can depend on the history
of the energetic or stress state and may include threshold values. Here, the energetic
driving force

H(x, t) = max
τ∈[0,t]

2ψ+(x, t)

Gc/�0
(13)

has been usedwhereψ+ is the tensile part of the free energy (Miehe et al. 2010b). This
choice prevents crack healing and the tension/compression split avoids unphysical
crack branching. The approach leads to a coupled systemof two differential equations
for the displacement field u and the phase-field order parameter d. The quasi static
solution can be found by using a staggered (Miehe et al. 2010a) ormonolithic (Borden
et al. 2012) solution scheme. A recent review of different formulations can be found
in Ambati et al. (2015).

2.2 Adaptive Spline-Based Discretisations

In this section, we give an overview on the hierarchical spline-based discretisation
that provides an efficient, locally refined approximation of the steep gradients of the
phase-field order parameter. A multi-dimensional spline basis is defined in terms of
the tensor product of one-dimensional basis functions which will prohibit a truly
local refinement. Various approaches have been developed to overcome the restric-
tive tensor product structure (Hennig et al. 2016). Among them T-splines (Seder-
berg et al. 2003, 2004), which result from the insertion of extra vertices into the
tensor product mesh, and hierarchical (H)B-splines (Forsey and Bartels 1988) that
use basis functions defined by different levels of nested meshes are currently most
prevalent. Local mesh refinement using T-splines and hierarchical B-splines is illus-
trated in Fig. 2 for the benchmark case of a sharp internal layer. It is noted that the

(b) (c)(a)

Fig. 2 Two approaches to local mesh refinement: a initial mesh with a cubic B-spline basis,
degree of freedom DOF = 76 and an internal discontinuity. b Local refinement (four levels) using
hierarchical B-splines (DOF = 1444), and c T-splines (DOF = 2058)
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T-spline-based refinement is not as local as with hierarchical B-splines (Dörfel et al.
2010; Evans et al. 2015). The refinement propagates along the parametric directions
as a consequence of the restrictions imposed by the required analysis suitability,
i.e. the linear independence of the basis. Therefore a hierarchical B-spline basis is
applied in this contribution. In particular, truncated hierarchical splines introduced by
Giannelli et al. (2012) that reduce the interaction between basis functions of different
refinement levels and improve the condition of the coefficient matrix are utilised.

2.2.1 Multi-Level B-Splines and Bézier Extraction

A univariate B-spline basis is defined in terms of a knot vector Ξ = {ξI }sI=1 of size s
as outlined in the textbook by Piegl and Tiller (1996), Fig. 3a. Consider a hierarchy of
M knot vectors Ξm,m = 0 . . . M − 1 created by successive uniform h-refinement
starting from the knot vector Ξ 0 of the coarsest mesh (level m = 0). The resulting
knot vectors indicated by the symbol × in Fig. 3a are nested, i.e. Ξm ⊂ Ξm+1. Each
knot vector Ξm defines a set of km B-spline basis functions nm = {Nm

I }kmI=1 of order
p. These sets of B-spline basis functions span the approximation spacesNm of each
corresponding level and are nested,Nm ⊂ Nm+1. They are referred to as multi-level
basis. An exemplary univariate three-level basis is illustrated in Fig. 3a for the case
of second-order B-splines (p = 2).

The introduced one-dimensional B-spline basis functions are defined globally
over a knot vector. The central idea of Bézier extraction introduced by Borden et al.
(2011) is to represent the globally defined B-spline basis functions

n(ξ) = Cb(ξ) (14)

by Bernstein element shape functions b(ξ). The linear operator C is called Bézier
extraction operator and maps the piecewise C0-continuous Bernstein polynomials
onto the B-spline basis of arbitrary continuity. The elements that support the Bern-
stein polynomial shape functions are defined by non-zero sub-domains [ξI ξI+1]
These e = 1, . . . , ne sub-domains, denoted by Ωe

P, are referred to as Bézier ele-
ments. The Bernstein shape functions b(ξ) are the same for each element. As a
result, the spline approximation can be implemented in every existing finite element
code using Bézier extraction. It can be applied to B-splines, NURBS and T-splines
and therefore represents a canonical approach to the implementation of isogeometric
analysis (Hughes et al. 2005). In this contribution we will employ Bézier extraction
to implement the truncated hierarchical basis.

2.2.2 Hierarchical B-Splines and Global System of Equations

In the hierarchical approach to local refinement, basis functions from the approx-
imation spaces of different levels Nm are combined to span the hierarchical basis
space A. However, building the hierarchical basis cannot be achieved by simply
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(a)

(b)

Fig. 3 Local refinement based on hierarchical B-splines: a Three-level basisNm(ξ) and associated
nested knot vectors Ξm . Active elements are indicated in green and basis functions Am belonging
to active elements are plotted as coloured lines. While basis functions in solid colour contribute
directly to the hierarchical approximation, dashed and dotted lines represent linearly dependent
basis functions. This issue is resolved automatically during the assembly of the global system of
equation and results in a truncated hierarchical basis b. This basis is indentical the proposal of
Giannelli et al. (2012)

adding basis functions from finer hierarchy levels to the coarse scale basis. This
would result in the loss of linear independence, because coarse level basis functions
are linear combinations of the fine-scale functions.

The selection of basis functions contributing to the hierarchical approximation is
essentially element-basedwhich is exemplarily illustrated in Fig. 3. By some criterion
elements Em

e := Ω
e,m
P of different hierarchy levels have to be chosen to discretise
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the analysis domain. These elements Em
e define sets Mm = ⋃

e Em
e . They are called

active elements and cover the domain ΩP = ⋃L−1
m=0 Mm without any overlap. This

can be seen in Fig. 3a where active elements are indicated in green. Every active
element is associated to a number of p + 1 basis functions in the multi-level basis.
The union of these basis functions on each level m forms a set

Am = {Nm
I ∈ Nm : suppNm

I ∩ Mm �= ∅} (15)

and is plotted in colour in Fig. 3a. However, to ensure a linearly independent basis
not all of these functions can contribute to the hierarchical approximation, i.e. atten-
tion has to be paid to basis functions whose support overlaps with the domains of
active elements on finer or coarser hierarchy levels. Their contributions are correctly
accounted during the assembly of the hierarchical system of equations using Bézier
extraction as explained in more detail in Hennig et al. (2016).

Based on Bézier extraction, the global system of equations defined by the hierar-
chical approximationA can be computed implicitly. This procedure consists of three
steps:

1. At first the element matrices of all active elements are computed without consid-
ering information on whether the basis function contributes to the hierarchical
basis or not. This ensures the applicability of standard Bézier extraction.

2. Once element matrices for all active elements of one level m have been obtained,
they are assembled to form sub-systems

Kmum = fm (16)

for each hierarchy level m with um and fm column vectors containing the control
values of generalised degrees of freedom and the associated generalised forces.

3. In themulti-level systemofEq. (16) there is no communicationbetween individual
levels. This interconnection is introduced in terms of the hierarchical refinement
operatorMh explained inHennig et al. (2016). Its entries result from the refinement
or subdivision operator M (Scott et al. 2012; Schillinger et al. 2012) that relates
the basis functions on different levels of the nested meshes

nm = Mm,m+1nm+1. (17)

It acts as a transformation matrix on the multi-level system, i.e. a simple matrix
multiplication

Kh = MhKM
T
h (18)

fh = Mhf (19)
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produces the hierarchical system of equations

Khuh = fh. (20)

It ensures that only basis functions in A contribute to the approximation.

3 Analysis

In this section, we will examine the convergence properties of the phase-field
approach. It is expected, that the functional Π�0 of the regularised crack approaches
the functional Π of the discrete crack for the limiting case �0 → 0. Moreover,
Γ�0 = Γ = A, i.e. the diffuse representation of the crack surface is exactly the dis-
crete surface, should hold in the one-dimensional case. These properties have been
investigated numerically by May et al. (2015). We will start from their results and
give explanations for the observed peculiarities. Afterwards, results of the adap-
tive local refinement algorithm are compared with results obtained from uniformly
refined Lagrangian and spline-based discretisations. In the third example, the phase-
field approach to brittle fracture is applied to simulate crack propagation in a two-
dimensional single-edge notched shear test.

3.1 Convergence of the Phase Field Approximation

Miehe et al. (2010b) analysed the phase-field representation of a crack with the
surface Γ in a two-dimensional unit square plate regarding the accuracy of Γ/Γ�0 .
In their elementary study, they found that a reasonable approximation of Γ�0 ≈ Γ

requires a minimum size of finite elements, e.g. an element size of

h <
�0

2
(21)

is needed for a two-dimensional problem using quadrilateral four node elements.
A numerical convergence study of Γ�0 regarding �0 was carried out by May et al.

(2015) for a one-dimensional structure. They applied a tensile load to an elastic bar
with length L = 1mm, cross section A = 1mm2 and a reduced cross section A/2 in
the centre part. A driving force H related to the elastic energy density according to
Eq. (13) has been used in the evolution Eq. (12) to simulate quasistatic crack growth
(η = 0). Consequently, the governing system of equations of the analysed problem
can be compared to gradient damage models of brittle fracture, e.g. Peerlings et al.
(1996), when d is interpreted as a damage variable.

May et al. (2015) found a minimum of the error ΓE = ∣
∣Γ�0 − Γ

∣
∣ /Γ at a length

scale �0 = 0.05mm. The same minimumwas calculated for different fine discretiza-
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tions satisfying (21), i.e. the minimum occurred at �0 = 0.05mm independently of
the element size h. A further decrease of the ratio �0/h resulted in an increased error
ΓE .

Thus, May et al. (2015) concluded that Γ -convergence is not necessarily attained,
because their numerically obtained final crack surface Γ�0 evaluated at max (d) =
0.99 fails to converge towards Γ = A/2, i.e.

Γ�0

∣
∣
∣
�0→0

�= Γ. (22)

Since May et al. (2015) presented no explanation on why a minimum of the error
ΓE occurs at a certain length scale �0, we focus on that point in the following. For
a one-dimensional problem with a finite length L , the boundary condition (5) has to
be reformulated to

d(0) = 1 and d(±L/2) = 0 (23)

to account for the finite domain Ω = [−L/2;+L/2]. The analytic solution of the
differential Eq. (4) subject to the boundary conditions (23) now reads

d(x) = 1

1 − e− L
�0

{

e
x
�0 − e− (x+L)

�0 x ≤ 0

e− x
�0 − e− (L−x)

�0 0 < x .
(24)

As a consequence of the finite domain and the analytic solution (24), the functional
(7) now evaluates as

Γ�0 = 1

2�0

+ L
2∫

− L
2

(

d2 + �20d
′2) A dx = A

1 − e− 2L
�0

(

1 − e− L
�0

)2 , (25)

i.e. the approximated crack surface depends on the size of the domain L .
Below, we solve Eq. (4) for the boundary conditions (23) using standard finite

elements with C0-continuous Lagrangian polynomial shape functions of order p for
the one-dimensional bar problem with L = 1mm and A = 1mm2. The numerical
results are compared to the analytic solution (24) by evaluating Eqs. (6) and (25).
Figure4 shows that the absolute error Γ�0 − A also shows a minimum as found by
May et al. (2015): for a fixed discretisation, e.g. a constant element size h, the error
Γ�0 − A follows the analytic solution (25) for decreasing �0/L (and thus decreasing
�0/h) down to a certain point until Γ�0 − A increases again. However, notice that for
a fixed characteristic length �0 the error Γ�0 − A converges to the analytic solution
(25) for decreasing element sizes h (see black symbols in Fig. 4). Thus, the minima
seen in Fig. 4 result from boundary effects for larger values �0/h and too coarse
discretisations for lower values of �0/L . In the following section we will show that a
local refinement in the vicinity of the crackwill significantly reduce this discretisation
error.
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Fig. 4 Comparison of
numerical (polynomial shape
functions of order p = 1 and
p = 2) and analytic solution
(black dotted line) of the
functional Γ�0 . Black
symbols: numerical solution
for a constant characteristic
length �0 = 0.04L and
varying element size h

3.2 Convergence of the Adaptive Refinement

It is noted from the previous section that small elements are needed in the vicinity
of d = 1 for a reasonable approximation of the phase-field variable d (24). This
motivates an adaptive local refinement in this region. We will therefore compare
the approximation properties of uniformly refined C0-continuous Lagrangian poly-
nomials and C p−1-continuous B-splines with locally refined hierarchical B-splines
according to Sect. 2.2 in the following.

Again, the differential Eq. (4) will be solved on the domain Ω = [−L/2, L/2]
with boundary conditions (23) and the parameters L = 1mm, A = 1mm2 and �0 =
0.04L . The error between the numerical dh and the analytic solution d according to
Eq. (24) is measured in the H 1-norm

|d − dh |H 1=
√
√
√
√

∫

Ω

(d − dh)2dx +
∫

Ω

(d ′ − d ′
h)

2dx . (26)

For the computations, the domain is discretized by 25 up to 2500 evenly spaced
finite and 32 up to 2048 Bézier elements. To apply the boundary condition d(0) = 1,
the B-spline basis is chosen to be C0-continuous, i.e. interpolatory, at the control
point at x = 0. In Fig. 5a the error in the H 1-norm is illustrated for linear, quadratic
and cubic basis functionswith respect to the total number of degrees of freedom.Both
approximations, based on Lagrangian polynomials and B-splines, converge with the
expected convergence rate of −p. However, the approximation with B-splines is
more efficient than Lagrangian polynomial, as less degrees of freedom are required
to reach a certain error level for the same order of approximation. Also note that the
error regarding the characteristic element size hwould be the same for IGA and FEM.
This conclusion has been also found for the numerical solution of the Cahn-Hilliard
equation in Kästner et al. (2016a).
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(a) (b)

THBS_p1BSplines_p1
Lagrange_p1

BSplines_p3
Lagrange_p3

BSplines_p2
Lagrange_p2 THBS_p2

THBS_p3

Fig. 5 Comparison of the convergence of the discretisation error in the H1-norm for uniformly
refined B-splines with a uniformly refined Lagrangian polynomials, and b locally refined hierar-
chical B-splines for linear, quadratic and cubic basis functions

For the adaptive local refinement a multi-level basis with M = 9 hierarchical
levels is used, cf. Sect. 2.2. Starting from the coarsest mesh, the error in the H 1-norm
(26) ηe is computed for each single element e. To mark the elements for refinement,
quantile marking

Θ = α − quantile(ηe) (27)

is used where α = 0.8 is chosen in this example. Hence, the 20% of elements with
the largest element errors ηe are refined in each refinement step. The results for a
linear, quadratic and cubic basis are shown in Fig. 5b. Due to strong local gradients,
an improvement in the convergence rate is observed in the pre-asymptotic range until
the theoretical rate of−p is recovered in the asymptotic domain. In this way, adaptive
local refinement can cut off the necessary degrees of freedom by up to 70% without
loss of precision. Note that the pre-asymptotic range increases with the locality of
the gradients in the computational domain as demonstrated in Hennig et al. (2016)
for the example of a circular plate with hole.

3.3 Demonstration

The final two-dimensional demonstration problem which considers a square speci-
men that is notched on the left edge has previously been considered by Miehe et al.
(2010a). The plate is clamped at the bottom edge while a given horizontal displace-
ment is applied on the top edge. The initial notch is prescribed as a discrete crack
in terms of a C−1-continuity line, Fig. 6. The Lamé parameters for the material are
λ = 121, 15 kNmm−2 and μ = 80, 77 kNmm−2 and the phase-field parameters are
given by the fracture toughness Gc = 2.7 × 10−3 kNmm−1 and the characteristic
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(a)

(b)

Fig. 6 Meshes and solution of the single edge notched shear test: The initial mesh in a on the left
is adaptively refined by the evolution of the crack (b). The phase-field variable on the uniformly
refined mesh is given in b on the right
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Fig. 7 Computational results of the single edge notched shear test: a The adaptive computation is
consistent with the uniformly refined comparative computation b, reduces the number of elements
c and hence the overall computational time c

length �0 = 0.75 × 10−2 mm. These parameters are identical to the work of Miehe
et al. (2010a) which allows for a quantitative comparison.

A staggered solution scheme is used with a displacement increment of Δu =
1 × 10−5 mm per time step. The initial mesh is pre-refined in the vicinity of the
crack tip, Fig. 6a (left). The threshold for the adaptive mesh refinement is set to
d = 0.5, i.e. elements are marked for refinement if the phase-field parameter at any
quadrature point of the element becomes larger than 0.5.

A comparison between two solutions, one obtained on an adaptively refined mesh
and one computed on a uniformly pre-refined mesh is presented in Fig. 6. Both
solutions produce the same crack pattern and it can be seen that the adaptive algorithm
resolves the crack path. Moreover, the shape of the crack is identical to the numerical
solution in Miehe et al. (2010a).

In addition to the qualitative agreement of the crack paths, the force-displacement
curves obtained with both solutions is identical, Fig. 7a. The adaptive approach sig-
nificantly reduces the number of elements which improves the efficiency compared
to uniform refinement, Fig. 7b. It is observed from Fig. 7c that the computational time
is cut by 76%. Note also that knowledge on the expected crack path was used to gen-
erate the uniformly pre-refined mesh which is impossible for problems of arbitrary
complexity.
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4 Conclusions

We have presented the combination of a phase-field model of brittle fracture with
adaptive spline-based approximations. A numerical convergence study was per-
formed for a one-dimensional problem of a bar for which Γ�0 = Γ = A should hold.
We demonstrated how boundary effects and the discretisation error prevent numer-
ical solutions from being exact. Moreover, the characteristic minimum in the error
ΓE = |Γ�0 − Γ |/Γ found in May et al. (2015) was explained, i.e. with increasing
ratios �0/L , boundary effects due to the finite domain size deteriorate the phase-field
approximation. On the other hand the error increases for small characteristic length
scales �0 because of discretisation errors.

In order to limit this discretisation error, we have utilised hierarchical B-splines
that can be refined in the vicinity of the crack. The use of an element viewpoint and the
application of Bézier extraction to a multi-level mesh facilitate the implementation
into any existing finite element code. Moreover, standard procedures of adaptive
finite element analysis are directly applicable. While Bézier extraction provided a
multi-level system of equation with independent levels, it was shown that a simple
matrix multiplication produces a hierarchical system of equations that is identical to
the use of the truncated hierarchical basis. It is noted that the explicit computation
of the basis is avoided.

In a second numerical convergence study, we have demonstrated the superiority
of the spline discretisation over Lagrangian polynomials already for uniform mesh
refinement. The local refinement was found to increase the convergence rate in the
pre-asymptotic domain while optimal convergence rates are recovered in the asymp-
totic range. In this way the total number of degrees of freedom required to achieve
a certain error level can be significantly reduced compared to uniform meshes. The
developed algorithms were eventually applied to simulate crack propagation in a
two-dimensional single-edge notched, shear loaded plate. Here, the adaptive local
refinement produced exactly the same crack path and load-displacement curve as
a simulation based on a highly refined uniform mesh. As the locally refined mesh
involved considerably fewer elements, a significantly shorter computation time, that
considers also the numerical effort for marking and refining elements, was found
in relation to the uniform solution which illustrates the numerical efficiency of the
approach.
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Fracture Mechanics and Failure Criteria



Prestressed Orthotropic Material
Containing an Elliptical Hole

Eduard-Marius Craciun

Abstract Based on the representation of the incremental stress fields by complex
potentials and conformal mapping technique, the fundamental solutions for an
unbounded, homogeneous, orthotropic elastic body containing an elliptical hole
subjected to uniform remote loads are determined. The orthotropic body is under
by uniform remote tensile, tangential, and antiplane shear loads—cases correspond-
ing to Mode I, Mode II, and Mode III of fracture. The solutions are obtained in a
compact and elementary form.

1 Introduction

The problem of an isotropic body with an elliptical hole was studied by many
authors using Kolosov–Muskhelishvili’s complex potentials Muskhelishvili (1953)–
Bertoldi et al. (2007) or the integral transform method Singh et al. (2012). In what
follows our results Craciun and Soós (2006), Craciun and Barbu (2015) for a pre-
stressed elastic composite material under by uniform distributed remote loads are
presented and extended. To get the complex potentials describing the incremental
stress and displacement fields, Ψ1 = Ψ1(z1) and Ψ2 = Ψ2(z2) for the plane problem,
and Ψ3 = Ψ3(z3) for the antiplane problem, a technique based on the conformal
mapping of the exterior of the elliptical hole in the planes on the exterior of the unit
circle is used. The unknown potentials are represented by two Laurent series in the
complex planes and their coefficients are determined from the boundary conditions.
The compact closed-form analytical solutions, i.e., the complex potentials, of the
considered boundary value problems for an unbounded, homogeneous, prestressed
orthotropic elastic composite with an elliptic hole are obtained.
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2 Representation of the Incremental Stress Fields

The representation of elastic fields by complex potentials in the classical case of
anisotropic elastic bodies was given by Lekhnitski (1963). This representation was
used, for instance, by Sih and Leibowitz (1968) to analyze problems concerning the
existence of a crack in an anisotropic elastic solid. The results obtained by Lekhnitski
(1963) were generalized for the case of a prestressed material by Guz (1983), who
also has analyzed the influence of the initial applied stresses on the behavior of a
solid body containing cracks. Guz’s representation of the incremental stress fields by
complex potentials Guz (1983), Cristescu et al. (2004) is presented. In what follows
it is considered an elastic composite with an elliptical hole prestressed with the initial

applied stress
◦
σ 11, in the direction of Ox1 axis, i.e., along the major semi-axis of

the ellipse. The initial deformed equilibrium configuration of the body is assumed
to be homogeneous and locally stable. The paper starts with representation of the
incremental stress fields corresponding to the antiplane state, by a single complex
potential Ψ3 = Ψ3 (z3) depending on the complex variable z3 = x1 + μ3x2. The
complex parameter μ3 is the root of the characteristic equation of the differential
equilibrium equation and has the following form, see Guz (1983)–Cristescu et al.
(2004):

μ3 = 1

ω2332

[−ω1332 + i
√

ω1331ω2332 − ω1332ω2331
]

, (1)

where ωklmn (k, l,m, n = 1, 2, 3) are the instantaneous elasticities of the material in
its free reference configuration and can be expressed through engineering constants

of the composite and initial applied stress
◦
σ 11 and i denotes the imaginary unit, see

Cristescu et al. (2004).
Taking into account the antiplane state relative to the plane x1x2 the instantaneous

elasticities of the material have to satisfy the following restrictions:

√
ω1331ω2332 − ω1332ω2331 > 0, ω2332 > 0. (2)

The corresponding components θ13 and θ23 of the nominal stress are then given by

θ13 = 2Re {qΨ3 (z3)} , θ23 = 2Re {Ψ3 (z3)} , q = ρ1

ρ2
,

ρ1 = ω1331 + μ3ω1323, ρ2 = ω2313 + μ3ω2323. (3)

It is assumed that the initial deformed composite material is in plane state relative
to the x1x2 plane.

The representation of the incremental stress fields by two arbitrary analytical
complex potentials Ψ j = Ψ j (z j ), j = 1, 2 has the following form:

θ22 = 2Re {Ψ1(z1) + Ψ2(z2)} , (4)
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θ21 = −2Re {a1μ1Ψ1(z1) + a2μ2Ψ2(z2)} , (5)

a j = ω2112ω1122μ
2
j − ω1111ω1212

Bjμ
2
j

, (6)

θ12 = −2Re {μ1Ψ1(z1) + μ2Ψ2(z2)} , (7)

θ11 = 2Re
{

a1μ
2
1Ψ1(z1) + a2μ

2
2Ψ2(z2)

}

, (8)

Bj = ω2222ω2112μ
2
j + ω1111ω2222 − ω1122(ω1122 + ω1212), (9)

where μ1 and μ2 are the roots of characteristic equation of equilibrium, see
Cristescu et al. (2004). The instantaneous elasticities of the material ωklmn (k, l,m,

n = 1, 2) can be expressed through engineering constants of the composite and initial

applied stress
◦
σ 11, by the following relations, see Cristescu et al. (2004):

ω1111 = 1 − ν23ν32

E2E3H
+ ◦

σ 11, ω2222 = 1 − ν13ν31

E1E3H
,

ω1122 = ν12 + ν32ν13

E1E3H
,

ω1212 = ω1221 = ω2112 = G12,

with

H = 1 − ν12ν21 − ν23ν32 − ν31ν13 − ν21ν32ν13 − ν12ν23ν31

E1E2E3
.

In these relations E1, E2, E3 are Young’s moduli in the corresponding symmetry
directions of the material, G12 is the shear modulus in the symmetry plane Ox1x2
and ν12, ..., ν32 are the Poisson’s ratios.

Also, for an orthotropic material the roots μ1 and μ2 usually are not equal. In
what follows the case of non-equal roots is considered

μ1 �= μ2.

3 Antiplane State

In this section the plane problem of antiplane shear loads, i.e., the case corresponding
to the thirdmode of fracture, is studied. Let us consider an unbounded, homogeneous,
prestressed orthotropic elastic composite containing an elliptical hole which is acted
by an antiplane constant shear load τ > 0 in the direction of the x3 axis at large
distances. The boundary of the elliptical hole is free from stresses.
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Let us write the boundary conditions corresponding to the mechanical problem:

lim|z3|→∞θ13 (z3) = 0, lim|z3|→∞θ23 (z3) = τ > 0,

n1θ13 (z3) + n2θ23 (z3) = 0, (10)

on the hole boundary, where n1 and n2 are the components of the unit exterior normal
to the boundary.

In order to find the complex potential Ψ3 = Ψ3 (z3) is considered the conformal
mapping of the exterior of the elliptical hole onto the exterior of the unit circle,
having the form

z = x1 + i x2 = a + b

2
ζ + a − b

2

1

ζ

z3 = x1 + μ3x2 = a − iμ3b

2
ζ3 + b + iμ3b

2

1

ζ3
. (11)

The inverse mapping is given by

ζ = z + √
z2 − a2 + b2

a + b
, ζ3 =

z3 +
√

z23 − a2 − μ3b2

a − iμ3b
. (12)

Let a, b, b ≤ a be the two semi-axis of the elliptical hole and if b → 0 the consid-
ered hole obviously becomes the mathematical model of an usual, classical Griffith-
Irwin crack given by a segment of length 2a.

Let us introduce now the complex potential Ψ3 (ζ3) through the relation

Ψ3 (ζ3) = Ψ3 (z3 (ζ3)) , (13)

where for simplicity it is used the same notationΨ3 for the complex potential depend-
ing on z3 or on ζ3. The boundary conditions (10) by means of the potential Ψ3 (ζ3)

and the mapping formula (11) become

lim|z3|→∞θ13 (ζ3) = 0, lim|z3|→∞θ23 (ζ3) = τ (14)

and
(cos θ)θ13(ζ3) + (sin θ)θ23(ζ3) = 0, ζ3 = eiθ , 0 ≤ θ ≤ 2π, (15)

where (cos θ, sin θ) is the unit exterior to the unit circle in the complex plane ζ3,
and θ is obviously the angle between this normal and the x1 axis.

The complex potential Ψ3 = Ψ3 (ζ3) is an analytic function on the exterior of the
unit circle, and thus we may write it as
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Ψ3(ζ3) = A0 +
∞

∑

m=1

Amζ−m
3 , (16)

where A0, A1, A2, . . . are unknown complex constants to be determined from the
boundary conditions. The second boundary condition from (10) at large distance
from the hole leads to the following restrictions on A0:

q A0 + q̄ Ā0 = 0, A0 + Ā0 = τ (17)

therefore,

A0 = −τ
q̄

q − q̄
= τ q̄i

2r2
, q = r1 + ir2. (18)

The third boundary condition from (10) imposes an additional restriction on the
coefficients of the potential Ψ3(z3)

(q + i)A1 + (q̄ − i) Ā1 + (q + i)A2e
−iθ + (q − i)

−
A2 e

iθ

+
∞
∑

m=2

[(q + i)Am+1 + (q − i)Am−1]e−imθ +
∞
∑

m=2

[(q̄ − i) Ām+1 + (q̄ + i) Ām−1]eimθ

= −A0[(q + i)eiθ + (q − i)e−iθ ] − Ā0[(q̄ + i)eiθ + (q̄ − i)e−iθ ], (19)

for 0 ≤ θ ≤ 2π . Condition (19) is fulfilled if and only if the following relations are
satisfied:

(q + i)A1 + (q̄ − i) Ā1 = 0 (20)

(q + i)A2 = −[A0(q − i) + Ā0(q̄ − i)],

(q̄ − i) Ā2 = −[A0(q + i) + Ā0(q̄ + i)] (21)

A1+2m = sm A1, A2+2m = sm A2,m = 1, 2, 3... (22)

with

s = −q − i

q + i
. (23)

Equation (21) becomes

A2 = − A0 (q − i) + A0 (q − i)

q + i
(24)

and taking into account (24) the expression of the constant A2 has the following
form:

A2 = i
τ

q + i
. (25)
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Let γ and δ denote the real and the imaginary part of A1, respectively, i.e.,

A1 = γ + iδ. (26)

Now, from (20) we get the following value for A1:

A1 = γ

(

1 + i
r1

r2 + 1

)

(27)

with
q = r1 + ir2. (28)

Let us remark that the real number γ remains undetermined in the expression (27) of
A1. This is not an unexpected result since we have a boundary value problem in stress
where such indetermination generally occurs. After some laborious manipulations,
using (22) into (14) the final form of the complex potential Ψ3(ζ3) has the following
form:

Ψ3(ζ3) = A0 + A1ζ3 + A2

ζ 2
3 − s

. (29)

The basic complex potential Ψ3(z3) may then be obtained by introducing the
expression of ζ3 given by (12) into the right-hand side of (29) and the problem is
completely solved.

4 Plane State

In this section the plane problem of a uniform distributed remote tensile load, i.e., the
case corresponding to the first opening mode of fracture, is studied. Let us consider
an unbounded, homogeneous, prestressed orthotropic elastic composite containing
an elliptical hole which is acted by a uniform constant normal tensile load p > 0 in
the direction of the x2 axis at large distances. The boundary of the elliptical hole is
free from stresses.

Let us write the boundary conditions corresponding to our mechanical problem:

lim|z|→∞θ11 (z) = lim|z|→∞θ12 (z) = lim|z|→∞θ21 (z) = 0, lim|z|→∞θ22 (z) = p > 0, (30)

n1θ11 (z) + n2θ21 (z) = 0, n1θ12 (z) + n2θ22 (z) = 0,

on the hole boundary, where n1 and n2 are the components of the unit exterior normal
to the boundary.

The complex potentials Ψ j = Ψ j
(

z j
)

, j = 1, 2, must be determined not in the
region of the infinite prestressed orthotropic plate with an elliptical hole, denoted by
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S, but in the regions Sj , j = 1, 2 obtained from S by the affine transformations:

x j
1 = x1 + α j x2, x

j
2 = β j x2, j = 1, 2. (31)

The regions Sj are also planes with elliptical holes whose contours are given by
the equations

x j
1 = a cos θ + α j b sin θ, x j

2 = β j sin θ, 0 ≤ θ ≤ 2π, j = 1, 2. (32)

The following conformal mapping of the regions S, S1, and S2 onto the exterior of
the unit circle is used:

z = x1 + i x2 = a + b

2
ζ + a − b

2

1

ζ
,

z j = x1 + μ j x2 = a − iμ j b

2
ζ j + a + iμ j b

2

1

ζ j
, j = 1, 2. (33)

The inverse mapping is given by

ζ = z + √
z2 − a2 + b2

a + b
, ζ j =

z j +
√

z2j − a2 − μ j b2

a − iμ j b
, j = 1, 2. (34)

When the x1 and x2 are running along the contour of the ellipse taking the values
x21
a2 + x22

b2 = 1, the functions defined by the (34) take the values ζ = ζ1 = ζ2 = eiθ .
Let us introduce now the complex potentials Ψ j

(

ζ j
)

through the relations
Ψ j

(

ζ j
) = Ψ j

(

z j
(

ζ j
))

, j = 1, 2, where for simplicity we use the same notation
Ψ j for the complex potentials depending on z j or on ζ j . The boundary conditions
(30) by means of the potential Ψ j

(

ζ j
)

and the mapping formulae (33) become

lim|ζ |→∞θ11 (ζ ) = lim|ζ |→∞θ12 (ζ ) = lim|ζ |→∞θ21 (ζ ) = 0, lim|ζ |→∞θ22 (ζ ) = p > 0, (35)

(cos θ)θ11 (ζ ) + (sin θ)θ21 (ζ ) = 0, (cos θ)θ12 (ζ ) + (sin θ)θ22 (ζ ) = 0, (36)

on the unit circle ζ = eiθ , 0 ≤ θ < 2π ,where (cos θ, sin θ) is the unit exterior normal
to the unit circle in the complex plane ζ , and θ is obviously the angle between this
normal and the x1 axis.

The complex potentials Ψ j = Ψ j
(

ζ j
)

j = 1, 2 are analytical functions on the
exterior of the unit circle, i.e.,

Ψ1(ζ1) = A0 +
∞

∑

m=1

Amζ−m
1 ,
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Ψ2(ζ2) = B0 +
∞

∑

m=1

Bmζ−m
2 , (37)

where Ak and Bk , k = 0, 1, . . . are unknown complex constants to be determined
from the boundary conditions.

Using Eqs. (35)–(37) the following restrictions on A0, A0, B0 and B0 are imposed:

A0 + A0 + B0 + B0 = p, (38)

μ1A0 + μ1A0 + μ2B0 + μ2B0 = 0,

a1μ1A0 + a1μ1A0 + a2μ2B0 + a2μ2B0 = 0, (39)

a1μ
2
1A0 + a1μ

2
1A0 + a2μ

2
2B0 + a2μ

2
2B0 = 0.

Using the representation formulae, the expressions of the complex potentials, and
boundary conditions (36), the following expressions are obtained:

A2m+1 = ξm
1 A1, A2m+2 = ξm

1 A2, B2m+1 = ξm
2 B1, B2m+2 = ξm

2 B2, (40)

with

ξk = i − μk

μk + i
, k = 1, 2,

B1 = 2
a2μ2Re((μ1 + i)A1) − Re(a1μ1(μ1 + i)A1)

(μ2 + i)(a2μ2 − a2μ2)
. (41)

Finally, from system (38), the coefficients A2 and B2 can be determined.
The complex coefficient A1 remains undetermined in the expressions (37) of

complex potentials of Ψ j = Ψ j
(

z j
)

, j = 1, 2. This is not an unexpected result since
it is considered a boundary value problem in stress where such indetermination
generally occurs.

The expression of the complex potentials Ψ j = Ψ j
(

z j
)

, j = 1, 2 may now be
written using (40) into (37):

Ψ1(ζ1) = A0 + A1ζ1 + A2

ζ 2
1 − ξ1

,

Ψ2(ζ2) = B0 + B1ζ2 + B2

ζ 2
2 − ξ2

.

(42)

In the last part of the paper, the plane problem of uniform remote tangential shear
loads, i.e., the case corresponding to the second mode of fracture, is studied.

Let us consider an unbounded, homogeneous, anisotropic elastic body containing
an elliptical hole under by a uniform remote constant tangential shear load h > 0 in
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the direction of the x1 axis. The boundary of the elliptical hole is free from stress.
The boundary condition (36) remains unchanged and the far-field conditions (35)
become

lim|z|→∞θ11 (z) = lim|z|→∞θ21 (z) = lim|z|→∞θ22 (z) = 0, lim|z|→∞θ12 (z) = h > 0. (43)

Using the same formalism as in the previous case, the same expressions of the
complex potentials are obtained. The coefficient B1 has the same form as before and
the coefficient A1 rests undetermined. To find the coefficients A0, B0, A2, and B2,
it will use the same procedure, as for the plane problem of uniform remote tensile
load. From the far-field conditions the following restrictions are obtained:

A0 + A0 + B0 + B0 = 0, μ1A0 + μ1A0 + μ2B0 + μ2B0 = −h,

a1μ1A0 + a1μ1A0 + a2μ2B0 + a2μ2B0 = 0, (44)

a1μ
2
1A0 + a1μ

2
1A0 + a2μ

2
2B0 + a2μ

2
2B0 = 0.

Let us observe that the above system could be a determinate system, an indeter-

minate system, and in the case of resonance due to the initial applied stress
◦
σ 11 an

incompatible system. Finally, the values of the complex coefficients A2 and B2 are
obtained.

The final forms of the complex potentials Ψ j (ζ j ), j = 1, 2 are thus determined
by elementary calculus in both situations of uniform remote tensile and tangential
shear loads, respectively. The basic complex potentialsΨ j (z j ) j = 1, 2 may be then
obtained by introducing the expression of ζ j given by (34) into the right-hand side
of (42) and the problem is completely solved.

5 Final Remarks

Compact closed-formanalytical solutions of the considered boundary value problems
for an unbounded, homogeneous, prestressed orthotropic elastic composite contain-
ing an elliptical hole, subjected to uniform remote tensile, tangential, and antiplane
shear loads (Mode I, Mode II, and Mode III of Fracture), are obtained.

The general results are practically relevant, e.g., for the study of incremental
stress, strain, and displacement fields in the vicinity of the elliptical hole, can be
applied to study a variety of composite mechanics problems, and can be extended
for prestressed thermoelastic, ferromagnetic, or piezoelectricmaterials with elliptical
holes.
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Generalized Limit Surfaces—With
an Example of Hard Foams

Nina-Carolin Fahlbusch, Vladimir A. Kolupaev and Wilfried Becker

Abstract Hard foams are often used in aircraft, submarine, and automotive industry
structures mostly as core in sandwich structures. The design of the critical compo-
nents made from hard foams requires the knowledge of their material behaviour.
Nowadays, this knowledge is gained from tests on specimens under tension, com-
pression, torsion, and hydrostatic compression. Further tests are needed to describe
the material behaviour under multi-axial loading reliably, but with default testing
technology this is difficult to realize. Missing data can be predicted by numerical
simulations of the microstructure. The calculated points of failure are needed to
be approximated by a limit surface for the dimensioning and optimizing of engi-
neering applications. The most known generalized strength hypotheses, however,
restrict the shape of the surfaces in the principal stress space. In general, they are
not suitable to describe the material behaviour of hard foams appropriately. The
Capurso–Haythornthwaite generalization is chosen for the current application. It
enables the description of limit surfaces with a large number of different shapes in
the π -plane as well as varying shapes in the π -plane along the hydrostatic axis. The
criterion takes into account the hydrostatic tensile and compressive stresses. The
curvature of the meridians can be adjusted. In the current approach, a general fitting
procedure is developed for the determination of the parameters of the criterion. The
proposed method is not limited to polymer foams. The application to other materials
like aerated concrete, cellular ceramics, and metal ceramics is possible.

N.-C. Fahlbusch (B) · W. Becker
Fachgebiet Strukturmechanik (FSM), Technische Universität Darmstadt,
Franziska-Braun-Straße 7, 64287 Darmstadt, Germany
e-mail: fahlbusch@fsm.tu-darmstadt.de

W. Becker
e-mail: becker@fsm.tu-darmstadt.de

V.A. Kolupaev
Division Plastics, Mechanics and Simulation, Fraunhofer Institute
for Structural Durability and System Reliability (LBF),
Schloßgartenstr. 6, 64289 Darmstadt, Germany
e-mail: Vladimir.Kolupaev@lbf.fraunhofer.de

© Springer Science+Business Media Singapore 2016
K. Naumenko and M. Aßmus (eds.), Advanced Methods of Continuum Mechanics
for Materials and Structures, Advanced Structured Materials 60,
DOI 10.1007/978-981-10-0959-4_19

337



338 N.-C. Fahlbusch et al.

1 Introduction

Experimental methods provide a limited number of failure points under different
loadings. This number is often not sufficient to fit the modern strength hypotheses,
which are necessary for the dimensioning and optimizing of structural components.
Some loading cases, e.g., the hydrostatic tensile loading, cannot be realized and
there are no clear statements regarding the material behaviour at this stress state.
The adjustment of the parameters of the chosen criterion is precarious in the case of
limited data sets.

Numerical methods based on the real microstructure of a foam, on the cell size
and cell irregularities, and on the properties of the bulk polymer allow calculating
failure points under any loading. These points can be validated by availablemeasured
data, cf. Fahlbusch (2015).

In the current approach, a finite element (FE) model based on a tetracaidecahe-
dron is generated. The model is consisting of a single unit cell. Periodic boundary
conditions are implemented and a strain-energy homogenization concept is applied
(Hohe and Becker 2005). The model is adapted to geometrical parameters of the real
microstructure, which result from an analysis of high-resolution images. The dis-
tribution of the geometrical parameters on the microstructure is taken into account
by the numerical evaluation of several so-called test volume elements (Monte Carlo
method, Landau and Binder 2009).

For an engineering application the numerically calculated sets of points should
be approximated with a limit surface. The most useful criteria for hard foams are
the Ehlers criterion (Droste 2004; Ehlers 1993, 1995), Bigoni–Piccolroaz criterion
(Bigoni and Piccolroaz 2004; Penasa et al. 2014; Piccolroaz and Bigoni 2009), and
the cosine ansatz of Altenbach–Bolchoun–Kolupaev (Altenbach et al. 2014). These
criteria, however, have different limitations in the geometry of the shape in the π -
plane and of the meridian and cannot be applied to arbitrary isotropic materials.

For a versatile use a criterion is desirable which can describe limit surfaces with
a large number of different shapes in the π -plane. This surface is composed based
on the convex combination of two extremal limit surfaces, of Capurso (Capurso
1967; Sayir 1970) and of Haythornthwaite (Candland 1975; Haythornthwaite 1961).
The Capurso–Haythornthwaite generalization proposed by Altenbach–Bolchoun–
Kolupaev (Altenbach et al. 2014; Bolchoun et al. 2011) includes several known
criteria like Tresca (Reuss 1933; Tresca 1868), vonMises (Huber 1904; von Mises
1913), Schmidt–Ishlinsky (Burzyński 1928; de Araújo 1962), Mariotte (Benvenuto
1991), and Ko (Ko 1963; Sayir 1970). This criterion contains also the bicubic crite-
rion of hexagonal symmetry (Altenbach 2012), which is similar to the unified yield
criterion of Yu (Yu 2002, 2004). The criteria of Ehlers, Bigoni–Piccolroatz, and
the cosine ansatz of Altenbach–Bolchoun–Kolupaev can be approximated with this
generalization.

The dependence of the failure behaviour of hard foams on the hydrostatic stress
should be taken in account. The simple substitution based on the position of the
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hydrostatic nodes (hydrostatic poles of the surface on the hydrostatic axis) is used to
define closed surfaces in the principal stress space.

The comparison of the numerical points for the cuts perpendicular to the hydrosta-
tic axis shows the dependence of the geometry of the cross sections on the hydrostatic
stress. So the parameters of the shape in the π -plane are formulated as a function
of the axiator of the stress tensor I1. This function can be numerically identified. A
surface with a varying shape in the π -plane was the result. The isotropic assumption
remains unaltered.

In the current approach, a method is introduced which allows deducing the para-
meters of the failure criterion based on the numerical points. Characteristics of the
behaviour like failure under hydrostatic stress and varying cross sections in the π -
plane in dependence on the first invariant of the stress tensor are considered. The
determination of the parameters follows with a general routine. The method is shown
for data sets of hard foams but is not limited to this material. The FE model is based
on the material data of polymethacrylimide (PMI) hard foam ROHACELL® 71IG,
Evonik Industries AG,Darmstadt (Rohacell 2010). The results of the approximations
are visualized and compared in the Burzyński-plane (invariant plane (I1,

√

3 I ′
2)), π -

plane (cross sections with I1 = const.), and in the σI-σII diagram (Altenbach et al.
2014; Chen and Zhang 1991).

2 Generalized Strength Hypothesis

2.1 Invariants of Stress Tensor

Failure criteria for isotropic material behaviour should be invariant with respect to
an arbitrary rotation of the coordinate system (Źyczkowski 1981). Hence, the criteria
are built up using the invariants of the symmetric second-rank stress tensor. From
the solution of the eigenvalue problem, the principal values (principal stresses or
principal invariants) are obtained and denoted by σI, σII, and σIII (Altenbach et al.
1995; Altenbach and Kolupaev 2014). The following order is assumed

σI ≥ σII ≥ σIII. (1)

Three stress invariants, the trace I1 of the stress tensor (axiator) and the invariants
I ′
2, I

′
3 of the stress deviator (Altenbach et al. 1995; Altenbach and Kolupaev 2014;

Źyczkowski 1981), as a function of the principal stresses

I1 = σI + σII + σIII, (2)

I ′
2 = 1

6

[

(σI − σII)
2 + (σII − σIII)

2 + (σIII − σI)
2
]

, (3)
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and

I ′
3 =

(

σI − 1

3
I1

)(

σII − 1

3
I1

)(

σIII − 1

3
I1

)

(4)

are often used in the modelling. The criteria applied in the current approach are
formulated in the axiatoric-deviatoric invariants (2)–(4)

Φ(I1, I ′
2, I ′

3, σeq) = 0. (5)

For criteria independent of the hydrostatic stress it follows

Φ(I ′
2, I ′

3, σeq) = 0. (6)

Other formulations are discussed in Altenbach et al. (1995, 2014), Altenbach and
Kolupaev (2014), Yu (2004), Źyczkowski (1981) for instance.

With the invariant relations a geometrical meaning of the loading cases in the
stress space can be defined, e.g. Altenbach et al. (2014), Altenbach and Kolupaev
(2014):

• the scaled axiator I1 of the stress tensor and the scaled root of the second invariant
of the stress deviator

χ = I1/
√
3 and ρ =

√

2 I ′
2, (7)

which are used as axes in the Burzyński-plane (Źyczkowski 1981),
• the stress angle θ in the π -plane (Fig. 1) (Chen and Zhang 1991; Novozhilov 1951;
Ottosen and Ristinmaa 2005; Źyczkowski 1981)

cos 3θ = 3
√
3

2

I ′
3

(

I ′
2

)3/2 , θ ∈
[

0,
π

3

]

, (8)

and

(a) (b) (c) (d)

Fig. 1 Particular cross sections in the π -plane with the cut I1 = const. relating to the vonMises
hypothesis with R(0) = R(π/3) = R(π/6). a Ko, b Mariotte, c Schmidt–Ishlinsky, d Tresca
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Fig. 2 VonMises hypothesis in the Burzyński-plane. The axes are scaled by the uniaxial tensile

strength σ+ in order to obtain I1/σ+ =
√

3 I ′
2/σ+ = 1 at the uniaxial tension (point Z ). The radius

r together with the angles θ and ψ defines a spherical coordinate system

• the elevation ψ in the Burzyński-plane (Fig. 2) (Altenbach and Kolupaev 2014;
Fahlbusch 2015; Mendera 1966; Źyczkowski 1981)

tanψ =
√

3 I ′
2

I1
, ψ ∈ [ 0, π ]. (9)

The function tanψ is often denoted as stress triaxility factor (Davis and Connelly
1959; Du Bois et al. 2006; Finnie and Heller 1959; Odqvist and Hult 1962). Fur-
ther functions of the invariants are given in Altenbach et al. (1995), Altenbach and
Kolupaev (2014), Matsuoka and Nakai (1974), Źyczkowski (1981), among others.

2.2 Stress Relations

For analytical comparison of differentmaterial properties some dimensionless values
are introduced. These values provide a simple way to characterize limit surfaces.

Nine tests are chosen for the analysis and comparison of the limit surfaces Φ:

• two loadings corresponding to one-dimensional stress states (tension Z and com-
pression D),

• five loadings corresponding to the plane stress states (torsion T , two balanced (2D
uniform) plane states at tension BZ and compression BD, two tests on thin-walled
tube specimens with closed ends under inner IZ and outer UD pressure), and

• two loadings corresponding to hydrostatic (3Dbalanced) tension and compression.

For more details see Altenbach et al. (2014), Altenbach and Kolupaev (2014),
Kolupaev et al. (2013). The relevant stress components are listed in Table1. All
these loading cases can be assumed as basic tests. They are sufficient for the compar-
ison of themost important features of the surfaces. Several restrictions are introduced
on the basis of these relations (Altenbach et al. 2014; Altenbach and Kolupaev 2014).
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Their selection is, however, not unambiguous and can be expanded according to the
available equipment and expected phenomena, cf. Altenbach et al. (1995), Altenbach
and Kolupaev (2014), Blumenauer (1996).

The values (Table1) relating the respective stresses to σ+ are introduced in order
to obtain

k = d = iZ = uD = bZ = bD = 1 and ahyd− , ahyd+ → ∞ (10)

for the vonMises type material (von Mises 1913, 1928)

σ 2
eq = 3 I ′

2 = 1

2

[

(σI − σII)
2 + (σII − σIII)

2 + (σIII − σI)
2
]

. (11)

The loading points

• Z and BD belong to the meridian with a stress angle θ = 0 (0-meridian),
• D and BZ belong to the π/3-meridian, and
• T , IZ, and UZ belong to the π/6-meridian.

For the points AZ and AD the stress angle θ (8) is indefinite.
For criteria independent of the hydrostatic stress (6) the values on the meridians

defined by the stress angles θ = 0, π/6, and π/3 are computed to Backhaus (1983),
Kolupaev (2006), Źyczkowski (1981)

bD = 1, k = iZ = uD, and d = bZ. (12)

For the classical hypotheses (normal stress hypothesis,Tresca hypothesis, von
Mises hypothesis, and Schmidt–Ishlinsky hypotheses) it follows (Altenbach et al.
2014)

bZ = 1, bD = d. (13)

The well-known criteria are compared in Table2 on the basis of these values.
For further discussions the values dinc and kinc are introduced. The geometrical

meaning follows with (Fig. 1)

dinc = R(π/3)

R(0)
, kinc = R(π/6)

R(0)
for I1 = const. (14)

The values dinc and kinc describe the position of the meridians with θ = π/3 and π/6 in
relation to the 0-meridian in the Burzyński-plane with I1 = const. In case of material
behaviour which has not a varying shape in the π -plane, the parameters are constant
(dinc, kinc = const). For material behaviour which is also insensitive to hydrostatic
stress (AD, AZ → ∞) the parameters are dinc = d and kinc = k.

The cross sections of the criteria can be compared in the dinc-kinc diagram (Fig. 3)
(Altenbach et al. 2014; Bolchoun et al. 2011; Kolupaev and Altenbach 2010). In this
diagram the criteria of Haythornthwaite and Capurso limit the convex shapes in the
π -plane.
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Table 2 Cross sections in the π -plane (Fig. 1) and the values kinc and dinc for the criteria of material
behaviour, which are insensitive to hydrostatic stress (Fig. 3)

Cross
section

kinc (–) dinc (–) Criterion Source

a 1/
√
3 1/2 Ko Ko (1963), Kolupaev et al. (2009), Sayir

(1970), Ziegler (1969)

b 2/
√
3 2 Mariotte Altenbach et al. (1995), Benvenuto (1991),

Birger et al. (1993), Finnie and Heller (1959),
Ivlev (1959), Mariotte (1700), Shanley
(1957), Sauter and Winterger (1990), Sayir
(1970), Sayir and Ziegler (1969), Sähn et al.
(1993), Źyczkowski (1981)

c 2/
√
3 1 Schmidt–

Ishlinsky
Annin (1999), Burzyński (1928), de Araújo
(1962), Haythornthwaite (1961), Hill (1950),
Ishlinsky (1940), Schmidt (1932), Yu (1961,
1983a, b, 2004)

d
√
3/2 1 Tresca Coulomb (1776), Reuss (1933), Tresca

(1868), Prager and Hodge (1954)

m 1 1 vonMises Föppl and Föppl (1920), Hencky (1924),
Huber (1904), von Mises (1913), Yagn
(1933), Skrzypek (1993), Źyczkowski (1981)

a

b

Haythornthwaite

Capurso

Haythornthwaite

k inc

d inc
m

d

c

0.6

0.6 0.8

0.8

1.2

1.2 1.4 1.6 1.8 2

Fig. 3 Diagram dinc-kinc for convex criteria of material behaviour for cuts with I1 = const. com-
pared with the hypothesis of vonMises. Certain cross sections in the π -plane are visualized in order
to achieve a better understanding (cf. Fig. 1 and Table2)

2.3 Capurso–Haythornthwaite Generalization

The Haythornthwaite criterion (Altenbach et al. 2014; Haythornthwaite 1961)

ΦH = 36

26
1

d3
inc

(I ′
3)

2 − 35

25
dinc − 1

d3
inc

I ′
2 I

′
3 σeq − 34

24
1

d2
inc

(I ′
2)

2 σ 2
eq

− 33

23
1 − d3

inc

d3
inc

I ′
3 σ 3

eq + 32

22
1 + d2

inc

d2
inc

I ′
2 σ 4

eq − σ 6
eq (15)
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and the Capurso criterion (Capurso 1967; Sayir 1970)

ΦC = α4σ
4
eq I

′
2 + α3σ

3
eq I

′
3 + α2σ

2
eq

(

I ′
2

)2 + α1σeq I
′
2 I

′
3 + β2

(

I ′
2

)3 + β1
(

I ′
3

)2 − σ 6
eq
(16)

with the parameters

α4 = 6
(dinc − 1)2 + dinc

d2
inc

, α3 = 33
dinc − 1

d2
inc

,

α2 = −32
(

(dinc − 1)2 + dinc
)2

d4
inc

, α1 = −34
(dinc − 1)

(

(dinc − 1)2 + dinc
)

d4
inc

,

β2 = (1 − 2 dinc)2 (dinc − 2)2 (1 + dinc)2

d6
inc

, β1 = −33
(

(dinc − 1)2 + dinc
)3

d6
inc

(17)

are functions of the value dinc ∈ [1/2, 2] (Altenbach et al. 2014; Capurso 1967). With
the linear combination (Altenbach et al. 2014; Bolchoun et al. 2011; Kolupaev et al.
2013)

ΦCH = (1 − ξ)ΦC + ξ ΦH , ξ ∈ [0, 1] (18)

a criterion follows which describes all points in the dinc-kinc diagram (Fig. 3) with
a convex shape of the surface in the π -plane by the use of two parameters dinc and
ξ . The parameter ξ is a function of the stress relations dinc and kinc. The analytical
solution of the equation for ξ(dinc, kinc) is too large and hence omitted.

The criterion contains (Table2)

• the bicubic criterion of hexagonal symmetry in the π -plane with dinc = 1 (Fig. 3)
and the parameter1

ξ = 1 − 2

k2inc
+ 270 − 115 k2inc

216 − 189 k2inc + 64 k4inc
, kinc ∈

[√
3

2
,

2√
3

]

, (21)

including theTrescahypothesiswith kinc = √
3/2 and theSchmidt–Ishlinskyhypoth-

esis with kinc = 2/
√
3,

1Equation (18) is linear with respect to ξ . If the stresses for the torsion loading (Table1)

σI = −σII = kincσ+/
√
3, σIII = 0 (19)

are inserted in Eq. (18), it follows for d = 1

−1

2
k2inc (ξ − 22) + k4inc

(
7 ξ

24
− 1

)

− 22

33
k6inc (ξ − 1) = 1. (20)

Solving Eq. (20) with the respect to ξ yields the monotonic increasing function (21) in the region
kinc ∈ [√3/2, 2/

√
3].
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• the vonMises hypothesis resulting with dinc = kinc = 1 to ξ = 26/(7 · 13) ≈
0.7033,

• the Ko criterion with dinc = 1/2 and any given ξ , and
• the Mariotte criterion with dinc = 2 and any given ξ .

This criterion is suitable for multi-purpose use and can be applied in different gen-
eralizations.

2.4 Generalization of Yield Criteria

A pressure sensible generalization of the criteria is obtained by the substitution
(Altenbach et al. 2014; Altenbach and Kolupaev 2014; Kolupaev et al. 2013)

σeq → 6

√
∣
∣
∣
∣

σeq − γ1 I1
1 − γ1

∣
∣
∣
∣

6−l−m ∣
∣
∣
∣

σeq − γ2 I1
1 − γ2

∣
∣
∣
∣

l

σ m
eq . (22)

The parameters γ1 and γ2 determine the position of the nodes AZ and AD on the
hydrostatic axis with the restrictions γ1 ∈ [0, 1[ and γ2 < 0 for closed surfaces. The
powers l andm are chosen to be positive (l > 0,m > 0, l + m < 6). They define the
curvature of the meridian through appropriate weighting.

Significantly improved fitting results can be obtained with the combined substi-
tution

σeq →

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

6

√
∣
∣
∣
∣

σeq − γ1 I1
1 − γ1

∣
∣
∣
∣

6−l−m ∣
∣
∣
∣

σeq − γ2 I1
1 − γ2

∣
∣
∣
∣

l

σm
eq, I1 > IT,

6

√
∣
∣
∣
∣

σ̃+ − γ̃1 I1
1 − γ̃1

∣
∣
∣
∣

6−l̃−m̃ ∣
∣
∣
∣

σ̃+ − γ̃2 I1
1 − γ̃2

∣
∣
∣
∣

l̃

σ̃ m̃+ , I1 ≤ IT

(23)

and the continuously differentiable transition at the cross section IT ∈ [−d σ+, σ+].
This substitution has more adjustment possibilities.

3 Fitting Procedure

A fitting procedure for the approximation of given data sets is shown in Fig. 4. It is
assumed that the data include several failure points under multi-axial loadings. In
the first step the failure points on the 0-meridian are chosen and described by the
substitution (22) in (11)

(3I ′
2)

3 =
∣
∣
∣
∣

σeq − γ1 I1
1 − γ1

∣
∣
∣
∣

6−l−m ∣
∣
∣
∣

σeq − γ2 I1
1 − γ2

∣
∣
∣
∣

l

σ m
eq . (24)

For the current data sets the advanced formulation of the functions in two areas is used
(Eq. (F1)). The transition at I1 = 0 in the Burzyński-plane proves to be favourable
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using the classical partition in a tension and compression area. The fitting parameters
l, l̃, m, m̃, γ2, γ̃1, and σ̃+ are determined by a nonlinear optimization approach. The
parameters γ1 and γ̃2 are set by the hydrostatic nodes AZ and AD, which are known
from numerical investigation (γ1 = 1/3ahyd+ and γ̃2 = −σ̃+/(3ahyd− σ+)). The best fit is
obtained through the least square method.

The parameter of the shape ξ (21) can be assumed in a good approximation as
a constant value independent of I1. For dinc(I1) = 1 the parameter ξ is obtained
using Eq. (21) or (F2). In the case dinc(I ∗

1 ) = 1 the parameter ξ is calculated for the
coordinate I ∗

1 which results from a cut of the meridians θ = 0 and θ = π/3 in the
Burzyński-plane.

The shape of the limit surfaces in the π -plane is considered by dinc as a function
of I1 (F4). The division in two areas with a continuously differentiable transition at
I1 = 0 is adopted, cf. Eq. (23) with IT = 0. The function profile is determined with
a cubic spline approximated to the numerical points and the evaluation of the least
square method.

With these three steps all parameters of the Capurso–Haythornthwaite generaliza-
tion combined with the substitution to describe the shape of the 0-meridian and the
formulation of the geometrical parameter ξ and the function dinc(I1) are determined.
The method provides limit surfaces considering failure under hydrostatic tensile and
compression stress and varying cross sections in the π -plane in dependence on the
first invariant of the stress tensor.

A restriction of the method results from the number of parameters in the criterion.
If only a limited number of failure points is given, additional assumptions have to be
made considering the specific material behaviour. In the following possible assump-
tions are discussed for the example of a polymer foam and a further optimization
step over the whole procedure is introduced. The proposed fitting procedure is not
limited to the Capurso–Haythornthwaite generalization. It can be used also for other
criteria.

4 Hard Foams

The general approach of the proposed limit surface and the determination of its para-
meters is shown for a polymer hard foam. The data points are calculated numerically.
The main attributes of the implemented FE model are summarized in the following.
More details can be found in Fahlbusch (2015).

4.1 Experimental Data of the Microstructure

The microstructure of a foam can be characterized by high-resolution pictures.
Figure5 shows a μCT image of the hard foam ROHACELL® 71 IG. The diameter
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Fig. 4 Fitting procedure of the parameters of the Capurso–Haythornthwaite generalization
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Fig. 5 μCT image of
ROHACELL® 71 IG with the
geometrical characteristics
of the microstructure
(Fahlbusch 2015; Fahlbusch
et al. 2015)

of the cells is about 0.5mm. The microstructure has also some further specific geo-
metrical parameters, which are called imperfections. This microstructure includes
variations in the cell wall thickness, material concentrations towards the edges and
curvatures of the cell walls, and edges. Each geometrical parameter is identified and
the expected value and the standard deviation are calculated. These values are the
important parameters to specify the microstructure of the investigated foam.

Beside the classification of the geometry the material in the cell walls should
be experimentally tested. Due to the cell size it is hard to investigate the material
out of the cell walls. Material data of the foamed bulk material are not known. The
elastic properties of the unfoamed material are identified by a compression test: the
elastic modulus E = 5985MPa, the Poisson’s ratio ν = 0.3, and the density ρ =
1249kg/m3 (Fahlbusch 2015). The strength of a uniaxial tensile test amounts σ+ =
147.5MPa (Schlimper 2014) and of a compression test σ− = 213.0MPa (Fahlbusch
2015). Both strength values equal the maximum stresses achieved in the tests. These
data are used as input data for the FE model, although it can not be excluded that the
foaming process leads to a change in the material properties.

4.2 FE Model for Polymer Foams

FE models on the basis of the CT data are suitable to present the characteristic
microstructure and allow a reliable calculation of the effective elastic properties.
Therebynumericalmodels have a high level of adaptability to the imagedata,whereas
for example analytical models mostly simplify the microstructure, cf. Grenestedt
(1999).

Mono-dispers models are based on one initial geometry which can be periodically
repeated, cf. Grenestedt (1999). As geometry the tetracaidecahedron is mainly used
because it is space filling and approximately isotropic, cf. Fig. 6 (Daxner et al. 2006;
Simone and Gibson 1998). Following the many examples in literature an FE model
is implemented based on the tetracaidecahedron, cf. Grenestedt and Bassinet (2000),
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Fig. 6 Cell wall thickness
distribution with the minimal
thickness tmin of an FE
model with imperfections
(Fahlbusch 2015)

Mills (2010), Simone andGibson (1998). In contrast to previous studies the proposed
model is extensively adapted to the data of the image analysis.

Initially, an FE model without any geometrical irregularities is generated. To
guarantee periodic repeatability in the deformed state, periodic boundary conditions
are applied. The effective properties on the macroscale are calculated by a strain-
energybased homogenization concept (Hohe andBecker 2005). The geometrical data
of the microstructure are taken into account by attributing different shell thicknesses
to the single-cell faces. The shell elements are getting thicker towards the cell edges.
An initial curvature of the cell walls and edges is introduced. By the displacement of
single-corner nodes the edge length is varied. An example of an FE model is given
in Fig. 6.

To consider the variation in the geometrical data several FE models are generated
and the average value is calculated (Monte Carlo method Landau and Binder 2009).
With the macroscopical value Ψ̄i = Ψ̄ (X i ) of the N different models this means that
the specified value results in

Ψ̄ = 1

N

N
∑

i=1

Ψ̄i . (25)

For the calculation of the strength for several load situations different macroscop-
ical deformation states are applied to the cell. The strength equals the macroscopical
stress which is reached when the vonMises hypothesis or the Pisarenko–Lebedev
criterion is fulfilled on the micro-level. In this case the vonMises hypothesis is
given by Eq. (11) and the Pisarenko–Lebedev criterion (Altenbach et al. 1995, 2014;
Pisarenko and Lebedev 1976) is

σeq = 1

d

√

3

2
si j si j +

(

1 − 1

d

)

max (σI, σII, σIII) = σPL (26)

with the value

d = |σ−|
σ+

≥ 1. (27)
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This criterion describes the intermediate range between the absolute brittle (normal
stress hypothesis with d → ∞) and ideal-ductile (the vonMises hypothesis with
d = 1) material behaviour. The different criteria on the micro-level provide limit
surfaces which are symmetric (ahyd+ = ahyd− ) as well as asymmetric (ahyd+ �= ahyd− ) to
the axis I1 = 0 in the Burzyński-plane. The data sets consist of 13–5000 points and
are thus a good example to illustrate the proposed method.

The following three data sets are investigated:

• data set 1: d = 1 and ahyd+ = ahyd−
failure points calculated with the ideal FE model without imperfections, geomet-
rical linear simulations, and the vonMises hypothesis on the micro-level,

• data set 2: d > 1 and ahyd+ < ahyd−
failure points calculated with the ideal FE model without imperfections, geomet-
rical linear simulations, and the Pisarenko–Lebedev criterion on the micro-level,
and

• data set 3: d < 1 and ahyd+ > ahyd−
failure points calculated with an FE model adapted to the geometrical and
material data of ROHACELL® 71IG, geometrical nonlinear simulations, and the
Pisarenko–Lebedev criterion on the micro-level.

5 Results

The data set 1 includes 5000 failure points. These points are shown in Fig. 7 in
the principal stress space. The surface is obviously closed. For the determination of
the failure criterion points on the meridians θ = 0, π/6, and π/3 are sufficient. With
the three approximation steps (Fig. 4) the function parameters of the criterion are
calculated. Table3 summarizes the parameters as well as the stress relations.

Fig. 7 Limit surface in the principal stress space, given data set 1 with σ+ = 2.66MPa
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The data set describes a symmetric limit surface to the cut I1 = 0, which
becomes evident with the failure points in the Burzyński-plane (Fig. 8). In the
whole range I1/σ+ ∈ [−8.76, 8.76] the points are well mapped by the criterion.
Just small differences occur for the π/6-meridian and I1/σ+ → −3ahyd− (the point
with I1/σ+ = −3ahyd− is exactly approximated). Figure9 completes the visualization
with the plane stress states in the σI-σII plane (σIII = 0).2

With the introduction of dinc as function of the hydrostatic stress the changing
cross section can be described with the criterion. Figure10 visualizes the function
dinc(I1). The value of dinc relates to the shape of the cross section of the limit surface.
Close to the hydrostatic nodes the surface describes triangles in the cross section
and for the cut I1 = 0 hexagonal symmetry. With the triangles a and b in Fig. 1 the
extremal values of the function dinc are defined dinc ∈ [1/2, 2].

The method is not limited to symmetric surfaces to the
√

3 I ′
2-axis in the

Burzyński-plane. The failure points of data set 2 as well as the approximation are
shown in the Burzyński-plane (Fig. 11) and in the σI-σII plane (σIII = 0) (Fig. 12).
The function dinc is visualized in Fig. 13. As before it is set dinc ∈ [1/2, 2] with the
same cross sections in theπ -plane at the hydrostatic nodes. For I1 = 0 it follows from
the cross of the meridians θ = 0 and θ = π/3 the parameter dinc(I1 = 0) = 1.04.
Table3 includes all parameters of this surface. Concluding, it can be stated that a
high approximation quality is achieved with the proposed method.

The next analysis is an example how to apply themethodwith a limited data set. In
this case thenumerical considerationof imperfections by theMonteCarlomethodand
of geometrical nonlinearities during the simulations is computing-intensive. Also,
the number of experiments is often restricted and leads to a limited number of failure
points. The data set 3 consists of the strength values for the stress states Z , D,
T , BZ, BD, AZ, AD (cf.Table4), and the values of the plane stress states with the
step of the stress angle Δθ = π/24, so that θ = π/24, π/12, π/8, 5π/24, π/4, and 7π/24,
cf.Eq. (8) (Fahlbusch et al. 2015). Due to the limited number of the points, assump-
tions for dinc(I ∗

1 ), dinc(I1/σ+ = 3ahyd+ ) and dinc(I1/σ+ = −3ahyd− ) have to be made.
The parameter dinc(I ∗

1 = 0) = 1 and thereby

R(0, I ∗
1 ) = R(π/3, I ∗

1 ) (28)

(Eq.14) is set pragmatically. The meridians θ = 0 and θ = π/3 cross each other at
I1 = 0 in the Burzyński-plane. Additionally, the assumption of a triangle in the cross
section at the hydrostatic nodes as before is made. It results dinc(I1/σ+ = 3ahyd+ ) = 2
and dinc(I1/σ+ = −3ahyd− ) = 1/2, which is opposite to the approximations of the sets
1 and 2.

2Visualization tools in CAS Wolfram-Mathematica are free available.
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Fig. 9 Approximation of the data set 1 with σ+ = 2.66MPa and the numerical points. σI-σII plane
(σIII = 0). For comparison the vonMises hypothesis is shown

The further determination of the parameters follows the known steps (Fig. 4). The
calculation of the 0-meridian is based on the stress points AD, BD, Z , and AZ. Two
more conditions result from the requirement of a continuously differentiable transi-
tion of the two subsections at I1 = 0. Only one additional condition for the determi-
nation of the parameters is missing. Therefore, the point for R(0, I ∗

1 ) is introduced
which describes the point of intersection of the 0-meridian with the

√
3I D2 /σ+ axis.

The point is not known yet.

Fig. 10 dinc-I1 diagram for the data set 1. The approximation of dinc(I1) is visualized with the
cross sections in the π -plane, σ+ = 2.66MPa



356 N.-C. Fahlbusch et al.

F
ig
.1

1
A
pp

ro
xi
m
at
io
n
of

th
e
da
ta

se
t
2
w
ith

σ
+

=
2.
03

M
Pa

an
d
th
e
nu
m
er
ic
al

po
in
ts
.B

ur
zy
ńs
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Fig. 12 Approximation of the data set 2 with σ+ = 2.03MPa and the numerical points. σI-σII plane
(σIII = 0). For comparison the vonMises hypothesis is shown

For I1 = I ∗
1 = 0, the ordinate of the π/6-meridian R(π/6, I ∗

1 ) = 1.28 results from
the point T . The value kinc(I ∗

1 ) is defined by (cf.Eq. (14))

kinc(I
∗
1 ) = R(π/6, I ∗

1 )

R(0, I ∗
1 )

, (29)

Fig. 13 dinc-I1 diagram for the data set 2. The approximation of dinc(I1) is visualized with the
cross sections in the π -plane, σ+ = 2.03MPa
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Fig. 14 dinc-I1 diagram for
the data set 3. The
approximation of dinc(I1) is
visualized with the cross
sections in the π -plane
(σ+ = 1.8MPa)

thereby generally the restriction

kinc(I
∗
1 ) ∈

[√
3

2
,

2√
3

]

for dinc = 1 (30)

follows (Eq.21). The limits are derived from the convexity condition (Fig. 3).With the
parameter kinc(I ∗

1 ) the point R(0, I ∗
1 ) is fixed which is necessary for the calculation

of the parameters of the 0-meridian in Eq. (F1).
The parameter kinc(I ∗

1 ) is identified through an optimization about the complete
three steps (Fig. 4). The best fit is obtained by the least square method between the
approximation of the limit criterion and the numerically calculated values. Thereby
all parameters in Eq. (F1) are determined.

Table3 contains the parameters of the failure criterion for the material
ROHACELL® 71IG using the Capurso–Haythornthwaite generalization and the
related values (stress relations). For the data set 3 in case of the biaxial tension it fol-
lows bZ ≈ 0.88 and in case of the hydrostatic tension ahyd+ ≈ 1.45, cf. Table4. These
stress states are often estimatedwith the normal stress hypothesis with bZ = ahyd+ = 1
(Eq.13) due to missing material data. In case of biaxial tension the current approach
leads to amore conservative interpretation than a dimensioningwith the normal stress
hypothesis. A validation with experimental tests would be desirable here knowing
of the difficult realization of a 2D tension test (Kolupaev et al. 2015).

Figure14 shows the approximation of the function dinc(I1) with the resulting

cross sections in the π -plane. The curve runs from dinc = 1/2 for I1/σ+ = −3ahyd−
to dinc = 2 for I1/σ+ = 3ahyd+ or from the triangle a to the triangle b (Fig. 1). These
cross sections correspond to the known description of the cellular materials at the

Fig. 15 Schematic
representation of the normal
stress hypothesis in the
principal stress space with
two cross sections
perpendicular to the
hydrostatic axis (π -plane)
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(a)

(b)

(c)

Fig. 16 Approximation of the data set 3 (σ+ = 1.8MPa). a Surface in the principal stress space
(π0-plane: cut with I1 = 0). b Burzyński-plane with the meridians θ = 0, π/6, π/3 and the curve
of the plane stress states (PSS). c σI-σII plane (σIII = 0). For comparison the von Mises hypothesis
is shown
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hydrostatic nodes with the normal stress hypothesis (Fig. 15), cf. Shaw and Sata
(1966). Figure16 illustrates the limit surface in the principal stress space, in the
Burzyński- and σI-σII plane (σIII = 0).

The phenomenological limit criterion provides a good approximation of the data
set. The comparison with the numerical points shows the conservative prediction of
the failure points. The limit surface has changing cross sections along the hydrostatic
axis with I1/σ+ ∈ [−2.70, 4.34].

With the proposed formulation of the limit surface and a continuously differen-
tiable transition in two sections the adjustment options are sufficient. The extension in
four sections with continuously differentiable transitions is possible. The assumption
of convexmeridians and convex shapes in theπ -plane underlies the proposedmethod.
Cuntze allows also non-convex shapes and achieves a high approximation quality
of data sets for ROHACELL® 71IG using his failure mode concept (Cuntze 2015).
However, the requirement of convexity due to Drucker’s postulate is often applied for
limit surfaces (e.g. Drucker 1957; Irgens 2008). For most applications convex sur-
faces are preferred (Yu 2004). Non-convex surfaces are discussed in Bigoni (2012),
Bolchoun et al. (2011) and are possible to be applied with the discussed method.

6 Conclusion

In the current approach, a generalization of the Capurso–Haythornthwaite criterion
to approximate limit surfaces to given failure points is proposed. For the determina-
tion of the parameters of the criterion a fitting procedure is developed. The failure
points can result from experiments or simulations. The method is validated for data
sets of a closed cell foam, which are calculated numerically. The limit surface of
the material shows some special characteristics like the sensitivity to hydrostatic
stress, the strength-differential effect (σ+ �= σ−) and cross sections changing along
the hydrostatic axis. With the generalized criterion the material characteristics are
considered and the given failure points are well approximated. The method provides
a rather accurate description.

The developed formulation of the criterion is based on a generalization of the
known Capurso–Haythornthwaite criterion, which has been modified and extended.
This approach provides a high degree of generalization. It is not limited to a special
kind of material and can be applied to materials like aerated concrete, cellular ceram-
ics, metal ceramics and to data sets with a different number of failure points. In case
of a limited number of points further assumptions have to be made which should
consider the material peculiarities. Possible assumptions in the case of the polymer
foam are discussed. An extension of the formulation into more than two areas is
addressed in the paper. The criterion can be implemented in a computer software for
the dimensioning of structures out of the polymer foam.
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On the Problem of Cracking in 2-Phase
Ceramic Matrix Composite Materials

Tomasz Sadowski, Liviu Marsavina and Eduard-Marius Craciun

Abstract The aim of the paper is to present a theoretical analysis of phenomena
occurring in the 2-phase ceramic composite with the gradual degradation of the
material properties under the uniaxial tension process. Ceramic composite materials
have a nonlinear and complex overall response to applied loads. It is caused by the
following factors: existence of an inital porosity, development of limited plasticity,
different phases and internal microdefects. These microdefects cause stress concen-
trations and locally change the state of stress, which results in the development of
mesocracks leading to macrocracks. In this contribution, a multiscale approach was
applied in modelling of such material response to depict phenomena at micro- meso-
and macro-scales. In experiments it was shown that defects developed mainly inter-
granularly what resulted in inhomogeneity and induced anisotropy of the material.

1 Motivation for Research

Permanent innovations of different branches of engineering technologies require
application of new multiphase engineering materials with specially designed com-
position to satisfy limitation of extremal exploitation conditions of critical structural
parts in airplanes, cars and buildings etc. The novel materials are different types of
composites obtained as mixtures of various phases and further subjected to specific
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technological process in the manufacturing, e.g. Gömze and Gömze (2009, 2013).
The materials engineering allows for designing of almost arbitrary internal structure
of the composites, particularly important for industrial demands. A very important
example is functionally graded materials, possessing gradation of the material prop-
erties, e.g. Birman and Byrd (2007), Sadowski and Neubrand (2004), Sadowski
et al. (2007a, 2009), Nakonieczny and Sadowski (2008, 2009), Bîrsan et al. (2012),
Ivanov et al. (2013), Petrova et al. (2012), Petrova and Sadowski (2012), Bîrsan et al.
(2013a, b), Burlayenko et al. (2015a, b), Sadowski et al. (2015), Petrova and Sad-
owski (2014), Taczała et al. (2015, 2016), Sadowski and Pankowski (2016). Other
examples are brittle composite materials built on the basis of cement or clay matrix,
e.g. Golewski and Sadowski (2014), Golewski et al. (2012), Lenci et al. (2011, 2012),
Sadowski et al. (2005).

Advanced composites can be built up as a sequence of layers or other types of
gradation ofmaterial properties. Introduction of layers betweenmaterial components
(e.g. Fic and Szeląg 2015; Sadowski et al. 2006, 2007b; Sadowski andNowicki 2008;
Dębski and Sadowski 2014; Felten et al. 2008; Sadowski and Golewski 2013, 2015;
Postek and Sadowski 2011; Bieniaś et al. 2012; Gajewski and Sadowski 2014) and as
TBC covering of turbine blades (e.g. Sadowski and Samborski 2008; Sadowski and
Golewski 2011, 2012a, b, c; Kalatur et al. 2014; Savchenko et al. 2014), etc. are other
examples of improvements in composites or joining technologies. Nanocomposites
(e.g. Lau andHui 2002) or adhesiveswith different nanoparticles or carbon nanotubes
Wu et al. (2009), Zhao et al. (2007) are good applications of particle reinforced
composites.

Two-phase ceramics composites (CMC) possess many practical applications. For
example—the Al2O3/ZrO2 composites are frequently used as a thermal barrier coat-
ing in different structures. In this paper, it is carried out modelling of the crack prop-
agation in the chosen CMC, subjected to uniaxial stress. Considered CMC material
consists of matrix Al2O3—and the second phase ZrO2 (with volume content up to
20%).As the two components have different thermal expansion coefficients, it is very
difficult to produce perfectly continuousCMC.Usuallymicrocracks andmicroporos-
ity appear in initial internal structure due to the thermalmismatch.Thesemicrodefects
cause stress concentrations which results in the development of mesocracks leading
to macrocracks.

As different phenomena develop at micro-, meso- and macro-scales, the most
suitable method for modelling of such CMC material is multiscale approach with
averaging procedure over the Representative Volume Element (RVE).

2 Micro-, Meso-, Macro-Correlation to Formulate
Constitutive Equations

Formulation of constitutive equations for Al2O3/ZrO2 (as an example of two-phase
ceramic composites) includes the elastic deformations of initiallymicro-porousCMC



On the Problem of Cracking in 2-Phase Ceramic Matrix Composite Materials 369

Fig. 1 Scanning electron
microscopy photographs of
the considered composites

and the deformations created by growing cracks in CMC, Fig. 1. Evolution of the
internal structure of RES due to mechanical loading should be described at micro-
scopic, mesoscopic and macroscopic levels:

1. Themicroscopic level concerns the degradation phenomena occuring at the length
scale on the level of the single grain. Cracks are initiated by microcracks and
micropores inside the grain or at the grain boundaries. Furthermore, mismatch
of the thermal expansion coefficient of different phases creates additional stress
concentration at the grain boundaries, which decrease toughness of material in
this area. Microcracks nucleated inside grains move to grain boundaries, at which
can be arrested or can spread along the nearest grain boundary. It results from
the significantly less fracture toughness of this part of composite. Alternatively,
the microcracks can pass through a grain boundary to the adjacent grain. At
this microscopic level, separation of a single grain from the polycrystal can be
described.

2. The mesoscopic level obeys the RVE, which is created by a set of grains. Meso-
cracks are the basic elements of the defect structure inside polycrystal. Their
diameters correspond to the single straight facet of the grain boundaries structure.
Kinked and wing (zig–zag) cracks result from the development of deformation
inside the composite.

3. The macroscopic level refers to the dimensions of the tested sample. The com-
posite material is regarded as a continuum with properties of the polycrystal.
Analytical micromechanical model or finite element analysis are used for calcu-
lations done as averaged values over of RVE.

Methodology used for monolithic ceramics was presented in Sadowski (1994a, b,
1995). In case of two-phase materials, the following constitutive rule can be pro-
posed (using Voigt’s notation) in order to describe general features of the quasi-static
deformation process of the material

ε̄i = S̄eik(σm, pf , po,N
(s)
c )σk for i, k = 1, . . . , 6 and j = 1, 2, 3, (1)

where ε̄i is the strain vector, S̄eik is the elastic compliancematrix, σk is the stress vector,
pf is the volume content of the second phase (ZrO2), po is the porosity parameter



370 T. Sadowski et al.

Fig. 2 Initial structure RVE
of CMC including both
phases and porosity

and N (s)
c are sets of parameters defining the presence of different kinds of defects “s”

developing inside the material. In the advanced state of deformation the averaged
elastic compliance tensor can be split into the following parts:

S̄eik(xj, pf , po,N
(s)
c ) = (1 − pf)S

C1
ik + pfS

C2
ik (xj, pf)

+ Spoik (xj, σr, po) + Scrik (xj, σr, pf , po,N
(s)
c ), (2)

where SC1ik is a compliance matrix of the first phase (C1)—matrix material Al2O3,
SC2ik (xj, pf , po) describes phase two (C2) – ZrO2, S

po
ik (xj, σr, po) is the part reflecting

the porosity existence (e.g. Kachanov 1993a, b). The Scrik (xj, σr, pf , po,N
(s)
c ) is addi-

tional part of the compliance matrix due to set of different types of cracks growing
in the CMC.

Figures2, 3, 4 and 5 present scenario of gradual degradation of the considered
polycrystalline CMC. All phases will be described by constitutive equations.

3 Initial Elastic Properties and Porosity of the CMC, Fig. 1

The initial elastic properties of the two-phase CMCs without porosity can be esti-
mated according to rule of mixture, e.g. Kachanov (1993a, b), Sadowski and de Borst
(2008):

S̄CMCe
ik (xj, pf) = (1 − pf)S

C1
ik + pfS

C2
ik (xj, pf). (3)

Fig. 3 Early stage
deformation process with set
of mesocracks
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Fig. 4 Advanced stage of
deformation process of the
CMC including set of kinked
cracks

According to Kachanov (1993a, b) the material porosity can be described by the
following compliance matrix Spoik (xj, σrt, po):

Spoik = 4(1 − ν2
0 )

E

po
1 − po

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

3
4 − 1

4 − 1
4 0 0 0

− 1
4

3
4 − 1

4 0 0 0

− 1
4 − 1

4
3
4 0 0 0

0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

, (4)

where porosity parameter is calculated from po = 1
A

∑N (po)

s=1 πr2(s) and N (po) is the
number of pores inside the RVE. The pores diameter is denoted by r(s), whereas A is
the surface area cross-section of the considered RVE (Fig. 2).

4 Nucleation of Mesocracks in the CMC, Figs. 3 and 6

Let us consider that mesocracks start from the stress concentrations at the pores
edge. At the grain boundaries crack nucleus initiate and spread along interfaces of
grains, Fig. 6. It results from significantly less fracture toughness in comparison to

Fig. 5 Final stage of
deformation process of the
CMC before failure
including set of wing cracks



372 T. Sadowski et al.

Fig. 6 Mesocrack at grain
boundary

pure grain. For a pore situated inside grain, cracks start and grow along the trajectory
perpendicular to local maximum tensile stress and move to grain boundary (Marsav-
ina and Sadowski 2007a, b, 2009). Consequently, the crack can in general have one
deflection (Fig. 4) or two deflections or penetrate the nearest grain. The fracture sur-
face energy of the grain boundary γgb in the polycrystalline CMC is significantly less
in comparison to fracture surface energy of the grain γg. It means that cracks grow
mainly inter-granularly. In the advanced stage of deformation one can distinguish
three different types of cracks developed in RVE, Fig. 5, i.e. mesocracks, kinked
cracks and wing cracks.

The mesocracks are the most important in case of uniaxial loading. If we denote
by N (s)meso

c the number of mescoracks, their presence in RVE can be described by
the following components of the compliance matrix for 2D:

Scr(meso)
ij (xk, σr, pf , po,N

(s)meso
c )

=
N (s)meso
c∑

s=1

2π(c(s))2

A

⎡

⎢
⎢
⎢
⎣

(n(s)
1 )2S̄CMCe

11 0 0

0 (n(s)
2 )2S̄CMCe

22 0

1
2 (n

(s)
1 n(s)

2 )S̄CMCe
11

1
2 (n

(s)
1 n(s)

2 )S̄CMCe
22 0

⎤

⎥
⎥
⎥
⎦

, (5)

where i, j = 1, 2, 3, n(s)
1 and n(s)

2 are components of the vector n(s) specifying space
orientation of the mesocrack “s”, Fig. 6.

Considering cracks with kink (Fig. 7), if the nondimensional opening displace-
ment components B̄(k)

1 and B̄(k)
2 of the kink are known, the additional normal strains

(ε̄1 and ε̄2) due to kink creation in RVE can be calculated according to

ε̄
(k)
1 =

N (k)
c∑

k=1

L̄(c(k))2

2A

{ [

(n(k)
1 )2s(k)2 + n(k)

1 n(k)
2 s(k)1

]

B̄(k)
1

+
[

(n(k)
1 )2s(k)1 − n(k)

1 n(k)
2 s(k)2

]

B̄(k)
2

}

(6)
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Fig. 7 Kink of the
mesocrack (PQ) at the
interface of CMC grains

ε̄
(k)
2 =

N (k)
c∑

k=1

L̄(c(k))2

2A

{ [

(n(k)
2 )2s(k)2 − n(k)

1 n(k)
2 s(k)1

]

B̄(s)
1

+
[

(n(k)
2 )2s(w)

1 + n(w)
1 n(w)

2 s(w)
2

]

B̄(k)
2

}

(7)

The shear strain ε̄3 are equal to:

ε̄
(k)
3 =

N (k)
c∑

k=1

L̄(c(k))2

4A

{ [

2n(k)
2 n(k)

2 s(k)2 +
{

(n(k)
2 )2 − (n(k)

1 )2
}

s(k)1

]

B̄(k)
1

+
[

2n(k)
2 n(k)

2 s(k)1 −
{

(n(k)
2 )2 − (n(k)

1 )2
}

s(k)2

]

B̄(k)
2

}

. (8)

In Eqs. (6), (7) and (8) N (k)
c is the number of kinks in RVE, whereas c(k) is the half

length of the mesocrack, which creates the kink.

5 Growth of Mesocracks

The nucleated mesocracks or kinks develop along grain facets changing their direc-
tion. The crack propagation strongly depends on the grain boundary porosity spread
along grain boundaries as well as thermal residual stresses. The mesocrack at grain
boundaries (Fig. 3) can grow if the energy release rate Gcr satisfies the following
condition:

Gcr(σr, c
(s), φ(s)) ≥ γgb, (9)
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where γgb = (0.5 − 0.75)γg is the critical value of the grain boundary fracture
surface energy and is considerably less in comparison to grain surface energy γg.
Kinks propagate when, Fig. 4:

Gcr(σr, c
(k), φ(k), L̄(k), θ (k)) ≥ γgb. (10)

Cracks propagate under mixed mode.

6 Deformation Process of Polycrystalline Al2O3 + 20%vc
ZrO2 Containing Porosity Under Uniaxial Tensile
Loading

Taking into account the above formulated procedure the mechanical response of the
considered material was described. The numerical example describing the defor-
mation process of porous Al2O3 + 20%vc ZrO2 was performed in order to show
the capability of the material modelling by micromechanical approach. The initial
mechanics features are collected in Table1. Numerical calculations were performed
according to the theoretical formulation for the following data:1/S̄CMCe

11 = 287GPa,
ν̄CMCe = 0.226, KCMC

Ic = 8, 5MPa m1/2. It was assumed that RVE contains hexago-
nal grains of the mean diameter 2D̄ = 5µm. Figure8 presents results of the numer-
ical model simulation. It includes pure Al2O3 and ZrO2 samples responses without

Table 1 Material properties of the CMC components

Material E0 (GPa) ν0 (–) KIc (MPam1/2)

Al2O3 315 0.22 4.5

ZrO2 175 0.25 12.0

Fig. 8 Tensile stress–strain
curve for response in porous
composite Al2O3 + 20%vc
ZrO2
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porosity (po = 0), treated as a reference composite materials. Moreover, we analysed
polycrystalline Al2O3 with small amount porosity equal to po = 0.1. The basic mate-
rial was Al2O3 + 20%vc ZrO2 with the porosity up to 10%.

7 Conclusions

The multiscale model of complex CMC, i.e. porous Al2O3 + 20%vc ZrO2 was
proposed in the paper. Themodelling starts from the information about internal CMC
structure at micro-level. The obtained results lead to the following conclusions:

1. Volume contents of both phases constituting theCMCand initial porosity strongly
influenced the material behaviour under mechanical loading,

2. Pores existing in the polycrystalline CMC act as the sources of micro-cracks
initiations,

3. Micro-cracks develop when criterion of cracks propagation (9) is satisfied to
create meso-cracks,

4. The dominant mode of meso-cracks propagation is inter-granular by kinking and
creation of the wing cracks,

5. Alternatively, trans-granular processes of cracks propagation can be incorporated
in the CMC model,

6. Numerical extension of the CMCmodel can be formulated with application of the
cohesive zone model (e.g. Sadowski and Golewski 2011, 2012b, c; Ivanov et al.
2016; Burlayenko and Sadowski 2009, 2010; Vignollet et al. 2014; Burlayenko
and Sadowski 2014a, b; Allix et al. 2014; Burlayenko and Sadowski 2012b;
Sadowski et al. (2016); Burlayenko and Sadowski 2012a) at interfaces.

Acknowledgments This work was financially supported by Ministry of Science and Higher Edu-
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Fic, S., Szeląg, M.: Analysis of the development of cluster cracks caused by elevated temperatures
in cement paste. Constr. Build. Mater. 83, 223–229 (2015)

Gajewski, J., Sadowski, T.: Sensitivity analysis of crack propagation in pavement bituminous layered
structures using a hybrid system integrating artificial neural networks and finite element method.
Comput. Mater. Sci. 82, 114–117 (2014)

Golewski, G., Sadowski, T.: An analysis of shear fracture toughness K IIc and microstructure in
concretes containing fly-ash. Constr. Build. Mater. 51, 207–214 (2014)

Golewski, G., Golewski, P., Sadowski, T.: Numerical modelling crack propagation under mode II
fracture in plain concretes containing siliceous fly-ash additive using XFEM method. Comput.
Mater. Sci. 62, 75–78 (2012)

Gömze, L., Gömze, L.: Alumina-based hetero-modulus ceramic composites with extreme dynamic
strength. Zeitschrift für Angewandte Mathematik und Mechanik 61, 38–42 (2009)

Gömze, L., Gömze, L.: Ceramic based lightweight composites with extreme dynamic strength. IOP
Conf. Ser.: Mater. Sci. Eng. 47(1), 12,033–12,038 (2013)

Ivanov, I., Sadowski, T., Pietras, D.: Crack propagation in functionally graded strip under thermal
shock. Eur. Phys. J. Spec. Top. 222(7), 1587–1595 (2013)

Ivanov, I., Velchev, D., Georgiev, N., Ivanov, I., Sadowski, T.: A plate finite element for modelling
of triplex laminated glass and comparison with other computational models. Meccanica 51(2),
341–358 (2016)

Kachanov,M.: Elastic solidswithmany cracks and related problems. Adv. Appl.Mech. 30, 259–445
(1993a)

Kachanov, M.: On the effective moduli of solids with cavities and cracks. Int. J. Fract. 59(1),
R17–R21 (1993b)

Kalatur, E., Buyakova, S., Kulkov, S., Gotman, I., Kocserha, I.: Porosity and mechanical properties
of zirconium ceramics. Építöanyag 66(2), 31–34 (2014)

Lau, A., Hui, D.: The revolutionary creation of new advanced materials - carbon nanotube compos-
ites. Compos. Part B: Eng. 33(4), 263–277 (2002)

Lenci, S., Piattoni, Q., Clementi, F., Sadowski, T.: An experimental study on damage evolution of
unfired dry earth under compression. Int. J. Fract. 172(2), 193–200 (2011)

Lenci, S., Clementi, F., Sadowski, T.: Experimental determination of the fracture properties of
unfired dry earth. Eng. Fract. Mech. 87, 62–72 (2012)



On the Problem of Cracking in 2-Phase Ceramic Matrix Composite Materials 377

Marsavina, L., Sadowski, T.: Effect of biaxial load on crack deflection/penetration at bi-material
ceramic interface. Int. J. Fract. 148(1), 79–84 (2007a)

Marsavina, L., Sadowski, T.: Stress intensity factors for an interface kinked crack in a bi-material
plate loaded normal to the interface. Int. J. Fract. 145(3), 237–243 (2007b)

Marsavina, L., Sadowski, T.: Kinked crack at a bi-material ceramic interface - numerical determi-
nation of fracture parameters. Comput. Mater. Sci. 44(3), 941–950 (2009)

Nakonieczny, K., Sadowski, T.: Thermal shock response of FGM cylindrical plates with various
grading patterns. Comput. Mater. Sci. 43(1), 171–178 (2008)

Nakonieczny, K., Sadowski, T.: Modelling of thermal shocks in composite materials using a mesh-
free FEM. Comput. Mater. Sci. 44(4), 1307–1311 (2009)

Petrova, V., Sadowski, T.: Theoretical analysis of mode II cracks in a compact shear specimen.
Comput. Mater. Sci. 64, 248–252 (2012)

Petrova, V., Sadowski, T.: Theoretical modeling and analysis of thermal fracture of semi-infinite
functionally graded materials with edge cracks. Meccanica 49(11), 2603–2615 (2014)

Petrova, V., Marsavina, L., Sadowski, T.: Revisit of compact mode II crack specimen: analysis and
fracture interpretation. Theor. Appl. Fract. Mech. 59(1), 41–48 (2012)

Postek, E., Sadowski, T.: Assessing the influence of porosity in the deformation of metal-ceramic
composites. Compos. Interfaces 18(1), 57–76 (2011)

Sadowski, T.: Mechanical response of semi-brittle ceramics subjected to tension-compression state.
Part i: theoretical modeling. Int. J. Damage Mech. 3(2), 212–233 (1994a)

Sadowski, T.: Modelling of semi-brittle MgO ceramic behaviour under compression. Mech. Mater.
18(1), 1–16 (1994b)

Sadowski, T.: Mechanical response of semi-brittle ceramics subjected to tension-compression state.
Part ii: description of deformation process. Int. J. Damage Mech. 4(4), 293–318 (1995)

Sadowski, T., de Borst, R.: Lecture Notes on Composite Materials: Current Topics and Achieve-
ments. Springer Science & Business Media, New York (2008)

Sadowski, T., Bîrsan, M., Pietras, D.: Numerical analysis of multilayered and FGM structural
elements under mechanical and thermal loads. Comparison of the finite elements and analytical
models. Arch. Civ. Mech. Eng. 15, 1180–1192 (2015)

Sadowski, T., Golewski, P.: Multidisciplinary analysis of the operational temperature increase of
turbine blades in combustion engines by application of the ceramic thermal barrier coatings
(TBC). Comput. Mater. Sci. 50(4), 1326–1335 (2011)

Sadowski, T., Golewski, P.: The analysis of heat transfer and thermal stresses in thermal barrier
coatings under exploitation. Defect Diffus. Forum 326, 530–535 (2012a)

Sadowski, T., Golewski, P.: Detection and numerical analysis of the most efforted places in turbine
blades under real working conditions. Comput. Mater. Sci. 64, 285–288 (2012b)

Sadowski, T., Golewski, P.: The influence of quantity and distribution of cooling channels of turbine
elements on level of stresses in the protective layer TBC and the efficiency of cooling. Comput.
Mater. Sci. 52(1), 293–297 (2012c)

Sadowski, T., Golewski, P.: Heat transfer and stress concentrations in a two-phase polycrystalline
composite structure. Part i: theoreticalmodelling of heat transfer.Materialwissenschaft undWerk-
stofftechnik 44(5), 497–505 (2013)

Sadowski, T., Golewski, P.: Description of non-stationary heat transfer in two-phase polycrystalline
metal-ceramic composites. Acta Phys. Pol. A 128(4), 624–628 (2015)

Sadowski, T., Neubrand, A.: Estimation of the crack length after thermal shock in FGM strip. Int.
J. Fract. 127(2), L135–L140 (2004)

Sadowski, T., Nowicki, T.: Numerical investigation of local mechanical properties of WC/Co com-
posite. Comput. Mater. Sci. 43(1), 235–241 (2008)

Sadowski, T., Samborski, S.: Development of damage state in porous ceramics under compression.
Computational Materials Science 43(1), 75–81 (2008)

Sadowski, T., Hardy, S., Postek, E.: Prediction of the mechanical response of polycrystalline ceram-
ics containing metallic intergranular layers under uniaxial tension. Comput. Mater. Sci. 34(1),
46–63 (2005)



378 T. Sadowski et al.

Sadowski, T.,Hardy, S., Postek,E.:Anewmodel for the time-dependent behaviour of polycrystalline
ceramic materials with metallic inter-granular layers under tension. Mater. Sci. Eng.: A 424(1),
230–238 (2006)

Sadowski, T., Boniecki, M., Librant, Z., Nakonieczny, K.: Theoretical prediction and experimental
verification of temperature distribution in FGM cylindrical plates subjected to thermal shock. Int.
J. Heat Mass Transf. 50(21), 4461–4467 (2007a)

Sadowski, T., Postek, E., Denis, C.: Stress distribution due to discontinuities in polycrystalline
ceramics containing metallic inter-granular layers. Comput. Mater. Sci. 39(1), 230–236 (2007b)

Sadowski, T., Ataya, S., Nakonieczny, K.: Thermal analysis of layered FGM cylindrical plates
subjected to sudden cooling process at one side – comparison of two applied methods for problem
solution. Comput. Mater. Sci. 45(3), 624–632 (2009)
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On Failure Theories for Composite Materials

Ramesh Talreja

Abstract Limitations inherent in failure theories formulated on homogenized
description of composite materials are discussed. Failure mechanisms in composite
materials, as understood today, are reviewed. Based on this knowledge, arguments
are put forth to abandon the classical approach to formulation of failure theories
for composite materials, and to instead use a computation-based failure assessment
methodology. Such a methodology is proposed. In conjunction with this, the idea
of virtual testing to supplement experimental determination of material response
characteristics is discussed.

1 Introduction

As applications of composite materials have expanded from the aerospace to non-
aerospace fields, such as automotive, wind turbines, and subsea structures, design
for safe performance has become critical. Current application of carbon-epoxy com-
posites in civilian aircraft is essentially a replacement of aluminum (coined as “black
aluminum”) with limited use of the potential of these materials. The main roadblock
to a higher level of utilization is lack of reliable failure analysis capabilities in the
industry. The current approach in the aerospace applications is to conduct extensive
tests to demonstrate safe performance, which has forced the industry to keep the load
levels excessively low. Although the low weight of polymer composites still gives
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significant fuel savings in aircraft, other applications cannot afford such conservative
designs.

A compelling case was made in a recently completed survey of composite failure
theories (Soden et al. 1998; Hinton et al. 2002, 2004; Kaddour et al. 2004) that
their predictive capabilities judged against test data are not reliable. This is a sad
commentary on the state of affairs in view of the long history of the development of
the theories. Perhaps this long history is the reason for the problems underlying the
lack of success of the theories. As will be argued below, the path taken in developing
the failure theories has been flawed. The nature of the flaws is such that efforts to
“improve” the theories are frustrated by lack of agreement with some or the other
test data. An alternative path must be taken, and it may lead to the painful realization
that the current theories are best left behind.

The following sections will discuss first the fundamentals of the common theories
of failure in unidirectional composites, drawing upon a previous treatment (Talreja
2014). The physical nature of the failure in these composites will be summarized
next. The models that account for the known mechanisms will be reviewed and the
challenges remaining in this direction will be described. Finally, a scheme to connect
the models into a failure assessment methodology will be presented.

2 The Classical Failure Theories for Unidirectional
Composites

The first significant theory of failure in unidirectional composites appeared in 1965
(Azzi and Tsai 1965), known as the Tsai–Hill theory. In fact, associating Hill’s name
with this theory is questionable since Hill (1948) did not in any way suggest that his
theory, developed for yielding of anisotropic metals (metals with texture), may be
applied to fiber-reinforced polymers. Hill’s yield criterion for anisotropic solids was
a simplemathematical generalization of the vonMises criterion for isotropic yielding
when expressed in terms of the deviatoric stress components. In this generalization,
the important connection with the distortional energy density was lost. This fact is
significant because having energy concept to capture the physics of metal plasticity
strengthens the basis of the yield criterion. In any case, the weak form of the criterion
in Hill’s proposal still only applies to yielding that is driven by shear at the micro-
scopic level. The underlying mechanism of yielding for anisotropic (orthotropic)
metals in Hill’s formulation manifests itself in six yield constants—three normal
stress thresholds and three shear stress thresholds—as a generalization of a single
yield stress in the isotropic case.

Adopting the Hill criterion to another material (a unidirectional composite) can
only be justified if that material yields (or in another way becomes critical) as a result
of a single shear-driven mechanism. Although a polymer may satisfy this require-
ment, it is doubtful that it will continue to do so when reinforced with fibers. In fact
even an unreinforced polymer shows pressure sensitivity in its inelastic behavior,
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thereby violating the shear-driven yield requirement. The presence of fibers signif-
icantly alters “failure” in the form of deviation from elasticity, as will be discussed
later.

After reducing the Hill criterion to two-dimensional form and assuming isotropy
in the cross-sectional plane of unidirectional composites, the criterion in (Azzi and
Tsai 1965) takes the following form
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)2 −
(σ1σ2
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)2 = 1 (1)

where σ1 and σ2 are the normal stresses in the fiber and transverse directions, respec-
tively, and σ12 is the in-plane shear stress. X , Y , and S are the “yield” stresses
corresponding to σ1, σ2, and σ12, respectively.

Equation (1) was shown in Azzi and Tsai (1965) to agree well with test data for a
unidirectional composite loaded in tension at an angle inclined to the fiber direction.
However, other data generated later did not show good agreement, suggesting a need
for another theory.

Observing that the stress components in Eq. (1) were “interacting” in a quadratic
manner, a more general quadratic polynomial than what appears here could improve
the lacking agreement with test data. This idea seemed to have led to the search for
a more general formulation, which was found in the tensor polynomial for strength
proposed in Goldenblatt and Kopnov (1965). A simplification of the polynomial to
plane stress state resulted in the quadratic expression proposed in Tsai andWu (1971)
as
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after using the fact that the sign of the shear stress has no effect on the shear strength.
The coefficients of the terms in Eq. (2) are inverses of strength values and these can be
foundby testingwith one imposed stress component at a time, except the constant F12,
which requires a biaxial stress test. Since a biaxial test can be done with an arbitrary
combination of the two normal stresses, determination of this constant becomes
non-unique. This flaw in the theory cannot be removed, but can only be “fixed” by
adopting a biaxial test as a convention. The consequence of the lack of a physical
reasoning for choosing the biaxial stress for determining F12 was discussed among
others by Hashin (1980), who also pointed out that a single surface in the σ1-σ2-
σ12-space, represented by Eq. (2), was inadequate in describing failure in different
combinations of stresses. He suggested instead to formulate the failure criteria in
a piecewise smooth form with each branch of the failure surface dealing with a
certain failure mode. He suggested to separate fiber failure mode from the matrix
failure mode because of different governing mechanisms and to formulate quadratic
interaction equations in each case.

Hashin’s work (Hashin 1980) provided a direction away from the totally curve-
fitting schemes toward utilizing some understanding of the failure process. In par-
ticular, his suggestion to consider a failure plane in the matrix of a composite to
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formulate thematrixmode failure criteria was taken up by Puck and coworkers (Puck
and Schürmann 1998, 2002). These authors devised elaborate procedures for deter-
mining additional material constants needed to characterize the failure envelopes in
different stress combinations.

Many other works have also proposed formulations of failure criteria using var-
ious assumptions regarding how criticality of failure occurs. As mentioned above,
assessments of a large number of such failure theories reported in Soden et al. (1998),
Hinton et al. (2002, 2004), and Kaddour et al. (2004) concluded that no single theory
was able to agree with all test data used for comparison.

One can ask why the proposed theories are not satisfactory. Perhaps the answer
lies in the failure mechanisms, which are rich in detail and varied in how they initiate,
progress, and become critical. The next section will discuss the failure mechanisms.

3 Failure Mechanisms in Unidirectional Composites

3.1 Fiber Failure in Tension

Fiber failure in a unidirectional composite under imposed overall axial tension
has been studied extensively. A recent work using high resolution X-ray micro-
tomography (Aroush et al. 2006) provides clear evidence of the statistical nature
of this process (Fig. 1). As reported in that work, fiber breaks appear initially at
low loads as single failures at discrete locations because of failures at weak points.
On increasing the applied load, more fibers fail, mostly near the previously broken
fibers, and the so-called doublets form. This process continues until one or more of
the broken fiber clusters grow unstably to failure of the composite.

3.2 Fiber Failure in Compression

Although the strength of a unidirectional composite under axial compression is char-
acterized as a fiber failure mode, as by Hashin (1980) and subsequently by many, the
failure mechanisms involved in this case depend significantly on the matrix behavior.
As described by Jelf and Fleck (1992), the fiber failure in compression may be cat-
egorized as elastic microbuckling or plastic microbuckling, depending on whether
the matrix stress–strain behavior is linear or nonlinear. For the latter case, the com-
pressive strength is predicted well by Budiansky’s kink band model (Budiansky
1983), which has the fiber misalignment and matrix shear yield stress as parameters.
Kyriakides et al. (1995) further verified the dependence of the compressive strength
on fibermisalignment angle and generalized it to fiber waviness as themicrostructure
(defect) scale. Themicrostructural features of the kink bands andmechanisms of their
formation were clarified by these authors. Their analysis found that in the presence
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Fig. 1 Sequence of fiber failures in a unidirectional composite under axial tension (from Aroush
et al. 2006)

of fiber waviness, localization of shear deformation occurs in the matrix. This forms
bands and the flow of the matrix in the bands results in bending of fibers and even-
tual breakage, which results in the formation of the observed kink bands. Figure2
illustrates schematically the early stage of microbuckling leading to formation of a
kink band (Berbinau et al. 1999).

3.3 Matrix Failure in Transverse Tension or Compression

On loading a unidirectional composite under tension normal to fibers, failure occurs
suddenly and at low stress levels. The mechanisms leading to the catastrophic failure
are conveniently studied by observing the initiation and progression of cracks within
the plies of a laminate. The appearance of these cracks is typified by the images
shown in Fig. 3 (Gamstedt and Sjögren 1999).
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Fig. 2 Schematic illustration of fiber microbuckling and kink band formation in a unidirectional
composite subjected to axial compression (Berbinau et al. 1999)

When compression is applied normal to the fibers, the failure is found to occur
along a plane that is inclined to the loading direction, as reported in González and
LLorca (2007) (Fig. 4). On closer examination, it is found that microscopic cracks
formed due to shear and the coalescence of these cracks led to failure along the
inclined plane.

3.4 Matrix Failure in In-Plane Shear

Under an in-plane shear stress, a unidirectional composite displays nonlinear behav-
ior. A part of this is due to a shear-induced flow of the matrix and the other part
is caused by cracks formed in the matrix. Such cracks are illustrated in the image
shown in Fig. 5 (Redon 2000). These cracks, as shown in the figure, form multiple

Fig. 3 Images of cracks formed under a tensile load normal to fibers. Image (a) is at a low load,
while image (b) is taken at the same location at a higher load. From Gamstedt and Sjögren (1999)
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Fig. 4 Matrix failure on an
inclined plane under
compression normal to fibers
(González and LLorca 2007)

cracks with their planes inclined to the fiber axis. On increased loading, the cracks
turn along the fibers and merge together, forming a failure plane. Such a failure plane
is also formed under compression normal to fibers (Fig. 4), indicating the role of the
shear stress on the plane.

4 Formulation of Failure Criteria for Unidirectional
Composites

In view of the brief overview of the failure mechanisms in unidirectional composites
described above in Sect. 3, one can scrutinize the failure theories discussed in Sect. 2.
Following points can be made.

(a) There is no basis for a single failure criterion represented by a single smooth
surface in the stress space of the three stress components in the principal coordi-
nates of the composite. Thus, the two criteria given by Eqs. (1) and (2) are each
not physically based. There would be a physical basis, e.g., for an orthotropic
solid where only one failure mechanism operates, e.g., yielding. Thus, the Hill
criterion for yielding of a metal with texture (produced, for example, by rolling
in one direction), fromwhich Eq. (1) was derived, is a physically based criterion,
while Eq. (1) for unidirectional composite failure is not.

Fig. 5 Matrix cracks
inclined to the fiber direction
(horizontal) formed under
in-plane shear in a
unidirectional composite
(Redon 2000)
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(b) Under combined loading, i.e., when two or three stress components in the prin-
cipal coordinates of a unidirectional composite are simultaneously applied, the
“interaction” cannot a priori be assumed as quadratic, as in Eq. (2). Hashin (1980)
had argued that not knowing the nature of this interaction, assuming it to be lin-
ear would be too restrictive. Therefore, quadratic interaction should be assumed,
also for the reason that it would allowmore flexibility in curve-fitting with exper-
imental data. To be sure, Hashin did caution against taking the quadratic form of
the criterion to be physically based, pointing out that justification for this existed
only for the metal yielding.

(c) Separating the failure of a unidirectional composite into fiber failure mode and
matrix failure mode, as suggested by Hashin (1980), is a good first approxima-
tion, but the mechanisms underlying the two failure modes are not amenable to
such separation. Failure criteria should result from analysis of the failure mech-
anisms, and the critical condition for each mechanism should define failure.

The observations (a)–(c) above suggest that the current (classical) approach of
formulating failure criteria based on a homogenized description of unidirectional
composites is simply not capable of accounting for the physical nature of the failure
mechanisms. A common feature of all failure mechanisms is that they are governed
by “local” conditions, i.e., by the stress states at the microscopic level. For instance,
in the tensile fiber failure, the formation of the multiple fiber failures and their critical
cluster size, illustrated in Fig. 1, depend on the local (triaxial) stress state, which is
responsible for the fiber failure progression (Zhuang et al. 2016). In the compres-
sion fiber failure mode, the formation of the kink band, illustrated in Fig. 2, also
depends on the local (triaxial) stress state developed due to microbuckling of fibers.
In this mechanism, the role of fiber imperfections has been found to be significant
in triggering the formation of a kink band (Kyriakides et al. 1995).

For the matrix failure mode, Hashin (1980) suggested failure to occur on a failure
plane, which is inclined to the fibers but does not intersect the fibers. Such a plane
is shown in Fig. 4. The failure of this plane was proposed by Hashin to take place
under the combined action of the traction components acting on the plane. A closer
examination of the failure mechanisms, described above, however suggest that this
may be inaccurate. The effect of shear on a plane depends on the local (triaxial) stress
state resulting in inclined cracks shown in Fig. 5. Thus, although macroscopically
the failure seems to occur on a plane, the initiation, progression, and criticality of
the failure is governed by microscopic scale conditions.

5 Discussion and Concluding Remarks

Composite material failure is fundamentally a failure process at the scale of the fibers
and matrix. Homogenizing the two constituents removes the possibility of analyzing
the failure and thereby determining the conditions of criticality. Efforts since the
first proposed failure theory (Azzi and Tsai 1965) in 1965 have led to increasing
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complexity of formulations resulting from assumptions to capture the features of
the essentially microscopic scale process at the macroscopic (homogenized) scale.
Not only have such efforts not succeeded (Soden et al. 1998; Hinton et al. 2002,
2004; Kaddour et al. 2004), they have introduced a great deal of uncertainty for
the designers of composite structures. Each new theory coming out in the literature
promises to fit the data well until another theory finds discrepancy and proposes to
improve the “predictions” by yet other assumptions.

Theway forwardmust be amulti-scale approach that is guided by the observations
of the failure process at the microscopic scale. In such an approach, one must avoid
making assumptions like the cohesive zones that are not evidenced by the observa-
tions. Instead, the local stress states should be calculated by the finite element type
of models and failure criteria for fiber and matrix failure should be applied based on
known mechanisms of failure. The techniques for observing failure at small scales
are quite sharp today, e.g., based on micro-focus computed X-ray radiography (Scott
et al. 2014). Constructing a scheme to analyze failure should be guided by the details
revealed by such high resolution observations.

Reliance on testing for validation of the failure theories is part of the classical
approach. This principle has guided the development of the failure theories in the
past. The new developments in computational simulation provide another way to
validate (and develop) failure theories. This is known as “virtual” testing (LLorca
et al. 2011). Essentially, the idea is to conduct tests by simulation on the computer.
This allows examining failure under combined loading that would be difficult, if
not impossible, to do in physical tests. The risk, of course, is to do “virtual” tests
that would not correspond to reality. This can happen if either the stress analysis is
incorrect or if the failure criteria at the microscopic scale are not physically justified,
or both. A good approach would be to validate the virtual testing approach by simpler
physical tests before expanding the approach to more general cases. Still, this cannot
guarantee the validity of the virtual testing.
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On the Dislocation Density Tensor
in the Cosserat Theory of Elastic Shells

Mircea Bîrsan and Patrizio Neff

Abstract We consider the Cosserat continuum in its finite strain setting and discuss
the dislocation density tensor as a possible alternative curvature strain measure in
three-dimensional Cosserat models and in Cosserat shell models. We establish a
close relationship (one-to-one correspondence) between the new shell dislocation
density tensor and the bending-curvature tensor of 6-parameter shells.

1 Indroduction

The Cosserat-type theories have recently seen a tremendous renewed interest for
their prospective applicability to model physical effects beyond the classical ones.
These comprise notably the so-called size-effects (“smaller is stiffer”).

In a finite strain Cosserat-type framework, the group of proper rotations SO(3) has
a dominant place. The original idea of the Cosserat brothers (Cosserat and Cosserat
1909) to consider independent rotational degrees of freedom in addition to themacro-
scopic displacement was heavily motivated by their treatment of plate and shell the-
ory. Indeed, in shell theory it is natural to attach a preferred orthogonal frame (triad)
at any point of the surface, one vector of which is the normal to the midsurface, the
other two vectors lying in the tangent plane. This is the notion of the “trièdre caché”.
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The idea to consider then an orthogonal frame which is not strictly linked to the
surface, but constitutively coupled, leads to the notion of the “trièdre mobile”. And
this then is already giving rise to a prototype Cosserat shell (6-parameter) theory. For
an insightful review of various Cosserat-type shell models, we refer to Altenbach
et al. (2010).

However, the Cosserat brothers have never proposed any more specific consti-
tutive framework, apart from postulating euclidean invariance (frame-indifference)
and hyperelasticity. For specific problems it is necessary to choose a constitutive
framework and to determine certain strain and curvature measures. This task is still
not conclusively done, see e.g. Pietraszkiewicz and Eremeyev (2009).

Among the existing models for Cosserat-type shells, we mention the theory of
simple elastic shells (Altenbach and Zhilin 2004), which has been developed by
Zhilin (1976, 2006) and Altenbach and Zhilin (1982, 1988). Later, this theory has
been successfully applied to describe the mechanical behaviour of laminated, func-
tionally graded, viscoelastic or porous plates in Altenbach (2000), Altenbach and
Eremeyev (2008, 2009, 2010) and ofmulti-layered, orthotropic, thermoelastic shells
in Bîrsan and Altenbach (2010, 2011), Bîrsan et al. (2013), Sadowski et al. (2015).
Another remarkable approach is the general 6-parameter theory of elastic shells pre-
sented in Libai and Simmonds (1998), Chróścielewski et al. (2004), Eremeyev and
Pietraszkiewicz (2004). Although the starting point is different, one can see that the
kinematical structure of the nonlinear 6-parameter shell theory is identical to that of
a Cosserat shell model, see also Bîrsan and Neff (2014a, b).

In this paper, we would like to draw attention to alternative curvature measures,
motivated by dislocation theory, which can also profitably be used in the three-
dimensional Cosserat model and the Cosserat shell model. The object of interest is
Nye’s dislocation density tensor CurlP . Within the restriction to proper rotations
it turns out that Nye’s tensor provides a complete control of all spatial derivatives
of rotations (Neff and Münch 2008) and we rederive this property for micropolar
continua using general curvilinear coordinates. Then, we focus on shell-curvature
measures and define a new shell dislocation density tensor using the surface Curl
operator. Then, we prove that a relation analogous to Nye’s formula holds also for
Cosserat (6-parameter) shells.

The paper is structured as follows. In Sect. 2 we present the kinematics of a
three-dimensional Cosserat continuum, as well as the appropriate strain measures
and curvature strain measures, written in curvilinear coordinates. Here, we show the
close relationship between the wryness tensor and the dislocation density tensor,
including the corresponding Nye’s formula. In Sect. 3, we define the Curl operator
on surfaces and present several representations using surface curvilinear coordinates.
These relations are then used in Sect. 4 to introduce the new shell dislocation density
tensor and to investigate its relationship to the elastic shell bending-curvature tensor
of 6-parameter shells.
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2 Strain Measures of a Three-Dimensional Cosserat Model
in Curvilinear Coordinates

Let B be a Cosserat elastic body which occupies in its reference (initial) configu-
ration the domain Ωξ ⊂ R

3. A generic point of Ωξ will be denoted by (ξ1, ξ2, ξ3).
The deformation of the Cosserat body is described by a vectorial map ϕξ and a
microrotation tensor Rξ ,

ϕξ : Ωξ → Ωc , Rξ : Ωξ → SO(3),

where Ωc is the deformed (current) configuration. Let (x1, x2, x3) be some general
curvilinear coordinates system on Ωξ . Thus, we have a parametric representation
Θ of the domain Ωξ

Θ : Ω → Ωξ , Θ(x1, x2, x3) = (ξ1, ξ2, ξ3),

where Ω ⊂ R
3 is a bounded domain with Lipschitz boundary ∂Ω . The covariant

base vectors with respect to these curvilinear coordinates are denoted by gi and the
contravariant base vectors by gj (i, j = 1, 2, 3), i.e.

gi = ∂Θ

∂xi
= Θ ,i , gj · gi = δ

j
i ,

where δ
j
i is the Kronecker symbol. We employ the usual conventions for indices:

the Latin indices i, j, k, . . . range over the set {1, 2, 3}, while the Greek indices
α,β, γ, . . . are confined to the range {1, 2} ; the comma preceding an index i
denotes partial derivatives with respect to xi ; the Einstein summation convention
over repeated indices is also used.

Introducing the deformation function ϕ by the composition

ϕ := ϕξ ◦ Θ : Ω → Ωc , ϕ(x1, x2, x3) := ϕξ

(

Θ(x1, x2, x3)
)

,

we can express the (elastic) deformation gradient F as follows:

F := ∇ξ ϕξ(ξ1, ξ2, ξ3) = ∇x ϕ(x1, x2, x3) · [∇xΘ(x1, x2, x3)
]−1

.

Using the direct tensor notation, we can write

∇xϕ = ϕ,i ⊗ ei , ∇xΘ = gi ⊗ ei ,
[∇x Θ

]−1 = ej ⊗ gj,

where ei are the unit vectors along the coordinate axes Oxi in the parameter domain
Ω . Then, the deformation gradient can be expressed by

F = ϕ,i ⊗ gi.
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Fig. 1 The reference (initial) configuration Ωξ of the Cosserat continuum, the deformed (current)
configurationΩc and the parameter domainΩ of the curvilinear coordinates (x1, x2, x3). The triads
of directors {di} and {d0i } satisfy the relations di = Qed

0
i = Rei and d0i = Q0ei , where Qe is the

elastic microrotation field, Q0 the initial microrotation, and R the total microrotation field

The orientation and rotation of points in Cosserat (micropolar) media can also
be described by means of triads of orthonormal vectors (called directors) attached
to every point. We denote by {d0i } the triad of directors (i = 1, 2, 3) in the reference
configuration Ωξ and by {di} the directors in the deformed configuration Ωc , see
Fig. 1. We introduce the elastic microrotation Qe as the composition

Qe := Rξ ◦ Θ : Ω → SO(3), Qe(x1, x2, x3) := Rξ

(

Θ(x1, x2, x3)
)

,

which can be characterized with the help of the directors by the relations

Qed
0
i = di , i.e., Qe = di ⊗ d0i .

Let Q0 be the initial microrotation (describing the position of the directors in the
reference configuration Ωξ)

Q0ei = d0i , i.e., Q0 = d0i ⊗ ei.

Then, the total microrotation R is given by

R : Ω → SO(3), R(xi) := Qe(xi)Q0(xi) = dj(xi) ⊗ ej.

The non-symmetric Biot-type stretch tensor (the elastic first Cosserat deformation
tensor, see Cosserat and Cosserat (1909), p. 123, Eq. (43)) is now

Ue := QT
e F = (

d0i ⊗ di
) (

ϕ,j ⊗gj
) = (

ϕ,j · di
)

d0i ⊗ gj.



On the Dislocation Density Tensor in the Cosserat Theory of Elastic Shells 395

and the non-symmetric strain tensor for nonlinear micropolar materials is defined
by

Ee := Ue − 13 = (

ϕ,j · di − gj · d0i
)

d0i ⊗ gj,

where 13 = gi ⊗ gi = d0i ⊗ d0i is the unit three-dimensional tensor. As a strain mea-
sure for curvature (orientation change) one can employ the so-called wryness tensor
Γ given by:

Γ := axl
(

QT
eQe,i

) ⊗ gi = Q0

[

axl
(

R
T
R,i

) − axl
(

QT
0Q0,i

)] ⊗ gi, (1)

where axl
(

A
)

denotes the axial vector of any skew-symmetric tensorA. For a detailed
discussion on various strain measures of nonlinear micropolar continua we refer to
the paper Pietraszkiewicz and Eremeyev (2009).

As an alternative to the wryness tensor Γ one can make use of the Curl operator
to define the so-called dislocation density tensor De by (Neff and Münch 2008)

De := QT
e CurlQe , (2)

which is another curvature measure for micropolar continua. Note that the Curl
operator has various definitions in the literature, but we will make its significance
clear in the next Sect. 2.1, where we present the Curl operator in curvilinear coor-
dinates. The use of the dislocation density tensor De instead of the wryness tensor
in conjuction with micropolar and micromorphic media has several advantages, as
it was shown in Ghiba et al. (2015), Neff et al. (2014), Madeo et al. (2015). The
relationship between the wryness tensor Γ and the dislocation density tensor De is
discussed in Sect. 2.2 in details.

Using the strain and curvature tensors (Ee , De) the elastically stored energy
density W for the isotropic nonlinear Cosserat model can be expressed as (Neff
et al. 2015; Lankeit et al. 2016)

W(Ee,De) = Wmp(Ee) + Wcurv(De), where

Wmp(Ee) = μ ‖ dev3 symEe ‖2 + μc ‖ skewEe ‖2 + κ

2

(

trEe
)2

, (3)

Wcurv(De) = μLp
c

(

a1‖ dev3 symDe‖2 + a2‖ skewDe‖2 + a3
(

trDe
)2

)p/2
,

where μ is the shear modulus, κ is the bulk modulus of classical isotropic elasticity,
and μc is called the Cosserat couple modulus, which are assumed to satisfy

μ > 0, κ > 0, and μc > 0 .

The parameter Lc introduces an internal length which is characteristic for the mate-
rial, ai > 0 are dimensionless constitutive coefficients and p ≥ 2 is a constant
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exponent. Here, dev3 X := X − 1
3 (trX) 13 is the deviatoric part of any second order

tensor X.
Under these assumptions on the constitutive coefficients, the existence of mini-

mizers to the corresponding minimization problem of the total energy functional has
been shown, e.g. in Neff et al. (2015), Lankeit et al. (2016).

2.1 The Curl Operator

For a vector field v, the (coordinate-free) definition of the vector curl v is

(curl v) · c = div(v × c) for all constant vectors c, (4)

where · denotes the scalar product and × the vector product. The Curl of a tensor
field T is the tensor field defined by

(

CurlT
)T
c = curl

(

TTc
)

for all constant vectors c. (5)

Remark 22.1 The operator CurlT given by (5) coincides with the Curl operator
defined in Svendsen (2002), Mielke and Müller (2006). However, for other authors
the Curl of T is the transpose of CurlT defined by (5), see e.g. Gurtin (1981),
Eremeyev et al. (2013).

Then, from (4) and (5) we obtain the following formulas

curl v = −v,i × gi, CurlT = −T,i × gi. (6)

Indeed, the Definition (4) yields

(curl v) · c = div(v × c) = (v × c),i · gi = (v,i × c) · gi = (gi × v,i) · c,

and the Eq. (6)1 holds. Further, from (5) we get

(

CurlT
)T
c = curl

(

TTc
) = gi × (

TTc
)

,i = gi × (

TT
,ic

) = (

gi × TT
,i

)

c,

so it follows CurlT = (

gi × TT
,i

)T = −T,i × gi and the relations (6) are proved.
In order to write the components of curl v and CurlT in curvilinear coordinates,

we introduce the following notations

gij = gi.gj , g = det
(

gij
)

3×3 > 0.
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The alternating (Ricci) third-order tensor is

ε = −13 × 13 = εijk gi ⊗ gj ⊗ gk = εijkgi ⊗ gj ⊗ gk , where

εijk = √
g eijk , εijk = 1√

g
eijk , eijk =

⎧

⎨

⎩

1, (i, j, k) is even permutation
−1, (i, j, k) is odd permutation
0, (i, j, k) is no permutation

.

The covariant, contravariant, and mixed components of any vector field v and any
tensor field T are introduced by

v = vk gk = vkgk , T = Tjk gj ⊗ gk = Tjkgj ⊗ gk = Tj
· k gj ⊗ gk .

For the partial derivatives with respect to xi we have the well-known expressions

v,i = vk|i gk , T,i = Tjk|i gj ⊗ gk = Tj
· k|i gj ⊗ gk, (7)

where a subscript bar preceding the index i denotes covariant derivative w.r.t. xi.
Using the relations (7) in (6), we can write the components of curl v and CurlT

as follows

curl v = εijkvj|i gk , CurlT = εijkTsj|i gs ⊗ gk = εijkT s
· j|i gs ⊗ gk. (8)

Indeed, from (6)1 and (7)1 we find

curl v = −(

vk|i gk
) × gi = −vk|i

(

gk × gi
) = −vk|i

(

εkijgj
) = εijkvj|i gk .

Analogously, from (6)2 and (7)2 we get

CurlT = −(

Tsk|i gs ⊗ gk
) × gi = −Tsk|i gs ⊗ (

gk × gi
) = εijkTsj|i gs ⊗ gk .

Thus, Eq. (8) is proved.

Remark 22.2 In the special case of Cartesian coordinates, the relations (6) and (8)
admit the simple form

curl v = −v,i × ei = eijkvj,i ek, CurlT = −T,i × ei = eijk Tsj,i es ⊗ ek,

where v = viei and T = Tijei ⊗ ej are the corresponding coordinates. Moreover, in
this case one can write

CurlT = ei ⊗ curl
(

T i
)

for T = ei ⊗ T i, (9)

where T i = Tij ej are the three rows of the 3 × 3 matrix
(

Tij
)

3×3 . The relation (9)
shows that Curl is defined row-wise (Neff and Münch 2008): the rows of the 3 × 3
matrix CurlT are, respectively, the three vectors curl

(

T i
)

, i = 1, 2, 3.
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Remark 22.3 In order to write the corresponding formula in curvilinear coordinates
which is analogous to (9), we introduce the vectors T i := Tij gj and T i := Tij gj =
Ti

· j gj such that it holds

T = gi ⊗ T i and T = gi ⊗ T i. (10)

If we differentiate (10)1 with respect to xj we get

T,j = gr· ,j ⊗ Tr + gi ⊗ Ti,j = −Γ r
ji g

i ⊗ Tr + gi ⊗ Ti,j = gi ⊗ (

Ti,j − Γ r
ji Tr

)

,

where Γ r
ij are the Christoffel symbols of the second kind. Hence, it follows

T,j = gi ⊗ T i|j with T i|j := T i,j − Γ r
ji Tr = Tik|j gk . (11)

Taking the vector product of (11)1 with gj we obtain

CurlT = −T,j × gj = −(

gi ⊗ T i|j
) × gj, i.e.

CurlT = gi ⊗ curlcov
(

T i
)

where curlcov
(

T i
) := −T i|j × gj. (12)

The relation (12) is the analogue of (9) for curvilinear coordinates. Similarly, by
differentiating (10)2 with respect to xj one can obtain the relation

CurlT = gi ⊗ curlcov
(

T i
)

where we denote (13)

curlcov
(

T i
) := −T i

· |j × gj and T i
· |j := T i

· ,j + Γ i
rj T

r = Ti
· k|j g

k .

2.2 Relation Between the Wryness Tensor and the
Dislocation Density Tensor

LetA = Aijgi ⊗ gj be an arbitrary skew-symmetric tensor and axl(A) = akgk its axial
vector. Then, the following relations hold

A = axl(A) × 13 = 13 × axl(A),

axl(A) = − 1
2 ε : A = − 1

2 εijkAij gk ,

A = −ε axl(A) = −εijkak gi ⊗ gj ,

(14)

where the double dot product “:” of two tensors B = Bijk gi ⊗ gj ⊗ gk and T =
Tij gi ⊗ gj is defined as B : T = BijkTjk gi .
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Using these relations, we can derive the close relationship between the wryness
tensor and the dislocation density tensor: it holds

De = −Γ T + (tr Γ ) 13, or equivalently, (15)

Γ = −D
T
e + 1

2
(trDe) 13. (16)

Indeed, in view of the Eq. (14)3 and the Definition (1) we have

QT
eQe,k ⊗ gk = −ε axl(QT

eQe,k) ⊗ gk = −εΓ

= −(

εijr gi ⊗ gj ⊗ gr
)(

Γ s
· k gs ⊗ gk

) = −εijs Γ
s
· k g

i ⊗ gj ⊗ gk .

Hence, we deduce

QT
eQe,k = −εijs Γ

s
· k g

i ⊗ gj. (17)

In view of (6)2 , the Definition (2) can be written in the form

De = QT
e

( − Qe,k × gk
) = −(

QT
eQe,k

) × gk . (18)

Inserting (17) in (18), we obtain

De = εijs Γ
s
· k

(

gi ⊗ gj
) × gk = εijs Γ

s
· k g

i ⊗ (

εjkrgr
) = (

εjsi ε
jkr

)

Γ s
· k g

i ⊗ gr
= (

δks δri − δrs δki
)

Γ s
· k g

i ⊗ gr = Γ s
· s g

i ⊗ gi − Γ s
· i g

i ⊗ gs = (tr Γ ) 13 − Γ T .

Thus, the relation (15) is proved. If we apply the trace operator and the transpose in
(15) we obtain also the relation (16). For infinitesimal strains this formula is well-
known under the nameNye’s formula, and (−Γ ) is also calledNye’s curvature tensor
(Nye 1953). This relation has been first established in Neff and Münch (2008).

Let us find the components of thewryness tensor and the dislocation density tensor
in curvilinear coordinates. To this aim, we write first the skew-symmetric tensor

QT
eQe,i = (

d0j ⊗ dj
)(

dk,i ⊗ d0k + dk ⊗ d0k,i
) = (

dj · dk,i
)

d0j ⊗ d0k + d0j ⊗ d0j,i

= (

dj · dk,i − d0j · d0k,i
)

d0j ⊗ d0k . (19)

Then, we obtain for the axial vector the equation

axl
(

QT
eQe,i

) = −1

2
ejks

(

dj · dk,i − d0j · d0k,i
)

d0s . (20)
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Indeed, according to (14)2 and (19) we can write

axl
(

QT
eQe,i

) = −1

2
ε : (

QT
eQe,i

)

= −1

2

(

esjk d
0
s ⊗ d0j ⊗ d0k

) : [(

dl · dr,i − d0l · d0r,i
)

d0l ⊗ d0r
]

= −1

2
ejks

(

dj · dk,i − d0j · d0k,i
)

d0s

and the relation (20) is proved. Using (20) in the Definition (1) we find the following
formula for the wryness tensor

Γ = 1

2
ejks

(

dj,i · dk − d0j,i · d0k
)

d0s ⊗ gi. (21)

To obtain an expression for the components of De we insert (19) in (18) and we get

De = −(

dj · dk,i − d0j · d0k,i
) (

d0j ⊗ d0k
) × gi

= (

dj,i · dk − d0j,i · d0k
)

d0j ⊗ (

d0k × gi
)

. (22)

We rewrite the last vector product as

d0k × gi = d0k × [(

gi · d0r
)

d0r
] = (

gi · d0r
)

d0k × d0r = ekrs
(

gi · d0r
)

d0s

and we insert it in (22) to find the following expression for the dislocation density
tensor

De = ekrs
(

dj,i · dk − d0j,i · d0k
) (

gi · d0r
)

d0j ⊗ d0s . (23)

Remark 22.4 In the special case of Cartesian coordinates one can identify d0i =
ei, gi = gi = ei, and the relations (21) and (22) simplify to the forms

Γ = 1

2
eiks

(

dk,j · ds
)

ei ⊗ ej,

De = eijk
(

dj,i · ds
)

es ⊗ ek .

Remark 22.5 One can find various definitions of the wryness tensor in the literature,
see e.g. Tambača and Velčić (2010), where Γ is called the curvature strain tensor.
Thus, one can alternatively define the wryness tensor by

Γ = QT
e ω, (24)

where ω is the second order tensor given by

ω = ωi ⊗ gi with Qe,i = ωi × Qe. (25)
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If we compare the Definition (1) with (24), (25), we see that indeed QT
e ωi =

axl
(

QT
eQe,i

)

, i.e.

ωi = Qe axl
(

QT
eQe,i

) = axl
(

Qe,i Q
T
e

)

. (26)

By a straightforward but lengthy calculation, one can prove that the vectors ωi are
expressed in terms of the directors by

ωi = 1

2

[

dj × dj,i − Qe

(

d0j × d0j,i
)]

. (27)

Inserting (27) in (25)1 and (24), we obtain the expression of the wryness tensor
written with the help of the directors di

Γ = 1

2

[

QT
e

(

dj × dj,i
) − d0j × d0j,i

] ⊗ gi. (28)

3 The Curl Operator on Surfaces

Let S be a smooth surface embedded in the Euclidean space R3 and let y0(x1, x2),
y0 : ω → R

3, be a parametrization of this surface. We denote the covariant base
vectors in the tangent plane by a1, a2 and the contravariant base vectors by a1, a2:

aα = ∂y0
∂xα

= y0,α, aα · aβ = δβ
α

and let

a3 = a3 = n0 = a1 × a2
|a1 × a2| ,

where n0 is the unit normal to the surface. Further, we designate by

aαβ = aα · aβ, aαβ = aα · aβ, a =
√

det
(

aαβ

)

2×2 = |a1 × a2| > 0

and we have

aα × aβ = εαβa3, a3 × aα = εαβaβ, aα × aβ = εαβa3, a3 × aα = εαβaβ,

(29)

where εαβ = 1

a
eαβ, εαβ = a eαβ and eαβ is the two-dimensional alternator given

by e12 = −e21 = 1, e11 = e22 = 0.
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Then, a = aαβaα ⊗ aβ = aαβaα ⊗ aβ = aα ⊗ aα represents the first fundamental
tensor of the surface S, while the second fundamental tensor b is defined by

b = −Grads n0 = −n0,α ⊗ aα = bαβ aα ⊗ aβ = bα
β aα ⊗ aβ, with

bαβ = −n0,β · aα = bβα, bα
β = −n0,β · aα.

The surface gradient Grads and surface divergence Divs operators are defined for a
vector field v by

Grads v = ∂v
∂xα

⊗ aα = v,α ⊗ aα, Divs v = tr
[

Grads v
] = v,α · aα. (30)

We also introduce the so-called alternator tensor c of the surface (Zhilin 2006)

c = −n0 × a = −a × n0 = εαβ aα ⊗ aβ = εαβ aα ⊗ aβ . (31)

The tensors a and b are symmetric, while c is skew-symmetric and satisfies cc = −a.
Note that the tensors a , b , and c defined above are planar, i.e. they are tensors in
the tangent plane of the surface. Moreover, a is the identity tensor in the tangent
plane.

We define the surface Curl operator curls for vector fields v and, respectively,
Curls for tensor fields T by

(

curls v
) · k = Divs

(

v × k
)

for all constant vectors k, (32)
(

Curls T
)T
k = curls

(

TTk
)

for all constant vectors k. (33)

Thus, curls v is a vector field, while Curls T is a tensor field.

Remark 22.6 These definitions are analogous to the corresponding Definitions (4),
(5) in the three-dimensional case. Notice that the curl operator on surfaces has a
different significance for other authors, see e.g. Backus et al. (1996).

From the Definitions (32) and (33) it follows

curls v = −v,α × aα, Curls T = −T,α × aα. (34)

Indeed, in view of (30) and (32) we have

(

curls v
) · k = Divs

(

v × k
) = (

v × k
)

,α
· aα = (

v,α × k
) · aα

= (

aα × v,α

) · k = ( − v,α × aα
) · k for all constant vectors k
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and also

(

Curls T
)T
k = curls

(

TTk
) = aα × (

TTk
)

,α
= aα × (

TT
,αk

) = (

aα × TT
,α

)

k,

which implies Curls T = (

aα × TT
,α

)T = −T ,α × aα, so the relations (34) hold true.
Towrite the components of curls v andCurls T weemploy the covariant derivatives

on the surface. Let v = vi ai be a vector field on S. Then, we have

aα
·,β = −Γ α

βγ a
γ + bα

β a
3, a3,β = −bα

β aα = −bαβ aα,

v,α = (vβ|α − bαβ v3)aβ + (v3,α + bβ
α vβ)a3, (35)

where vβ|α = vβ,α − Γ
γ
αβ vγ is the covariant derivative with respect to xα. Inserting

this relation in (34)1 and using (29)1,2 we obtain

curls v = εαβ
[

(v3,β + bγ
β vγ)aα + vβ|α a3

]

. (36)

For a tensor fieldT = Tij ai ⊗ aj = Tij ai ⊗ aj = Ti
· j ai ⊗ aj on the surface, the deriv-

ative T,γ can be expressed as

T,γ = (

Tαβ|γ − bαγ T3β − bβγ Tα3
)

aα ⊗ aβ + (

Tα3|γ + bβ
γ Tαβ − bαγ T33

)

aα ⊗ a3

+(

T3α|γ + bβ
γ Tβα − bαγ T33

)

a3 ⊗ aα + (

T33,γ + bα
γ Tα3 + bα

γ T3α
)

a3 ⊗ a3,
(37)

where the covariant derivatives are

Tαβ|γ = Tαβ,γ − Γ δ
βγ Tαδ − Γ δ

αγ Tδβ,

Tα3|γ = Tα3,γ − Γ β
αγ Tβ3, T3α|γ = T3α,γ − Γ β

αγ T3β .

Using (37) in (34)2 we obtain with the help of (29)1,2 the decomposition

Curls T = εβγ
(

Tα3|γ +bσ
γ Tασ−bαγ T33

)

aα⊗aβ + εγβ
(

Tαβ|γ −bαγ T3β
)

aα⊗a3

+ εβγ
(

T33,γ + bα
γ Tα3 + bα

γ T3α
)

a3⊗aβ + εγβ
(

T3β|γ +bα
γ Tαβ

)

a3⊗ a3.
(38)

Alternatively, one can use the mixed components Ti
· j and write Curls T in the tensor

basis { ai ⊗ aj}

Curls T = εβγ
(

Tα
· 3|γ +bσ

γ T
α
·σ−bα

γ T
3
· 3

)

aα⊗aβ + εγβ
(

Tα
·β|γ −bα

γ T
3
· β

)

aα⊗a3

+ εβγ
(

T 3
· 3,γ + bαγ T

α
· 3 + bα

γ T
3
·α

)

a3⊗aβ + εγβ
(

T 3
· β|γ +bαγ T

α
· β

)

a3⊗ a3.
(39)
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where

Tα
· β|γ = Tα

· β,γ + Γ α
γσ T

σ
· β − Γ σ

βγ T
α
·σ,

Tα
· 3|γ = Tα

· 3,γ + Γ α
γσ T

σ
· 3, T 3

· β|γ = T 3
·β,γ − Γ σ

βγ T
3
· σ.

Remark 22.7 In order to obtain a formula analogous to (9) and (12), (13) for Curls
we write T in the form

T = ai ⊗ T i = ai ⊗ T i with T i = Tij aj, T i = Ti
·j a

j.

By differentiating the first equation with respect to xγ we get

T,γ = ai,γ ⊗T i + ai⊗T i,γ = (−Γ α
βγ a

β + bα
γ a

3
)⊗Tα − bαγ aα⊗T3 + ai⊗T i,γ

= aα ⊗ (

Tα,γ − Γ β
αγ Tβ − bαγ T3

) + a3 ⊗ (

T3,γ + bα
γ Tα

)

.

Taking the vector product with aγ and using (34)2 we find

Curls T = −[

aα ⊗ (

Tα|γ − bαγ T3
) + a3 ⊗ (

T3,γ + bα
γ Tα

)] × aγ, (40)

with Tα|γ := Tα,γ − Γ β
αγ Tβ . Similarly, we obtain

Curls T = −[

aα ⊗ (

Tα
· |γ − bα

γ T
3
) + a3 ⊗ (

T3
· ,γ + bαγ Tα

)] × aγ, (41)

with Tα
· |γ := Tα

· ,γ + Γ α
βγ T

β . The Eqs. (40) and (41) are the counterpart of the
relations (12) and, respectively, (13) in the three-dimensional theory.

4 The Shell Dislocation Density Tensor

Let us present first the kinematics of Cosserat-type shells, which coincides with
the kinematics of the 6-parameter shell model, see Chróścielewski et al. (2004),
Eremeyev and Pietraszkiewicz (2006), Bîrsan and Neff (2014b).

We consider a deformable surfaceωξ ⊂ R
3 which is identifiedwith themidsurface

of the shell in its reference configuration and denote with (ξ1, ξ2, ξ3) a generic point
of the surface. Each material point is assumed to have 6 degrees of freedom (3 for
translations and 3 for rotations). Thus, the deformation of the Cosserat-type shell is
determined by a vectorial map mξ and the microrotation tensor Rξ

mξ : ωξ → ωc, Rξ : ωξ → SO(3),
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where ωc denotes the deformed (current) configuration of the surface. We consider
a parametric representation y0 of the reference configuration ωξ

y0 : ω → ωξ , y0(x1, x2) = (ξ1, ξ2, ξ3),

where ω ⊂ R
2 is the bounded domain of variation (with Lipschitz boundary ∂ω) of

the parameters (x1, x2). Using the same notations as in Sect. 3, we introduce the base
vectors ai, aj and the fundamental tensors a, b for the reference surface ωξ .

The deformation function m is then defined by the composition

m = mξ ◦ y0 : ω → ωc, m(x1, x2) := mξ

(

y0(x1, x2)
)

.

According to (30), the surface gradient of the deformation has the expression

Grads m = m,α ⊗ aα. (42)

As in the three-dimensional case (see Sect. 2) we define the elastic microrotation Qe
by the composition

Qe = Rξ ◦ y0 : ω → SO(3), Qe(x1, x2) := Rξ

(

y0(x1, x2)
)

,

the total microrotation R by

R : ω → SO(3), R(x1, x2) = Qe(x1, x2)Q0(x1, x2),

where Q0 : ω → SO(3) is the initial microrotation, which describes the orientation
of points in the reference configuration.

To characterize the orientation and rotation of points in Cosserat-type shells, one
employs (as in the three-dimensional case) a triad of orthonormal directors attached
to each point. We denote by d0i (x1, x2) the directors in the reference configuration
ωξ and by di(x1, x2) the directors in the deformed configuration ωc (i = 1, 2, 3). The
domain ω is referred to an orthogonal Cartesian frameOx1x2x3 such that ω ⊂ Ox1x2
and let ei be the unit vectors along the coordinate axes Oxi . Then, the microrotation
tensors can be expressed as follows

Qe = di ⊗ d0i , R = Qe Q0 = di ⊗ ei, Q0 = d0i ⊗ ei. (43)

Remark 22.8 The initial directors d0i are usually chosen such that

d03 = n0, d0α · n0 = 0, (44)

i.e. d03 is orthogonal to ωξ and d0α belong to the tangent plane. This assumption is
not necessary in general, but it will be adopted here since it simplifies many of
the subsequent expressions. In the deformed configuration, the director d3 is no
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longer orthogonal to the surface ωc (the Kirchhof–Love condition is not imposed).
One convenient choice of the initial microrotation tensorQ0 = d0i ⊗ ei such that the
conditions (44) be satisfied is Q0 = polar

(

ai ⊗ ei
)

, as it was shown in Remark10 of
(Bîrsan and Neff 2014a).

Let us present next the shell strain and curvature measures. In the 6-parameter
shell theory the elastic shell strain tensor Ee is defined by (Chróścielewski et al.
2004, Eremeyev and Pietraszkiewicz 2006)

Ee = QT
e Gradsm − a. (45)

To write the components of Ee we insert (42) and (43)1 into (45)

Ee = (

d0i ⊗ di
)(

m,α ⊗ aα
) − aα ⊗ aα = (

m,α · di − aα · d0i
)

d0i ⊗ aα.

As a measure of orientation (curvature) change, the elastic shell bending-curvature
tensor Ke is defined by (Chróścielewski et al. 2004, Eremeyev and Pietraszkiewicz
2006, Bîrsan and Neff 2014b)

Ke = axl
(

QT
eQe,α

) ⊗ aα = Q0

[

axl
(

R
T
R,α

) − axl
(

QT
0Q0,α

)]

. (46)

We remark the analogy to the Definition (1) of the wryness tensor Γ in the three-
dimensional theory. Following the analogy to (2), we employ next the surface curl
operator Curls defined in Sect. 3 to introduce the new shell dislocation density tensor
De by

De = QT
e Curls Qe. (47)

In view of relation (34)2, we can write this definition in the form

De = QT
e

(−Qe,α × aα
) = −(

QT
eQe,α

) × aα. (48)

The tensor De given by (47) represents an alternative strain measure for orientation
(curvature) change in Cosserat-type shells.

In what follows, we want to establish the relationship between the shell bending-
curvature tensor Ke and the shell dislocation density tensor De . We observe that
this relationship is analogous to the corresponding relations (19), (20) in the three-
dimensional theory. More precisely, in the shell theory it holds

De = −KT
e + (

trKe
)

13 or equivalently, Ke = −DT
e + 1

2

(

trDe
)

13. (49)

To prove (49), we designate the components of the shell bending-curvature tensor
by Ke = Kiα d

0
i ⊗ aα and use (16)3 to write
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(

QT
e Qe,α

) ⊗ aα = −ε axl
(

QT
e Qe,α

) ⊗ aα = −εKe

= −(

eijk d
0
i ⊗ d0j ⊗ d0k

)(

Ksα d0s ⊗ aα) = −eijs Ksα d0i ⊗ d0j ⊗ aα,

which implies

QT
eQe,α = −eijs Ksα d

0
i ⊗ d0j

We substitute the last relation into (48) and derive

De = (

eijs Ksα d
0
i ⊗ d0j

) × aα = (

eijs Ksα d
0
i ⊗ d0j

) × [(

aα ·d0β
)

d0β
]

= (

aα ·d0β
)[

eijs Ksα d
0
i ⊗ (

d0j × d0β
)] = (

aα ·d0β
)[

eijs ejβm Ksα d
0
i ⊗ d0m

]

= (

aα ·d0β
)[(

δim δsβ − δiβ δsm
)

Ksα d
0
i ⊗ d0m

]

= (

aα ·d0β
)[ − Ksα d

0
β ⊗ d0s + Kβα d

0
i ⊗ d0i

]

= −Kiα
[(

aα ·d0β
)

d0β
] ⊗ d0i + Kβα

(

d0β ·aα
)

13
]

= −(

Kiα d
0
i ⊗ aα

)T + tr
(

Kiα d
0
i ⊗ aα

)

13 = −KT
e + (

trKe
)

13,

which shows that (49)1 holds true. Applying the trace operator to Eq. (49)1 we get
trKe = 1

2 trDe . Inserting this into (49)1 we obtain (49)2 . The proof is complete.

Remark 22.9 As a consequence of relations (49) we deduce the relations between
the norms, traces, symmetric and skew-symmetric parts of the two tensors in the
forms

‖De‖2 = ‖Ke‖2 + (

trKe
)2

, ‖Ke‖2 = ‖De‖2 − 1

4

(

trDe
)2

, (50)

trDe = 2 trKe, skewDe = skewKe, dev3symDe = −dev3symKe.

Indeed the relations (50) can be easily proved if we apply the operators tr, ‖ · ‖, skew,
dev3, and sym to the Eq. (49)1 . In view of (50)1 and

(

trKe
)2 ≤ 3 ‖Ke‖2, we obtain

the estimate

‖Ke‖ ≤ ‖De‖ ≤ 2 ‖Ke‖. (51)

In what follows, we write the components of the tensors Ke and De . To this aim, we
use the relations

QT
eQe,α = (

d0i ⊗ di
)(

dk,α ⊗ d0k + dk ⊗ d0k,α
)

= (

di · dk,α
)

d0i ⊗ d0k + d0i ⊗ d0i,α = (

di · dk,α − d0i · d0k,α
)

d0i ⊗ d0k, (52)

which can be proved in the same way as Eq. (19). We compute the axial vector of
the skew-symmetric tensor (52) and find (similar to (20))
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axl
(

QT
eQe,α

) = −1

2
eijk

(

dj · dk,α − d0j · d0k,α
)

d0i . (53)

By virtue of (53) the Definition (46) yields

Ke = 1

2
eijk

(

dj,α · dk − d0j,α · d0k
)

d0i ⊗ aα

= (

d2,α · d3 − d02,α · d03
)

d01 ⊗ aα + (

d3,α · d1 − d03,α · d01
)

d02 ⊗ aα

+ (

d1,α · d2 − d01,α · d02
)

d03 ⊗ aα, (54)

which gives the componentsKiα of the shell bending-curvature tensorKe in the tensor
basis {d0i ⊗ aα}.

For the components of De, we insert the relation (52) in the Eq. (48)

De = −(

di · dk,α − d0i · d0k,α
)(

d0i ⊗ d0k
) × aα.

Using that d0k × aα = d0k × [(

aα ·d0β
)

d0β
] = (

aα ·d0β
)

ekβj d
0
j , we obtain

De = ejkβ
(

di,α · dk − d0i,α · d0k
)(

aα ·d0β
)

d0i ⊗ d0j , (55)

which shows the components of the shell dislocation density tensor in the tensor
basis {d0i ⊗ d0j }.

5 Remarks and Discussion

Herein we present some other ways to express the shell dislocation density tensor,
the shell bending-curvature tensor and discuss their close relationship.

Remark 22.10 It is sometimes useful to express the components of the shell disloca-
tion density tensor De in the tensor basis {ai ⊗ aj}. If we multiply the relation (49)2
withn0 and take into account thatKen0 = 0, thenwe find 0 = −DT

e n0 + 1
2

(

trDe
)

n0 ,
which means

n0 De = 1

2

(

trDe
)

n0.

It follows that the components of De in the directions n0 ⊗ aα are zero, i.e. De has
the structure

De = D‖ + Dα3 aα ⊗ n0 + 1

2

(

trDe
)

n0 ⊗ n0, (56)
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where D‖ = De a = Dαβaα ⊗ aβ = D β
α · aα ⊗ aβ is the planar part of De (the part

in the tangent plane). If we insert (56) into (49)1 and use 1
2 trDe = trKe, we get

D‖ + Dα3 aα ⊗ n0 + (

trKe
)

n0 ⊗ n0 = −Kiα aα ⊗ d0i + (

trKe
)(

a + n0 ⊗ n0
)

,

which implies (in view of (54)) that

Dα3 = −K3α = d1 · d2,α − d01 · d02,α and D‖ = −(

K‖
)T + (

trKe
)

a, (57)

where K‖ = aKe = Kβαd
0
β ⊗ aα is the planar part of Ke.

Remark 22.11 We observe that between the planar part D‖ of De and the planar
part K‖ of Ke there exists a special relationship. The tensor D‖ is the cofactor of the
tensor K‖ . Let us explain this in more details: for any planar tensor S = Sα

·β aα ⊗ aβ

we introduce the transformation

T(S) = −ST + (

tr S
)

a. (58)

One can prove that this transformation has the properties

T
(

T(S)
) = S and T(S) = −c S c, (59)

where the alternator c is defined in (31). Moreover, in view of (59)2 and (31) we can
write T(S) in the tensor basis {aα ⊗ aβ} as follows

T(S) = S2· 2 a
1 ⊗ a1 − S2· 1 a

1 ⊗ a2 − S1· 2 a
2 ⊗ a1 + S1· 1 a

2 ⊗ a2,

which shows that the 2 × 2 matrix of the components of T(S) in the basis {aα ⊗ aβ}
is the cofactor of the matrix of components of S in the basis {aα ⊗ aβ}, since

(

S2· 2 −S2· 1
−S1· 2 S1· 1

)

= Cof

(

S1· 1 S1· 2
S2· 1 S2· 2

)

.

If the tensor S is invertible, then from the Cayley–Hamilton relation
(

ST
)2 −

(

tr S
)

ST + detS = 0 and (58) we deduce

T(S) = −ST + (

tr S
)

a = (

detS
)

S−T =: Cof(S)

. (60)

In our case, for the shell bending-curvature tensor Ke we have trKe = tr
(

aKe
) =

tr
(

K‖
)

, in view of (54). Then, the relation (57)2 yields

D‖ = −(

K‖
)T + (

trK‖
)

a.



410 M. Bîrsan and P. Neff

Using the relations (58)–(60) we see that D‖ is the image of K‖ under the transfor-
mation T , so that it holds

D‖ = T
(

K‖
) = −c

(

K‖
)

c = Cof
(

K‖
)

, (61)

K‖ = T
(

D‖
) = −c

(

D‖
)

c = Cof
(

D‖
)

.

From (56), (57) we can write

De = Cof
(

K‖
) − K3α aα ⊗ n0 + (

trK‖
)

n0 ⊗ n0, (62)

which expresses once again the close relationship between the shell dislocation den-
sity tensor De and the shell bending-curvature tensor Ke.

Remark 22.12 The shell bending-curvature tensorKe can also be expressed in terms
of the directors di . In this respect, an analogous relation to the formula (28) for the
wryness tensor (see Remark 22.5) holds

Ke = 1

2

[

QT
e

(

di × di,α
) − d0i × d0i,α

] ⊗ aα. (63)

To prove (63), we write the two terms in the brackets in the following form

QT
e

(

di × di,α
) = (

d0k ⊗ dk
)(

di × di,α
) = [

dk · (

di × di,α
)]

d0k
= [

di,α · (

dk × di
)]

d0k = ekij
(

di,α · dj
)

d0k

and similarly

d0i × d0i,α = [

d0k · (

d0i × d0i,α
)]

d0k = [

d0i,α · (

d0k × d0i
)]

d0k = ekij
(

d0i,α · d0j
)

d0k .

Inserting the last two relations into (63) we obtain

Ke = 1

2
eijk

[(

dj,α · dk
)

d0i − (

d0j,α · d0k
)

d0i
] ⊗ aα,

which holds true, by virtue of (54). Thus, (63) is proved.
We can put the relation (63) in the form

Ke = QT
e ω where we define (64)

ω = ωα ⊗ aα with ωα = 1

2

[

di × di,α − Qe

(

d0i × d0i,α
)]

. (65)

If we compare the relations (64) and the Definition (46), we derive

ωα = Qe axl
(

QT
eQe,α

) = axl
(

Qe,α Q
T
e

)

.
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Then, from (16) we deduce Qe,α Q
T
e = ωα × 13 and by multiplication with Qe

we find

Qe,α = ωα × Qe, α = 1, 2. (66)

Thus, the Eqs. (64), (65) can be employed for an alternative definition of the shell
bending-curvature tensor, namely

Ke = QT
e ω , where ω = ωα ⊗ aα and Qe,α = ωα × Qe. (67)

This is the counterpart of the relations (24), (25) for the wryness tensor in the three-
dimensional theory of Cosserat continua. The relations (67) were used to define the
corresponding shell bending-curvature tensor, e.g. in Altenbach and Zhilin (2004),
Zhilin (2006).

Remark 22.13 As shown by relations (3) for the three-dimensional case, one can
introduce the elastically stored shell energy density W as a function of the shell
strain tensor and the shell dislocation density tensor

W = W
(

Ee , De
)

. (68)

If (68) is assumed to be a quadratic convex and coercive function, then the existence
of solutions to the minimization problem of the total energy functional for Cosserat
shells can be proved in a similar manner as in Theorem 6 of Bîrsan and Neff (2014a).
In the proof, one should employ decisively the estimate (51) and the expressions of
the shell dislocation density tensor De established in the previous sections.
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Direct Approach Versus Consistent
Approximation

Reinhold Kienzler and Patrick Schneider

Abstract Relations between plate theories resulting from the direct approach and
the consistent approximation are established and the resulting equations are com-
pared. By introducing a scalar measure for the thickness strain, both theories can be
reconciled within a consistent second-order approximation.

1 Introduction

Plates are important structural elements and are defined in the following manner:

• Geometry: Plates belong to the family of thin plane structures. Let us consider a
three-dimensional plate continuum with constant thickness h as depicted in Fig. 1.
Themid-surface of the plate is plane and embedded in the (x1, x2)-plane of a three-
dimensional coordinate system (x1, x2, x3). The characteristic in-plane dimension,
say a, is much larger than the characteristic out-of-plane dimension h, especially
the plate parameter c2 is much smaller than unity

c2 = h2

12a2
� 1. (1)

Plates with variable thickness are also admissible but are not considered in the
following.

• Material: The material behavior must be symmetric with respect to the midplane,
i.e., the most general plate material is a monotropic material with the plane of
symmetry coincidingwith the (x1, x2)-plane (13 independentmaterial parameters).
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Fig. 1 Plate continuum

For simplicity, we treat isotropic material behavior in the following (2 independent
material parameters, e.g., Young’s modulus E and Poisson’s ratio v).

• Load: The loading condition has to obey certain symmetry and anti-symmetry
conditions, for details see Schneider and Kienzler (2015b). We restrict ourselves
to transverse loading P+/−

3 =: P+/− through the plate faces at x3 = ±h
/

2, respec-
tively. Arbitrary transverse loads may be decomposed in an symmetric and anti-
symmetric part as depicted in Fig. 2. The symmetric part causes “quenching” and
belongs to the class of disc problems (plane stress) and is not subject of the matter
treated here. We combine the face loading to

P = 2Pa. (2)

Moment loading applied by antisymmetric shear forces (x3 = ±h
/

2 : P+/−
α , α =

1, 2) could easily be incorporated.

Plate theories attempt to describe the state of stress and deformation within a three-
dimensional plate continuum by quantities defined on the mid-surface. The process
is therefore a dimension-reduction problem and as such inherently approximative.
In general, three methods are pursued to derive plate theories:

• Classical or engineering approach: Point of departure is a set of a priori assump-
tions for the displacement and stress distributions in thickness direction. These
assumptions are based either on experimental observations or on the ingenuity of
its proponent. For, e.g., transverse shear stresses are neglected completely or its
influence is considered by shear-correction factors. Due to the brilliance of the
scholars involved, the accuracy of derived theories are remarkable. A historical
account of classical plate theories may be found, e.g., in Szabó (1987). Refined
theories are dealt with in Schneider and Kienzler (2015a).

Fig. 2 Arbitrary transverse
loading decomposed in an
antisymmetric part (plate
loading) and a symmetric
part (disc loading),
(α = 1, 2)
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• Direct approach: The plate mid-plane is considered as a Cosserat surface endowed
with a set of deformable directors attached to each point of the plane. The stress
resultants and the strain quantities “live” on the plane. Under the assumption
that the strain-energy density is a homogeneous quadratic form (linear elastic-
ity), constitutive relations are established involving effective stiffness parameters.
Despite this mathematical elegance, the main drawback of the theory is that the
identification of the material parameters is not straight forward. Instead of physi-
cal experiments often recourse is made to mathematical reflections, which render
it necessary to return from the two-dimensional space to the three-dimensional
theory. Suitable test problems of the classical theory of elasticity with favorably
closed-form solutions are used. The question, however, which test problems should
be used, is by far not resolved. The method thus contains a certain degree of arbi-
trariness. Regularly, the shear-correction factor is the first, nontrivial eigenvalue
of a Sturm–Liouville problem (Altenbach 2000), which can be solved analytically
only for special cases. An excellent overview over the theories relying on the direct
approach is given in Altenbach et al. (2009) with an extended bibliography.

• Consistent approach:Displacement, stresses, and strains are developed in direction
of thickness into Fourier series with respect to a suitable basis. After introducing
proper nondimensional quantities and integrating over the plate thickness, the
dimensionless, small plate parameter c2 (1) evolves quite naturally. The elastic
potential appears as power series in this plate parameter. It can be shown (Schneider
et al. 2014) that the infinite set of corresponding two-dimensional Euler-Lagrange
equations is indeed equivalent to the problem of the three-dimensional theory
of elasticity. This infinite series can be truncated at different orders giving rise
to hierarchical plate theories. In a forth-coming paper, an a priori error estimate
for truncated theories will be given. In combination with the pseudo-reduction
method (for details see Schneider and Kienzler 2011), plate-differential equations
and equations for the stress resultants are derived without any recourse to either a
priori assumptions or shear-correction factors.

In several papers, plate theories from the engineering approach are compared with
those of the consistent approach (e.g., Schneider and Kienzler 2015a; Kienzler 2002;
Kienzler and Schneider 2012), whereas a comparison between theories of the direct
approach and the consistent approach is still missing.

The honoree of this volume has contributed much to plate theories. Many of these
papers, which will be referenced and discussed at different places within this volume,
are devoted to theories relying on the direct approach, whereas the presenting authors
of this paper are firm proponents of the consistent approach.Therefore, it is striking
to contribute to a kind of unification of both theories.

In this paper, we adopt the theory ofW.A. Palmow andH.Altenbach (1982). There
is no reason that we just choose this paper of all, except that the Sturm–Liouville
problem is explained in some detail and all equations needed for the following are
given. In order to keep the equations as simple as possible, we restrict ourselves to
the special case:



418 R. Kienzler and P. Schneider

• No moment loads, the load is merely applied transversely through the plate faces
P = 2Pa (cf. Fig. 2).

• The plate material is homogeneous and isotropic.

Since the notation used in Palmow and Altenbach (1982) deviates to some extent to
that of the authors, we provide a list of correspondence in Sect. 2, where the theory is
recapitulated. For simplicity, when identical symbols are used for different items, the
upper-right capital letter A is used for Altenbach and K for Kienzler (in all modesty).
Since coordinates and displacements are nondimensionalized by the characteristic
length a (in K), the letter a appears in this list frequently.

We compare the results of Palmow/Altenbach (A) with those of Schneider/Kienz-
ler (K) and Marguerre/Henckey (M) in Sect. 3 by just reporting (without any deriva-
tions) the respective equations. In Sect. 4, we supply evidence for the introduction
of a measure of a thickness strain with which all equations coincide. The extended
theory is thus equivalent within a consistent second-order approximation.

2 Palmow/Altenbach Theory

Wemore or less copy Fig. 1 of Palmow andAltenbach (1982) as Fig. 3a and juxtapose
itwith definitions usually found in textbooks on plates and shells, cf., e.g., Eschenauer
et al. (1997), Maguerre and Woernle (1995).

2.1 Statics

First, we consider the list of correspondence for coordinates, differential operators
and static quantities in Table1, where also an index notation is used. Greek indices
range from 1 to 2, the summation convention is applied for repeated indices, and a
comma with a following index stands for partial differentiation with respect to the

(a) (b)

Fig. 3 Displacements and stress resultants defined in Palmow/Altenbach (a) and Schnei-
der/Kienzler (b)
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Table 1 List of correspondence for static quantities

Palmow/Altenbach Schneider/Kienzler

Coordinates

x1
x2
z

ξ1 = x1/a

ξ2 = x2/a

ξ3 = z/a

Transverse shear
forces

Q = (Qα) =
(

Q1

Q2

)

Qx = (Qxα) =
(

−Q2

Q1

)
q = (qα) = Q

Qxα = ε3βαqβ

Moments
G = (Gαβ) =

[

G11 G12

G21 G22

]
m = (mαβ) =

[

m11 m12

m21 m22

]

(Gαβ) = (ε3γβ mαγ ) =
[

−m12 m11

−m22 m21

]

Loads q P = 2Pa = q

Differential-
Operators

−→∇ () =

⎛

⎜
⎜
⎝

∂()

∂x1
∂()

∂x2

⎞

⎟
⎟
⎠

−→∇ x() =

⎛

⎜
⎜
⎝

− ∂()

∂x2
∂()

∂x1

⎞

⎟
⎟
⎠

−→∇ • c = ∂c1
∂x1

+ ∂c2
∂x2

−→∇ c =

⎡

⎢
⎢
⎣

∂c1
∂x1

∂c2
∂x1

∂c1
∂x2

∂c2
∂x2

⎤

⎥
⎥
⎦

((),α) =

⎛

⎜
⎜
⎝

∂()

∂ξ1
∂()

∂ξ2

⎞

⎟
⎟
⎠

= a

⎛

⎜
⎜
⎝

∂()

∂x1
∂()

∂x2

⎞

⎟
⎟
⎠

= a
−→∇ ()

(ε3βα(),β ) = a
−→∇ x()

(cα,α) = a
−→∇ • c

(cα,β )T =
[

c1,1 c2,1
c1,2 c2,2

]

= a
−→∇ c

coordinate ξα indicated. The tensor of unity is given either by I (A) or by Kronecker’s
delta δαβ(K), and ε3αβ is the two-dimensional permutation tensor

δαβ =
[

1 0
0 1

]

, ε3αβ =
[

0 1
−1 0

]

. (3)

The equilibrium equations (1.4) and (1.6) of Palmow and Altenbach (1982) thus
transform to −→∇ • Q + q = 0

∧= 1
aqα,α + P = 0,−→∇ • G − Q

x
= 0

∧= 1
amαβ,α − qβ = 0,

(4)

and read rather classical.
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2.2 Kinematics

Now we consider the list of correspondence for the kinematic quantities in Table2.
Together with the definitions of Table1, several relations are revealed and included
in the Table. In anticipation of the following, the quantityψK , which is a key quantity
in the Schneider/Kienzler theory is introduced. This quantity

ψK = ε3αβψβ,α (5)

serves as a measure for the shear deformation. In the classical theory, i.e., in the
first-order approximation, ψK vanishes by invoking Kirchhoff’s celebrated normal
hypothesis

ψβ = −w,β , (6)

whereas in the second-order approximation, ψK is a fast decaying function and
describes edge effects.

2.3 Constitutive Equations

Within the linear theory of elasticity, it is postulated that the strain-energy density
per unit of plate area is a homogeneous quadratic form of the components of Λ and
M (cf. Table2). For an isotropic plate, the strain-energy density depends merely on

the modul of Λ, i.e., Λ • Λ and on the invariants of M, i.e., (I • •MSym)2, MSym •
•MSym and MSke • •MSke. Thus, we have four independent parameters denoted by
A,B, Γ , and F. Following the algebra in Palmow and Altenbach (1982) and intro-
ducing our denotation, we end up with the following constitutive relations:

mαβ = 1
a

{

2Γ ψβ,α + (F − Γ ) ψγ,γ δαβ + Bε3αβε3γ δψδ,γ

}

,

qα = A
(

w,α + ψα

)

.
(7)

(Note that in (2.6), w has to be replaced by
−→∇ w and −F by +F in (2.9).)

2.4 Plate-Differential Equation

Before insertion of the constitutive equations (7) into the equilibrium equations (4),
the authors represent the vector of rotations with a Helmholtz decomposition by two
scalar functions φA and ψA according to
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Φ = −→∇ φA + −→∇ xψ
A =

(

Φ1

Φ2

)

=
(

∂φA

∂x1
− ∂ψA

∂x2
∂φA

∂x2
+ ∂ψA

∂x1

)

. (8)

Transforming to our notation, we find

ψα = ψA
,α + ε3αβφA

,β , (9)

and by simple algebra, we assemble some helpful relations for the following:

ψα,β = ψA
,αβ + ε3αγ φA

,γβ,

ψα,α = ΔψA,

ε3αβ ψβ,α = ψK = −ΔφA.

(10)

Finally, three partial differential equations are derived for the calculation of the three
unknowns w, ψA, φA (see (3.7) and (3.5))

(F + Γ )ΔψA − a2A
(

w + ψA
) = 0,

(2Γ + B) ΔφA − a2A φA = 0,
AΔ

(

w + ψA
) + aP = 0.

(11)

2.5 Identification of the Elastic Moduli

Two test cases are considered: the rectangular plate under pure bending and the
circular plate under pure twist. For a homogeneous isotropic material, it turns out
that the test cases are verified, if the following values are chosen for the material
moduli, cf. (4.8), (4.24), and (4.26),

F = 1 + v

2
K,

Γ = 1 − v

2
K,

B = −1 − v

2
K, (12)

A = μ2Γ = π2

h2
1 − v

2
K = π2

24

1 − v

a2c2
K .

K is the classical plate stiffness

K = Eh3

12(1 − v2)
(13)
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and μ2

μ2 = π2

h2
(14)

follows as smallest, nontrivial eigenvalue of the Sturm–Liouville problem

d2V

dz2
+ μ2V = 0,

z = ±h

2
: dV

dz
= 0, (15)

which has this simple form, if the material is homogeneous and isotropic. The factor
μ2 is strongly related to the shear correction factor κ

κMi = μh2

12
= π2

12
∼= 0.822,

which appears first in Mindlin’s work (Mindlin 1951), where he investigated vibra-
tions of plates. The value itself does not differ much from Reisser’s shear-correction
factor

κRe = 5

6
∼= 0.833,

which is based on an energetic mean of the shear-stress distribution over the plate
thickness. Replacing A,B,F, and Γ in (7) and (11), the constitutive equations and
the equilibrium equations, respectively, yield

mαβ = K

a

(

(1 − v)ψβ,α + v ψγ,γ δαβ − 1 − v

2
ε3αβ ψK

)

,

qα = 1 − v

2

Kπ2

h2
(

w,α + ψα

) = 1 − v

2

K

a2c2
π2

12

(

w,α + ψα

) ; (16)

w + ψA = c2 12
π2

2
1−vΔψA,

φA = c2 12
π2 ΔφA,

π2

12
1
c2

1−v
2 KΔ

(

w + ψA
) = a3P.

(17)

Applying the Laplacian Δ to (17)1 and replacing Δ(w + ψA) in (17)3 leads to a
single equation for ψA as

KΔΔψA = −a3P. (18)

After integrating the decoupled differential equation system (17)2 and (18) for φA

andψA, the transverse displacementw follows from (17)1 without further integration.
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Before proceeding further, we want to estimate the order of magnitude of the
terms involved. We introduce the tension/compression stiffness D

D = Eh

1 − v2
, (19)

and obtain

K,B,F, Γ ∼ a2D · O(c2),

A ∼ D · O(c0). (20)

From Schneider and Kienzler (2015a), Schneider et al. (2014), Kienzler (2002),
Kienzler and Schneider (2012) we further know

P = O(c2),
ψK = −ΔφA = O(c2),
c2ΔψK = O(c2).

(21)

With it, the equations read

mαβ = K
a

(

(1 − v)ψβ,α + vψγ,γ δαβ

) − 1−v
2 ε3αβψK + D · O(c4),

qα = K
a2

1−v
2

π2

12c2 (w,α + ψα) + D · O(c2); (22)

KΔΔψA = −a3P + O(c4),
φA = 12c2

π2 ΔφA + O(c6),
w + ψA = c2 24

π2(1−v)ΔψA + O(c4).
(23)

It turns out that the equations approximate the three-dimensional theory on quite
different scales and are far from the idea of a uniform-approximation technique. We
come back to this later. Now, we derive a different representation of the equations in
order to compare them with other theories.

We multiply (23)3 with c2 and apply the biharmonic operator ΔΔ

c2ΔΔ(w + ψA) = c4
24

π2(1 − v)
ΔΔΔψA + O(c6). (24)

Terms of order c6 are neglected in a consistent second-order approximation. There-
fore, it follows

c4ΔΔ(w + ψA) = 0 + O(c6) (25)

and the term c4ΔΔΔψA on the right-hand side of (24) can be replaced by−c4ΔΔΔw,
and, combined with Eq. (23)1 multiplied by c2, we have

KΔΔψA = −KΔΔw − c2
24

π2(1 − v)
a3ΔP = −a3P, (26)
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leading finally with

KΔΔw = a3
(

P − c2
24

π2(1 − v)
ΔP

)

+ O(c6) (27)

to one partial differential equation inw. In (23)2, we apply the operatorΔ and replace
ΔφA by −ψK , with the result

c2
(

ψK − 12c2

π2
ΔψK

)

= 0 + O(c6) . (28)

Using a similar procedure, we replace ψβ,α by (10)1 in the bending tensor (16)1 and
use (10)3 multiplied by c2 giving rise to

mA
αβ = − K

a

{(

1 + 24

π2

c2

1 − v
Δ

)
[

(1 − v)w,αβ + vw,γ γ δαβ

]

+ c2
6

π2
(1 − v)

(

ε3αβψK
,β + ε3βγ ψK

,α

)

,γ

}

(29)

For the transverse shear forces (16)2 we use (9), (23)3, (23)2, (5), and (23)1

qAα = −K

a2

(

Δw,α + 1 − v

2
ε3αβψ,β

)

− c2a
24

π2(1 − v)
P,α . (30)

3 Comparison of the Palmow/Altenbach Theory
with the Theories of Schneider/Kienzler
and Marguerre/Hencky

In textbook (Maguerre and Woernle 1995), the theory can be found that we call
the theory of Marguerre/Hencky, although this theory is most probably attributed to
other scientists. We beg the pardon of any reader who knows better and are grateful
for any hints. The derivation is straight forward. The hypothesis is used that straight
fibers vertical to the plate mid-plane remain straight and are not stretched, i.e., the
thickness strains are neglected (w = w(ξ1, ξ2)) and that the shear strains are con-
stant over the plate thickness, what is not tolerable, since they have to vanish at
the plate faces (Eschenauer et al. 1997). This deficiency is counter balanced using
Reissner’s (1944) shear-correction factor κRe = 5

/

6.We compile the resulting equa-
tionswithout detailed derivation and add the corresponding equation of the consistent
second-order approximation, cf. Kienzler and Schneider (2016) ϑ .
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KΔΔwA = a3
(

1 − c2
12

π2

2

1 − v
Δ

)

P,

KΔΔwM = a3
(

1 − c2
6

5

2

1 − v
Δ

)

P, (31)

KΔΔwK = a3
(

1 − c2
6

5

2 − v

1 − v
Δ

)

P;

(A) : ψK − 12
π2 ΔψK = 0,

(M) : ψK − 6
5ΔψK = 0,

(K) : ψK − 6
5ΔψK = 0;

(32)

qAα = −K

a2

(

Δw,α + 1 − v

2
ε3αβψK

,β

)

− c2a
12

π2

2

1 − v
P,α,

qMα = −K

a2

(

Δw,α + 1 − v

2
ε3αβψK

,β

)

− c2a
6

5

2

1 − v
P,α, (33)

qKα = −K

a2

(

Δw,α + 1 − v

2
ε3αβψK

,β

)

− c2a
6

5

2 − v

1 − v
P,α;

mA
αβ = −K

a

{(

1 + 24
π2(1−v)c

2Δ
) [

(1 − v)w,αβ + vw,γ γ δαβ

]

+ c2 6
π2 (1 − v)

(

ε3αγ ψK
,β + ε3βγ ψK

,α

)

,γ

}

,

mM
αβ = −K

a

{(

1 + 12
5(1−v)c

2Δ
) [

(1 − v)w,αβ + vw,γ γ δαβ

]

+ c2 35 (1 − v)
(

ε3αγ ψK
,β + ε3βγ ψK

,α

)

,γ

}

,

mK
αβ = −K

a

{(

1 + 12
5(1−v)c

2Δ
) [

(1 − v)w,αβ + vw,γ γ δαβ

]

+ c2 35 (1 − v)
(

ε3αγ ψK
,β + ε3βγ ψK

,α

)

,γ

}

+ c2 65
v

1−v a
2Pδαβ.

(34)

The factors ac2P,α and a2c2P can be replaced by c2 K
a2 ΔΔw,α and c2 Ka ΔΔw, respec-

tively, without loss of approximation accuracy, cf. Schneider et al. (2014).
If 1

κMi = 12
/

π2 ∼= 1.22 is replaced by 1
κRe = 6

/

5 = 1.20 (the values differ by
about 1%) in the Palmow/Altenbach equations, they coincide with the Marguerre/
Hencky equations and vice versa. The factor 5

/

6 comes from an energetic reason-
ing, whereas π2

/

12 is the result from a test example involving a circular plate.
If another test example, e.g., a rectangular plate, would have been considered, the
shear-correction factor would probably not involve the factor π2. Therefore, it is
immediately obvious that the Palmow/Altenbach and the Marguerre/Hencky the-
ories differ only by the shear-correction factor. Next, let us exemplarily compare
the Maguerre/Hencky theory with the consistent approximation. It is seen that the
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differential equations (32) for the shear-strain measureψK are identical, whereas the
differential equations for the transverse displacement w (31), the stress resultantsQα

(33) and Mαβ (34) differ all by the amount

c2
6

5

v

1 − v
P̂ = c2

1

a3
K
6

5

v

1 − v
ΔΔŵ, (35)

either in the form P̂ = ΔP in (31) in the form P̂ = aP,α in (33) or P̂ = a2P in (34).
The same reasoning applies for the Palmow/Altenbach theory. In the following, we
will interpret this term and show, how to extend the Palmow/Altenbach theory in
order to be consistent within a second-order approximation.

4 Extension of the Palmow/Altenbach Theory

In difference to the consistent approach, the Palmow/Altenbach theory does not take
strains in thickness direction into account,say ε33. The transverse displacement w is
considered an energetically motivated average over the plate thickness but assumed
to be constant, i.e., ε33 = 0. (Within the Cosserat theory, this could be included by a
suitable director.) Since plane-stress conditions are assumed simultaneously (which
is a contradiction in itself), a first-order correction in the thickness strain, which
is proportional to c2Δw, is thus included, cf., e.g., Kienzler (2002). The deviation
from the plane-stress state is, therefore, of the order O(c4) and should be propor-
tional to ΔΔw. Let us illustrate the problem by considering a bended plate element
(strongly bent for reasons of illustration) in Fig. 4. The longitudinal fibers at the
bottom of the plate ξ3 = +h

/

2a will be stretched and the fibers on the upper plane
ξ3 = −h

/

2a are compressed. Indeed for the antisymmetric loading (see Fig. 2), it
is an immediate consequence of the three-dimensional problem of elasticity (cf.
Schneider and Kienzler 2015b), that u1 and also u2 are generally odd functions in

Fig. 4 Bent plate element
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ξ3, whereas u3 is an even function in ξ3. Therefore, the resulting in-plane strains εαβ

are odd functions, too, i.e.,

εαβ(+ξ3) = −εαβ(−ξ3). (36)

Due to transverse contraction (Poisson’s ratio ν), ε11and ε22 are accompanied by
transverse strains ε33, which are also odd functions in ξ3, leading therefore to no
overall thickness change

∫ + h
2a

− h
2a

ε33dξ3 = 0.

However, transverse strains are not absent locally except in the neutral plane ξ3 = 0.
Since isotropic material is assumed throughout, Hooke’s law, cf., e.g., Altenbach
et al. (2004)

σij = Eijkl εkl (37)

does not couple shear strains εkl(k �= l) with longitudinal strains εkl(k = l) and a
measure for the thickness strain will be proportional to

E1133

E1111
= E2233

E1111
= v

1 − v
. (38)

The in-plane strains in plate theory are proportional to ψα,β (see (16)1)

εαβ ∼ ψα,β. (39)

The one and only possibility to include a scalar (ε33) thickness strain measure in the
kinematics is, therefore, to modify the distorsion tensor in an isotropic manner. After
these preliminary reflections, we try the following educated guess

(

ψ∗
α,β

) =
(

ψα,β + c2α
v

1 − v
ΔΔwδαβ

)

=
[

ψ1,1 + c2α v
1−vΔΔw ψ1,2

ψ2,1 ψ2,2 + c2α v
1−vΔΔw

]

. (40)

The shortcoming of this ansatz is that material parameters (here: v) are involved
in the kinematic equations, but some a priori assumptions have to be introduced to
cover the thickness strain properly. An alternative would be to introduce the thick-
ness strain measure as independent kinematical variable, introduce an energetically
complementary stress resultant, e.g., 1m33 (cf. Kienzler 2002; Schneider and Kien-
zler 2015a; Kienzler and Schneider 2012), and to develop additional constitutive
equations from the extended strain-energy density U. However, we follow the much
less pretentious ansatz (40) with a constant α, which will be accommodated in the
following.
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By inspection of the strain measures in Table2, it turns out that merely the skew-
symmetric part MSke is changed, whereas all other strain measures are not affected

MSke∗ =
[

0 1
2 (ψ1,1 + ψ2,2) + c2α v

1−vΔΔw
− 1

2 (ψ1,1 + ψ2,2) − c2α v
1−vΔΔw 0

]

,

MSke∗
αβ = ε3αβ

(
1

2
ψγ,γ + c2α

v

1 − v
ΔΔw

)

. (41)

In the strain energy, only the term involving the material parameter F is changed and
this change affects merely the tensor of bending moments. Introducing (40) into (7)
reads

m∗
αβ = 1

a

{

2Γ ψβ,α + (F − Γ )ψγ,γ δαβ + 2Fc2α
v

1 − v
ΔΔwδαβ + Bε3αβψK

}

,

q∗
α = qα. (42)

The equilibrium equations (4) in the form 1
am

∗
βα,β − q∗

α = 0 deliver with ψA and φA

as introduced in (19)

(F + Γ )ΔψA − a2A(w + ψA) + 2Fc2α v
1−vΔΔw = 0,

(2Γ + B)ΔφA − a2A φA = 0,
AΔ(w + ψA) = −aP.

(43)

Itmaybementioned that the order-of-magnitude estimation (20) and (21), stays valid,
although the material parameters are not identified yet. Note that in comparison with
(11), only (11)1 has been extended by a term of the order D · O(c4).

w + ψA = F + Γ

a2A
ΔψA + 2F

a2A
c2α

v

1 − v
ΔΔw + O(c6), (44)

and comparing with (23) shows that the term O(c4) is present and the equation is
now accurate within a consistent second-order approach. Multiplying by c2 and c4

leads to

c2(w + ψA) = c2
F + Γ

a2A
ΔψA + O(c6), (45)

c4ψA = −c4w + O(c6), (46)

respectively.
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We use (9), (10)1, (45), (46), (43)2, and (10)3 to rearrange m∗
αβ (42)

m∗
αβ = 1

a
{2Γ (

ψA
,αβ + ε3βγ φA

,γ α

)

+ (F − Γ )ψA
,γ γ δαβ + Bε3αβψK

+ 2Fc2α
v

1 − v
ΔΔwδαβ

} + O(c6)

= 1

a

{

2Γ

(

−w,αβ − c2
F + Γ

a2A
Δw,αβ

)

+ (F − Γ )

(

−w,γ γ − c2
F + Γ

a2A
Δw,γ γ

)

δαβ

− 2Γ
2Γ + B

a2A
ε3βγ ψK

,γ α + B
2Γ + B

a2A
ε3αβψK

,γ γ

+ 2Fc2α
v

1 − v
ΔΔwδαβ

}

= −1

a

{(

1 + F + Γ

a2A
Δ

)
(

2Γw,αβ + (F − Γ )w,γ γ δαβ

)

+ 2Γ + B

a2A

(

2Γ ε3βγ ψK
,γ α − Bε3αβψK

,γ γ

)

− 2Fc2α
v

1 − v
ΔΔwδαβ

}

+ D · O(c6). (47)

Now we use the consistent second-order plate theory as “test example” to identify
the material parameters. Comparing (47) with (34)3, we find with the identity

ε3αβψK
,γ γ = ε3αγ ψK

,γβ − ε3βγ ψK
,γ α (48)

the following relations

2Γ = K(1 − v),

F − Γ = vK,

F+Γ
a2A = 12c2

5(1−v) ,

2Γ +B
a2A (2Γ + B) = Kc2 35 (1 − v),

2Γ +B
a2A B = −Kc2 35 (1 − v),

2Fc2α v
1−vΔΔw = Kc2 65

v
1−vΔΔw.

(49)

This though overdetermined system of algebraic equations has a unique solution

Γ = 1 − v

2
K,
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F = 1 + v

2
K,

B = −1 − v

2
K, (50)

A = 5

12

1 − v

a2c2
K,

α = 6

5

1

1 + v
.

In comparison to (12), it turns out that Γ,F, and B are not changed, whereas in A,
the term π2

24
∼= 0.411 is replaced by 5

12
∼= 0.417, i.e., κMi by κRe, and the thickness

strain measure, which has to be added in the distorsion tensor (45), is given by

c2
6

5

v

1 − v2
ΔΔw.

It may be mentioned that a less educated though also less intriguing guess, i.e.,

c2βϑ(ξ1ξ2)

would lead to the same result, since ϑ would be identified byΔΔw. After identifying
all constants, let us explore the change in q∗

α . Starting with (7)2, we have with (9)

q∗
α = A(w,α + ψA

,α + ε3αβ φA
,β).

Preceding further, the extended Eq. (44) has to be invoked rather than (11)1 leading
to

q∗
α = 1

a2

{

(F + Γ )ΔψA
,α + 2Fc2α

v

1 − v
ΔΔw,α + a2A ε3αβφA

,β

}

. (51)

Using finally (45), (43), and (10)3, we arrive at

q∗
α = − 1

a2

{

(F + Γ )

(

1 + F + Γ

a2A
Δ

)

Δw,α − 2Fc2α
v

1 − v
ΔΔw,α

+ (B + 2Γ )ε3αβψK
,β

}

(52)

Introducing the already identified constants (50), we recover

q∗
α = K

a2

{

Δw,α + c2
6(2 − v)

5(1 − v)
ΔΔw,α +1 − v

2
ε3αβψK

,β

}

!= qKα + O(c6). (53)

Finally, we apply the pseudo-reduction technique to the differential equation system
(43). First, we replace the moduli by (50) and obtain
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KΔψA − 5(1 − v)

12c2
K(w + ψA) + c2K

6

5

v

1 − v
ΔΔw = 0

1 − v

2
ΔφA − 5(1 − v)

12c2
KφA = 0 (54)

5(1 − v)

12a2c2
KΔ(w + ψA) = −aP.

We apply the Laplacian to (54)1 and eliminate Δ(w + ψA) by (54)3

KΔΔψA + a3P + c2K
6

5

v

1 − v
ΔΔΔw + O(c6) = 0. (55)

Application of the operator c2Δ to (54)3 delivers

KΔΔψA = −KΔΔw − a3ΔP
12

5
c2

1

1 − v
+ O(c6). (56)

Finally, c2KΔΔΔw may be replaced by c2a3ΔP leading to

KΔΔw = a3
(

1 − c2
6

5

2 − v

1 − v
Δ

)

P + O(c6), (57)

coinciding with the differential equation of the consistent second-order plate theory.

5 Conclusion

A comparison between a plate theory based on the direct approach and on the consis-
tent second-order plate theory is given.When adopting the Palmow/Altenbach theory,
the identification of the elastic moduli leads to a shear-correction factor, which is
determined to π2/12. Thickness strains are not considered. In the paper, it is shown
how a small addition in the distorsion tensor by a scalar-valued thickness measure
extends the Palmow/Altenbach theory to a consistent second-order plate theory. The
same reasoning applies for the Marguerre/Hencky-plate theory.
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Modelling of a Rotating Active Thin-Walled
Composite Beam System Subjected to High
Electric Fields

Jarosław Latalski

Abstract An electromechanical coupled theory is used to develop the equations
of motion of a rotating thin-walled composite beam with surface bonded/embedded
piezoelectric transducers. The higher order constitutive relations for the piezoceramic
material are used to take into account the impact of a high electric field. In the
mathematical model of the hybrid structure, the non-classical effects like material
anisotropy, rotary inertia and transverse shear deformation as well as an arbitrary
beam pitch angle are incorporated. Moreover, the model considers the hub mass
moment of inertia and a non-constant rotating speed case. This approach results in
an additional equation of motion for the hub sub-system and enhances the generality
of the formulation. It is shown that final equations of motion of the hub–beam system
are mutually coupled and form a nonlinear system of partial differential equations.
Comparing to the purely mechanical model, the proposed electromechanical one
introduces additional stiffness-type couplings between individual degrees of freedom
of the system.

1 Introduction

The development of smart materials offers a great potential for advanced modern
structural systems. The engineering applications of electromechanical or magneto-
mechanicalmaterials aremet in aerospace, automotive, civil,mechanical, biomedical
and communication engineering disciplines.

One of the most popular materials exhibiting electromechanical properties are
piezocrystals and piezoceramics. In smart systems, these materials are embedded in
the host structure and used as actuators and sensors by taking advantage of direct
and converse piezoelectric effects. Therefore, the smart material is not only expected
to bear mechanical loadings but also to feature the capability of strain actuating,
structural health monitoring, nondestructive sensing, etc.
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Further benefits in structural static and dynamic characteristics may be achieved
by a combination of smart materials and composite material technology. Results of
scientific research from the past years confirm synergistic interactions of anisotropic
compositematerial tailoring and adaptivematerial properties. Excellent examples are
improvement in helicopter rotor vibration that can be achieved through the imple-
mentation of active control technology using smart materials combined with both
light-weight and directional properties ofmultilayered laminates Brockmann (2009).

To fully benefit from the unique adaptive capabilities of piezoelectric composite
structures, much research is focused on developing advanced mathematical models
of these systems. The initial studies of hybrid systems did not consider the electric
and mechanic field couplings, e.g. Detwiler et al. (1995). Also, Song et al. (2001),
Librescu and Song (2006) studied thin-walled composites with embedded piezo-
ceramic layers. In the proposed mathematical model of the smart system, authors
separately considered mechanical and electrical domains. The mechanical proper-
ties of the hybrid material resulted solely from the combination of stiffnesses of
two materials. On the other hand, the adaptive nature of the structure was captured
by introducing a dynamic moment acting at the tip of the beam. In control algo-
rithms, this moment was related, via a prescribed functional relationship, with one
of the various kinematical quantities characterizing the response of the structure.
This method, referred to as the boundary moment control methodology, does not
consider electromechanical properties of piezoceramics and neglects the electrical
and mechanical domains coupling. Moreover, this approach is not capable of taking
into consideration any electrical circuitry connected to the piezoelectric device.

In general, the errors that result from using uncoupled models, as opposed to
coupled ones, are relatively moderate. However, there are some cases in which very
large differences exist when using the two approaches. One such case is for high-
frequency vibrations or thick piezoelectric material layers (Thornburgh et al. 2004).

The coupled electromechanical models of smart composite materials were stud-
ied by e.g. Mitchell and Reddy (1995). Authors presented a method of enhancing
current plate theories to include the charge equations of electrostatics. In this way,
a physically correct model of the piezoelectric effect was included. Further stud-
ies on coupled domain models of piezoelectric composite plates were done by e.g.
Li et al. (1998) and Zhou et al. (2000). Chattopadhyay et al. (1999) elaborated
a refined higher order displacement field model of a plate with eccentricity to inves-
tigate the behaviour of smart helicopter rotor blades. The proposed theory was based
on a three-dimensional model; so no typical one-dimensional beam equations were
formulated. The procedure was implemented using finite element method.

Further improvement in modelling hybrid systems may be achieved by taking
into account the possible non-linear effects. This is especially important in case of
high power electromechanical systems often operated under extreme conditions. The
common linear models provide a reasonable approximation of the characteristics of
piezoelectricmaterials at low levels of applied electric field and stress. Unfortunately,
these relations become increasingly inaccurate as the electric field and stress levels
increase. This is manifested in numerous laboratory experiments on the piezoelectric
materials and piezoelectric devices—see e.g. Arafa and Baz (2004), Wagner and
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Hagedorn (2003), Yao et al. (2004). Concerning the electric field, the discrepancies
between linear and non-linear models are apparent at relatively high electric field
levels (≈500V/mm) (Birman2005).Nonetheless, as reported byWagner andHagedorn
(2003), non-linear effects can be observed even if the electric field remains small but
the piezoceramic actuators are excited in resonance.

A comprehensive review of non-linear effects in piezoelectric ceramics was given
byHall (2001). Author discussed themost important dielectric and piezoelectric non-
linearities in piezoelectric ceramics as well as less known elastic ones. Studies were
concluded with the observation that in most ferroelectric ceramics the dielectric,
elastic and piezoelectric coefficients increased considerably with electric field and
stress amplitude. It was in many cases that the relevant coefficients increased in
an almost linear way with field/stress amplitude. In author’s opinion, this provides
the fairly straightforward means of modelling the non-linear effects in piezoceramic
components.

The similar approach tomodel the non-linear effects in active elements by presum-
ing the coupling coefficients to depend on the electric field has been proposed by other
authors too. Priya et al. (2001) found that the elastic and electromechanical proper-
ties of the material were dependent on the square of the strain magnitude. Williams
(2004) formulated explicit expressions for piezoelectric coefficients as functions of
peak-to-peak voltage amplitude squared. Non-linear formula for the piezoelectric
coefficients with respect to actuator strain has been used by Silva et al. (2015) to
study the non-linear behaviour of piezoelectric energy harvesters.

An alternative approach to consider non-linearities in piezoceramics is to consider
a non-linear constitutive equations system based on higher order electromechani-
cal coupling effect. This method was incorporated by e.g. Tiersten is his study of
plates (Tiersten 1993). Author proposed using a linear theory in terms of structural
displacements but cubic in electric field. Yang et al. (2007) presented an approxi-
mate non-linear analysis of a simple plate thickness-shear mode transformer near
resonance. Non-linear constitutive equations of electroelasticity were implemented.
Birman (2005) considered a physically nonlinear piezoelectric material behaviour
and discussed its possible application for a piezoelectric rod subjected to periodic
electric field. In finite element studies of composite smart systems, the non-linear
constitutive equations were adopted by e.g. Samal et al. (2005).

In the present contribution, the equations of motion of a rotating thin-walled
beam with surface mounted/embedded piezoelectric transducer are developed by
the Hamilton’s method. The higher order constitutive relations for the piezoce-
ramic material are used to take into account the impact of high electric field. In
the mathematical model of the hybrid structure, the non-classical effects like mater-
ial anisotropy, rotary inertia and transverse shear deformation as well as an arbitrary
beam pitch angle are incorporated.

To derive governing equations of the system,we take the similar approach as it was
taken for conventional composite beam in the previous author’s papers (Georgiades
et al. 2014; Latalski et al. 2016). That is, the constitutive model at the lamina level
in the fibre coordinate system is set, and then transformed to the global coordinate
system. Next, the non-linear constitutive model for the piezoceramic material is used
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to find the stress formula at the level of smartmaterial layer. These relations are finally
combined for all layers to establish the constitutivemodel of the hybrid laminate with
the embedded piezoceramic layer.

The expressions for 2-D stress resultants and stress couples are established. At the
next step, these are integrated around the profile cross-sectionmid-line circumference
to formulate the final governing equations. The resulting equations are similar to the
regular beam ones obtained previously, however, additional terms arise in this case
due to the presence of electromechanical coupling.

2 Problem Formulation

Let us consider a slender, straight and elastic composite thin-walled beam clamped
at the rigid hub of radius R0 and inertia Jh rotating about a fixed frame axis CZ0

as shown in Fig. 1. The hub’s current position is described by an angle ψ(t) with
respect to an inertial reference frame (X0,Y0, Z0) and the rotational speed of the
system ψ̇(t) is assumed to be arbitrary, i.e. not necessarily constant. The system is
driven by an external torque Text applied to the hub.

The beam has a cylindrical or prismatic cross section, spanwise uniform and
without initial twist in its natural state. Presetting angle of the beam with respect to
a rotation plane (X0,Y0) is denoted by θ—see Fig. 1b. The laminae material of the
beam is linearly elastic (Hookean) and its principal axes are skewed with respect
to the wall local coordinate system by the arbitrary angle α as measured from the
cross-section circumferential direction axis s (see Fig. 3 in the following section).

Apart from the fibre unidirectional layers, there are additional piezoceramic layers
of thickness hp. Piezoelectric material is oriented with its polarization axis normal
to the plane of the beam and has fully electroded major surfaces. These elements are
either symmetrically embedded into the laminate or bonded to the outer surfaces.
This is the usual geometry for transversely operating piezoelectric actuators and
sensors. Moreover, it is supposed that these piezoelectric layers span the total length

(a) (b)

Fig. 1 a Rotating thin-walled composite beam with electroded surfaces; the coordinate systems
(X0, Y0, Z0) and (x, y, z) are inertial and local one related to the beam, respectively;b displacements
of a representative point A due to elastic deformation of the specimen
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(a)

(b)

Fig. 2 Rectangular cross-section thin-walled beam with circumferentially asymmetric stiffness
(CAS) lamination scheme and surface bonded piezoactuators

of the hosting beam so that the mechanical properties of the structure are spanwise
uniform.

For the discussed configuration of the piezoelement, the electric displacement
becomes zero along the two in-plane directions and only the out-of-plane component
of the electric displacement vector is different from 0.

3 Mathematical Model of the System

For the derivation of the mathematical model of the system, the following kinematic
and static assumptions are postulated:

1. the original shape of the cross-section is maintained in its plane, but is allowed
to warp out of the plane,

2. the concept of the non-uniform torsional deformation is applied. Therefore, the
rate of beam twist ϕ′ = dϕ

dx depends in general on the spanwise coordinate x ,
3. in addition to the primary warping effects (related to the cross-section shape)

a secondary warping related to the wall thickness is also considered,
4. the transverse beam shear deformations γxy and γxz are taken into account. These

are assumed to be uniform over the beam cross-section,
5. the ratio of wall thickness to the radius of curvature at any point of the beam wall

is negligibly small while compared to unity. In a special case of the prismatic
beams made of planar segments, this ratio is exactly 0,

6. the stress in transverse normal (σnn) direction and the hoop stress resultant (Nss)

are very small and can be neglected,
7. the piezoceramic layers are perfectly bonded to the hosting structure.
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3.1 Kinematic Relations

The mechanical equations of motion of the rotating beam and charge equation of
electrostatics are derived according to the extended Hamilton’s principle of the least
action

δ J =
∫ t2

t1

(

δT − δU + δWext
)

dt = 0, (1)

where J is the action, T is the kinetic energy, U is the potential energy including
mechanical (Um) and electrical components (Ue), and the work done by the external
loads is given by the Wext term.

To write down the formulas for both energies let us consider an arbitrary point
A—see Fig. 1b—located on the beam profile that is specified by its position vector
r = {x,Y, Z }T in the local beamcoordinate system (0, x, y, z). As thewhole structure
rotates by ψ(t) about the CZ0 axis and simultaneously the beam experiences an
elastic deformation the discussed point A occupies a new position in space A′ that is
defined in the inertial frame of reference (CX0,Y0, Z0) as

R =
⎧

⎨

⎩

(Dx + x + R0) cosψ − (Dy + Y ) cos θ sinψ + (Dz + Z) sin θ sinψ

(Dx + x + R0) sinψ + (Dy + Y ) cos θ cosψ − (Dz + Z) sin θ cosψ

(Dy + Y ) sin θ + (Dz + Z) cos θ

⎫

⎬

⎭
. (2)

Dx , Dy and Dz are displacements of the given point A expressed in the local coor-
dinates frame (0, x, y, z) as

Dx = u0(x, t) + ϑy(x, t)
(

z − n dy
ds

)+ ϑz(x, t)
(

y + n dz
ds

)− G(n, s)ϕ′(x, t)

Dy = v0 (x, t) − (y + n dz
ds

) (

1 − cosϕ(x, t)
)−

(

z − n dy
ds

)

sin ϕ(x, t)

≈ v0 (x, t) − 1
2

(

y + n dz
ds

)

ϕ2(x, t) −
(

z − n dy
ds

)

ϕ(x, t)

Dz = w0 (x, t) + (y + n dz
ds

)

sin ϕ(x, t) −
(

z − n dy
ds

) (

1 − cosϕ(x, t)
)

≈ w0 (x, t) + (y + n dz
ds

)

ϕ(x, t) − 1
2

(

z − n dy
ds

)

ϕ2(x, t)

(3)

where off-mid-line coordinates Y, Z have been replaced by their profile mid-line
counterparts y, z as Y = y + n dz

ds and Z = z − n dy
ds , respectively (Georgiades et al.

2014; Librescu and Song 2006).
In formulas (3) variables u0, v0, w0 are displacements of the point 0 located

on the beam axis and belonging to the same cross-section as the discussed point
A, ϕ(x, t) denotes rotation of the cross section (profile twist). Angles ϑy(x, t) =
γxz − w′

0 and ϑz(x, t) = γxy − v′
0 represent cross-section rotations about respective

local axes y and z considering the shear effect. These six variables constitute a set of
basic mechanical unknowns of the problem. Besides, the first equation in the above
set includes warping effect due to the warping function term G(s, n), where n stands
for the distance from the cross-section wall mid-line to the location of the considered
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Fig. 3 In-plane and
transversal stress resultants
and stress couples acting on
a beam wall representative
element

point A, and s is a circumferential coordinate (measured counterclockwise—see also
Fig. 3 in the next section).

Moreover, in the second and the third equation, the approximation cosϕ ≈
1−1/2 ϕ2 is adopted. The final linearization of resulting state equations is performed
after accepting this approximation. This approach allows to account for all terms
present within a linear mathematical model of the structure.

3.2 Velocity Vector

The velocity vector of the discussed pointA of the elastic body in the inertial reference
frame can be obtained by differentiating the position vector (2) with respect to time
as

Ṙx = [−(Dx + x + R0) sinψ − (Dy+Y ) cos θ cosψ + (Dz+Z) sin θ cosψ(t)
]

ψ̇

+ Ḋx cosψ − Ḋy cos θ sinψ + Ḋz sin θ sinψ,

Ṙy = [

(Dx + x + R0) cosψ − (Dy + Y ) cos θ sinψ + (Dz + Z) sin θ sinψ
]

ψ̇

+ Ḋx sinψ + Ḋy cos θ cosψ − Ḋz sin θ cosψ,

Ṙz = Ḋy sin θ + Ḋz cos θ,

(4)

where overdotmeans timederivative, so Ḋx , Ḋy and Ḋz terms correspond tovelocities
of deformation and ψ = ψ̇(t) is the angular velocity of the rigid hub.

Given above expressions allow to express the total kinetic energy of the system—
i.e. the energy of the beam and the hub

T = 1

2
Jhψ̇

2(t) + 1

2

∫

V
ρ ṘᵀṘ dV, (5)

where designation ρ refers to average beam material density and V refers to repre-
sentative volume element and infinitesimal element is dV = dndsdx ; Jh is the mass
moment of hub inertia.
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3.3 Strains and Stresses

Bearing in mind above given displacement relations (3), the following strain expres-
sions can be obtained

εxx = ε(0)
xx + nε(1)

xx = u′
0 + zϑ ′

y + yϑ ′
z − G(0)(s)ϕ′′ + 1

2

(

v′
0 − zϕ′)2

+ 1
2

(

w′
0 + yϕ′)2 + n

(
dz
dsϑ

′
z − dy

ds ϑ
′
y − G(1)(s)ϕ′′

)

γxs = γ (0)
xs + nγ (1)

xs = (ϑy + w′
0)

dz
ds + (ϑz + v′

0)
dy
ds + g(0)(s)ϕ′ + ng(1)(s)ϕ′

γxn = γ (0)
xn = −(ϑy + w′

0)
dy
ds + (ϑz + v′

0)
dz
ds

(6)

where the prime symbol corresponds to differentiation with respect to space variable
x , and superscripts ( )(0) and ( )(1) denote mid-line and off-mid-line components,
respectively.

Although the mathematical model of the beam is limited to the linear case, higher
order terms associated with the lateral and transversal displacements in axial strain
εxx are taken into account—these are emphasized by underline in (6). These terms
play a crucial role in proper modelling of the blade stiffening effect arising from the
system rotation ψ̇(t). This approach is one of several methodologies that are used
in linear models of rotating systems to capture this phenomena. For further reading
on this and other centrifugal effect treatments please consult appropriate papers, e.g.
Mayo et al. (2004).

One can easily check that according to the appropriate linear definitions, the three
remaining strains εyy , εzz and γyz are identically zero. This observation conforms the
cross-section non-deformability assumption 1, posed at the very beginning.

To write down the expressions for stresses in piezoceramic and in laminate layers,
individual constitutive relations have to be used. Polarized ceramics like PZT-5,
exhibit transverse isotropic properties. Based on the fundamental work by Maugin
(1985) and by Joshi (1992), a set of full non-linear constitutive relations for this type
of material can be written. For the specific case of ceramics subjected to electric field
in polling direction x3 (thickness-wise) and limiting the analysis to linear strains and
cubic non-linearities in the electric field, variable constitutive equations for converse
effect are simplified to the following form

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

σss

σxx

σnn

σxn

σsn

σxs

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(p)

=

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

C̃11 C̃12 C̃13 0 0 0
C̃12 C̃11 C̃13 0 0 0
C̃13 C̃13 C̃33 0 0 0
0 0 0 C̃44 0 0
0 0 0 0 C̃55 0
0 0 0 0 0 C̃66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εss
εxx
εnn
γxn

γsn
γxs

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 0 e31
0 0 e31
0 0 e33
0 e15 0
e15 0 0
0 0 0

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧

⎨

⎩

0
0
E3

⎫

⎬

⎭
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−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

b̂11 b̂12 b̂31 0 0 0
b̂12 b̂11 b̂31 0 0 0
b̂13 b̂13 b̂33 0 0 0
0 0 0 b̂44 0 0
0 0 0 0 b̂44 0
0 0 0 0 0 b̂66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0
0
E2
3
0
0
0

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

−

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

f11 f12 f31 0 0 0
f12 f11 f31 0 0 0
f13 f13 f33 0 0 0
0 0 0 f44 0 0
0 0 0 0 f44 0
0 0 0 0 0 f66

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0
0
E3
3
0
0
0

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

(7)

where C̃i j stands for the second order piezoceramic elasticity tensor at constant elec-
tric field, ei j is the tensor of piezoelectric coefficients, b̂i j is effective electrostrictive
constants tensor and fi j is fourth order piezoelectric tensor. Subscript (p) is used to
denote stresses in the actuator and to make a clear distinction between the piezoce-
ramic and the laminate layers discussed later.

For the direct piezoelectric effect, the relation is given as follows

⎧

⎨

⎩

D1

D2

D3

⎫

⎬

⎭
=
⎡

⎣

0 0 0 0 e15 0
0 0 0 e15 0 0
e31 e31 e33 0 0 0

⎤

⎦

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

εss
εxx
εnn
γxn

γsn
γxs

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+
⎡

⎣

ξ11 0 0
0 ξ11 0
0 0 ξ33

⎤

⎦

⎧

⎨

⎩

0
0
E3

⎫

⎬

⎭

+
⎡

⎣

0 0 0 0 χ15 0
0 0 0 χ15 0 0

χ15 χ15 χ33 0 0 0

⎤

⎦

⎧

⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

0
0
E2
3
0
0
0

⎫

⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

+ E3
3

(

χ̂1 + χ̂2
)

⎧

⎨

⎩

0
0
1

⎫

⎬

⎭
+ E2

3

(

χ̂2 + χ̂3
)

⎧

⎨

⎩

0
0
E3

⎫

⎬

⎭
(8)

where ξi j is second order permittivity tensor, χ and χ̂ are third and fourth order
electric susceptibility tensors, respectively. Considered equations, if limited to the
second order nonlinearities, get simplified to the form given by Tiersten (1993). Full
form of transverse isotropic ceramic constitutive equations up to third order electric
non-linearities and arbitrary electric field vector has been given by Yang (1999).

Following the assumption 6 on pp. XXX one arrives at the set of reduced consti-
tutive equations for the piezoceramics
⎧

⎨

⎩

σss

σxx

σxs

⎫

⎬

⎭

(p)

=
⎡

⎣

Q̃11 Q̃12 0
Q̃12 Q̃11 0
0 0 Q̃66

⎤

⎦

⎧

⎨

⎩

εss
εxx
γss

⎫

⎬

⎭
−
⎧

⎨

⎩

ẽ31E3

ẽ31E3

0

⎫

⎬

⎭
−
⎧

⎨

⎩

b̃31E2
3

b̃31E2
3

0

⎫

⎬

⎭
−
⎧

⎨

⎩

f̃31E3
3

f̃31E3
3

0

⎫

⎬

⎭
(9)

σxn(p) = C̃44γxn (10)
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where

Q̃11 = Q̃22 = C̃11 − C̃2
13

C̃33

ẽ31 = e31 − C̃13e33

C̃33

Q̃12 = C̃12 − C̃2
13

C̃33

b̃31 = b̂31 − C̃13b̂33

C̃33

Q̃66 = C̃66 f̃31 = f31 − C̃13 f33

C̃33

Similar reduced constitutive equations may be formulated for individual compos-
ite laminae modelled as an orthotropic layer with material principal axis out of the
structure reference system

⎧

⎨

⎩

σss

σxx

σxs

⎫

⎬

⎭

(c)

=
⎡

⎣

�Q11 �Q12 �Q16�Q12 �Q22 �Q26�Q16 �Q26 �Q66

⎤

⎦

⎧

⎨

⎩

εss
εxx
γss

⎫

⎬

⎭
(11)

σxn(c) = �C44γxn σsn(c) = �C45γxn (12)

where

�Qi j = �Ci j − �Ci3�C j3

�C33
for i, j = 1, 2, 6;

and �Ci j denotes members of laminae elasticity tensor.
The 2-D stress resultants and stress couples—see Fig. 3—in the combined hybrid

laminate-piezoceramic system can be obtained via the integration of individual stress
components through the total thickness of the beam wall. Thus, these are given as
follows

• membrane ⎧

⎨

⎩

Nss

Nxx

Nxs

⎫

⎬

⎭
=

N
∑

k=1

nk∫

n(k−1)

⎧

⎨

⎩

σ (k)
ss

σ (k)
xx

σ (k)
xs

⎫

⎬

⎭

(c)

dn +
∫

hp

⎧

⎨

⎩

σss

σxx

σxs

⎫

⎬

⎭

(p)

dn (13)

• transverse
{

Nxn

Nsn

}

=
N
∑

k=1

nk∫

n(k−1)

{

σ (k)
xn

σ (k)
sn

}

(c)

dn +
∫

hp

{

σxn

0

}

(p)

dn (14)

• stress couples

{

Lxx

Lxs

}

=
N
∑

k=1

nk∫

n(k−1)

{

σ (k)
xx

σ (k)
xs

}

(c)

ndn +
∫

hp

{

σxx

σxs

}

(p)

ndn (15)
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In the above formulas, the used (k) superscript refers to the subsequent laminate
layer numbers and hp denotes the piezoceramic layer thickness. Regarding the not
specified term Lss , one observes that it tends to zero due to the prismatic (or at
least shallow shell) cross-section shape assumption—see point 5 on pp. XXX.

Inserting constitutive equations for the piezoceramic (9), (10) and for the laminae
(11), (12) to the above given definitions (13)–(15) and next decomposing strains into
their mid-line ( )(0) and off-mid-line components ( )(1) as proposed in (6) one gets

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Nxx

Nxs

Nxn

Lxx

Lxs

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

=

⎡

⎢
⎢
⎢
⎢
⎣

K11 K12 K13 K14 0
K21 K22 K23 K24 0
0 0 0 0 A44

K41 K42 K43 K44 0
K51 K52 K53 K54 0

⎤

⎥
⎥
⎥
⎥
⎦

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ε(0)
xx

γ̄ (0)
xs
ϕ′
ε(1)
xx

γ (0)
xn

⎫

⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

+

⎡

⎢
⎢
⎢
⎢
⎣

K1e K1b K1 f

K2e K2b K2 f

0 0 0
K4e K4b K4 f

K5e K5b K5 f

⎤

⎥
⎥
⎥
⎥
⎦

⎧

⎨

⎩

E3

E2
3

E3
3

⎫

⎬

⎭
(16)

where the detailed definitions of stiffnesses Ki j (i = 1, 2, 4, 5; j = 1, . . . , 4) are
given in Georgiades et al. (2014). The new stiffness terms resulting from the electro-
mechanical properties of the piezo-layers are as follows:

K1λ =
(
A12

A11
− 1

)

λ

∫

hp

dn, K2λ = A16

A11
λ

∫

hp

dn (17)

K4λ =
(
B12

A11

∫

hp

dn −
∫

hp

ndn

)

λ, K5λ = B16

A11
λ

∫

hp

dn for λ ∈
(

ẽ31, b̃31, f̃31
)

.

Integrating obtained stress resultants and stress couples (16) along the mid-line
contour and incorporating coordinate transformations yields the following 1-D gen-
eralized loadings

Tx =
∫

c

Nxxds the axial force

Qy =
∫

c

(

Nxs
dy

ds
+ Nxn

dz

ds

)

ds the shear force in y-direction

Qz =
∫

c

(

Nxs
dz

ds
− Nxn

dy

ds

)

ds the shear force in z-direction

Mx =
∫

c

(

g(0)(s)Nxs + g(1)(s)Lxs

)

ds the twisting moment about x-axis (18)

My =
∫

c

(

zNxx − Lxx
dy

ds

)

ds the bending moment in y-axis

Mz =
∫

c

(

yNxx + Lxx
dz

ds

)

ds the bending moment in z-axis
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Bw =
∫

c

(

G(0)(s)Nxx + G(1)(s)Lxx
)

ds the warping torque (bimoment)

Tr =
∫

c

Nxx (y
2 + z2)ds

In the above notation, script c in the integral limit denotes profile mid-line circum-
ference.

Themechanical potential energy of the elastic system under consideration is given
by

Um = 1
2

l∫

0

∫

c

∫

h+hp

(

σxxεxx + σxnγxn + σxsγxs
)

dndsdx

= 1
2

l∫

0

∫

c

[

Nxxε
(0)
xx + Lxxε

(1)
xx + Nxnγ

(0)
xn + Nxsγ

(0)
xs + Lxsγ

(1)
xs

]

dsdx .

(19)

Based on quoted definitions of generalized loadings (18) and strain definitions (6),
after performing some mathematical manipulations, one arrives at the expression for
the potential energy Um of the flexible system

Um = 1
2

l∫

0

{

Tx
[

u′
0 + 1

2v
′
0
2 + 1

2w
′
0
2
]

+ Qy
(

v′
0 + ϑz

)+ Qz
(

w′
0 + ϑy

)

+ Mxϕ
′ + My

(

ϑ ′
y − ϕ′v′

0

)+ Mz
(

ϑ ′
z + ϕ′w′

0

)

+ 1
2Trϕ

′2 − Bωϕ′′
}

dx . (20)

On the other hand, quantities Tx , Qy , Qz , Tr and Mx , My , Mz , Bω may be also
expressed in terms of fundamental problem unknowns. After substituting for the 2-D
stress and stress couple resultants (13)–(15) and inserting the strain formulas (6) and
final integration along the cross-section mid-line one arrives at

Tx = a11u
′
0 + a15ϑy + a13ϑ

′
y + a14ϑz + a12ϑ

′
z + a14v

′
0 + a15w

′
0 + a17ϕ

′

− a16ϕ
′′ + a1eE3 + a1bE

2
3 + a1 f E

3
3

Qy = a14u
′
0 + a45ϑy + a34ϑ

′
y + a44ϑz + a24ϑ

′
z + a44v

′
0 + a45w

′
0 + a47ϕ

′

− a46ϕ
′′ + a4eE3 + a4bE

2
3 + a4 f E

3
3

Qz = a15u
′
0 + a55ϑy + a35ϑ

′
y + a45ϑz + a25ϑ

′
z + a45v

′
0 + a55w

′
0 + a57ϕ

′

− a56ϕ
′′ + a5eE3 + a5bE

2
3 + a5 f E

3
3

Mx = a17u
′
0 + a57ϑy + a37ϑ

′
y + a47ϑz + a27ϑ

′
z + a47v

′
0 + a57w

′
0 + a77ϕ

′
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− a67ϕ
′′ + a7eE3 + a7bE

2
3 + a7 f E

3
3

My = a13u
′
0 + a35ϑy + a33ϑ

′
y + a34ϑz + a23ϑ

′
z + a34v

′
0 + a35w

′
0 + a37ϕ

′

− a36ϕ
′′ + a3eE3 + a3bE

2
3 + a3 f E

3
3

Mz = a12u
′
0 + a25ϑy + a23ϑ

′
y + a24ϑz + a22ϑ

′
z + a24v

′
0 + a25w

′
0 + a27ϕ

′

− a26ϕ
′′ + a2eE3 + a2bE

2
3 + a2 f E

3
3

Bw = a16u
′
0 + a56ϑy + a36ϑ

′
y + a46ϑz + a26ϑ

′
z + a46v

′
0 + a56w

′
0 + a67ϕ

′

− a66ϕ
′′ + a6eE3 + a6bE

2
3 + a6 f E

3
3 (21)

where the cross-sectional stiffness terms ai j (i, j = 1, . . . , 7) are defined in previous
research Georgiades et al. (2014). Stiffness coefficients resulting from the electrical
properties of the specimen are defined

a1λ =
∫

c

K1λds, a5λ =
∫

c

dz

ds
K2λds

a2λ =
∫

c

(

K1λy + dz

ds
K4λ

)

ds, a6λ =
∫

c

(

K1λG
(0) + K4λG

(1)) ds

a3λ =
∫

c

(

K1λz − dy

ds
K4λ

)

ds, a7λ =
∫

c

(

K2λg
(0) + K5λg

(1)
)

ds

a4λ =
∫

c

dy

ds
K2λds for λ ∈ (e, b, f ) .

(22)

3.4 Virtual Work

The term of virtual work present in the Hamilton’s principle (1) is the work of all
external forces as given by

δWext =
l∫

0

[

Pext,xδu0 + mext,yδϑy + mext,zδϑz + Pext,yδv0

+ Pext,zδw0 + (mext,x + m′
ext,w

)

δϕ
]

dx + Textδψ(t) − [mext,wδϕ
]
∣
∣
∣

x=l

x=0

(23)

where Pext,y, Pextt,z are applied external shear forces per unit span, Pext,x is unit axial
force, mext,x ,mext,y,mext,z are moments about x, y, z axes, respectively, mext,w is
bimoment and Text,z is driving torque applied at hub as introduced earlier. Definitions
and detailed derivation of appropriate terms in the above expression are given in
Georgiades et al. (2014).
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3.5 Electric Field

Contribution of the electric field to the total potential energy of the considered electro-
mechanical system is given by

Ue = −1

2

∫

V
D3E3dV (24)

In the above formula the assumption on the piezoceramic layer to be electroded in
the thickness direction has been adopted.

The electric displacement D3 can be expressed by problem unknowns based on
the direct piezoelectric effect formula (8) and strain definitions (6). Next, adopting
the σnn = 0 condition (see assumption 6 on pp. XXX) one arrives at the following
formula

D3 = aE1u
′
0 + aE2ϑ

′
z + aE3ϑ

′
y + aE4(ϑz + v′

0) + aE5(ϑy + w′
0)

+ aE7ϕ
′ − aE6ϕ

′′ + aEeE3 + aEbE
2
3 + aE f E

3
3 (25)

where the appropriate proportionality coefficients are

aE1 =
∫

c

∫

hp

(

1 − A12

A11

)

ẽ31 ds dn

aE2 =
∫

c

∫

hp

[dz

ds

(

− B12

A11
+ n

)

+
(

1 − A12

A11

)

y
]

ẽ31 ds dn

aE3 =
∫

c

∫

hp

[dy

ds

( B12

A11
− n

)

+
(

1 − A12

A11

)

z
]

ẽ31 ds dn

aE4 =
∫

c

∫

hp

(

− A16

A11

)dy

ds
ẽ31 ds dn (26)

aE5 =
∫

c

∫

hp

(

− A16

A11

)dz

ds
ẽ31 ds dn

aE6 =
∫

c

∫

hp

[

G(1)(s)
( B12

A11
− n

)

+ G(0)(s)
( A12

A11
− 1

)]

ẽ31 ds dn

aE7 =
∫

c

∫

hp

(

− A16

A11
g(0) − B16

A11
g(1)
)

ẽ31 ds dn

aEe =
∫

c

∫

hp

(

ξ33 + e233
C̃33

+ hp
A11

ẽ231
)

ds dn

aEb =
∫

c

∫

hp

(

χ33 + e33b̂33

C̃33

+ hp
A11

b̃31ẽ31
)

ds dn

aE f =
∫

c

∫

hp

(

χ̂1 + 2χ̂2 + χ̂3 + e33 f33

C̃33

+ hp
A11

f̃31ẽ31
)

ds dn

These are the combined form of relations (22) and (17).
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4 Governing Equations

Using the extended Hamilton’s least action principle (1), the minimization of the
total energy given by its components (5), (20) and (24) and the minimization of
the virtual work of external loads, (23) yields a system of eight electromechanically
coupled differential equations. Six of these equations are equations of motion of the
flexible smart composite beam structure, one describes the motion of the rigid hub
and the last equation is an electrostatic equation. These are specified as resulting
from variation of individual independent problem variables.

• δψ(t)

−Jhψ̈(t) − B22ψ̈(t)

−B14lψ̈(t) cos2 θ − B13lψ̈(t) sin2 θ + 2B15lψ̈(t) cos θ sin θ

−
∫ l

0

[

2B1(R0 + x)u0ψ̈(t) + 2
(

B12 cos
2 θ − B11 sin θ cos θ

)

v0ψ̈(t)

+2
(

B11 sin
2θ − B12 sin θ cos θ

)

w0ψ̈(t) + 2B11(R0 + x)ϑyψ̈(t)

+2B12(R0+x)ϑzψ̈(t) + 2
(

B17 sin
2θ−B18 cos

2 θ
)

ϕψ̈(t)ψ̈(t)

−2B7(R0+x)ϕ′ + 2
(

B16 − B19
)

ϕψ̈(t) sin θ cos θ

+(B11 sin θ−B12 cos θ
)

ü0+B1(R0 + x)v̈0 cos θ − B1(R0 + x)ẅ0 sin θ

+(B13 sin θ − B15 cos θ
)

ϑ̈y + (B15 sin θ − B14 cos θ
)

ϑ̈z

+(B9 cos θ − B8 sin θ
)

ϕ̈′ − (B3 sin θ + B2 cos θ
)

(R0 + x)ϕ̈

+2B1(R0 + x)u̇0ψ̇(t) − 2B11v̇0ψ̇(t) sin θ cos θ + 2B12v̇0ψ̇(t) cos2 θ

−2B12ẇ0ψ̇(t) sin θ cos θ + 2B11ẇ0ψ̇(t) sin2 θ + 2B11(R0 + x)ϑ̇yψ̇(t)

+2B12(R0 + x)ϑ̇zψ̇(t) − 2B7(R0 + x)ϕ̇′ψ̇(t) + 2B17ϕ̇ψ̇(t) sin2 θ

−2B18ϕ̇ψ̇(t) cos2 θ + 2(B16 − B19)ϕ̇ψ̇(t) sin θ cos θ
]

dx + Text,z = 0

(27)

• δu0,

−B1ü0 − B12ϑ̈z − B11ϑ̈y + B7ϕ̈
′ + 2B1v̇0ψ̇(t) cos θ − 2B2ϕ̇ψ̇(t) cos θ

−2B1ẇ0ψ̇(t) sin θ − 2B3ϕ̇ψ̇(t) sin θ + B1(R0 + x + u0)ψ̇
2(t)

+B12ϑzψ̇
2(t) + B11ϑyψ̇

2(t) − B7ϕ
′ψ̇2(t) − B1w0ψ̈(t) sin θ

−B3ϕψ̈(t) sin θ − B11ψ̈(t) sin θ + B1v0ψ̈(t) cos θ

−B2ϕψ̈(t) cos θ + B12ψ̈(t) cos θ + T ′
x + Pext,x = 0

(28)

with boundary conditions,

u0
∣
∣
x=0 = 0, Tx

∣
∣
x=l = 0 (29)
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• δv0

−B1v̈0 + B2ϕ̈ − 2B1u̇0ψ̇(t) cos θ − 2B12ϑ̇zψ̇(t) cos θ

−2B11ϑ̇yψ̇(t) cos θ + 2B7ϕ̇
′ψ̇(t) cos θ − B1w0ψ̇

2(t) sin θ cos θ

−B3ϕψ̇2(t) sin θ cos θ − B11ψ̇
2(t) sin θ cos θ + B1v0ψ̇

2(t) cos2 θ

−B2ϕψ̇2(t) cos2 θ + B12ψ̇
2(t) cos2 θ − B1(R0 + x + u0)ψ̈(t) cos θ

−B12ϑzψ̈(t) cos θ − B11ϑyψ̈(t) cos θ + B7ϕ
′ψ̈(t) cos θ

+Q′
y + (Txv

′
0)

′ + Pext,y = 0

(30)

with boundary conditions,

v0
∣
∣
x=0 = 0,

[

Qy + Txv
′
0

]∣
∣
x=l = 0 (31)

• δw0

−B1ẅ0 − B3ϕ̈ + 2B1u̇0 ψ̇(t) sin θ + 2B12ϑ̇zψ̇(t) sin θ

+2B11ϑ̇yψ̇(t) sin θ − 2B7ϕ̇
′ψ̇(t) sin θ + B1w0ψ̇

2(t) sin2 θ

+B3ϕψ̇2(t) sin2 θ + B11ψ̇
2(t) sin2 θ − B1v0ψ̇

2(t) sin θ cos θ

+B2ϕψ̇2(t) sin θcos θ − B12ψ̇
2(t) sin θ cos θ + B1(R0+x+u0)ψ̈(t) sin θ

+B12ϑzψ̈(t) sin θ + B11ϑyψ̈(t) sin θ − B7ϕ
′ψ̈(t) sin θ

+Q′
z + (Txw

′
0)

′ + Pext,z = 0
(32)

with boundary conditions,

w0

∣
∣
x=0 = 0,

[

Qz + Txw
′
0

]∣
∣
x=l = 0 (33)

• δϑy

−B11ü0 − B13ϑ̈y − B15ϑ̈z + B8ϕ̈
′ + 2B11 v̇0 ψ̇(t) cos θ

−2B16ϕ̇ψ̇(t) cos θ − 2B11ẇ0ψ̇(t) sin θ − 2B17ϕ̇ψ̇(t) sin θ

+B11(R0 + x + u0)ψ̇
2(t) + B15ϑzψ̇

2(t) + B13ϑyψ̇
2(t) − B8ϕ

′ψ̇2(t)

−B11w0ψ̈(t) sin θ − B17ϕψ̈(t) sin θ + B11v0ψ̈(t) cos θ

−B16ϕψ̈(t) cos θ − B13ψ̈(t) sin θ + B15ψ̈(t) cos θ − Qz + M ′
y + mext,y = 0

(34)



Modelling of a Rotating Active Thin-Walled Composite Beam System … 451

with boundary conditions,

ϑy

∣
∣
x=0 = 0, My

∣
∣
x=l = 0 (35)

• δϑz

−B12ü0 − B15ϑ̈y − B14ϑ̈z + B9ϕ̈
′ + 2B12v̇0 ψ̇(t) cos θ

−2B18ϕ̇ψ̇(t) cos θ − 2B12ẇ0ψ̇(t) sin θ − 2B19ϕ̇ψ̇(t) sin θ

+B12(R0 + x + u0)ψ̇
2(t) + B14ϑzψ̇

2(t) + B15ϑyψ̇
2(t) − B9ϕ

′ψ̇2(t)

−B12w0ψ̈(t) sin θ − B19ϕψ̈(t) sin θ + B12v0ψ̈(t) cos θ − B18ϕψ̈(t) cos θ

−B15ψ̈(t) sin θ + B14ψ̈(t) cos θ − Qy + M ′
z + mext,z = 0

(36)
with boundary conditions,

ϑz

∣
∣
x=0 = 0, Mz

∣
∣
x=l = 0 (37)

• δϕ

B2v̈0 − B3ẅ0 − B4ϕ̈ − B5ϕ̈ + (R0 + x)ϕψ̈(t)(B3 cos θ − B2 sin θ)

+(R0 + x + u0)(B2 cos θ + B3 sin θ)ψ̈(t)

−(B20 cos θ + B21 sin θ)ϕ′ψ̈(t) + (B16 cos θ + B17 sin θ)ϑyψ̈(t)

+(B18 cos θ + B19 sin θ)ϑzψ̈(t) + (B17 sin
2 θ − B18 cos

2 θ)ψ̇2(t)

+(B16 − B19
)

ψ̇2(t) cos θ sin θ − (B2 cos
2 θ + B3 sin θ cos θ)v0ψ̇

2(t) (38)

+(B2 sin θ cos θ + B3 sin
2 θ)w0ψ̇

2(t) + (B4 − B19)ϕψ̇2(t) cos2 θ

+(B5 − B16)ϕψ̇2(t) sin2 θ + [B7(R0 + x + u0)
]′
ψ̇2(t)

+(2B6 + B17 + B18)ϕψ̇2(t) sin θ cos θ + (B8ϑy
)′
ψ̇2(t) + (B9ϑz

)′
ψ̇2(t)

+2(B2 cos θ + B3 sin θ)u̇0ψ̇(t) + 2(B16 cos θ + B17 sin θ)ϑ̇yψ̇(t)

+2(B18 cos θ + B19 sin θ)ϑ̇zψ̇(t) − 2(B20 cos θ + B21 sin θ)ϕ̇′ψ̇(t)

+(B7v0
)′
ψ̈(t) cos θ − (B7w0

)′
ψ̈(t) sin θ − (B20ϕ

)′
ψ̈(t) cos θ

−(B21ϕ
)′
ψ̈(t) sin θ + 2

(

B7v̇0
)′
ψ̇(t) cos θ − 2

(

B7ẇ0
)′
ψ̇(t) sin θ

−2
(

B20ϕ̇
)′
ψ̇(t) cos θ − 2

(

B21ϕ̇
)′
ψ̇(t) sin θ − (B8ϑ̈y

)′

−(B9ϑ̈z
)′ − (B7ü0

)′ + (B10ϕ̈
′)′ − (B10ϕ

′)′ψ̇2(t)

+M ′
x + B ′′

w + (Trϕ
′)′ + mext,x + m ′

ext,w = 0
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with boundary conditions,

[

(B9 cos θ − B8 sin θ)ψ̈(t) + B7v0ψ̈(t) cos θ

−B7w0ψ̈(t) sin θ − (B20 cos θ + B21 sin θ)ϕψ̈(t)

+(R0 + x + u0)B7ψ̇
2(t) + B8ϑyψ̇

2(t) + B9ϑzψ̇
2(t)

−B10ϕ
′ψ̇2(t) + 2B7v̇0ψ̇(t) cos θ − 2B7ẇ0ψ̇(t) sin θ

−2(B20 cos θ + B21 sin θ)ϕ̇ψ̇(t) − B7ü0 − B8ϑ̈y − B9ϑ̈z + B10ϕ̈
′

+Mx + B ′
w + Trϕ

′ − mext,w
]∣
∣
x=l = 0,

Bw

∣
∣
x=l = 0, ϕ′∣∣

x=0 = 0, ϕ
∣
∣
x=0 = 0.

(39)

where Bi (i = 1 . . . 21) terms are inertia coefficients as defined in Georgiades et al.
(2014).
• δE3

aE1u
′
0 + aE2ϑ

′
z + aE3ϑ

′
y + aE4(ϑz + v′

0) + aE5(ϑy + w′
0)

+aE7ϕ
′ − aE6ϕ

′′ + aEeE3 + aEbE
2
3 + aE f E

3
3 = 0

(40)

Relations (27)–(40) form a nonlinear system of PDEs with all equations mutually
coupled.Although governing equations look similar to the purelymechanical system,
the principal difference stays in the definition of 1-D generalized loadings which
include electrical components as expressed in (21). New addition to the governing
system is the electrostatic equation (40).

4.1 Symmetric Composite Uniform Box-Beam

In this section, a specific case of a composite symmetric beam with rectangular
closed cross-section as presented in Fig. 2 is examined. Piezoelectric patches are
embedded on the cross-section flanges (full width) on the inner and outer surfaces,
symmetrically with respect to wall mid-line—Fig.2b.

The circumferentially asymmetric stiffness (CAS) composite configuration is
assumed. This arrangement implies the ply-angle distribution α(z) = α(z) in the
top and bottom walls of the box-beam (flanges) and α(y) = α(y) in the lateral walls
(webs). As reported in the literature (see e.g. Librescu and Song 2006), the dis-
cussed fabric configuration decouples the full set of six beam equations of motion
into two independent sub-systems: one exhibiting flapwise bending–shear–twisting
coupling and the second one where axial stretching and chordwise bending–shear
modes coexist. Thus, clamping the beam to the hub at θ = 90◦ angle, as considered in
the following, makes the flexible body to exhibit lead–lag deformation to be coupled
with twisting. Moreover, in this configuration piezoelectric transducers can excite
the lead–lag bending. Considering simplifications resulting from the cross-section
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symmetry (see Georgiades et al. 2014 for inertia terms calculations), the equations
of motion are given by

• for the rigid hub

Jhψ̈(t) + (B22 + B4)ψ̈(t)

+
∫ l

0

{

b1(R0 + x)
[

2u0ψ̈(t) + 2u̇0ψ̇(t) − ẅ0
]+ B4ϑ̈y

}

dx = Text,z(t)
(41)

• displacement in lead-lag plane w0

b1ẅ0 − 2b1u̇0 ψ̇(t) − b1w0ψ̇
2(t) − b1(R0+x+u0)ψ̈(t)

−a55ϑ
′
y − a55w

′′
0 − (Txw′

0

)′ = 0
(42)

with boundary conditions w0

∣
∣
x=0 = 0,

(

ϑy + w′
0

)∣
∣
x=l = 0

• transverse shear ϑy

B4ϑ̈y − B4ϑyψ̇
2(t) + B4ψ̈(t) + a55

(

ϑy + w′
0

)

−(a33ϑ
′
y + a37ϕ

′ + a3eE3 + a3bE
2
3 + a3 f E

3
3)

′ = 0
(43)

with boundary conditions ϑy

∣
∣
x=0 = 0,

(

a33ϑ ′
y + a37ϕ′ + a3eE3 + a3bE2

3 + a3 f E3
3

)∣
∣
x=l = 0

• profile twist angle ϕ

(B4 + B5)ϕ̈ + (B4 − B5)ϕψ̇2(t) − a37ϑ
′′
y − a77ϕ

′′ − (Trϕ′)′ = 0 (44)

with boundary conditions,

ϕ
∣
∣
x=0 = 0,

(

a37ϑ
′
y + a77ϕ

′)∣∣
x=l = 0

• electrostatic equation E3

aE3ϑ
′
y + aEeE3 + aEbE

2
3 + aE f E

3
3 = 0 (45)

The dynamic equation of axial motion may be simplified if the axial inertia term
is disregarded. This can be done, bearing in mind the axial vibration modes are
usually much higher compared to the bending and torsional ones. Therefore, the
axial force Tx can be found by direct integration of (28) in space domain and taking
into account the second boundary condition (29). Therefore, the term Tx (x) present
in (42) is defined as

Tx (x) = b1(l − x)
[

R0 + 1
2 (l + x)

]

ψ̇2(t).
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It corresponds to system stiffening resulting from rotational transportation motion
and it results from taking into account axial strain higher order terms—see summands
underlined in (6).

Derived equations ofmotion for the rigid hub—thin-walled smart composite beam
constitute a system of partial differential equations. Individual equations of bending
and profile twist are coupled through the third d.o.f.—i.e. shear deformation. There
is also an electrostatic equation in the discussed governing system. The electric field
as an independent degree of freedom is present in bending equation (43), since the
assumed placement of active elements results in bending moment in lead–lag plane
only.

5 Conclusions

The provided text presents the derivation of governing equations for the rotating
smart composite thin-walled beam system. In the performed analysis, the general
case of non-zero pitch angle and variable angular velocity are considered. Moreover,
non-classical effects like material anisotropy, transverse shear deformation, cross-
section warping and electromechanical couplings are taken into account. The derived
model is linear with respect to mechanical variables, however electric properties
of the embedded piezoceramic layers are described by third order relations. Due
to this enhancement, the model is capable to take into account the strong electric
field loadings. The derived formula allows to consider the general case regarding
placement of piezoelectric actuators—i.e. symmetric or not regarding the beam wall
mid-line.

Obtained equations of motion form a non-linear system of eight partial differen-
tial equations. Six of these equations describe the motion of the flexible smart beam,
the seventh represents the motion of the rigid hub and the last one is the electro-
static equation. The detailed analysis of derived equations shows these are mutually
coupled. The coupling arises from the non-zero pitch angle as well as from the non-
constant rotating speed. Additional couplings in the system of equations of motion
are observed, due to electric properties of the piezoelement layer.
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On a Description of Deformable Junction
in the Resultant Nonlinear Shell Theory

Wojciech Pietraszkiewicz

Abstract The virtual work principle for two regular shell elements joined together
along a part of their boundaries is proposed within the general nonlinear resultant
shell theory. It is assumed that translations across the junction curve are smooth,
but no restrictions are enforced on the rotations. For stiff and hinge type junctions,
the curvilinear integral along the junction curve vanishes identically. In the case of
deformable junction, the 1D constitutive type relation is proposed, where the consti-
tutive function should be established by experiments for each particular engineering
construction of the junction.

1 Introduction

By junctions of shells we mean design elements used for assembling regular shell
parts along some of their boundaries into the complex multi-shell structure.

It follows from the reviewbyPietraszkiewicz andKonopińska (2015) that different
shell models available in the literature require special forms of jump conditions at the
singular surface curvesmodelling the shell junctions. Jump conditions corresponding
to different shell models may lead to different stress and strain distributions near the
junction. But the review also indicates that almost in all descriptions of shell junctions
available in the literature the stiff junction conditions were enforced. Deformability
of the junction itself was explicitly indicated and used in only a few papers based
on the simplest shell models. This is in sharp contrast to the analyses and design of
one-dimensional steel framed structures, where various semi-rigid beam-to-column
connections were discussed in a number of papers, summarised in several books e.g.
(Chen et al. 1996; Faella et al. 1999) and were even introduced into Eurocode 3
(1993).

Within the resultant nonlinear six-field shell model, the mechanical theory of
compound multi-shell structures was initiated by Makowski and Stumpf (1994) and
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developed in the book by Chróścielewski et al. (2004). In this approach several
regular shell elements may be joined at the common junction, deformability of any
of the shell branches at the junction may individually be defined, and the junction
curve itselfmay be equippedwith additionalmechanical properties independent from
the adjacent shell branches. Unfortunately, the BVP of such a general theory became
extremely complex and virtually useless for engineering applications. Even relatively
simple cases of branching and self-intersecting shells developed in Konopińska and
Pietraszkiewicz (2007) and Pietraszkiewicz and Konopińska (2011) led to complex
shell relations, which were still hardly readable for engineering community. This
explains why in the review (Pietraszkiewicz andKonopińska 2015) only a few papers
on compound shell structures with deformable junctions was noted.

In this paper, we formulate the variational principle of virtual work for the simple
compound shell structure under the following assumptions:

1. The structure consists of only two regular shell elements joined along a part of
their boundaries.

2. Translations of the whole base surface, including the junction curve, are smooth.

By further constraining the junction behaviour the stiff junction, the hinge junction,
and the deformable junction are described and the corresponding reduced forms of
the PVW are derived.

2 Notation and Basic Shell Equilibrium Conditions

The system of notations used here and basic shell relations are compatible with the
ones used in the book by Chróścielewski et al. (2004) and papers by Konopińska and
Pietraszkiewicz (2007), and Pietraszkiewicz and Konopińska (2011, 2014).

A shell is a 3D solid body identified in the undeformed placement with a region B
of the physical space E having the translation vector space E . The position vectors x
and y = χ(x) relative to some origin o ∈ E of anymaterial particle in the undeformed
and deformed placement, respectively, are represented by

x = x + ξ t , y = y(x) + ζ (x, ξ), ζ (x, 0) = 0. (1)

Here x and y are position vectors of some shell base surfaces M and N = χ(M),
ζ is a deviation vector from N , n is the unit vector normal to M and orienting it, t
is the unit vector not necessary normal to M with t · n > 0, and ξ ∈ [−h−, h+] is
the distance from M along t with h = h− + h+ the initial shell thickness measured
along ξ .

The shell base surface M may be irregular one, in general, consisting of regular
parts M1, M2, . . . , Mn joined together along some parts of their edges. The junction
curves form together a net of singular surface curves Γ along which the junction
jump (or continuity) conditions should be formulated.
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The resultant 2D equilibrium equations in the referential description, which are
satisfied for any part Π ∈ M\Γ , are

DivsN + f = 0, DivsM + ax
(

NFT − FNT
) + c = 0, (2)

where (N, M) ∈ E ⊗ TxM are the referential stress resultant and stress couple ten-
sors, f and c are the external resultant surface force and couple vectors applied on
N , but measured per unit area of M , F = Grads y ∈ E ⊗ TxM is the shell deforma-
tion gradient tensor, Divs is the divergence surface operator on M , and ax(·) is the
axial vector associated with the skew tensor (·).

The resultant static boundary conditions satisfied along ∂M f are

n∗ − Nν = 0, m∗ − Mν = 0, (3)

wheren∗ and m∗ are the external resultant boundary force and couple vectors applied
along ∂N f = χ(∂M f ), but measured per unit length of ∂M f having the outward unit
normal ν, and (·)∗ means the prescribed field.

There may be in general k shell elements with regular base surfaces M1, M2,

. . . , Mn joined together by parts of their edges ∂Mi , i = 1, 2, . . . , k ≤ n, along the
singular curve Γ . In such a general case the resultant static continuity conditions
across the curve Γ are (Chróścielewski et al. 2004; Konopińska and Pietraszkiewicz
2007)

[Nν] + f Γ = 0, [Mν] + [ y × Nν] + cΓ = 0, (4)

[Nν] =
k≤n∑

i=1
N iνi , [Mν] =

k≤n
∑

i=1

M iνi , (5)

where [Nν] and [Mν] are the jumps of Nν and Mν at each regular point of Γ ,
and f Γ ,cΓ are some 1D compensating force and couple vector fields applied along
Γ ∩ Π . Explicit definitions for f Γ , cΓ in case of branching and self-intersecting
shells are given in Konopińska and Pietraszkiewicz (2007).

3 Kinematic Relations at the Shell Junction

In order to keep the junction relations in focus, we discuss here only two shell ele-
ments with regular base surfaces M1 and M2 connected together along their common
edges coinciding with Γ , see Fig. 1.

If Γ is oriented consistently with M1, then at any point xΓ ∈ Γ we have τΓ = τ 1,
nΓ = n1, and νΓ = ν1 = τΓ × nΓ . At the same point xΓ ∈ Γ the orthonormal triad
ν2, τ 2, n2 of the edge ∂Π2 ∩ Γ ⊂ ∂M2 does not coincide with the triad ν1, τ 1, n1.
In fact, we have,

τ 2 = −τ 1, n2 = n1 cosα + ν1 sinα , ν2 = −ν1 cosα + n1 sin α. (6)
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Fig. 1 The irregular surface
M = M1 ∪ M2 with the fold
Γ , Pietraszkiewicz and
Konopińska (2014)

Hence, in this case the static jumps in (5) across Γ are defined as follows:

[Nν] = N1ν1 + N2ν2 = − (N2 cosα − N1) ν1,

[Mν] = M1ν1 + M2ν2 = − (M2 cosα − M1) ν1. (7)

For only two surface elements connected along the fold Γ , the direct through-
the-thickness integration of 3D equilibrium equations along the skew coordinate ξ

indicated in (Konopińska and Pietraszkiewicz 2007) can be performed exactly. It
is only sufficient to understand the transverse coordinate ξ as a rectilinear one, not
necessarily orthogonal to the surfaces M1 and M2, but which coincides on the both
sides of the junction region. In the case of only two shell elements there is also no
necessity of introducing additional compensating force f Γ and couple cΓ vectors, as
well as there is no additional concentrated loadings ni , mi and ne, me at the initial
and end points of Γ within M as well, which were necessary in the case of branching
and self-intersecting shells, see Konopińska and Pietraszkiewicz (2007). As a result,
in this case the static continuity conditions (4) are simplified to

[Nν] = 0, [Mν] + [ y × Nν] = 0, (8)

where the jumps are defined by (7).
In this paper, we additionally assume the deformed position vector field y to be

always smooth, so that [ y] = 0 across Γ . By this requirement we prevent the shell
to be decomposed along Γ during deformation. As a result, the static continuity
conditions (8) are reduced to

[Nν] = 0, [Mν] = 0. (9)

Let (v,w) ∈ E be two vector fields smooth at the regular points of M\Γ , and
(vΓ ,wΓ ) ∈ E be two other vector fields smooth along Γ . Then, for any part Π ∈ M
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containing the fold Γ we can set the integral identity

∫∫

Π\Γ

{

(DivsN + f ) · v + (

DivsM + ax(NFT − FNT) + c
) · w}

da

+
∫

Π∩∂M f

{(

n∗ − Nν
) · v + (

m∗ − Mν
) · w}

ds

−
∫

Π∩Γ

{[Nν] · vΓ + [Mν] · wΓ } ds = 0. (10)

By simple algebra we have

(DivsN) · v = N • Gradsv,

(DivsM) · w = M • Gradsw, (11)

ax(NFT − FNT ) · w = N • (WF),

where • is the scalar product in the tensor space such that for any A, B ∈ E ⊗ TxM
we have A • B = tr(AT B), and W = w × 1 is the skew tensor, where 1 means the
identity tensor of the space E ⊗ E .

Since Π is an arbitrarily chosen part of M containing Γ , transforming (10) with
the help of (11) and applying the surface divergence theorems (see Konopińska and
Pietraszkiewicz (2007), f. (23)–(26)) we obtain

−
∫∫

M\Γ
{N • (Gradsv − WF) + M • Gradsw} da +

∫∫

M\Γ
( f · v + c · w) da

+
∫

∂M f

(

n∗ · v + m∗ · w)

ds +
∫

∂Md

(Nν · v + Mν · w) ds

+
∫

Γ

{[Nν · v] − [Nν] · vΓ + [Mν · w] − [Mν] · wΓ } ds = 0. (12)

The real shell deformation is described by the translation vector u = y − x and
the rotation tensor Q = d i ⊗ t i , i = 1, 2, 3, of M , where d i , t i are orthonormal
triads of directors associated with M in the deformed and undeformed placements,
respectively. Then the vectors v,w in (12) may be interpreted as the kinematically
admissible virtual translations and rotations,

v ≡ δu,

W = (δQ)QT ≡ Ω = ω × 1, (13)

w = 1

2
(1 × 1) • W ≡ ω = 1

2
(1 × 1) • Ω,

where δ is the symbol of virtual change (variation).
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Since δu = ω = 0 along ∂Md = ∂M\∂M f , the integral over ∂Md in (12) vanishes
identically. Moreover, it was found in Chróścielewski et al. (2004), Pietraszkiewicz
et al. (2005) that

Gradsδu − ΩF = δcE, Gradsω = δcK , (14)

where δc(·) = Qδ{QT (·)} is the co-rotational variation of (·), and the 2D shell stretch
and bending tensors are defined by

E = JF − QI, K = CF − QB. (15)

In (15), I = Gradsx ∈ E ⊗ TxM and J = grads y ∈ E ⊗ TyN are the inclusion
operators on M\Γ and N\χ(Γ ), B and C are the structure curvature tensors of
the shell base surface in the undeformed and deformed placement, respectively, and
F ∈ TyN ⊗ TxM is the tangential surface deformation gradient such that dy = Fdx .

Introducing the virtual strain energy density in M\Γ defined by

σ = N • δcE + M • δcK , (16)

the principle of virtual work following from (12) takes the form

∫∫

M\Γ
σ da =

∫∫

M\Γ
( f · δu + c · ω) da +

∫

∂M f

(

n∗ · δu + m∗ · ω
)

ds

+
∫

Γ

{[Nν · δu] − [Nν] · vΓ + [Mν · ω] − [Mν] · w} ds. (17)

The curvilinear integral over Γ in (17) includes the jump terms which describe
the shell–junction interaction between two joined shell elements with base surfaces
M1 and M2. Explicit expressions of the jump terms depend on the type of junction
modelled by this approach.

The large variety of types of 1D structural elements,which can be used as junctions
in compound shell structures, together with complex kinematics required within the
resultant six-field shell model, makes the general nonlinear BVP of such structures
to be very complex and hardly readable in engineering applications.

The compound jump terms in (17) can be decomposed as follows:

[Nν · δu] = [Nν] · < δu > + < Nν > · [δu],
[Mν · ω] = [Mν] · < ω > + < Mν > · [ω], (18)

where < a > is the average value of a ∈ E at Γ . In our special case of smooth
translations everywhere discussed here, the translation at the junction curve Γ may
be interpreted as the average translation of both edges ∂M1 ∩ Γ and ∂M2 ∩ Γ , so
that < δu >≡ δu. But the rotation tensors Q1 = Q|∂M1∩Γ and Q2 = Q|∂M2∩Γ of
the edges at the same xΓ ∈ Γ may be different, in general, Q1 
= Q2.
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With (18) the PVW (17) can be reduced to

∫∫

M\Γ
σ da =

∫∫

M\Γ
( f · δu + c · ω) da +

∫

∂M f

(

n∗ · δu + m∗ · ω
)

ds

+
∫

Γ

{[Mν] (< ω > −wΓ ) + < Mν > ·[ω]} ds. (19)

Let us introduce explicitly the net rotation tensor QΓ ofΓ such that Q2 = QΓ Q1
at any xΓ ∈ Γ when xΓ is approached from both sides of Γ , respectively. Since
Q2 , QΓ , Q1 are all proper orthogonal tensors, we have

Q2Q
T
2 = 1, QΓ QT

Γ = 1, Q1Q
T
1 = 1. (20)

Virtual changes of these orthogonality relations lead to

δQ2Q
T
2 = −Q2δQ

T
2 = ω2 × 1,

δQΓ QT
Γ = −QΓ δQT

Γ = ωΓ × 1, (21)

δQ1Q
T
1 = −Q1δQ

T
1 = ω1 × 1,

ω2 = ω + QΓ ω1. (22)

The virtual rotations ω2, ωΓ and ω1 are all defined in the shell deformed placement.
Let the virtual rotation wΓ at Γ be interpreted in terms of ω as

< ω >= 1

2

{

ωΓ + (QΓ + 1)ω1
} ≡ wΓ . (23)

Then the PVW (19) can be further reduced to

∫∫

M\Γ
σ da =

∫∫

M\Γ
( f · δu + c · ω) da +

∫

∂M f

(

n∗ · δu + m∗ · ω
)

ds

+
∫

Γ

< Mν > ·[ω] ds. (24)

The variational statement (24) governs the simplified BVP of two regular shell
elements with base surfaces M1 and M2 joined along the junction Γ . This PVW
has been constructed under the assumption that the joint translations are smooth
everywhere during deformations. As a result, kinematic description of the junction
has been reduced to characterising how the rotations Q1 and Q2 of the neighbouring
points of the junction are related to each other during deformation. This still allows
one for a variety of possible characterisations of the junction. Some of the simplest
particularly appealing junction characterisations are discussed below.



464 W. Pietraszkiewicz

4 Description of the Junction

4.1 The Stiff Junction

The shell junction along Γ is called stiff if the shell deformation is continuous on
the whole M = M1 ∪ M2 including Γ . In this case

[δu] = 0, [ω] = 0, u1 = u2, Q1 = Q2, (25)

and the curvilinear integral alongΓ in (24) vanishes. The correspondingly simplified
PVW is reduced to

∫∫

M
σ da =

∫∫

M
( f · δu + c · ω) da +

∫

∂M f

(

n∗ · δu + m∗ · ω
)

ds. (26)

The physical meaning of (26) is that in this case the junction along Γ does not
contribute to the virtualwork of the compound shell structure. Themechanical behav-
iour of the junction itself is enforced by the behaviour of stiffly joined shell lateral
boundary surfaces of regular shell parts with surface elements M1 and M2. This is
exactly the case of almost all types of shell junctions reviewed in Pietraszkiewicz
and Konopińska (2015). In particular, within the resultant nonlinear six-field shell
theory several folded and multi-shell structures with stiff junctions were modelled
and analysed with FEM by Chróścielewski et al. (1997). Nonlinear dynamic prob-
lems of such structures were discussed by Chróścielewski et al. (2002). A number of
linear and nonlinear FE solutions of multi-shells with stiff junctions was summarised
in the book of Chróścielewski et al. (2004).

4.2 The Hinge Junction

The hinge junction along Γ is understood when u is continuous across Γ , that is
[δu] = 0, u1 = u2, but Q1, Q2 are entirely unconstrained when approaching Γ

along a path on corresponding M1 , M2. In this case [ω] 
= 0 , in general. However,
in order the entirely unconstrained rotations Q1, Q2 to happen, from equilibrium it
follows that no moments at both sides of Γ should be allowed,

M1ν1 = 0, M2ν2 = 0, (27)

so that < Mν >= 0 and hence < Mν > ·[ω] = 0 along Γ . As a result, in the cor-
responding PVW (24) the curvilinear integral along Γ vanishes as well reducing it
again formally to (26). However, the important difference to the stiff junction is that
in the case of hinge junction along Γ the additional static equilibrium conditions
(27) have to be enforced in the process of solution of BVP.
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Some special cases of such BVP for the linear elastic plate problems were pro-
posed in the literature. For example, linear boundary value problems for anisotropic
elastic Kirchoff plates with internal line hinges were discussed by Grossi (2011).
Natural vibrations of the rectangular plate with a hinge line were analysed by Huang
et al. (2009) and Grossi and Raffo (2013) within the linear Kirchhoff plate model,
while Xiang and Reddy (2003) used the linear first order shear deformation plate
model for this purpose.

4.3 The Deformable Junction

In the PVW (24) both ingredients < Mν > and [ω] in the last integral may not
together identically vanish, in general, that is < Mν >
= 0 and [ω] 
= 0. In this gen-
eral case the shell junction along Γ may be called deformable.

From engineering point of view, the junctions can be classified according to

1. The type of medium used: bolted, welded, riveted, glued, adhesively bonded
etc.;

2. The type of internal forces the junction is expected to transmit: membrane, shear,
moment (stiff, deformable);

3. The type of elements the junction is joining: regular shell elements, transition
stiffening ringbeams, special junction constructions.

This leads to a large variety of constructions of junctions in compound shell struc-
tures. Mechanical and/or deformability properties of each particular case of such
junction should be known in advance before the analyses take place.

Let us differentiate the orthogonality relations (21) along Γ ,

(Q2)
′ QT

2 = −Q2(Q
T
2 )′ = κ2 × 1,

(QΓ )′ QT
Γ = −QΓ (QT

Γ )′ = κΓ × 1, (28)

(Q1)
′ QT

1 = −Q1(Q
T
1 )′ = κ1 × 1, (.)′ = d

ds
(.),

κ2 = κΓ + QΓ κ1. (29)

The vector κΓ describes the bending properties of the junction curve Γ during shell
deformation.

The mechanical behaviour of the deformable junction can be characterised by the
relation

< Mν > = f (κΓ ) , (30)
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where f is a smooth vector function of vectorial argument at any xΓ ∈ Γ . The rela-
tion (30) is the kind of 1D constitutive equation modelling deformability properties
of real engineering junctions. It is apparent that due to possible complexity of engi-
neering junction constructions the function f should be established from appropriate
experiments for each particular type of the junction.

With (30) and (22) the PVW (19) takes the modified form

∫∫

M\Γ
σ da =

∫∫

M\Γ
( f · δu + c · ω) da +

∫

∂M f

(

n∗ · δu + m∗ · ω
)

ds

+
∫

Γ

f (κΓ ) · {

ωΓ + (

QΓ − 1
)

ω1
}

ds. (31)

If there exists a scalar functionW (κΓ ) such that f (κΓ ) = ∂W/∂κΓ , the junction
along Γ may be called elastic. The function W may be quite complex nonlinear
function of κΓ , so that such a junction is nonlinearly elastic, in general. But in some
cases W may become a quadratic function such that

W = 1

2
L • (κΓ ⊗ κΓ ), f (κΓ ) = LκΓ , (32)

where L is the second-order tensor of rotational material properties along Γ . In this
case the shell junction can be called linearly elastic.

Special cases of elastic junction conditionswithin the linearKirchhoff-type theory
of elastic plates were discussed by Bernadou (1996), Titeux and Sanchez-Palencia
(2000) and Nardinocchi (2002). Elastic junctions between two thin linearly elastic
shells of Koiter type were asymptotically analysed by Akian (2005) and Merabet
et al. (2010). Within the nonlinear theory of thin shells of Kirchhoff–Love type,
description of several types of shell junctions were given by Makowski et al. (1999),
and explicit numerical solutions of the shell of revolution with deformable elasto-
plastic junctions were given by Chróścielewski et al. (2011a, b). Within the nonlinear
six-field shell theory, the deformable junction of one branch at the shell branching
was kinematically classified in Pietraszkiewicz and Konopińska (2011) as locally
elastic, non-locally elastic and dissipative.

5 Conclusions

Within the general nonlinear resultant shell theory, we have formulated the vir-
tual work principle for two regular shell elements joined together along their com-
mon boundaries. It has been assumed that translations across the junction curve are
smooth, but no restrictions are enforced for the rotations. It has been shown that for
stiff and hinge type junctions the curvilinear integral along the junction curve van-
ishes identically and does not bring an additional virtual work to the shell BVP. In the
case of deformable junction, the 1D constitutive type relation has been proposed for
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the junction moments in terms of net rotations of the junction curve. The constitu-
tive function should be established by experiments for each engineering construction
of the deformable junction. As special cases, description of nonlinearly elastic and
linearly elastic junctions have been noted.

The proposed description of shell junctions should allow development of appro-
priate numerical FEM programs for nonlinear analyses of multi-shells with various
types of junctions.
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Chróścielewski, J., Makowski, J„ Pietraszkiewicz, W.: Statics and Dynamics of Multifold Shells:
Nonlinear Theory and Finite Element Method. IFTR PASci Press, Warsaw, in Polish (2004)
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Analytical and Numerical Modelling
of a Sub- and Supersonic Moving Load Front
Along a Rod’s Skin

Wolfgang E. Weber, Yannick F. Fangye, Daniel Balzani
and Bernd W. Zastrau

Abstract For both civil andmechanical engineering dynamic loads of structures are
a major source of inner material damage. If (fibre) reinforced composite materials
are exposed to such dynamic loads a pull-out of the reinforcing elements may occur.
This dynamic pull-out of reinforcing elements is characterized by, amongst others,
moving boundaries between regions of (partly) damaged and perfect bonding of
reinforcement and surrounding matrix. To adequately describe these moving bound-
aries leads to enormous challenges. Within this contribution a simplified mechanical
problem is investigated, which however provides some of the main phenomena of
the dynamic pull-out. In detail, the stress and displacement fields within a rod of
semi-infinite extent under a distributed load are evaluated. Herein, the front of the
constant longitudinal load moves along the rod in longitudinal direction. The inves-
tigations are performed both analytically and numerically thus validating the model
idealization included in the analytical solution.
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Fig. 1 Pedestrian bridge at Oschatz, Germany, made from TRC, by courtesy of SFB 528

1 Introduction

The adequate description of the wave propagation in rod-like or reinforced structures
is a matter of enormous practical relevance. Practical applications involve, but are
not restricted to, pile driving for offshore wind turbines and dynamic pull-out of
reinforcing elements in composite materials, see e.g. Weber and Curbach (2013),
Sridhar et al. (2003), Yang et al. (2006). Herein, the waves propagating through the
material result from dynamic loads as, e.g. impact or repeated loading acting on
the respective structure or structural member. Figure1 shows a pedestrian bridge
at Oschatz, Germany, which is made of textile reinforced concrete (TRC). TRC
is a compound material developed recently and involving multifilament yarns of
glass or carbon acting as reinforcement of a brittle fine-grained concrete matrix.
For details see, amongst others, Curbach and Jesse (2009). If such a structure is
subjected to vertical (dynamic) loads the resulting bending tensile stresses may lead
to crack initiation in the concrete matrix. Subsequently, these cracks—which grow
in the vertical direction—are bridged by the reinforcement. In this contribution, we
assume no further growth of the crack(s). The situation is depicted in Fig. 2. As can
readily be seen, this example of a dynamic pull-out gives significant challenges for
both the analytical and the numerical modelling and so do similar problems of wave
propagation in rod-like or reinforced structures. These challenges arise, e.g. from the

Fig. 2 Typical regions along a reinforcing element resulting from crack bridging under dynamic
loads: (i) completely damaged bond, (ii) partly damaged bond, (iii) perfect bond, cf. Sridhar et al.
(2003)
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interactionof the travellingwave in the rodwith the host inwhich the rod is embedded.
This interaction depending on the load amplitude, e.g. leads to a successive failure
of the bond between rod and surrounding host and thus a moving crack tip, see also
Fig. 2. The rod then may be subdivided into three parts: (i) one with a completely
damaged bond, (ii) one with a partly damaged bond, and (iii) another part with
a still perfect bond. The boundaries between these parts will travel with certain
speeds which are of interest in future investigations. These moving boundaries will
change the geometrical dimensions of the respective constraints within the model
with increasing time. Due to this type of nonlinearity advanced numerical methods
such as the Spectral Finite Element Method (SFEM), the Boundary Element Method
or the Scaled Boundary Finite ElementMethod currently are not able to play off their
efficiency in dealing with wave propagation phenomena, see Krawczuk et al. (2006),
Manolis et al. (2014), Gravenkamp et al. (2014), respectively. Thus, our solution
procedure of choice is the standard FEM. To solve the given task, brick and surface
elements are combined.

In order to deal with such and other phenomena of wave propagation in a first step
a rather simple idealization is investigated, which however involves the problem of a
moving boundary, too. It consists of a semi-infinite rod at whose surface a constantly
distributed longitudinal load is travelling from the free end to infinity, see Fig. 3.
For this purpose, the front of this load q propagates with cq and thus continuously
increases the surface area to which the load is applied. The longitudinal wave speed
within the rod is cL. With respect to Fig. 2 this model equals a situation within which

• the failure stress of the bond matrix—reinforcement has the same value q as the
shear stress along the friction zone and

• no further bond degradation takes place.

Thus, the length of the bond regime (i) according to Fig. 2 is zero whereas the length
of the bond regime (ii) at time t is cqt . At the current stage no surrounding host is
modelled. The shear stress in the bond regime (ii) resulting from the relative displace-
ment between reinforcement and surrounding host consequently is applied directly
by means of a constantly distributed longitudinal load whose front propagates with
the speed cq as sketched in Fig. 3. Herein, it is assumed that the speed the crack tip
propagates within the longitudinal direction is correlated to the propagation speed
of a longitudinal wave in the surrounding host—if it were existent. For simplicity,
the speed the crack propagates with can be chosen to be identical to the longitudinal

(a) (b)

Fig. 3 Sketch of the pull-out idealization: with increasing time t the rod’s surface area affected by
the shear load increases, too. a t = t̄ . b t = t̄ + Δ t
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wave speed. Depending on the materials the reinforced composite consists of this
speed may be smaller, equal or higher than the speed of the longitudinal wave in the
reinforcement. Hence both the subsonic problem with cq ≤ cL and the supersonic
problem with cq ≥ cL are investigated analytically. The material behaviour of the
homogeneous rod is characterized as linearly elastic and isotropic. In order to obtain
a reference solution for the numerical model a simplified analytical model is devel-
oped in Sect. 2. The numerical model consists of a cylindrical rod with a circular
cross section with a radius r and a given density �. The shear load q is applied at the
surface of the rod and results in a normal stress distribution in the rod. The displace-
ments are evaluated both in the longitudinal and in the radial direction. To ensure
that the numerical approach gives reliable results, an analytical model is developed.
This analytical model is confined to displacements along the centroidal axis. Con-
sequently, it would be sufficient to model the system as a thin rod with the mass
being allocated along the centroidal axis and a line load being equivalent to the shear
load q. However, in order to provide results (e.g. normal stresses instead of a normal
force) which may serve as a validation for the numerical model, a cross-sectional
area is assigned. Owing to the Poisson effect, lateral expansions (and contractions)
arise from the normal stress. For simplicity the lateral inertia effects are neglected
in the analytical model (Graff 1991). This analytical model is capable of treating
both the subsonic and the supersonic problems. Between both problems a smooth
transition is revealed, which can hardly be detected by means of numerical methods.
The results gained from the analytical model serve as an approximation of a refer-
ence solution for the numerical model. Numerical results are obtained in Sect. 3 and
involve lateral inertia. The comparison, however, is restricted to the subsonic case.
The results of both the analytical and the numerical model show a good agreement
especially under consideration of the effects of lateral inertia. Deviations between
the results of these twomodels are discussed. As a result, the numerical model can be
used for more advanced future investigations. Finally, the conclusions and an outlook
to future work are provided in Sect. 4.

2 Analytical Modelling—Method of Characteristics

2.1 Introduction

To provide an analytical model capable of validating the results of the numerical
model given in Sect. 3.1 is the task of this section. The given problem according to
Fig. 3 may be solved, e.g. by means of the theory of wave propagation in a rod (Graff
1991), bymodelling the rod as a vibration chain, by the wave number transform solu-
tion (Doyle 1997) which afterwards has to be transformed into the time-domain (Pao
and Mow 1971, Weber and Zastrau 2013) or the method of characteristics. Within
this contribution the latter method is used. For a prescribed harmonic excitation the
readers are referred to Azzam (2016).
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The rod is assumed to be of semi-infinite extent taking into account that also
within the numerical model no reflections other than from the free (left) end of the
rod occur, see also Fig. 3. The material of the semi-infinite rod is characterized as
isotropic and linearly elastic. The material parameters are the Young’s modulus E
and the density �. Lateral inertia is neglected and thus the longitudinal wave speed
is cL = √

E/�. As shown in Fig. 3, the load front of the longitudinal load of constant
magnitude q travels along the rod’s surface in positive x-direction with a constant
speed cq.

2.2 Subsonic Speed of the Load Front

The first case investigated is a load front which propagates with a subsonic speed
with respect to the longitudinal wave speed of the rod. Thus cq < cL = √

E/� holds.
At every position x the load front arrives, it induces a longitudinal pulse. Due to the
constant impedance along the rod, a half-portion of this load acts as a compressive
load at the section of the rod in front of the load front whereas the other half-portion
acts as a tensile load at the section of the rod behind that load front. Both waves travel
with the speed cL along the rod’s axis. The latter wave is reflected at the rod’s free end
and then subsequently travels as compressive wave in positive x-direction, too. This
situation is depicted in Fig. 4a, in which the distance a certain wave has travelled is
plotted versus the time t . Exemplarily, the time tL at which the longitudinal wave of
the initial load front (that is, the load applied at x = 0 at time instance t = 0) passes
an arbitrarily chosen reference point x is denoted within this diagram. Please note
at this time instance the load front itself did not reach x , yet. This occurs at tq, see
Fig. 4a.

Clearly, a point x will be stress free as long as t < tL = x/cL. In what follows,
a time instance in the time interval tL ≤ t < tq = x/cq will be looked at. According
to Fig. 4a at this time instance t two load portions arrived at the point x of the rod.
The first portion is due to the load applied from x0 = 0 to x = x1 which directly
propagates towards x . The second portion is due to the load applied from x0 = 0
to x = x2 which first propagated in the negative x-direction, then was reflected at
the rod’s free end and subsequently propagates towards x , too. Thus, for the normal

(a) (b)

Fig. 4 Distance-time diagram, subsonic case



474 W.E. Weber et al.

stress σx =: σ we have

σ (x, t) = −
{

1

2
qx1

︸ ︷︷ ︸

direct

+ 1

2
qx2

︸ ︷︷ ︸

reflected

}

, (1)

which we want to reformulate in terms of x and t . Due to the confinement to dis-
placements in the longitudinal direction in this analytical model, an assignment of
a cross-sectional area would not be necessary. However, in order to provide results
which may serve as a validation for the numerical model, a cross-sectional area is
assigned leading to a normal stress instead of a longitudinal force. The same holds
for the shear load q according to Fig. 3. The distributed longitudinal load in the ana-
lytical model is related to an equivalent tangential load along the surface of the rod
in the numerical model.

Concerning the first portion of the load in Eq. (1), it is induced by the load front
moving with speed cq from x0 = 0 to x = x1. The single wave portions then immedi-
ately start to propagate towards the reference point x with speed cL. The total time t
consequently splits off into two parts

t = x1
cq

+ x − x1
cL

= x1

(
1

cq
− 1

cL

)

+ x

cL
(2)

leading to

x1 = cq
cL − cq

(cLt − x) . (3)

The second portion of the load arriving at x at a time t was induced along the rod
from x0 = 0 to x = x2, then propagated in negative x-direction before being reflected
at the rod’s free end and subsequently propagating towards x with speed cL, see also
Fig. 4a. The time history consequently consists of three sections

t = x2
cq

+ x2
cL

+ x

cL
= x2

(
1

cq
+ 1

cL

)

+ x

cL
. (4)

This allows to calculate x2 as

x2 = cq
cL + cq

(cLt − x) . (5)

Inserting Eqs. (3), (5) into Eq. (1) gives

σ (x, t) = −1

2
qcq (cLt − x)

[
1

cL − cq
+ 1

cL + cq

]

= −q
cLcq

c2L − c2q
(cLt − x) = −q

cL
cL + cq

cq
cL − cq

(cLt − x) . (6)
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The third stress regime can be expected after the load front has passed the point x ,
that is for t ≥ tq = x/cq. Now, there are three load portions arriving at point x .
The first two are the same as in the precedent time interval. The new portion is
due to the load induced at the rod in front of the position x which propagates as a
tensile wave in negative x-direction and consequently passes the point x . According
to Fig. 4b we then have

σ (x, t) = −
{

1

2
qx

︸︷︷︸

direct

+ 1

2
qx4

︸ ︷︷ ︸

reflected

− 1

2
q (x3 − x)

︸ ︷︷ ︸

propagating backwards

}

= −1

2
q (2x + x4 − x3) , (7)

which again will be reformulated in terms of x and t in what follows. Concerning x4
we have

x4 = cq
cL + cq

(cLt − x) , (8)

see also Eq. (5). For the wave portion which stems from the waves propagating in
the negative x-direction,

t = x3
cq

+ x3 − x

cL
= x3

(
1

cq
+ 1

cL

)

− x

cL
(9)

and thus

x3 = cq
cL + cq

(cLt + x) (10)

holds. Inserting Eqs. (8), (10) into Eq. (7) gives the final formula for evaluating the
stress at the position x within the third time interval t ≥ tq = x/cq

σ (x, t) = −1

2
q

[

2x + cq
cL + cq

(cLt − x) − cq
cL + cq

(cLt + x)

]

= −q
cL

cL + cq
x . (11)

Obviously, the stress within the third time interval is constant in time as the (tensile)
waves propagating in negative x-direction are nullified by the (former tensile) waves
which were reflected at the rod’s free end.

In summary, at an arbitrary point x the stresses are

σ (x, t) =

⎧

⎪⎪⎪⎨

⎪⎪⎪⎩

0 for t < tL

−q
cL

cL + cq

cq
cL − cq

(cLt − x) for tL ≤ t < tq

−q
cL

cL + cq
x for tq ≤ t

. (12)
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Fig. 5 Normal stress along
the rod for a given time t ,
subsonic case

Consequently, at an arbitrary point x three different stress regimes can be distin-
guished: (i) zero stress until arrival of the first wave portion at tL = x/cL, (ii) increas-
ing stress level due to the subsequent arrival of the other (partly reflected) wave
packages, and (iii) constant stress level σmax,x beginning from tq = x/cq. This maxi-
mum normal stress is

σmax,x = −q
cL

cL + cq
x . (13)

This situation can also be deduced from Fig. 5, where the bi-linear stress distribu-
tion within the regimes (ii) and (iii) is clearly observable. Obviously, the maximum
stress σmax,x increases with increasing x .

The resulting displacements at the point x can be calculated by integrating Eq. (12)
along the rod’s axis

u (x, t) =
cLt∫

x

1

E
σ (x̃, t) dx̃, (14)

which also gives three different regimes for the longitudinal displacements.
Within the time interval 0 < t = x/cL < tL no displacements occur at x . Within

the second time interval the load front has passed the point x and reached a posi-
tion cLt . Hence, between x and the load front the rod is compressed. The resulting
displacement at the position x is evaluated by integrating Eq. (6)

u (x, t) = 1

E

cLt∫

x

q
cLcq

c2L − c2q
(cLt − x̃) dx̃

= 1

E
q

cLcq
c2L − c2q

[
1

2
(cLt)

2 − cLt x + 1

2
x2

]

= 1

2E
q

cLcq
c2L − c2q

(x − cLt)
2 .

(15)

The displacement of the point x at a time within the third interval t > tq = x/cq
consists of two parts. As it can be seen from Fig. 4b, in the third interval the load
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front passed point x , thus at time t the portion of the rod between x and cqt is under
the stress regime according to Eq. (11). However, at the same time t the first wave
package reached the position cLt . Hence, also the portion of the rod between the
positions cqt and cLt is under compression, in detail it is under the stress regime
according to Eq. (6). The displacement of the point x at a time within the time
interval t > tq = x/cq thus reads as

u (x, t) = 1

E

cqt∫

x

q
cL

cL + cq
x̃dx̃ + 1

E

cLt∫

cqt

q
cLcq

c2L − c2q
(cLt − x̃) dx̃

= 1

2E
q

cL
cL + cq

[(

cqt
)2 − x2

]

+ 1

E
q

cL
c2L − c2q

cq

[
1

2
(cLt)

2 − cLcq + 1

2
c2q

]

= 1

2E
q

cL
cL + cq

[(

cqt
)2 − x2

]

+ 1

2E
q

cL
c2L − c2q

cqt
2
(

cL − cq
)2

= 1

2E
q

cL
cL + cq

(

cLcqt
2 − x2

)

. (16)

In summary, the displacements of a point x at the three time intervals at hand are

u (x, t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for t < tL
1

2E
q

cL cq
c2L − c2q

(cLt − x)2 for tL ≤ t < tq

1

2E
q

cL
cL + cq

(

cL cqt
2 − x2

)

for tq ≤ t

. (17)

A 3D diagram showing the longitudinal displacement over the coordinate x along
the rod’s axis and over time t is displayed in Fig. 6. For t = const the bi-linear stress
distribution results in both a decreasing and an increasing slope of the displacement
function. Please note that in the present model lateral inertia is neglected. Addition-
ally, the rod is modelled as semi-infinite, thus only reflections of waves at the left
free end of the rod (at x = 0) are taken into account.

Fig. 6 Longitudinal
displacement u over time t
and coordinate x , subsonic
case
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2.3 Supersonic Speed of the Load Front

Within this second case the speed cq the load front propagates with is higher than the
speed cL of a longitudinal wave. With respect to the sketch in Fig. 2, this situation
is at hand if the (longitudinal) wave propagation speed within the matrix material is
higher than the wave propagation speed within the directed inclusion. Such material
combinations are known from some composite materials. For this supersonic case
with cq ≥ cL the following stress regimes can be distinguished at an arbitrary refer-
ence point x : (i) zero normal stress until arrival of the load front at time t = tq = x/cq,
(ii) increasing normal stress after the load front has passed x , and (iii) temporally
constant normal stress beginning from t = tL = x/cL when the information of the
load applied at the rod’s free end has reached x . The corresponding distance-time
diagrams are given in Fig. 7.

Within the time interval tq ≤ t ≤ tL the load front itself passed the point x ,
whereas the information that the load front also passed the points with coordinates
less than x arrives successively. Additionally, as before the load front induces one
(pressure) wave propagating in the positive x-direction and one (tensile) wave prop-
agating in the negative x-direction. The latter wave which stems from points with
coordinates greater than x also successively arrives at x , see also Fig. 7a. We thus
have

σ (x, t) = −
{

1

2
q (x − x1)

︸ ︷︷ ︸

direct

− 1

2
q (x2 − x)

︸ ︷︷ ︸

propagating backwards

}

. (18)

With respect to the first term

t = x1
cq

+ x − x1
cL

(19)

and hence

x1 = x − cLt

cq − cL
cq (20)

(a) (b)

Fig. 7 Distance-time diagram, supersonic case
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holds. The wave propagating backwards fulfils

t = x2
cq

+ x2 − x

cL
(21)

and thus

x2 = x + cLt

cq + cL
cq. (22)

Inserting Eqs. (20), (22) into Eq. (1) gives

σ (x, t) = −q
c2L

c2q − c2L

(

cqt − x
) = −q

cL
cq + cL

cL
cq − cL

(

cqt − x
)

. (23)

The third stress regime starts at time tL = x/cL, the arrival of the information of
the initial wave package from x0 = 0 at point x . Within this stress regime, again three
load portions act at point x : the first two portions are the same as in the precedent
time interval. The new portion is due to the load applied at the rod at coordinates less
than x which propagates as a tensile wave towards the rod’s free end, is reflected and
consequently propagates towards x as compressive wave passing the coordinate x .
According to Fig. 7b it is

σ (x, t) = −
{

1

2
qx

︸︷︷︸

direct

+ 1

2
qx4

︸ ︷︷ ︸

reflected

− 1

2
q (x3 − x)

︸ ︷︷ ︸

propagating backwards

}

= −1

2
q (2x + x4 − x3) ,

(24)

which again will be reformulated in terms of x and t in what follows. For x4, the
relation

t = x4
cq

+ x4 + x

cL
(25)

holds and thus

x4 = cq
cL + cq

(cLt − x) (26)

comes out. For the wave portion which stems from the waves propagating in the
negative x-direction,

t = x3
cq

+ x3 − x

cL
= x3

(
1

cq
+ 1

cL

)

− x

cL
(27)
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and thus

x3 = cq
cL + cq

(cLt + x) (28)

holds. Inserting Eqs. (26), (28) into Eq. (24) leads to the final formula for evaluating
the stress at the point x within the third interval t ≥ tq = x/cq

σ (x, t) = −1

2
q

[

2x + cq
cL + cq

(cLt − x) − cq
cL + cq

(cLt + x)

]

= −q
cL

cL + cq
x . (29)

As in the subsonic case, the stress within the third time interval is constant in time as
the (tensile) waves propagating in negative x-direction are nullified by the (former
tensile) waves which were reflected at the rod’s free end.

The normal stress at an arbitrary point x at an arbitrary time t then is

σ (x, t) =

⎧

⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0 for t < tq

−q
c2L

c2q − c2L

(

cqt − x
)

for tq ≤ t < tL

−q
cL

cL + cq
x for tL ≤ t

. (30)

Integrating the strains resulting from these stresses, one obtains the normal displace-
ments

u (x, t) =

⎧

⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 for t < tq
1

2E
q

c2L
c2q − c2L

(

cqt − x
)2

for tq ≤ t < tL

1

2E
q

cL
cL + cq

(

cL cqt
2 − x2

)

for tL ≤ t

. (31)

As can be seen from Eqs. (17) and (31), the normal displacements of a spatial point x
of the rod within the respective stress regimes are qualitatively similar for both the
sub- and the supersonic case. However, the time instances at which there is a change
in the stress regimes differs for the sub- and supersonic case. That is, the stress
regime (ii) at point x starts at t = tL = x/cL in the subsonic case, whereas in the
supersonic case the stress regime (ii) is beginning from t = tq = x/cq. The stress
regime (iii) at a point x for the subsonic case starts at t = tq = x/cq, whereas in the
supersonic case it begins at t = tL = x/cL.

As could be expected, for cq = cL =: ctransition the Eqs. (12) and (30) merge into
one another. This aspect can hardly be obtained by a purely numerical approach.

The normal displacements for the supersonic case are plotted within a 3D diagram
given with Fig. 8. As can readily be seen, the qualitative evolution of the displace-
ments along the rod and for arbitrary time instances equals the one depicted in Fig. 6,
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Fig. 8 Longitudinal
displacement u over time t
and coordinate x , supersonic
case

whereas the respective cause is different. Due to this qualitative concordance and for
the sake of brevity the numerical investigations taking place in the next section will
be restricted to the subsonic case.

3 Numerical Modelling

3.1 Introduction and Convergence Study

Within this section the numerical model to investigate the given problem is intro-
duced. The calculations are performed using the FE program Feap, Taylor (2013).
An implicit time integration using the Newmark-beta method with the parame-
ters β = 0.25 and γ = 0.5 is applied. The employed solver is Paradiso. In order
to further enhance an in-house code, no commercial FE program is employed. As
sketched in Sect. 1 the present problem serves as a simplified model of the more
complicated task giving the motivation for these investigations, that is the pull-out of
reinforcement from a brittle surrounding matrix. Hence, as much as possible of the
preliminary model could be used in future investigations. Consequently, the semi-
infinite rod dealt with here is discretized as a finite rod. However, its length is chosen
such that no reflections other than from the free (left) end of the rod according to
Fig. 3 occur. This also avoids the implementation of, e.g. absorbing boundary con-
ditions (Alonso-Mallo and Portillo 2015) or infinite elements.

For the beginning, a steel rod of length l = 25cm and circular cross section with
radius r = 0.75 cm is looked at. For the numerical investigation this rod is discretized
using 20-node brick elements. The finite element discretization as well as the bound-
ary conditions of the rod are shown in Fig. 9. Due to the symmetry of the rod only one
quarter of the body is modelled. Although taking into account rotational symmetry
with rotational FE would be more efficient for the present problem, a (nearly) full 3D
discretization is used. This procedure allows for more advanced calculations taking
into account, e.g. multifilament yarns of elliptic cross section as motivated in Weber
and Zastrau (2009) and depicted in Fig. 10. Additionally, the inner structure of the
reinforcement (Curosu et al. 2016) and eccentric set-ups (Weber and Zastrau 2010,
2011) can be modelled more realistically by means of a 3D-discretization, see also
Fig. 10.
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Fig. 9 Finite element
discretization and boundary
conditions of the rod

sym.

sym.

z

y
x

The material parameters of the rod are set as: Young’s modulus E = 2.1 ×
107 N/cm2, Poisson’s ratio ν = 0.3 and density � = 7.85 g/cm3. In order to apply
the moving load a special 8-node quadrilateral surface element is implemented and
given zero stiffness.

At time t , the current position of the load front is computed by means of the load
speed cq. Its position is compared with the coordinates of the Gauss points of the
surface elements. These Gauss points which the load front has passed or just reached
are given the full load. Contrary, for all Gauss points which have not been reached
by the load front, yet, the load remains zero. Obviously, the approximation of the
load distribution at each finite element is better the more Gauss points are used.
Consequently, within this contribution for each of the 8-node quadrilateral surface
elements 25 Gauss points are used.

For the present example the longitudinal wave speed of the material at hand
is cL = 5 170m/s. Exemplary, the speed of the load propagation is set to cq =
2 586m/s≈ 0.5cL. In order to prevent reflections of waves at the right end (in positive

Fig. 10 Typical detail of a
multifilament yarn including
numerous filaments and
interstitial zones, by courtesy
of IfB, TU Dresden

200µm
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(a) (b)

Fig. 11 Convergence studies (For the convergence studies an exemplarily load was chosen. All
calculations are performed in the linear elastic regime using linearized strain measures, even though
the computed deformation appears to be not small.). a Convergence study in space with 70 time
steps. b Convergence study in time with 44 982 equations

x-direction as given in Fig. 9) of the discretized finite rod the load duration time was
set to tmax = 7 × 10−5 s which is due to typical wave speeds for the material at hand.

As a first step, a convergence study in both space and time was applied, see also
Fig. 11a, b. There, some results of the convergence study are plotted and show the
convergence of the displacement u in positive x-direction of the node lying at the
centre axis and the left free end of the rod. For a fixed time increment and starting
from a rather coarse mesh the mesh was successively refined which resulted in an
increasing number of equations. Additionally, for a fixedmeshing the time increment
was successively reduced thus increasing the number of time steps. As can be seen
from Fig. 11a, b the displacement of the reference node converges quite fast where
the convergence in space is more pronounced as the convergence in time.

The convergence study resulted in a discretization with 3 375 brick elements.
A total of 450 surface elements is applied and overall the numerical model con-
sists of 16 510 nodes with in total 44 982 degrees of freedom, see Fig. 11a. A time
increment Δt = 0.25 × 10−7 s was obtained by means of the convergence study, see
Fig. 11b. As can be seen from these figures with the chosen number of both finite
elements and time steps robust and stable results for the displacement of the rod’s
free end are achieved.

3.2 Numerical Results

The main interest of this contribution is on the validation of the numerical approach
bymeans of an analytical model. After the successful validation the numerical model
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Fig. 12 Normal stress along the rod at t = 2.5 × 10−5 s (left) and t = 3.5 × 10−5 s (right)

allows for more complicated tasks, e.g. the numerical modelling of pull-out tasks in
future investigations. In order to apply the shear load as indicated in Sect. 1, additional
surface elements were implemented in the numerical model. In order to validate the
numerical model, within this section the numerical results are compared with the
results gained from the analytical model which was derived in the precedent Sect. 2.
However, this analytical model is a simplified model with respect to the numerical
one, as effects resulting from the lateral inertia are neglected.

First, the distribution of the normal stress along the rod’s longitudinal axis is
looked at. The respective results are given in Fig. 12 and show the normal stresses
for two time instances chosen exemplarily. As can readily be seen both the maximum
normal stress and its spatial occurrence increase with increasing time t . Additionally,
the bi-linear normal stress distribution is observable. It starts with σx (x0 = 0, t) at
the free end, increases linearly, and—after reaching its maximum value at the current
position of the load front—decreases to zero and thus indicates the front of the initial
longitudinal wave. From this position and the respective time t the effective wave
speed cL can be calculated. These results are in accordance with those obtained
analytically. For a shortened discussion of these results the reader is referred toWeber
et al. (2015).

Figure12 indicates that there is a non-uniform distribution of the normal stress
across the cross section of the rod. This is due to the consideration of lateral inertia,
too. To make this effect more visible from the second time instance in Fig. 12 a
portion of the rod beginning from the zone of maximum normal stress is enlarged
and given in Fig. 13. Obviously, at a given coordinate x the normal stress at the centre
axis is slightly lower than the corresponding stress at the rod’s skin. This is due to
the load being applied at the skin and thus the evolution of normal stress along the
centre axis in the time domain is behind that along the skin.

The distribution of the longitudinal displacement for an arbitrarily chosen time
instance is given in Fig. 14. The three regimes discussed for the analytical model in
Sect. 2 are also observable from the numerical results: (i) until arrival of the front of
the initial longitudinal wave there are no displacements, (ii) then the displacements
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Fig. 13 Normal stress along
the rod at
time t = 3.5 × 10−5 s,
starting from x = 9 cm

increase quite fast whereas in (iii) the gradient of the displacements reduces succes-
sively. This change in the gradient of the displacement field is also documented in
the analytical model, see Figs. 6 and 8, respectively. However, the graphical repre-
sentation of the longitudinal displacement distribution in Fig. 14 is not suitable to
investigate this spatial change in the gradient in detail. Thus, Fig. 15 compares the
longitudinal displacement distribution of the analytical and the numerical model.
Within this figure the longitudinal displacement is plotted over the position along
the rod and results are given for several time instances which coincide with the
time instances presented within the precedent and forthcoming figures. The sin-
gle values of the longitudinal displacement of the finite element model stem from
the nodes. The numerical results are plotted for the nodes along the rod’s central
axis (within the figure denoted as “FEM-Middle”) and along the rod’s skin (denoted
as “FEM-Border”). Only the longitudinal displacement distribution is presented as in
the analytical model no lateral inertia is assumed. Please note that there is a very good
qualitative and a good quantitative agreement between the results from the numer-
ical and analytical model. Concerning the three longitudinal displacement regimes
in the numerical results mentioned before it is now clearly observable that there

Fig. 14 Longitudinal
displacement along the rod
at t = 4.0 × 10−5 s
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Fig. 15 Comparison of
longitudinal displacements
between numerical and
analytical model

are increasing and decreasing slopes as predicted by the analytical model. However,
the longitudinal displacements are slightly higher for the numerical results and the
absolute difference increases with increasing time.

The relative deviation d between the finite element and the analytical results is
given with Fig. 16 and is calculated by

d =
⎧

⎨

⎩

∣
∣
∣
∣

uanalytical − unumerical

unumerical

∣
∣
∣
∣

for unumerical �= 0

1 for unumerical = 0
. (32)

As can readily be seen for all plotted times the relative deviation for the case of
both the displacements along the central axis and along the rod’s skin starts with
≈ 5 . . . 7%, slightly increases in the direction of the load front and finally rapidly
increases to 100% at the current respective position of the expected load front.

Fig. 16 Relative deviation
of longitudinal
displacements between
numerical and analytical
model
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Fig. 17 Radial displacement along the rod at t = 2.5 × 10−5 s (left) and t = 3.5 × 10−5 s (right)

Obviously, for unumerical �= 0 at this position uanalytical = 0 must hold according to
Eq. (32). If the longitudinal displacement in the analytical model is zero but in the
numerical model it is unumerical �= 0 the wave speed in the finite element model must
be higher than that in the analytical one. Note that in this case the deviations are
overestimated already for small deviations unumerical ≈ 0. In the analytical model
lateral inertia is neglected and consequently cL,analytical = √

E/� holds. If however
lateral inertia is at hand, the material gets stiffer due to the restricted lateral strain and

consequently the wave speed approaches cbulk =
√

E
(

1 − ν2
)

/
[

�
(

1 − ν − 2ν2
)]

for an elastic half space, Graff (1991). For the material parameters introduced in
Sect. 3.1 it is cbulk = 1.16 cL. From Fig. 17 it is observable that lateral strain and thus
lateral displacements ur are restricted but not prevented and thus the wave speed
in the numerical model is within the bounds cL,analytical < cL,numerical < cbulk. As the
wave speed in the finite element model is higher than in the analytical one at the
same time instance t the rod segment under influence of a normal stress is longer
than the respective length in the analytical model. Consequently, the displacement
at the free end of the rod is bigger in the numerical case compared to the analytical
one and this difference increases with increasing time t .

Figure17 additionally shows that (i) the value and the spatial occurrence of the
maximum lateral displacement and (ii) the length of the rod showing non-zero lateral
displacements both increase with increasing time. This is plausible with respect to
the normal stress distributions depicted in Fig. 12.

4 Conclusion and Outlook

A finite element model to deal with the problem of surface loads with moving load
fronts, as it occurs e.g. for the case of dynamic pull-out of reinforcement, ismotivated.
Exemplarily, a (semi-infinite) rod is chosen at whose surface a constant longitudinal
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load is applied. Starting from the rod’s free end, the front of this load travels with
a constant speed. Thus, an overall load increasing with time is acting on the rod.
A standard FE method is used to perform the calculations. In order to validate the
numerical model an analytical investigation of the given task bymeans of the method
of characteristics is performed as well. The latter investigations take place both for
the sub- and supersonic case. That is, for the speed cq of the load front being lower
or higher than the speed cL a longitudinal wave propagates with along the rod’s axis.
Between both cases a smooth transition is revealed—a result which is hardly possible
to be deduced from a purely numerical approach.

The results of both the finite element and the analytical method show good agree-
ment and thus, the numerical model is capable of dealing with more advanced prob-
lems in future work.
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Application of Multi-scale Approaches
to the Investigation of Sealing Surface
Deformation for the Improvement of Leak
Tightness in Pressure Relief Valves

Ali A. Anwar, Yevgen Gorash and William Dempster

Abstract This chapter is part of a research program to investigate and model the
leak tightness of a Pressure Relief Valve (PRV). Presented here is: a literature review;
high-temperature numerical study involving the deformation of contact faces for a
metal-to-metal seal accounting for micro and macro effects; and also microscopic
measurements of surface finishes and how they aremodelled over amicro to nanome-
tre scale. Currently, no review of literature exists which attempts to understand the
leakage phenomenon of metal-to-metal seal contact PRV for static closed positions
as they reach the set pressure point. This work attempts to do just that by drawing
on inspiration from other research areas such as metal-to-metal contact and gasket
seals. The key topics of interest surrounding the leakage of fluid through a gap are:
fluid flow assumptions, surface characteristics and its deformation, and experimental
techniques used to quantify leakage. For the numerical study, the valve geometry is
simplified to an axisymmetric problem, which comprises a simple geometry con-
sisting of only three components: a cylindrical nozzle, which is in contact with a
disc (representing the valve seat on top), which is preloaded by a compressed lin-
ear spring. The nozzle-disk pair is made of the austenitic stainless steel AISI type
316N(L) steel. In a previous study, the macro–micro interaction of Fluid Pressure
Penetration (FPP) was carried out in an iterative manual procedure at a tempera-
ture of 20 ◦C. This procedure is now automated and implemented through an APDL
script, which adjusts the spring force at a macro scale to maintain a consistent seal
at elevated temperatures. Finally, using the Alicona Infinite Focus the surface form
and waviness is measured, presented and modelled as 1/4 symmetric over a macro to
nanometre scale. It is clear the surface form also needs to be accounted for, something
which the literature does not focus on.
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1 Introduction

1.1 Scope of Research

There are many commercially available valves which perform different functions.
Valves can function as isolators, diverters, flow reversal prevention and reduce pres-
sures within a service system. The service characteristics can range from fluid type,
fluid characteristics, pressure, temperature, chemical resistance and finally opera-
tional and maintenance requirements (Smith and Vivian 1995). Appropriate valve
selection is dependent on complete knowledge of the required function and the ser-
vice characteristics.

When choosing a valve it has been recommended to factor in the leakage since leak
tightness has a direct effect on the operational and maintenance requirements (Zappe
2004). Depending on the service, especially if the fluid is hazardous to humans or the
environment, the leak tightness is of the highest interest. Regardless, for any service
characteristic and function the leak tightness will have a direct effect on the overall
pressure of the system over time, therefore the leak tightness is equitable to a direct
cost in operations and maintenance.

As the operating pressure within a Pressure Relief Valve (PRV) reaches the set
pressure, the sensitivity of the valve opening prior to reaching an equilibrium (set
pressure = operating pressure) increases. To be able to seal the valve up to 90% of
the set pressure and higher requires research into the leak tightness of the valve. The
PRV of particular interest is the STARFLOW P3 PRV manufactured by Weir Power
and Industrial Division.

This research program was initiated to understand leak tightness of a metal-
to-metal contact of a PRV and take the early steps to model the leakage using
computational solvers. A preliminary work package by Gorash et al. (2014, 2015),
predominantly of Finite Element Analysis (FEA), showed that the inner section of
the metallic valve seat is subject to deformation due to a cyclic analysis. Gorash et al.
(2014, 2015) recommended that to pursue:

1. A 2D axisymmetric cyclic analysis of a PRV using Fluid Pressure Penetration
(FPP) at an elevated temperature;

2. Create an ANSYS Advanced Parametric Language Script (APDL) to automati-
cally account for macro and micro FPP;

3. Combine this all with a multi-scale model which accounts for surface roughness
deformation and its effect on leak tightness.

This chapter will focus on a literature review and recommendation 1 and 2 from
above. Originally, the third point from above in the recommendations was going
to be followed, however, one of the main findings of the research program (after
completing step 2) was that a vital surface finish quantity needed to be accounted for
and had not been highlighted in the literature for metal-to-metal seals. This surface
finish quality is known as the surface form and the measurements taken using the
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Alicona Infinite Focus are shown in this chapter. Within the literature the surface
form is generally associated with flatness and an implicit assumption is made where
the contacting surfaces are assumed “perfectly flat”.

After researching this further it had been decided to account for surface form
profile and waviness deformation using 3D 1/4 symmetry FEA which accounts for
a micro- to nanometre geometry. In the future this would then be connected to a
Computational Fluid Solver (CFD) to quantify leakage of the valve due to surface
form and waviness.

1.2 Background Information

For the benefit of the reader who is unaware of either a PRV, its components or
Surface Metrology, this short section will give a brief overview with respect to the
research discussed.

1.2.1 Pressure Relief Valve (PRV)—Components and Functionality

Since only PRVs are considered for this project, it is vital to understand the compo-
nents and functionality of a PRV. A schematic presentation is provided in the form of
a classical ASME valve (see Fig. 1a) and DIN valve (see Fig. 1b). These have been
chosen since they represent majority of spring-loaded PRVs available worldwide,
which utilise metal-to-metal and seat-to-disc contact.
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Fig. 1 Valve component schematic for typical a ASME and b DIN valves (Spirax Sarco 2016)
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A PRV functions within a pressured systemwhich is generally connected to either
pressurised tanks or pipes. Its purpose is to release overpressure from a pressurised
system which has exceeded its design pressure to ensure system safety and allow
operations to continue. The valve is designed to release the fluid from the system to
relieve pressure, autonomously.

As the system pressure increases the pressure in the inlet tract increases accord-
ingly. The spring stiffness is set using an adjuster (or a compression nut depending
on design) which results in a force being applied to the Seat via the Disc. This force
will be known as the spring force (Fsp). The disc and seat are separate and only
have a metal-to-metal contact, effectively acting as the seal. The valve is sealed at a
pressure known as the “set pressure”.

When the pressure in the system is greater than the set pressure—also known as
overpressure—then the force holding the disc down on the seat is outweighed, the
disc lifts and the fluid enter into the secondary chamber and releases through the
outlet tract. It is also important to note that the effective seat area also increases due
to more of the disc being exposed to the inlet pressure when the valve seat is lifted
due to the increased pressure.

1.2.2 Metrology: Surface Finish

If a material such as steel is cut and ground down to a smooth finish, it is important
to understand what quality of finish is present. To the naked eye it may look to
be flat and a smooth finish, however a different story can be told when viewed
under magnification. Generally when viewed under magnification a chaotic surface
is present. To measure this chaotic surface metrological techniques must be used.

Metrology is a core, long established scientific method of geometrical measure-
ment. This topic is one of the three cores of the project since the understanding of
surface finish and howwe can quantify it is of great importance. For this research pro-
gram there are 3 surface metrology concepts to introduce: Average Surface Rough-
ness (Ra), Average Waviness (Wa) and Surface Form, as shown in Fig. 2.

Surface form is the shape that the surface takes when formed. This shape is usually
distinguishable visually and thenmeasured and displayed as a profile as seen in Fig. 2.
If all the points along the surface form are considered and enclosed via an upper and
lower boundary region, encapsulating all the points, the flatness can be attributed to
the difference between the highest and lowest points within the region. The average
waviness is a magnification of the surface form which accounts for irregularities that
deviate from the mean surface represented by sinusoidal waves. The average spacing
between the wave period is known Wsm.

A further magnification of the waviness shows surface roughness which accounts
for irregularities along the waviness profile and again is represented by sinusoidal
waves. The average waviness and roughness is considered for this project. It is
possible to model the surface using actual scanned profiles.
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Fig. 2 Surface form, waviness and roughness depicted on two contacting surfaces separated by a
gap size of h

2 Literature Review

This section identifies the current understanding and technological knowledge of
leak tightness of metal-to-metal contact PRVs. Within a PRV the seat and disc would
be in contact and would constrain the fluid. Research in this field in direct relation
to valves is scarce. However, inspiration can be drawn from relevant fields such as:
metal-to-metal contact and gasket seals. When these contacting surfaces come in
contact in parallel to each other a finite gap or path is present which is dictated by
the surface finish such as: profile, roughness, waviness, flatness, etc. Subsequently,
if there is a driving internal pressure the fluid can pass through the path and exit the
valve. It has been stated by Burmeister et al. (1967) that the minimum leakage rate
which can be obtained for 1 time seal applications is “less that 10−8 atmospheric
cc/sec of helium”.

Previous work suggests that the leakage rate is either viscous laminar flow, mole-
cular flow or, in the intermediate or transitional regime, or a mix of both. Assuming
the non-contact area through the gap to be a finite length and the fluid to be isother-
mal and viscous compressible/incompressible, Poiseuille flow equations are utilised
either for a circular cross section (Burmeister et al. 1967) or parallel plates. More
recent work shows the development of fluid flow due to diffusion flux based on high
to low concentration regions through the contacting surfaces using Fick’s law for



498 A.A. Anwar et al.

incompressible isothermal fluids. The lineic flow rate characteristics which deter-
mines the gap height for both Poiseuille flow and diffusion are generally put into two
characteristics: transmissivity K and diffusivity D (BHR Group Ltd. 2000; Mitchell
and Rowe 1969; Ledoux et al. 2011; Vallet et al. 2009; Geoffroy and Prat 2004).

The true area of actual contact between two parallel faces is only a small fraction
of the nominal area due to the aperture. To describe the path the fluid would take, the
chaotic surface must be characterised. Methods to characterise the surface have been
created by many authors such as the MOTIF procedure, self-affine fractal analysis
and simplistic geometry. Recently, this has been adopted into leak tightness projects
to determine its effect on the gap height (Robbe-Valloire et al. 2001; Robbe-Valloire
and Prat 2008; Gagnepain and Roques-Carmes 1986; Ganti and Bhushan 1995).

The contact area is dependent upon the aperture of both surfaces in contact and
the deformation magnitude is dependent upon the normal load applied and the effec-
tive surface hardness of the softer of the two materials. Depending upon the loading
the surface aperture can become plastic in areas while the whole structure remains
predominantly elastic. Taking this into consideration, the flow path will change
depending on the load. Attempts have been made to analytically and computation-
ally describe the surface roughness, elastic (using Herts theory by O’Callaghan and
Probert 1987), elastic-perfectly-plastic (refer toMan et al. 2014) and perfectly-plastic
and rigid (using theory by Tsukizoe and Hisakado 1965 in Geoffroy and Prat 2004)
deformation and understand its effect on the gap height or aperture field.

To verify the leakage rate experimentally British, ASME and API, standards can
be used. Recent experimental work by Haruyama et al. (2013) and Geoffroy and Prat
(2004) have shown promising methods of detecting and quantifying leakage and
its link to the transmissivity K and diffusivity D values. More specific research into
PRV leakagewhich detracts from surface finish has been conducted byRitchie (1989)
which examines the effect of misalignment of the valve and its effect on pressure
drop. Computationally to model a whole seat and disc of a PRV with the surface
roughness and waviness would be possible, but intensive and other techniques such
as multi-scale modelling (Thompson 2007b; Jackson and Streator 2006) could be
considered instead. Finally, themost recent development byPérez-Ràfols et al. (2016)
is a computational model that is utilised to study the leakage through metal-to-metal
seals accounting for both the waviness of the spiral groove and the surface roughness.
Correlation between percentage real contact area and actual contact topology and
leak rate was confirmed through numerical analysis.

2.1 Leakage: Fluid Flow Assumptions

Depending on the service characteristics the fluid type and characteristics such
as pressure, temperature and contaminants will vary. Generally, high performance
valves will be capable of withstanding compressible and incompressible Newtonian
fluids which range from −196 to −540 ◦C and pressurised up to 440 bar. Assuming
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the valve has not opened and the seat and disc is in contact, only the surface defor-
mations at a micro scale create an aperture field through which the fluid can escape
out.

In previous studies on gaskets, valves and metal surface contacts, the fluid
flux has been assumed to be laminar and either; viscous isothermal compress-
ible/incompressible and equated using Poiseuille law qv (volumetric flow rate) per
unit width in Eq. (1); or diffusive, equated using Fick’s law qd (volumetric flow rate)
per unit width in Eq. (2), as shown below:

qv = −K
μ

∇p (1)

qd = −D D ∇c (2)

whereμ is the viscosity, p is the fluid pressure,D is themolecular diffusion coefficient
and c is the mass fraction of the species. K and D are respectively the transmissivity
and diffusivity values. These allow the lineic flow rate characteristics to be described
at the scale of the surface. Based on a parallel gap with a height of h these terms can
be described as:

K =
〈
h3

12
(I + ∇b)

〉

, (3)

D = 〈h (I + ∇b)〉 , (4)

where b is the solution of the closure problem (Vallet et al. 2009).
Majority of authors have adopted a parallel gap (Mitchell and Rowe 1969; Ledoux

et al. 2011; Vallet et al. 2009; Geoffroy and Prat 2004) rather than a circular cross
section (Burmeister et al. 1967). This generalisation is more appropriate since the
diametre of flow path does not need to be known, rather the separation between the
contact surfaces is adequate. Also this is only applicable to asperities with local small
slopes l, where h � l or l < 10 ◦ (Vallet et al. 2009). The connection between the
transmissivity K and diffusivity D has been theoretically analysed by Geoffroy and
Prat (2004) and they conclude that the dependence of the fluid transition in either
K or D form is defined by both the gap size and applied load. The caveat with this
theory is that a uniform gap height, surface form, waviness and roughness are present
with a flat surface deforming it, which is implicitly applied for the latter.

Depending on the rarefaction of the fluid, it could also be in the transition or slip
flow regime. This is likely since the surface roughness is at amicro scale and therefore
the gap height is also likely to be similar. This can be verified by calculating the
Knudsen number and has been accounted for by Gorash et al. (2014) in an analytical
model which is an extension of the Poiseuille’s Law for fluid flux through a parallel
gap written as:

q = h3

24μRT

[

P2
0 − P2

1 + 12
2 − σa

σa
Kn1P1 (P0 − P1)

] ∣
∣
∣
∣

P2
0 − P2

1

P1

∣
∣
∣
∣
, (5)
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whereμ is the accommodation coefficient, R is the gas constant, T is the temperature
and Kn1 is the Knudsen number at the outlet. The second more subtle assumption
here is that the micro fluid flow is based on the outlet not the inlet.

There has been a further modification of this equation to account for chocked
mass flow rates at the exit of the microchannel by Chong (2006):

ṁ = h3

24μRT

(

1 + 12
(2 − μ)

μ

σa

P1h

16

5

√

kT

2πm

)

. (6)

where π = 3.14. This equation is questionable since for chocked conditions for a
gas compressibility would have to be considered while Xie’s equation does not.

The original form of Eq. (5)was proposed byArkilic et al. (1997)who also defined
the pressure distribution across the gap to be:

P(x)

P1
=

{(

6Kn1 + P0

P1

)2

−
[(

P2
0

P2
1

− 1

)

+ 12Kn1

(
P0

P1
− 1

)] ( x

L

)
} 1

2

− 6Kn1,

(7)

which has shown very good agreement with experimental results for subsonic flows.

2.2 Representation of Surface Roughness at Micro Scale
and Its Effect on Fluid Flow Path

Micro-scale geometry of a surface profile is chaotic in nature making it important
to be able to represent the area in an effective form since this has a direct effect on
the gap height, h. There are methods available which make it possible to represent
the surface roughness of a model at a micro-scale level. These can be in the form of
generic surfaces such as a sinusoidal waves (Geoffroy and Prat 2004; Pérez-Ràfols
et al. 2016) or vibrational Eigen modes (Ledoux et al. 2011) or wedges (Mitchell and
Rowe 1969). There are more analytical methods based on the surface available such
as the sum surface (Robbe-Valloire et al. 2001), MOTIF procedure (Robbe-Valloire
and Prat 2008) and fractal analysis (Vallet et al. 2009;Gagnepain andRoques-Carmes
1986; Ganti and Bhushan 1995) which all have benefits and limitations. The benefits
and limitations are discussed below and its effect on the gap size.

The sum surface allows the direct analysis of two contacting surfaces. This tech-
nique is used by many authors (O’Callaghan and Probert 1987) and based upon a
theory created by Tsukizoe and Hisakado (1965), which states, it can be assumed
that, “the contact between two rough surfaces can be regarded as the equivalent to the
contact between an imaginary rough surface having an appropriate effective topog-
raphy and a perfectly flat surface” and “the contacting asperities deform in an ideal
plasticmanner so that, providing no interference from neighbouring asperities occurs
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Fig. 3 Illustration of a sum surface technique, which is used to generate of b equivalent rough
surface with black areas indicating microcontacts, after O’Callaghan and Probert (1987)

and that work hardening does not take place” as that shown in Fig. 3. Essentially,
the flat surface is assumed rigid perfectly-plastic surface. These are accepted and
applied assumptions in references (Mitchell and Rowe 1969; Ledoux et al. 2011;
Robbe-Valloire et al. 2001). The main limitation with the sum surface technique is
that the actual surface has to be measured physically. A further limitation is that
representation of the surface is generally in a 2D format and an “effective” gap size,
h, has to be calculated and is generally based on an average values as demonstrated
by Mitchell and Rowe (1969).

More recently, the surface roughness of both lapped and sand blasted surfaces
has been represented as self-affine fractal surfaces combined with the sum surface
technique contacting a rigid-perfectly plastic flat surface (Vallet et al. 2009). By using
fractal analysis the self-affine fractal surface is based on two parametres and is created
using a power law. Using this technique the surface roughness can be modelled in
3D, representing the whole aperture field. 2D representation can be created using this
technique but an “effective gap size”, h, would have to be employedwhen calculating
leakage rate. Vallet et al. (2009) show good agreement when comparing the fractal
surface representation to the “real” surfaces for the lapped surfaces. This shows that
for lapped surfaces self-affine fractal surfaces can be used to generically replicate
surfaces and represent the aperture field. The main limitation of this method is that
the mathematics is intensive and requires the use of computational programs such
as MATLAB. By modelling the whole aperture field all possible fluid flow paths
can be represented and more accurate gap sizes through the valley and peaks can be
calculated.

2.3 Micro Material Deformation of Rough Surfaces
and Its Effect on Fluid Flow Path

When two surfaces each with their own unique roughness come into contact, the
actual contact area is much less than the nominal area. The magnitude of the contact
area is dependent on the load applied. So, the accurate deformation of the surface
roughness’s is of great importance since the voids between the surface roughness’s
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is the gap size (2D) or aperture field (3D) through which the fluid will flow. Also
a small change at a micro scale will reverberate in a larger change over a macro
scale. Theory by Tsukizoe and Hisakado (1965) essentially assumes the flat surface
is rigid and the summed surface is perfectly-plastic and as said these are accepted and
applied assumptions in Refs. Mitchell and Rowe (1969), Geoffroy and Prat (2004),
Robbe-Valloire et al. (2001).

Using slip line field theory, Mitchell and Rowe (1969) have incorporated the
effects of the perfectly-plastic isotropic deformation structural response of two-
dimensional wedges to represent the surface roughness in contact with a rigid-
perfectly-plastic flat surface which is based on the theory discussed above. The slip
line theories main limitation is that it is used to model plastic deformation in plain
strain only for a solid represented as a rigid-perfectly-plastic flat surface (Univer-
sity of Cambridge 2004). It is shown that for all contact pressures there is a specific
deformed wedge angle found and crucially there is a point at which a maximum
leakage rate for specific wedge angle over the seat length. The limitations of the
findings are concurrent with the fluid flow assumptions about the gap size and the
simplified representation of the surface roughness.

Assuming a simplistic, but effective sinusoidal shape geometry to represent the
surface roughness in contactwith a flat surface (Geoffroy andPrat 2004; Pérez-Ràfols
et al. 2016), it is shown that as the load on the gasket is increased, the incompressible
fluid flows from a radial direction, to a circumferential spiral fluid flow through the
valleys as shown in Fig. 4. It is also shown that there is a very small region over which
the transition from circumferential to radial (or vice versa) occurs and the diffusive
and viscous flows are mixed. It is concluded that the radial leakage (which is related
to the transmissivity) is of most critical since it is very sensitive to the gap size.
However, this theory can only be valid for surfaces which depict a predominantly
sinusoidal shape contacting a flat face.

Another analytical technique which accounts for elastic deformation is the Hertz
theory (O’Callaghan and Probert 1987). The Hertz elastic deformation theory is
only applicable for surfaces with purely spherical aperture contacting shapes. It
is employed by Man et al. (2014) for two 3D random rough surfaces in contact.

circumferential

radial circumferential
radial

a

b

Fig. 4 Schematic illustration of the crest and valley sinusoidal fluctuations indicating radial and
circumferential direction used by a Geoffroy and Prat (2004) and b Pérez-Ràfols et al. (2016)
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Fig. 5 Recognition algorithm diagram of leak path identification where 0 is no gap and 3 is the
fluid flow path: a contacting state and b leaking path, after (Man et al. 2014)

As the two rough surfaces come into contact and deform due to the loading applied,
the leakage path through the aperture field is dictated by the largest gap from one
end of the specimen to the other and is calculated using a “recognition algorithm”
(see Fig. 5 for details). This fluid flow path recognition is a simplistic, but effective
theory to allow one to understand if the microcontact under specific loads will either
leak or not for a material.

2.4 Macro Scale Deformation and Its Effect in Fluid
Flow Path

Using FE-code ANSYS, Gorash et al. (2014, 2015) have shown that at a macro scale
the contact length of the seat and disc of a PRV is reduced and is further exasperated
due to cyclic opening and closing of the valve. Gorash et al. (2014, 2015) assumed
the contact force to be normal to the face of the seat and disc modelled as 2D. Using
elements PLANE 183 (for both the seat and disc model), COMBIN14 (spring),
CONTA172 (seat contact) and TARGE169 (disc contact) and assuming that for a
gas and liquid the fluid flow pressure acting on the seat and disc is parabolic and
linear respectively, they have shown that the once the spring preload and the internal
set pressure is applied, the contact edges of the disc become plastics for a monotonic
material response. This plastic response of the seat is exasperated towards the middle
of the disc when cyclic material response is considered. This essentially means the
fluid flow path is increased, while effective contact area and length would reduce
meaning a higher leakage rate.

2.5 Experimental Leakage Rate

One of the earliest collection of advanced studies addressing testing and analysis of
PRVs performance was compiled by Singh and Bernstein (1983). The book covers
the topics of test facilities design, safety valve experiments, analysis of PRVs per-
formance, and loads on discharge piping. The state-of-art approach to calculate the
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leakage rate of a PRV is based on recent international standards, e.g. ASME (2014),
BSI (2013), API (2014). This method requires the PRV to be set to 90% of its set
pressure using a gas. The outlet of the PRV is closed off with a pipe attached to
expel the increase in pressure (i.e. leakage) in some water in the form of bubbles.
The leakage has to be less than a specified amount for it to be used in-service.

Based on the average surface roughness, there have been attempts to relate this
to the leakage rate through a gasket. Haruyama et al. (2013) created an experiment
which quantified the leakage rate of helium through a bolted flange with a new gasket
placed between. They concluded that the leakage rate is highest for rough surfaces
of Ra = 3.5µm when a low load force is applied. When a maximum of 400MPa
of force is applied on the flange then leakage rate is the least and is similar for all
Ra’s being 1.5, 2.5 and 3.5µm. However, the material properties of the gasket and
the flange are not known and so links between the material deformation and leakage
is difficult to comment on.

Another method used by Marie and Lasseux (2007) allows quantification of leak-
age flow of solvents at a micro or nano-scale through a rough metal contact for both
viscous and diffusive fluid flow separately for contact pressures up to 700MPa. Using
the leakage results Eqs. (1)–(4), they have managed to find the diffusive and viscous
properties from which the effective gap size has been estimated.

2.6 PRV Specific Issues Relating to Leakage

Now that an understanding of the work currently completed on micro deformation
and its effect on leakage has been analysed it is important to consider factors which
are unique to a PRV which could also cause it to leak.

Depending on the design of the valve, one issue which has been highlighted is
that the guide pin can be displaced easily which causes the seat to rotate or displace.
This rotation/displacement of the seat causes the valve to leak and subsequently the
set pressure decreases. Ritchie (1989) examined this issue and created an analytical
model to understand the reduction of seat pressure due to the misalignment angle of
the seat. Assuming the valve leaks only when the set pressure has been reached, it
was shown that for a disc with radius of 8.47mm and 155N of applied force on the
seat, the set pressure (100ψ) decreases by 10% for a misalignment of 1.225 ◦ for
the seat.

2.7 Summary and Discussion

As it has been shown, previous analytical work accounts for the gap height either in
the form of h or h3 for a parallel gap. This is mainly been accounted for only laminar
viscous incompressible/ compressible or diffusive flow through the aperture field,
with more recent work in accounting for the rarefaction of the flow. However, the
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parallel gap assumption is limited to small asperities h � l and there has to be an
“effective” height used for a 2D surface model which is geometrically represented as
simple surfaces. While for 3D surface models computer programs such as MATLAB
or equivalent can be used to model lapped surfaces with high accuracy as self-affine
fractal surfaces, but are extensive.

In reality Tsukizoe and Hisakado (1965) and the slip line theory is not completely
valid for multiple asperity contacts demonstrated by the experiment conducted by
Uppal and Probert (1972). They showed that for a multiple asperity surface in contact
with a harder flat surface, under a high load the shallower valleys do rise (0.1–0.3µm)
while deep valleys do not, while Tsukizoe and Hisakado (1965) theory considers no
movement in the valleys. So, there is an element of elastic behaviour and plastic
strain hardening occurring which would have to be considered.

Instead of analytical techniques to describe the deformation of two rough surfaces,
FEA programs such as ANSYS could be utilised to describe elastic perfectly plastic
deformation of the interface as shown by Megalingam and Mayuram (2012) using
actual 3D or 2D scanned surfaces. There is other literature particularly by Thompson
(2007a, b, 2011), Thompson and Thompson (2010a, b), which gives further guidance
on multi-scale modelling and optical measurements of the surface aperture which
is then transferred into ANSYS. The FEA would require some form of verification
of the surface deformation accuracy, but if achieved, this will allow a more accurate
representation of the fluid flow path.

This could be taken further by modelling the surface as a representative surface
using summing technique, self-affine fractal surface or MOTIF procedure, versus,
the actual surface in FEA and see the difference in the contact area.

A theory created by Geoffroy and Prat (2004) tries to link the diffusive and trans-
missive fluid flow to either radial or circumferential, but has not been verified and
is only applicable to predominant sinusoidal shaped surfaces in contact with a flat
surface, i.e. gaskets. Recently, Pérez-Ràfols et al. (2016) have extended the work of
Geoffroy and Prat (2004) by using the summing technique material considerations
for a composite elastic modulus (i.e. the effective elastic modulus of the joint) and
used a relative size of the whole model, rather than modelling the whole surface.
However, in doing so, there is still the implicit assumption made by Pérez-Ràfols
et al. (2016) that there is no deviation in the surface form, which may be appropriate
for gaskets, but not for this program as will be discussed later in Sect. 4.

Gorash et al. (2014, 2015) have shown that there is a deformation at a macro scale
due to the spring force and the pressure of the fluid, which has to be considered to
begin. Their work has shown the contact is not uniform between a seat and disc of a
PRV rather; it begins and ends within the seat length. So there is a need to understand
how the macro and microcontact areas link to give the actual contact area.

The disc rotation on the seat causing leakage maybe more of a design problem
rather than a research based problem. The reason for this is that there are clear-
ances prevalent throughout the seat and disc allowing this motion to occur. Also it is
understood that the spring force under compression may not be perpendicular to the
compression axis of the spring.
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Further investigations would be required to understand the effect of grain bound-
aries on the deformation of surface roughness at a micro scale.

3 Effect of High Temperature on Structural Behaviour
of Metal-to-Metal Seal in a Pressure Relief Valve

This section focuses on the structural behaviour of the metal-to-metal contact seal in
a PRV when the material, AISI type 316N(L) steel, behaves and reacts as it would
when exposed to a higher temperature. In this case the temperature of interest is
538 ◦C (maximum operating temperature for the investigated valve) and the fluid
being a gas, i.e. air. The maximum operating pressure supported by the valve in
question is 18.6MPa. The initial work conducted by Gorash et al. (2014, 2015), will
also be discussed in this section.

To study these specific effects of temperature and pressure a finite element analysis
is undertaken using ANSYS Parametric Design Language (APDL) script to account
for Fluid Pressure Penetration (FPP) through the contact gap. This APDL script
allows for pressure between the contact gap to be accounted for sufficiently and
automatically adjusts the force retraining the valve. Ultimately, this allows for a
cyclic analysis of the valve opening and closing with FPP accounted for. Previously,
Gorash et al. (2014, 2015) had to manually account for FPP for every time step until
the opened. This meant lengthy solving times.

This research builds upon the work conducted previously (Gorash et al. 2014,
2015). In particular, this research advances in the structural model by analysis con-
ducted at an elevated temperature; with a more accurate material model to consider
viscoplastic deformation at high temperature; by creating anAPDL script to automat-
ically account for the FPP migration; and adjustment of the spring force to maintain
the desired set pressure.

3.1 Seat Contact Configuration

The PRV is simplified into three 2D axisymmetric basic parts: a cylindrical nozzle,
which is in contact with a disc (representing the valve seat on top), which is preloaded
by a compressed linear spring. This concept is represented in Fig. 6. The effects on
the bell-housing and any other parts such as the nozzle ring are not of interest as it
is assumed they do not have any effect on the structural behaviour of the seal.

The compression force of the spring is transferred directly to the disc and then
to the seat due to the contact. It is this compression force and quality of the contact
which maintains the seal up to the set pressure. For this analysis it is assumed that the
contact is geometrically uniform. From the study byGorash et al. (2014, 2015), it has
been shown that due to FPP the internal contact between the disc and seat significantly



Application of Multi-scale Approaches to the Investigation … 507

a

b

c

d

Fig. 6 Concept of seat contact configuration in the contact area of metal-to-metal seal considering
FPP (fluid pressure penetration)

deforms due to plastic deformation even at room temperature. The pressure that the
FPP attributes to the disc and seat in the contact zone will be known henceforth in
this report as the macroscopic pressure distribution.

In reality the contact between the faces of the seat and disc are not uniform,
especially at a micro scale, where surface form, waviness and roughness contribute
to the leakage. In this case itwill be assumed that there is a degree of surface roughness
between the contacting faces. To account for this the fluid pressure attributed to the
surface roughness of the contacting faces in the gap, Müller and Nau (1998) had
shown that the pressure drop across a sealed gap for a compressed fluid can be
represented using a power law function dependent on distance as:

P (x) = P1

[

1 − (

1 − β2
) x

L

]n
, (8)

where L is a length of a seal gap; P1—internal pressure and P2—external pressure;
so the pressure ratio is β = P2/P1 and n is a power law exponent, which is depen-
dent on the type of fluid, e.g. n = 0.5 for gas and n = 1 for liquid. Henceforth in
this report this pressure distribution will be related to as the microscopic pressure
distribution. Equation (8) can be extended further by slightly changing themathemat-
ical representation to be aligned with the contact gap in question in a mathematical
form as:

P (r) = P

[
rout − r

rout − rFPP

]n

, (9)

where P—internal pressure, rout—outer radius of the contact area, r—inner radius of
the contact area, rFPP—radius of FPP. This micro pressure distribution is formulated
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in this manner to account for the maximum FPP point travelled in the contact zone.
Integrating Eq. (9) by r over the length of the valve seat (Lseat = rout−rin), an average
value of the pressure within the micro pressure distribution is obtained as

P̄ = P

1 + n
. (10)

Therefore, the force required by the spring to maintain the required set pressure
between the seat and disc is an accumulation of the operating pressure up to the
internal office, macro and micro pressure distribution multiplied by the associated
areas. Hence the spring force can be represented in the following form:

Fsp = Forf + Fmacro + Fmicro ⇒ (11)

Fsp = Pπr2in + Pπ
(

r2FPP − r2in
) + Pπ

(
1

1 + n

)
(

r2out − r2FPP
)

. (12)

If n = 0.5 for a gas then:

Fsp = Pπ

(
2

3
r2out − r2FPP

)

. (13)

Alternatively, this can be expressed in terms of spring displacement Δsp:

Δsp = Pπ

K

(
2

3
r2out +

1

3
r2FPP

)

. (14)

3.2 FEA Modelling and APDL Script

The numerical study is conducted using academic FE-code ANSYS 16.0. The three
components, cylindrical nozzle, disc and spring are all simplified into a 2D axisym-
metric, elastic-plastic model, as shown in Fig. 7. The model is set-up as a quasi-static
structural analysis allowing the valve to open and close over 100 cycles.

As shown below, the spring is modelled using a COMBIN14 (2-node longitudinal
linear spring-damper) finite elements (FEs). A vertical displacement ofΔsp is applied
to compress the spring. As previously described the displacementΔsp is proportional
to the sealing set pressure, which as previously elaborated is due to the internal
pressure and the macro–micro pressure distribution within the contact area. The
spring is connected to the kinematic coupled nodes at the top of the disc. This is
to ensure that the vertical force associated with the spring is distributed evenly and
vertically down the disc.

The disc and seat are both constructed of PLANE183 (8-node axisymmetric struc-
tural solid) FEswith an internal pressure,P, placed on the inside and a fixed boundary
constraint placed on the outside near the bottom of the seat (i.e. the connection to the
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Fig. 7 FE model of the valve seat and disc, with a detailed model of the contact zone, boundary
conditions and loadings

outer valve body). The pressure, P, is ramped up with an average pressure change
rate of rpr = 0.744MPa/s in an incremental manner until the set pressure of 18.6MPa
is reached and then incrementally reduced to zero. This accounts for 1 cycle of the
valve opening and closing.

The contact pair is made up of CONTA172 (2D 3-node surf–surf contact {for
disk}) and TARG169 (2D 3-node target {for seat}). The internal contact of the seat
and disc is the associated starting point for the FPP feature and is allowed to penetrate
along the full contact length. This FPP feature allows pressure to be associated with
changing contact conditions, i.e. as the seat and disc deforms a gap is created and it
will have the associated pressure applied in it automatically. As the valve ramps up
in pressure and cycles open and close, it is expected for the FPP to migrate along the
contact length. To account for the micro pressure distribution with respect to the FPP
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migration point an APDL script is required, so that the macro and micro pressure is
applied correctly.

To ensure the FPP is captured accurately a high resolution of contact points are
created between the seat and disc (125 FEs in the contact region). In total there are
16,404 elements and 49,939 nodes. For further information specific to element types
please refer to ANSYS® Help (2013).

3.3 APDL Script rFPP Retrieval and Apply

As the pressure incrementally increases, the FPP through the contact between the
disc and seat increases gradually until the pressure is either not high enough to
penetrate further or the deformation of the seat/disc reduces not allowing further
penetration. The location point of the rFPP is important to allow accurate micro
pressure distribution to be applied and hence an accurate spring displacement Δsp.
To capture this migration of the rFPP location across the seat and disc an APDL script
is required as shown in Fig. 8.

Figure8 is a flowchart of the script which activates after the first Load Step (LS)
has solved. The script retrieves the FFP contact data produced from the previous LS
from the post processor. It then sorts the data out to find the maximum FPP location
across the seat and disc. This data point is saved as rFPP and the script instructs
the ANSYS program to enter the pre-process (/SOLU) state and adjust the spring
displacement and micro pressure distribution using Eqs. (14) and (10) respectively.
The micro pressure distribution is also applied only across location rFPP to rout. Once

Fig. 8 APDL script flowchart. Beginning at the decision, and then moving though post-processing,
pre-process and then returning to solve the problem until the next LS. After which this loop repeats
until the last LS
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the post-process and pre-process stage is complete the program continues with any
other scripts and solves for that LS. This process is restarted at the beginning of the
next LS until all the LS’s are solved.

3.3.1 APDL Restart Bug

Themain challenge to overcomewith this scriptwas a bugwhich is present inANSYS
workbench 16.1. This bug is related to restart controls (“rescontrol”). After creating
a new APDL script in the “Outline tree” the user has the option to select which LS
the script is to be activated in via “Step selection mode”. Due to the nature of the FPP,
the script would have to be activated each LS. Naturally, the restart control APDL
script should be set to activate for every LS. However, doing this causes the program
not to restart with the new rFPP after every LS. Instead it would continue on with
solutions found in the first LS. As a workaround solution for this bug, the user has
to select “First” LS in “Step Selection mode” to ensure the restart controls work for
each LS. This issue has been highlighted with ANSYS technical support.

3.4 Material Model

The critical components of the PRV (nozzle and disc) are manufactured of the steel
AISI type 316N(L) due to optimally appropriate mechanical properties of this steel
grade. AISI type 316N(L) stainless steel has been used within the power generating
industry since the early 60s of twentieth century. Commonly used in superheater
piping, pressure vessels, heat exchangers and other components exposed to high
temperatures of 650 ◦C as indicated in previous work (Gorash et al. 2014, 2015).
The mechanical characteristics of the steel AISI type 316N(L) makes it an optimal
material for a valve seat which is expected to undergo high local contact stresses,
corrosion-fatigue conditions and possible high-temperature exposure.

Mechanical properties of the steel AISI type 316N(L) in the range of 20–700 ◦C
showsignificant temperature dependence (Gorash et al. 2012).Available stress–strain
experimental data and its fitting by elastic-perfectly-plastic (EPP) and Ramberg–
Osgood (R-O) material models were discussed by Gorash et al. (2014, 2015). Com-
pared to martensitic and ferritic steels, austenitic grades including type 316 have
lower yield stress σy, but higher rupture ductility. This complies with experimental
observations at room and high temperatures, which confirm that the material behav-
iour of the steel AISI type 316N(L) is viscous and rate-dependent (Hyde et al. 2010).
Thus, an accurate description of the plastic deformationswith a unifiedviscoplasticity
model (Chaboche 2008) is essential to address structural integrity and operation
issues.

In the previous study (Gorash et al. 2014, 2015), viscoplasticmaterial behaviour of
the steel AISI type 316N(L) was simplified to rate-independent plasticity neglecting
viscous effects. Available monotonic and cyclic stress-strain curves were fitted by
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the R-O equation and incorporated through the Multilinear Kinematic Hardening
(MLKH) model in ANSYS. Since the dynamic effects have been neglected, the PRV
operation was assumed to be quasi-static for FE-simulation in ANSYS.

Consideration of viscoplastic effects for FEA in currentwork requires themechan-
ical material properties and Chaboche material constants at a temperature of 538 ◦C.
These values are derived by simple interpolation using the experimental data byHyde
et al. (2010) available for 300, 500, 550 and 600 ◦C. In order to obtain constants for
Ti = 538 ◦C, the constants at lower Tl = 500 ◦C and upper Tu = 550 ◦C neighbouring
temperatures are used. The interpolation is done by using the weighting coefficients
(lower and upper), which define the proximity of the interpolated temperature to the
neighbouring temperatures:

wl = Tu − Ti
Tu − Tl

and wu = Ti − Tl
Tu − Tl

. (15)

In this case, the weighting coefficients take the values of wl = 0.24 and wu = 0.76.
In general, the following condition should be satisfied for the temperature:

Ti = Tl wl + Tu wu. (16)

Equation (16) is used to identify all the material constants for AISI type 316N(L)
steel at 538 ◦C using the constants at 500 and 550 ◦C (Hyde et al. 2010), which are
reported in Table1 and required for implementation of FEA in ANSYS.

In order to conclude about the influence of high temperature on cyclic deformation
of the valve seal, the material constants for the Chaboche model are also required
for 20 ◦C. Since the experimental stress-strain curves are available only for a single
strain rate value, the rate-independent variant of the Chaboche model is used. The
identificationof corresponding constants is doneusing thefittingprocedure suggested
in previouswork (Gorash andMacKenzie 2014). This procedure comprises the initial
smoothingof the cyclic stress-strain data by theR-Omodel and subsequent estimation
of the kinematic constants using the Solver add-in ofMicrosoft Excel. The smoothed
cyclic stress-strain data is fitted by the following equation for stress amplitude (Δσ/2)
and plastic strain amplitude (Δεp/2):

Table 1 Material constants for Chaboche model for AISI type 316N(L) steel at 538 ◦C interpolated
from constants at 500 and 550 ◦C (Hyde et al. 2010) using Eqs. (15) and (16)

T ◦C k MPa E GPa b Q MPa a1 MPa C1 a2 MPa C2 Z MPa ·
s1/n

n

500 32.5 145.54 33.35 30.41 94.6 6472.6 113.3 979.91 175 10

538 31.36 142.29 31.56 28.43 88.29 6827.06 114.44 963.02 173.48 10

550 31 141.26 31 27.8 86.3 6939 114.8 957.69 173 10
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Table 2 Material constants for Chaboche model for AISI type 316N(L) steel at 20 ◦C identified
using the experimental stress-strain curves and R-O fittings (Gorash et al. 2014, 2015)
k
MPa

E
GPa

b Q Mpa a1
Mpa

C1 a2
Mpa

C2 a3
Mpa

C3 a4 C4 a5
Mpa

C5

119.1 194 558.3 −119.1 454.4 60.6 134.6 899.1 54.5 14,289 20 267,800 10.5 6,729,430

Δσ

2
=

N
∑

i=1

Ci

γi
tanh

(

γi
Δεp

2

)

. (17)

The number of kinematic back-stresses is increased to five (N = 5) in order to
incorporate themixed softening–hardening character of plastic deformation observed
during cyclic response. The corresponding values of the kinematic constants (a1–a5
and C1–C5) for the Chaboche model are reported in Table2. The next step is the
identification of isotropic constants (k, b, Q) for the Chaboche model (see Table2)
through fitting of monotonic stress-strain data by the following equation for stress σ

and plastic strain εp:

σ = k + Q
[

1 − exp(−bεp)
] +

N
∑

i=1

Ci

γi

[

1 − exp(−γiε
p)

]

(18)

3.5 Results and Discussion

For both the 20 and 538 ◦C cyclic opening and closing analysis, it is shown that the
spring force Fsp is required to increase to maintain the desired set pressure as shown
in Fig. 9. The percentage increase shown in Fig. 9 is calculated by:

ΔFsp = Fsp−FE

Forf
· 100. (19)

The 538 ◦C simulation shows roughly a 1.5 point higher set force than at 20 ◦C
at 8.88%. This is maintained for the first 3 cycles which slightly increases at the
4th to 8.93%. There is a sharp increase to 9.45% after which there is an oscillation
between 9.3 and 9.45%. This oscillation lasts until the 15th cycle after which a 9.4%
increase in Fsp is maintained for the rest of the 100 cycles.

This transition between 8.88 and 9.45% can be explained by analysing the plastic
deformation across the contacting seat face (see Fig. 10). The whole of the seat face
becomes plastically strained with concentration zones at the internal and external
edge (with the former being more significant). Of course the graph is only associated
with the seat face. The extent of the plastic zone across the seat is shown in Fig. 11
with the two concentration zones being visible again. As can be seen fromFig. 11, the
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Fig. 9 Spring force (%) increase to account for plastic strain development across contacting faces

disc remains elastic and does not undergo any plastic strain. As the cycles increase
the plastic strain at the edges increases significantly—internal edge from 0.1% (1st
cycle) to 0.38% (100th cycle) and at the external edge—from 0.03% (1st cycle)
to 0.25% (100th cycle). The internal plastic zone is most prevalent from 0-0.5mm
while the external edge is 1.08–1.25mm. Since this was an idealised model it is clear
that the edges no longer remain square and do deform into radial edges, with a small
mound shaped middle section (ranging from 0.4 to 1mm).

The significant internal plastic zone is due to a combination of the Fsp, FPP and
internal pressure (based on the macro and micro pressure distribution). As the plastic
deformation of the contact face increases, the FPP is allowed to migrate further into
the contact zone. This requires an increase in the spring force tomaintain the required
set pressure.
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Fig. 11 Equivalent plastic strain of seat and disc at 100 cycles

3.6 Conclusion

Using FE-code ANSYS 16.1, it has been shown that to maintain a required set
pressure of 18.6MPa for a gas at a temperature of 538 ◦C, the spring force must be
increased between 8.88 and 9.45%. This has been found to be adequate for up to 100
cycles of the valve opening and closing. This increase in spring force is found to be
due to the lower yield stress and plastic strain conditions of stainless steel 316N(L)
at 538 ◦C, combined with FPP and the micro pressure distribution representing the
surface roughness. This idealised model did show a significant amount of plastic
strain at the internal edge of the seat extending from 0 to 0.5mm in length.

4 Surface Form and Waviness at the Micro
and Nanometre Scale

4.1 Surface Metrology Measurements and Investigations

The work so far has focused on 2D axisymmetric FEA with an implicit assumption
that the surface finish is “flat”, i.e. there is no deviation in the surface form. As
mentioned in the Introduction (Sect. 1) recommendation 3—“a multi-scale model
accounting for surface roughness deformation”—could be now implemented. How-
ever, it was found that the surface form of the discs and seats given by the sponsor
varied in magnitude. Therefore, this implicit assumption that the seats are “flat” is
no longer valid and recommendation 3 was not the correct course of action.

After some adjustments to the finishing technique used to polish the discs and
seats, it was found that the disc surface form dramatically reduced. Importantly
the finishing technique used created consistently the same surface finish shape and
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Fig. 12 Surface form of valve seat measured using the Alicona Infinite Focus at 20X objective
magnification finding a deviation from the surface form (flatness) of 2.1µm

deviationof about±0.5µm.Using theAlicona InfiniteFocus (a confocal andvariable
focus metrology measurement instrument), it was possible to measure the contacting
faces of both the seat and the disc. The surface form measurements of both the valve
seat and disc are shown in Figs. 12 and 13.

As can be seen in Fig. 12, the valve seat has a deviation of 2.1µm in the surface
formprofile and has almost got a 1/4 symmetric shape to the surface profile. Similarly
the valve disc has deviation of 5µm and has a clear and distinct 1/4 symmetric shape
to the surface profile. This profile is termed as a “saddle” shape (Kemet International
Limited 2015).

As mentioned in the Literature review (Sect. 2), there is no mention of surface
form and its relationship to leakage. Instead preference is given to surface roughness.
In an industrial environment, flatness is generally measured using a monochromatic
light source. There is a known uncertainty called 2π ambiguity with monochromatic
light sources, which induce errors into the measurement.

Since it is a metallic contacting surface, majority of work with respect to leakage
is with metal gaskets, where it is assumed the gasket deforms to the point that surface
form is no longer a large enough factor to consider with leakage or flatness is only
considered. Preference is generally given to surface roughness and waviness rather
the surface form shape.
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Fig. 13 Surface form of valve seat measured using the Alicona Infinite Focus at 20X objective
magnification finding a deviation from the surface form (flatness) of 5µm

The reality is that there no such thing as a “perfectly flat” surface, which is a
term associated with when using a monochromatic light source to measure flatness.
Even with the best of finishing techniques there will be some deviation even in the
nanometre range.

4.2 Modelling Surface Form and Waviness
at the Macro–Nanometre Scale

Taking this surface form shape and waviness into consideration it can be modelled
using simplistic surface geometries, in the shape of pyramids, combined with the
sum surface technique originally created by Tsukizoe and Hisakado (1965) as shown
below in Fig. 14.

As seen earlier the surface form is simplified into a 1/4 symmetric 3D Computer
Aided Design (CAD) model. Using the summing technique, the surface form is
modelled as a deviation of 7.1µm and waviness:Wa = 312nm andWsm = 2.35mm.
The model is first created over a 2D rectangle, after which the valve seat face is cut
out. From this the rest of the valve seat can be modelled.
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Surface from and
waviness incorporated

into top surface of valve seat

Fig. 14 1/4 symmetry model of valve seat with surface form (7.1µm deviation) and waviness
(Wa = 312nm and Wsm = 2.35mm) incorporated into top surface

Using a theoretical approach to modelling of waviness and surface form, radial
sinusoidal waves describing waviness can be schematically presented by the follow-
ing equation:

Wr = cos
[(

x2 + y2
)1/2

]

, (20)

which is shown as contour plot in Fig. 15a and as 3D plot in Fig. 16a. As discussed,
theWa andWsm are respectively found to be in the nanometre and millimetre range.
Therefore, the appropriate unit choice for this study for x and y (and for radial Wr

and hoopWh waves), will be micrometres. Circumferential (hoop) sinusoidal waves
describing surface form can be schematically described by the following equation:

Wh = x · y3 − y · x3, (21)

which is shown as contour plot in Fig. 15b and as 3D plot in Fig. 16b. A combination
of radial and hoop waves, which is usually expected in real contacting surfaces, can
be schematically presented by the product of Equations (20) and (21) asWc = Wr ·Wh

and shown as contour plot in Fig. 15c and as 3D plot in Fig. 16c.
Sinusoidal waves would be better to model the geometry with, however, it has

been found that the CAD software, SolidWorks 2013 is not capable of creating
sinusoidal waves due to the Wsm length versus the Wa. The Wsm versus Wa ratio

=
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x
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Fig. 15 Schematic contour plots of the sealing surface waves: a radial, b circumferential (hoop)
and c their combination
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Fig. 16 Schematic 3D plots of the sealing surface waves: a radial, b circumferential (hoop) and c
their combination

creates a difficulty within the CAD engine to model due to the line being so close
to being linear. It was found that a ratio of about Wsm/Wa < 2500 can be modelled
in SolidWorks 2013 as a sinusoidal wave. This model will be structurally deformed
using non-linear FEA considering plasticity in ANSYS and will be reported on later
in the year in a GAMM 2016 conference (Anwar et al. 2016a) and in length as part
of the thesis.

5 Overall Conclusion

The overall conclusions drawn so far are:

• The literature with respect to PRV leak tightness is few and far between. However,
inspiration is drawn frommetal-to-metal contacting surface such as gaskets. There
is a lot information and research conducted to account for surface roughness and
some on waviness and its effect on leakage.

• The elevated temperature effects on the 2D axisymmetric FEA showed that the FPP
was capable of migrating further along the contacting faces due to the cyclic soft-
ening of the material. This meant that the spring force would have to be readjusted
after the first 5 cycles.

• After measuring the surface faces of the seat and the disc, it was found that the
surface form was at a micrometre magnitude with a 1/4 symmetry shape and the
waviness is exhibited over a nanometre range.

6 Future Direction

With respect to the research conducted so far, the biggest change is taking into account
of the surface form and waviness. Therefore, the overall the direction is shown in
Fig. 17.

In regards to the 1-way coupling between FEA and CFD this will be reported on in
the GAMM 2016 conference (Anwar et al. 2016a). This will focus on the techniques
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Fig. 17 Overall research direction for PRV leak tightness investigation and model development

used. The initial CFD validation work has been completed and will be reported
on at the ASME PVP 2016 conference (Anwar et al. 2016b). The measurements
taken using the Alicona Infinite Focus have shown the average roughness (Ra) is
about a 10th of the waviness. The surface roughness will be modelled over a small
representative surface using real scanned surfaces and then deformed using FEA.
This will be reported on in the near future.
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Against the Fragmentation of Knowledge:
The Power of Multidisciplinary Research
for the Design of Metamaterials

Francesco dell’Isola, Sara Bucci and Antonio Battista

Abstract The new possibilities arisen in the last years in material manufacturing
(3D-printing, electrospinning, roll-to-roll processing, self-assembly, etc.) and the
theoretical tools made available by generalized continuum mechanics are still far
from achieving their full potential. The main thesis of the present paper is that it
is necessary a multidisciplinary approach to address the emerging issues in meta-
materials’ design. Therefore, an improvement in the degree and the depth of the
cooperation between scientists from different areas is required. The advancements
needed in mechanics and physics of solids and fluids, mathematical and numerical
modeling and advanced technology in material construction can be obtained only as
a consequence of a synergic effort.

1 Introduction

Technology and hard sciences have always developed in a close and parallel relation.
Indeed, a driving force for science to rediscuss the current paradigms, during all
History, has been the advancement of new technological possibilities, which allow
for new phenomenological evidence to arise. What proves the actual success of the
conceptual revolutions connected with the birth of Mechanics, of Thermodynamics
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and Electromagnetism, is that those new theories and models, created with the aim
of designing and describing new technological advancements, were in the end point
embodied in thewhat has been called classical physics. In the opinion of the authors, a
similar change of paradigm is going to be experienced by mechanics in the incoming
future. However, the new technological possibilities, which permit to produce and
control the properties of material both at the micro- and nanoscales, need substantial
progresses from a theoretical point of view. It is evident that the new manufacturing
techniques, such as electrospinning, 3D-printing, self-assembly, and so on, which
have been developed in the recent years, enforce us to reanalyze some of our ideas
concerning theoretical mechanics and above all, on the relation existing between it
and technology. Indeed, using such techniques, we are able to produce objects which
present an exotic and peculiar behavior from a classical point of view.

The key challenge, today, is therefore not only to be able to predict the behavior
of already existing (possibly advanced) materials, but also to succeed in prescribing
the right constitutive and geometric characteristics at the microscale in order to
get a certain (even exotic) behavior at the macroscale. Among many paths we can
imagine for future developments, the following ones appear critical with respect to
the aforementioned technological innovations:

• the development of an improved theoretical framework for generalized continua
based on a systematic assumption of the variational approach;

• the development of suitable homogenization techniques allowing for the determi-
nation of reliable macroscopic models based on the given micro-/nanostructure
and on the physical properties of the considered materials;

• the development of robust and flexible numerical methods to perform effective
simulations of the proposed models;

• a sound basis of experimental evidence, to be developed in close connection with
the previously mentioned theoretical knowledge and understanding;

• the concrete realization of proofs of concept, constituted by prototypes of new
advanced architectured materials.

Therefore the creation of networks,1 which allow the interaction of scientists special-
ized in each of the aforementioned categories, is an unavoidable step if the scientific
community wants to successfully meet the challenge. This idea is not a novelty,2 of
course, but in the opinion of the authors it has to be reexamined in order to promote
actual interaction between different fields and not, as often is the case, mere union
of the respective results. Indeed, joining different specializations under a unified line
of research having a common goal should exploit the highly specialized knowledge
currently existing, avoiding that diversification could become fragmentation. In par-
ticular, it should prevent the danger of developing just parallel and independent

1An example is the recently established M&MoCS International Research Center, see http://
memocs.univaq.it/?lang=en.
2Indeed the establishment of such networks can be traced back to Hellenistic Science (see Russo
et al. 2013). In the Mouseion at Alexandria, experts from all disciplines (geometers, physicists,
mechanicians, physicians, grammars) were all working together, attacking the same problem from
all available point of view.

http://memocs.univaq.it/?lang=en
http://memocs.univaq.it/?lang=en
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investigations that, in themselves, are not capable to effectively attack complex
problems. We remark that in this connection, it is, in our opinion, also critical the
involvement of younger generations of researchers, so as to create, since the very
beginning of higher level education, a sort of constructive dependence between stu-
dents coming from different paths of learning and experienced scientists.

2 Multidisciplinary Nature of Metamaterial Research

When trying to graphically represent the properties of (natural and artificial) mate-
rials, one finds that all possible charts matching relevant mechanical and physical
properties are made by zones occupied by actually existing materials, as well as by
very large empty areas. Some of these areas will remain empty for long because, as
far as we understand, the materials there lying would be impossible for fundamental
reasons, but others are simply empty even though, in principle, they could be filled
by means of a suitable exploitation of the technological possibilities (Ashby 2013).
Compared even to few years ago, today the situation has changed so abruptly that the
more important and challenging question is related to what can be seen as an inverse
problem: given a continuum model, which are those mechanical systems that, at a
certain length scale, behave as specified by the chosen continuum model? In setting
the question in this way, the key point is to understand the microscopic properties of
such systems to obtain information on how to realize them (dell’Isola et al. (2015f),
Bouaziz et al. (2008), Gibson and Ashby (1997), Brechet and Embury (2013), Fleck
et al. (2010)). If the challenge of a multidisciplinary approach is accepted, it will be
capable to promote a quantum leap in the exploitation of the technological possibili-
ties already potentially existing, and to drive the advancedmanufacturing technology
toward the most promising further developments. The new level of ambition in the
requirements of peculiar multifunctional properties often create a bottleneck which
cannot be overcome by means of traditional materials. Manufacturing materials with
the degree of freedom and precision allowed by techniques like 3D printing and
electrospinning, associating them, and suitably selecting their geometries, represent
an innovative strategy to meet the newly arisen (and yet to come) engineering chal-
lenges.

Summarizing the following two points are essential in order to achieve further
progresses:

• to establish long-term links among research groups from different areas;
• to avoid the fragmentation of skills and knowledge, i.e., a situation in which the
team work is performed without much exchange of information between different
specialists.

In other words, multidisciplinarity has to play, in our context, a major role, even
more relevant than in the generality of technological and scientific research. Indeed, in
the opinion of the authors, all the research directions have to systematically interact:
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mathematicians need, in order to supply the rigorous results necessary for numer-
ical computation, to be informed about the conjectures formulated by modelers;
physicists and engineers must interact to integrate the capability of understanding
phenomena in order to be able to solve more efficiently practical problems; experi-
mentalists must be guided by theoretical knowledge if very unusual phenomenamust
be discovered and exploited.

Specifically, the networks we have in mind should favour:

• the exchange between physicists and engineers in order to improve the state-of-
the-art capability to design application-tailored materials;

• the interaction between mathematicians and more applied scientists in order to
direct the theoretical investigation toward more applicable problems and in par-
ticular toward the formulation of highly predictive numerical tools;

• the joint work of theoretical mechanicians, physicists, andmathematicians in order
to formulate mathematical models capable to drive the design and realization of
newly conceived architectured materials, based on complex microstructures and
multiphysics/multiscale phenomena;

• the interaction of mathematicians with experienced numerical analysts in order
to improve the capability of tailoring macroscopic homogenized models to the
description of microscopic complexity (up to nanolevel);

• the collaboration for the study of scientific and technological problems involved
in mechanics of natural and artificial tissues and in electromagnetic action on
architectured materials together with its possible application for health protection.

We believe that, in this interaction, a special role has to be played by the coordi-
nating power of experienced components and by the capabilities and the willingness
of junior components. This will, in our opinion, maximize the chances of developing
sharp and ground-breaking solutions in the direction of the concrete realization of
new technological application of architectured materials.

3 Some Aspects of the Implementation
of a Multidisciplinary Research Work

A long way has been covered by material technology since its beginning (dating
back to non-Sapiens hominids). The basic steps of this adventurous travel can be
summarized as Brechet and Embury (2013):

1. using the materials available on site (e.g., native metals, bone, or wood);
2. gradual evolution toward the optimization of specific classes of materials on an

empirical basis (e.g., development of empirical metallurgy techniques);
3. science-based approaches (e.g., scientific metallurgy and later polymer science

etc.);
4. what can be called hyperchoice of materials, i.e., the development of scientific

methods and tools for comparing and selecting materials coming from different
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classes which, individually considered, were already optimized for a specific set
of engineering applications;

5. search for multifunctionality of materials, with increasingly ambitious require-
ments for materials capable of fulfilling conflicting needs.

The importance of theoretical modeling has of course grown very much pass-
ing from (1) to (4), and today the demand for multifunctionality is such that the
already available theoretical models are not suitable anymore for the full exploita-
tion of the technical possibilities, nor for meeting the needs coming from industry
(Bréchet 2000; Fleck et al. 2010). Material scientists have developed an impressive
and very specialized body of knowledge, while theoreticalmechanicians have pushed
the study of classical mechanical models close to the theoretical limit of their poten-
tial, and sound nonclassical theoretical frameworks have been developed concern-
ing microstructured/micromorphic media (Green and Naghdi 1995; Masiani et al.
1995; Neff and Forest 2007; Altenbach and Eremeyev 2009; Carcaterra et al. 2015;
Federico and Grillo 2012), some of which can by now be considered as classics
(Eringen 1968; Germain 1973). The developments in numerical analysis in case
of micro- and even nanosystems are by now remarkable. However, the interaction
between the two aforementioned areas is still not as intensive and fruitful as it can
be. The proposed point of view about the modeling of architectured materials and
metamaterials by means of suitably reformulated generalized continuum theories is
capable, in our opinion, to make it seem even obsolete a clear-cut distinction between
the two fields.

Mathematical modeling of materials has been developed in the nineteenth century
on the basis of some reasonable and well-grounded assumptions, which are verified
by the majority of natural materials and by the great majority of the materials used
up to now in engineering. Some natural materials which show sophisticated and
often unexpected behaviors are those living tissues produced by natural Darwinian
selection whose microstructure:

• is very complex;
• exhibits multiple characteristic length scales;
• involves coupled multiphysics phenomena;
• shows strongly inhomogeneous physical properties at every characteristic length
(Dunlop and Fratzl 2013; Tomic et al. 2014).

It is clear that the assumptions used in classical physics for describing mechanical
behavior are not anymore suitable when one wants to model living tissues or when
one wants to design and build exotic artificial materials tailored to high-performance
technological (possibly biomedical) applications, e.g., for the replacement of natural
tissues and for providing protection against externally induced damage for living
organisms.

It is clear that some well-established classical concepts may have to be rethought.
For instance, the same concept of stress, strain, local and contact interaction, defor-
mation energy, balance equations, constitutive equations, yield and damage criteria
need to be reformulated in some respects, in a context never explored before. To
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this aim the competences of mathematicians, physicists, numerical analysts, theo-
retical and applied mechanicians need to be joint to obtain a more performing and
predictive Weltanschauung, i.e., a vision of the physical world by means of which
physicists and engineers can shape materials and their behaviors for the upcoming
future. In other words we need to emancipate from well-established simplification
assumptions and modeling hypotheses so as to lead to the development of new
design procedures and solutions, as well as, of homogenization techniques under
new microstructure assumptions, like high contrast and multiscale implying indeed
higher gradient and/or microstructured continuum modeling. Classical mechanics,
and in particular continuum mechanics, assumes usually (and rightly!) very simple
hypotheses about the mechanical and physical behavior of materials, from which it
is naive to expect a universal predictive power. However, a theoretical framework
that in our opinion can still have an effective unifying power is the variational one,
possibly improved by means of the Hamilton–Reyleigh dissipation mechanism.

4 Short-Term and Long-Term Scientific, Technological,
and/or Socioeconomic Impacts

Up to now, one of the strongest features of European science has always been its
capability of integrating toward one specific challenge, different competences and
capabilities. Notwithstanding the increasing difficulties in supporting multidiscipli-
nary research Europe seems to be able to keep its scientific leadership continuing
this long-lasting tradition (which could be tracked up to the achievements of the
Hellenistic scientists and in particular to Archimedes: a geometer whose theoreti-
cal knowledge produced impressive technological applications). Technology cannot
advance without the nourishment supplied by fundamental science, fundamental
science finds its ultimate motivation and justification in technological applications.
This is why, in our opinion, it is necessary to embody the just-stated principle while
confronting a specific challenge: the development of theoretical and experimental
tools needed to conceive, optimize, and build novel highly performing architectured
materials.

Standard methods, optimization routines, and already existing finite-element
analyses could be used to effectively refine a given architectured material once its
general constitutive andgeometrical characteristics have been chosen.However,what
the standardmethods are not so good at is a reasonably quick scan of alternative com-
binations (Ashby 2013), which is of course crucial as the possibilities entailed by
the new computer-guided manufacturing techniques are virtually infinite and cannot
be tried extensively. As an example, we can consider what are called hybrid materi-
als. The equivalent properties of hybrid materials lie on a trajectory (in the space of
possible materials) with end points at the materials that are combined to make them.

A suitable theoretical model should provide a good prevision about the shape
of the trajectories. A particular care has to be paid in order to specify the physi-
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cal meaning of the portions of these curves where small changes of one parameter
are associated to great variations of the other parameters: the singularity phenomena
arising in these circumstances can indeed be source of very interesting effects, as well
as instabilities of even “difficult” types (Luongo 2010; Di Egidio et al. 2007; Luongo
2015). Among the short-term targets, there should be also the concrete realization
of prototypes of architectured materials manufactured by means of the technologi-
cal possibilities displayed by the experimental researchers involved, which should
be capable to perform advanced 3D-printing and electrospinning. The focus of the
networks should be even more strongly directed toward long-term targets. In this
respect, the goal should be to replace the incremental character that the advance-
ments in material technology have experienced in the last years with a quicker and
sharper, step-like evolution function.We believe that the synergistic effort by theoret-
ical mechanicians, appliedmathematicians, numerical analysts, and experimentalists
can indeed produce the aforementioned conceptual revolution in continuummechan-
ics and material science. As for the socioeconomic impact, the achievement of the
aforementioned objectives will have an inestimable value for industry and also poten-
tially for environmental issues, as the realization of lighter and not overdimensioned
objects will relevantly affect power consumption in manufacturing and shipping.
Last, but not least, the materials which we have in mind may play a relevant role in
biomechanics and medicine. This feature is to us so valuable that an upper estimate
of its potential socioeconomic impact looks simply impossible.

5 A Closer Look at How to Face the Problems Involved

In the present section, we propose a possible way to rationalize the team work. We
selected eight main fields of research (FOR), each of which should be involved both
for specific tasks and for interacting with the others:

FOR1: Theoretical Continuum Mechanics and Variational Approach

The construction of the general theoretical framework for the description and the pre-
vision of the behavior of advanced architectured materials is probably, as mentioned,
the soundest possible ground for exploring the exotic phenomena we have in mind.
In particular, they have to extend and generalize the already existing higher gradi-
ent and micromorphic models; moreover they have to drive the work of numerical
analysts. The researchers should provide assessment about the realization of theoret-
ical models for complex metamaterials showing a good match with both numerical
simulations and experimental results. A detailed coverage of the scientific novelties
introduced in the modeling have to be clear, offering a general understanding and a
unifying perspective relating the proposed theoretical findings with their technolog-
ical potential and their contribution to the general progress of science.

In order tomodel architecturedmaterials (i.e., metamaterials in the sense specified
inDelVescovo andGiorgio 2014; a rational collection of recent results is Placidi et al.
2015b), the variational approach is very effective and allows us to obtain well-posed
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problems with the minimum constitutive assumptions possible (see, e.g., Auffray
et al. 2015; dell’Isola et al. 2015a, e, 2016a; dell’Isola and Placidi 2012; Cuomo
et al. 2014). Architectured materials can be classified and interpreted as microstruc-
tured materials. Particular examples of these materials are for instance micropolar
materials (see, e.g., Altenbach and Eremeyev 2009, 2014; Pietraszkiewicz and Ere-
meyev 2009a, b) but also higher gradient materials (see, e.g., Placidi et al. 2015a;
Auffray et al. 2015; dell’Isola et al. 2015a, 2016a) can be seen as a particular case
of micromorphic models.

Sometimes the complexity of the medium can be modeled in the framework of
mixture theory when different phases of some constituents coexist (see, e.g., Placidi
and Hutter 2005, 2006; Andreaus et al. 2014; Giorgio et al. 2015).

A very delicate issue in the study of complex materials is, finally, the damage
detection and the characterization of the evolution of cracks inside them (see, e.g.,
Andreaus and Baragatti 2011, 2009; Placidi 2015, 2014; Thiagarajan and Misra
2004; Rinaldi and Placidi 2014).

FOR2: Advanced Homogenization Techniques

The most suitable continuous (i.e., macroscopic) limit, for a wide class of discrete
mechanical system characterized by a high degree of complexity in the microstruc-
ture, have to be provided if one wants to fasten the numerical investigation and, as a
consequence, the prototyping process. Looking for the correct micro-macro identifi-
cation, for every conceived microstructured metamaterial, and driving the numerical
work toward themost promisingmodels of architecturedmaterials,would be themain
concern of researchers in this field. Their objectives have to focus on the description
of a suitable continuous limit for:

• (micro) lattices characterized by multiple length scales;
• multilayered materials obtained combining in 3D structures the previous lattices

‘Ad hoc’ homogenization techniques should be conceived to deal with these par-
ticulars micro-macro identifications. Some results in such a direction can be found
in Assidi et al. (2011), Carcaterra et al. (2015), dell’Isola et al. (2016b), Dos Reis
and Ganghoffer (2010, 2012), Goda et al. (2012), Rahali et al. (2015).

FOR3: Mathematics of Nonlinearity

It is also essential to deepen the understanding of the complex nonlinear phenomena
occurring when considering complex multiphysics systems (see, e.g., Javili et al.
2013; Piccardo et al. 2014). This can be done through the study of the instability
resulting from the behavior of the considered systems. The ultimate goal should be
to assess the degree of accuracy required in order to realistically expect a good fit
between models, numerical analyses, and experimental results.

FOR4: Numerical Investigations

New numerical techniques should be developed for the investigation of novel archi-
tectured materials. Refined FEM schemes flexible enough to be able to consider even
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complex geometries and robust enough to work with high degrees of complexity in
the microstructure should be also constructed.

The complexity of these newly conceived architectured material gives rise to new
numerical issues related to different sources, as for instance the presence of strong
heterogeneities resulting from the features of microstructure considered, viscous or
independent-rate dissipation, internal resonances, and so forth (see, e.g., Aristodemo
and Turco 1994; Turco 2001; Bilotta and Turco 2014; Della Corte et al. 2015; Misra
et al. 2007 for some numerical tools on this regard). Besides, in many cases (when
the standard Cauchy theory seems to be inadequate) the use of microstructured or
higher gradient models may be appropriate to describe a greater variety of unusual
behaviors. Recently, very powerful tools in numerical analysis have been developed
in the framework of isogeometric analysis (see, e.g., Cazzani et al. 2014b, a, 2015;
Greco and Cuomo 2013, 2014, 2016 for more details) in order to deal with the
difficulties arisen from this type of models.

The complexity and heterogeneities of the microstructure could be, as already
said, source of lack of stability in the materials considered. Typically examples of
these phenomena can be observed, e.g., in cellular materials as ceramic or metallic
foams as well as honeycomb composites. Usual tools, as perturbation analysis, may
encounter problems because they require analytical solution as a reference solution
that is often not available. Then in many cases these problems can only be faced
with numerical methods (see, e.g., Di Egidio et al. 2007; Luongo and Piccardo 2005;
Rizzi et al. 2013; Gabriele et al. 2012).

FOR5: Manufacturing

This research team should be aimed in building prototypes of architectured materials
exhibiting strong multifunctionality.

They should extent the technological possibilities in building complex multi-
physics systems involving a certain desired coupling between the components and
compare the experimental results with the theoretical and numerical previsions in
order to refine the models and to adjust the relative parametrization. At the end they
should be able to describe the experimental results obtained in addition to the con-
crete realization of working prototypes and the application of patent for the produced
prototypes.

With the spirit of synthesizing the material on the basis of a suitable constitu-
tive assumption on the stored strain energy, some examples of pantographic struc-
tures (dell’Isola et al. 2015d, c, 2016b) can be interpreted as a particular carrying
out of the fiber sheets described in dell’Isola and Steigmann (2015), Steigmann and
Dell’Isola (2015), D’Agostino et al. (2015). Other possibilities that can be explored
are those based on a proper modification of an existing material in order to modify
its mechanical properties. For instance the addition of some microfillers in a con-
crete matrix in order to improve the dynamic performances as done in Giorgio and
Scerrato (2016), Scerrato et al. (2015, 2014).
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FOR6: Mechanics of Discrete Systems

These researchers should try to characterize the discrete mechanical systems which
will be selected as the most promising in view of obtaining the desired macro-
scopic properties and behaviors. They should therefore provide a detailedmechanical
description of themicro-level of a large class of architecturedmaterials, including for
instance (micro) lattices characterized by multiple length scales, multilayered mate-
rials obtained combining in 3D structures the previous lattices and other structures
displaying even more complex geometry at the microscale.

FOR7: Coupled Phenomena

The potentiality entailed by the conceivable coupling of the different constitutive
elements of the considered multiphysics systems is still far from exhausted. A suit-
able description of the coupling in a certain class of specific cases is indeed still
incomplete. Among the most relevant cases, in the opinion of the authors, there
are piezo- and flexo-electromechanical systems thought as elementary components
of complex structures, and in general nonlinear electroelastostatics. They will be
the main object of the work of FOR5 and will allow for the realization of suitable
prototypes of multiphysics architectured materials, exhibiting the desired coupling
properties. Materials in which there is a coupling between mechanical and electric
states (Lagrangian variables) are also of interest especially in the field of vibra-
tion control and noise attenuation. Piezo- or flexoelectric materials can be profitably
employed for this purpose (see for some examples Andreaus et al. 2004; Giorgio
et al. 2009; Enakoutsa et al. 2015).

FOR8: Engineering and Biomechanical Applications

As already said, finding solutions to already existing problems from engineering and
biomedical areas bymeans of a suitable exploitation of the properties of the developed
architectured materials is, in a sense, the main challenge in the field of metamaterials
for both its difficulty and usefulness. The involved researchers should start from
gathering the requirements from the industrial and biomedical world that can best fit
with the results expected and obtained by the network, and communicate efficiently
with the industrial sector in order to maximize the possibility of fruitful interaction.
We will provide some specific example. The study of wind-excited structures (see,
e.g., Pagnini 2010; Piccardo et al. 2015; Luongo and Piccardo 2005) has proven
that a high strength–weight ratio under certain shape constraints, as well as targeted
anisotropic behaviors and piezo- and flexoelectric induced damping, are of great
importance for improving the reliability. It is clear, therefore, that metamaterials can
have a great potential impact in this regard. In bone reconstructive surgery, designing
(from both mechanical and biological points of view) of suitable implants made
of bioresorbable artificial material is an attractive challenge in order to guarantee
a proper load-carrying capacity and a fast substitution of biomaterial with newly
formed bone for health purposes (see, e.g., Lekszycki and dell’Isola 2012; Ancillao
and Andreaus 2013; Giorgio et al. 2016, 2015; Andreaus et al. 2013, 2014). In this
context, also the modeling of interaction of artificial material with soft tissue, as,
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Fig. 1 Left an electrospun metamaterial made of polycaprolactone fibers, characterized by
extremely slow degradation, and thus suitable for biomedical applications. Right the inclusion
of a circular shaped artificial graft in a bone tissue (scheme). Living bone tissue equipped with an
artificial graft can be regarded as ametamaterial whose configuration is described by a displacement
field and by an additional kinematical descriptor (e.g., the change of the porosity with respect to
the reference configuration)

e.g., cartilage, could be useful (for more details see, e.g., Tomic et al. 2014; Federico
and Grillo 2012).

As it is well known that the remodeling process in bone is strictly related to the
frequency of the external load. Therefore, the dynamic properties of bones play a
key role in the bone functional adaptation. For this reason, a modal analysis should
be performed in order to understand how these features changes in the remodeling
process and are influenced by external mechanical factors (Fig. 1).

5.1 Risk Assessment and Management

As already mentioned, specific risks are involved in a challenging research activity.
In general, the main measure to avoid major problems is closely related with the
multidisciplinary approach we propose, since the diversification of the employed
approaches makes the team work more robust. For instance, in order to face the
possibly enormous difficulties in finding appropriate homogenization methods, the
network has to select extremely skilled mathematician which should have, moreover,
diversified capabilities and competences within the same theoretical framework con-
stituted by homogenization techniques. In particular, both a functional approach
(employing gamma- convergence and two-scale convergence methods as their work
tools) and a differential approach can be carried on, together with the clever employ-
ment of formal asymptotic expansion in order to quickly get precious information
about the desired continuous limits. To meet the challenge proposed by computa-
tional complexity of the considered microstructured materials, different FEMs can
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be developed and a constant communication between numerical analysts and theo-
reticians should be in place, which has proven to be so far the best possible insurance
against potentially meaningless distortion of the results (Ebinger et al. 2005; Trinh
et al. 2012). To avoid the onset of large gaps between theoretical models and exper-
imental results due to a big difference in the accuracy level required, experts in the
study of nonlinearity and of instability problems should finally focus their attention to
these exact issues, following and developing already existing sophisticated methods
(Feyel 2003; Verhoosel et al. 2011).

6 Some Examples of Metamaterials with Relevant Potential
and Open Questions

6.1 A Quick Look to Parabolic Pantographs

In this section, we will consider two examples of possible metamaterials which are
currently under the attention of several researchers for their potentially advantageous
characteristics. The first example can be provided by the just mentioned pantographic
structures, i.e., a fabricwith two families of orthogonal fibers.Hereinwewill consider
a particular geometry for the fibers, in which they are arranged in parabolic curves.
The disposition of the fibers, different from the straight ones, is conceived in order to
have a greater rigidity for the same weight, but obviously entails greater difficulties
and variety of behaviors at both micro- and macroscale. The reason behind the
advantageous strength–weight ratio is probably connected to some kind of arch-like
response due to the geometry of the fibers, but the exact mathematical formulation
of this qualitative behavior is one of the basic theoretical questions to be addressed.
In (Fig. 2) we show straight fibers pantographic structures.

Figure3 shows the current configuration of a rectangular fabric with aspect ratio
6:1 in a standard bias extension test. As usual the plot of the shear strain relative to the
initial fiber axes exhibits three zones in which this deformation is almost unchanged

Fig. 2 An architectured material which is lightweight, extremely resistant, and safe in failure.
Pantographic sheet under extensional bias test (see dell’Isola et al. 2016b)
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Fig. 3 Bias extension test—aspect ratio of the rectangular lattice 6:1. Top Fiber pattern; bottom
Shear strain relative to the initial fiber axes

with the presence of narrow transition zones due to the presence of a second gradient
energy in the model employed to describe bending deformation of fibers (Steigmann
and Dell’Isola 2015). Figure4 shows for a sample of ratio 3:1 a generalized bias test
in which there is also an out-of-plane twist deformation imposed on one short edge.
The particular arrangement of the fibers, in this case, may result in both out-of-plane
and in-plane buckling phenomena if the displacement imposed is beyond a critical
value.

Fig. 4 Test with stretching and twist (45◦) (aspect ratio of the rectangular lattice 3:1): Equilibrium
shape; the shear strain relative to the initial fiber axes
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6.2 Some Preliminary Results on Elastic-Plastic Honeycombs

Another example of metamaterial will be discussed in slightly greater detail, in order
to show in a particular case some of the issues discussed before in general terms. Let
us, therefore, consider the so-called honeycomb structures.

Honeycomb structures (from now onwewill abbreviate the name to honeycombs)
are solids with a periodic cellular body which confers them the property of being at
the same time very light but still extremely stress resistant. They are producedmainly
through two different manufacturing processes: the most used one is the method of
expansion, in which the sheets of metal are glued together through binding strips and
then expanded, while the less, but still widely, used is the corrugation method (which
may be seen as a particularly simple version of roll-to-roll processing), in which the
sheets are first deformed in the shape of half-hexagons and then glued together. These
structures have been extensively studied and are clearly bio-inspired. The peculiar
properties of natural honeycombs were already remarked by Hellenistic scientists
(see Russo et al. 2013) and it has been conjectured that one of the first optimization
problems was practically solved by bees finding the regular polygon maximizing
surface–perimeter ratio. We believe however that there is a lot of room left for tech-
nological innovation: inhomogeneities in the microstructure, introduction of active
or semi-active components, the addition of composite microscopic substructure are
all examples of potentially very fruitful structural modifications which may induce
exotic macroscopic behaviors.

Because of their peculiarity, honeycombs are largely used in packaging industries,
as well as in computers or electronic components, and among all in aerospace indus-
tries or high speed cars. Many authors, such as Gibson and Ashby (1997), Papka and
Kyriakides (1998), already attacked the problem of modeling the behavior of such
structures with classical balance laws of mechanics, and presented many experimen-
tal and numerical results. Here wewill show some preliminary results of a wider plan
of investigation, approaching the 2D, plane, elastic-plastic problem, trying to focus
on the identification of a good representative elementary cell which we will use to
perform numerical simulations. From these, we will obtain the stress–strain curves
which we will need in future to extrapolate the information necessary to create a
mathematical, ‘nonclassical’, model for the homogenized plastic behavior of such
structures. As we will see, we will use a parametrization of the stress state which
will allow us to catch in the best way the behavior of honeycombs so as to be able,
in future investigations, to extend these results to other periodic structures and cel-
lular solids. We would like to remark the importance of cellular solids in nowadays
engineering perspective, since their particular structures enable to minimize the costs
of production (a very small amount of material is needed to build them), still giv-
ing them the properties required from the final industrial scope. Moreover, studying
structures, such as honeycombs, foams, wood, cancellous bones, we will be able to
modify them in order to optimize their properties and even to create new ones (thanks
to the advanced techniques of 3D printing or electrospinning) with exotic behaviors,
matching the demand of industries.
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Fig. 5 Hexagonal unitary cell

A preliminary analysis can be performed on the mechanical properties of the core
material. Here we will consider Aluminum-5052 (Young’s modulus = 68.97GPa,
Poisson’s ratio = 0.3, yield strength = 292 MPa). For such a material we consider
an elastic-perfectly plastic model. We consider a structure made of regular hexagons
with h = l = 1, t = 0.216 and θ = π/6 (see Fig. 5).

We perform a first simulation on the whole structure, that we fix at the bottom,
and to which we impose a strain in the y direction and periodic boundary conditions
(so as to have an average strain in x direction = 0). From the numerical result,

Fig. 6 Localization effect of plastic deformations
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Fig. 7 Elementary cell with highlighted boundary conditions

shown in Fig. 6, we can already see the nontrivial behavior of the honeycombs,
in the localization effect of the deformation. Indeed, after the initial elastic and
local isotropic (Gibson and Ashby 1997) regime, the plastic deformation (which we
initialised through a small concentrated pressure), is localized in rows adjacent one
to each other.

This simple result already suggests that a generalized continuum approach is
probably suitable in order to model the plastic behavior of the structure.

As an elementary cell, we select the one shown in Fig. 7. Its behavior may be
extended to the macrostructure, if periodicity is assumed.

The periodic boundary conditions that we imposed are also shown: the same
displacement for the parts highlighted with the same color and named by the same
letter is set.

Biaxial loads, which prescribe the average plane stress state, is enforced, so as
to let the elementary cell to deform freely. Twenty-node quadratic isoparametric
elements, with reduced integration, are used in the program ABAQUS.

Next, we see how we parametrize the stress state, in order to keep in mind the
geometry of the structure and to better understand and interpret the obtained results.
We parametrize the plane stress state

T =
[

T11 T12
T12 T22

]

ei ⊗ ej ,
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Fig. 8 In black the
structure; in blue the
standard base vectors; in red
the ones which we use for
the parametrization

trough:

• orientation angle φ

• magnitude of the stress m =
√

λ2
1 + λ2

2

• biaxiality measure χ s.t. λ1 = cos(χ), λ2 = sin(χ)

Figure8 may be useful to visualize the parametrization.
For the sake of simplicity we will consider only three kinds of tests:

• compression–compression test, λ1 < 0, λ2 < 0
• tension–tension test, λ1 > 0, λ2 > 0
• tension–compression test, λ1 > 0, λ2 < 0

Moreover, we will show the results for only 21 angles φ and 6 angles χ .
The power of using the elementary cell stands behind the fact that the time of

computation is drastically reduced and that it allows us to really visualize which are
the deformation experienced locally, at the microscale level, by the whole structure
as we can see from Fig. 9.

Apart from the visualization argument, what is important are the data that we can
extrapolate from each of such simulations. For example, particularly relevant are
the stress–strain curves for this basic cases. We can see them in Fig. 10. Only small
deformations are considered and on the axes the norms of the linear strain tensor
and Cauchy stress tensor are reported. We can clearly distinguish the 6 groups of
simulations for each type of test, for the values that χ assumes (notice that χ = 0 is a
simple uniaxial test while χ = π/4 is a ‘isotropic’ biaxial test), and the 21 angles per
each value of χ , that φ assumes. It is already possible to extract some conclusions:

• increasing χ (which means increasing the ‘biaxiality’ of the tests), increases the
stiffness of the response;

• tension–compression tests are, in general, the weakest, tension–tension ones the
strongest and compression–compression are in between the former two;

• the isotropy of the elastic regime is visible by the fact that the response for different
values of the variables tend to coincide;
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Fig. 9 Final configuration of a compression–compression test

Fig. 10 Stress–strain response of all tests: in blue compression–compression; in green tension–
tension; in red tension–compression. Tests reported for different values of χ
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• the anisotropy emerges only within the nonlinear elastic part and it is more evident
in plasticity

Finally, wewould like to point out the unusual nonconvex behavior of such curves,
which may be of interest for further investigation with nonlinear theory.

To sum up, we found a candidate elementary cell which should be validated by
means of future investigations so as tomake sure that it is capable to describe well the
behavior of the macrostructure. Obviously these are preliminary results, which will
be used in future to investigate the yield limit of such structures (i.e., the limit strength
which they can sustain before undergoing plastic deformations) and the following
plastic behavior of honeycombs. This last purpose is still challenging if one wants
to face it with a nonclassical approach, introducing second gradient theories, which
may provide a better description, capable of capturing the effect of localization and
therefore predict the collapsing modes of such structures.

7 Conclusions. the Leader’s Role: An Eye Kept on Past,
Present and Future

Due attention should finally be paid to global research management issues. The
researchers should completely agree to work together, toward the achievement of
the aforementioned objectives, and a harmonious and fruitful cooperation is simply
necessary if good results are expected. As already mentioned, the leading figures
in the networks should coordinate and drive the research work, providing the over-
all strategy. The leaders of such a challenging scientific project have to be fully
responsible for the actual realization, ensuring that every collaborating researcher
always have a precise idea of the results obtained by the others and of the scientific
work that they are expected to do. The network as a whole should always behave
as a problem-oriented unity where different competences will coalesce to supply a
timely, innovative, and potentially ground-breaking scientific understanding.

We expect that the proposed approach will emerge gradually as the only one really
viable in order to make the so needed advancements in metamaterial science. Those
researchers and groups that will understand the intrinsically multidisciplinary nature
of the required skills, and will be open to enlarge their horizons to new problems ad
techniques, will result as the winners in this fascinating competition.

References

Altenbach, H., Eremeyev, V.A.: On the linear theory of micropolar plates. ZAMM-Journal of
Applied Mathematics and Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik
89(4), 242–256 (2009)

Altenbach, H., Eremeyev, V.A.: Vibration analysis of non-linear 6-parameter prestressed shells.
Meccanica 49(8), 1751–1761 (2014)



542 F. dell’Isola et al.

Ancillao, A., Andreaus, U.: Finite element analysis of the stress state produced by an orthodontic
skeletal anchorage system based on miniscrews. J. Cranio-Maxillary Dis. 2(1), 28 (2013)

Andreaus, U., Baragatti, P.: Fatigue crack growth, free vibrations, and breathing crack detection of
aluminium alloy and steel beams. J. Strain Anal. Eng. Des. 44(7), 595–608 (2009)

Andreaus, U., Baragatti, P.: Cracked beam identification by numerically analysing the nonlinear
behaviour of the harmonically forced response. J. Sound Vib. 330(4), 721–742 (2011)

Andreaus,U., dell’isola, F., Porfiri,M.: Piezoelectric passive distributed controllers for beamflexural
vibrations. JVC/J. Vib. Control 10(5), 625–659 (2004). doi:10.1177/1077546304038224

Andreaus, U., Giorgio, I., Lekszycki, T.: A 2-D continuum model of a mixture of bone tissue and
bio-resorbable material for simulating mass density redistribution under load slowly variable in
time. Zeitschrift für Angewandte Mathematik und Mechanik 13, 7 (2013)

Andreaus,U.,Giorgio, I.,Madeo,A.:Modeling of the interaction betweenbone tissue and resorbable
biomaterial as linear elastic materials with voids. Zeitschrift für angewandte Mathematik und
Physik 66(1), 209–237 (2014)

Aristodemo, M., Turco, E.: Boundary element discretization of plane elasticity and plate bending
problems. Int. J. Numer. Methods Eng. 37(6), 965–987 (1994)

Ashby, M.F.: Cellular Solids: Structure and Properties. Cambridge university press, Cambridge
(1997)

Ashby, M.: Designing architectured materials. Scr. Mater. 68(1), 4–7 (2013)
Assidi, M., Dos Reis, F., Ganghoffer, J.F.: Equivalent mechanical properties of biological mem-
branes from lattice homogenization. J. Mech. Behav. Biomed. Mater. 4(8), 1833–1845 (2011)

Auffray, N., dell’Isola, F., Eremeyev, V.A., Madeo, A., Rosi, G.: Analytical continuummechanics à
la Hamilton-Piola least action principle for second gradient continua and capillary fluids. Math.
Mech. Solids 20(4), 375–417 (2015)

Bilotta, A., Turco, E.: Numerical sensitivity analysis of corrosion detection. Math. Mech. Solids
(2014). doi:10.1177/1081286514560093

Bouaziz, O., Brechet, Y., Embury, J.D.: Heterogeneous and architectured materials: a possible
strategy for design of structural materials. Adv. Eng. Mater. 10(1–2), 24–36 (2008)

Bréchet, Y.: Euromat 99, Microstructures, Mechanical Properties and Processes: Computer Simu-
lation and Modelling. John Wiley & Sons, New York (2000)

Brechet, Y., Embury, J.D.: Architectured materials: expanding materials space. Scr. Mater. 68(1),
1–3 (2013)

Carcaterra, A., dell’Isola, F., Esposito, R., Pulvirenti, M.: Macroscopic description of microscopi-
cally strongly inhomogenous systems: a mathematical basis for the synthesis of higher gradients
metamaterials. Archive for Rational Mechanics and Analysis, pp. 1–24 (2015)

Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis: a powerful numerical tool for the elastic
analysis of historical masonry arches. Continuum Mechanics and Thermodynamics, pp. 1–18
(2014a)

Cazzani, A., Malagù, M., Turco, E.: Isogeometric analysis of plane-curved beams. Math. Mech.
Solids (2014b). doi:10.1177/1081286514531265

Cazzani, A., Malagù, M., Turco, E., Stochino, F.: Constitutive models for strongly curved beams in
the frame of isogeometric analysis. Math. Mech. Solids (2015). doi:10.1177/1081286515577043

Cuomo, M., Contrafatto, L., Greco, L.: A variational model based on isogeometric interpolation for
the analysis of cracked bodies. Int. J. Eng. Sci. 80, 173–188 (2014)

D’Agostino, M.V., Giorgio, I., Greco, L., Madeo, A., Boisse, P.: Continuum and discrete models
for structures including (quasi-) inextensible elasticae with a view to the design and modeling of
composite reinforcements. Int. J. Solids Struct. 59, 1–17 (2015)

Del Vescovo, D., Giorgio, I.: Dynamic problems for metamaterials: review of existing models and
ideas for further research. Int. J. Eng. Sci. 80, 153–172 (2014)

Della Corte, A., Battista, A., Dell’Isola, F.: Referential description of the evolution of a 2D swarm
of robots interacting with the closer neighbors: perspectives of continuum modeling via higher
gradient continua. Int. J. Non-Linear Mech. (2015). doi:10.1016/j.ijnonlinmec.2015.06.016

http://dx.doi.org/10.1177/1077546304038224
http://dx.doi.org/10.1177/1081286514560093
http://dx.doi.org/10.1177/1081286514531265
http://dx.doi.org/10.1177/1081286515577043
http://dx.doi.org/10.1016/j.ijnonlinmec.2015.06.016


Against the Fragmentation of Knowledge … 543

dell’Isola, F., Placidi, L.:Variational principles are a powerful tool also for formulating field theories.
Variational Models and Methods in Solid and Fluid Mechanics. Springer Science & Business
Media, New York (2012)

dell’Isola, F., Steigmann, D.: A two-dimensional gradient-elasticity theory for woven fabrics. J.
Elast. 118(1), 113–125 (2015)

dell’Isola, F., Andreaus, U., Placidi, L.: At the origins and in the vanguard of peridynamics, non-
local and higher-gradient continuum mechanics: an underestimated and still topical contribution
of Gabrio Piola. Math. Mech. Solids 20(8), 887–928 (2015a)

dell’Isola, F., Della Corte, A., Greco, L., Luongo, A.: Plane bias extension test for a continuum
with two inextensible families of fibers: a variational treatment with Lagrange multipliers and a
perturbation solution. Int. J. Solids Struct. 81, 1–12 (2015b)

dell’Isola, F., Giorgio, I., Andreaus, U.: Elastic pantographic 2D lattices: a numerical analysis on
static response and wave propagation. Proc. Est. Acad. Sci. 64, 219–225 (2015c)

dell’Isola, F., Lekszycki, T., Pawlikowski, M., Grygoruk, R., Greco, L.: Designing a light fabric
metamaterial being highly macroscopically tough under directional extension: first experimental
evidence. Zeitschrift für angewandte Mathematik und Physik 66(6), 3473–3498 (2015d)

dell’Isola, F., Seppecher, P., Della Corte, A.: The postulations á la D’Alembert and á la Cauchy for
higher gradient continuum theories are equivalent: a review of existing results. Proc. R. Soc. A,
R. Soc. 471, 20150415 (2015e)

dell’Isola, F., Steigmann, D., Della Corte, A.: Synthesis of fibrous complex structures: designing
microstructure to deliver targeted macroscale response. Appl. Mech. Rev. 67(6), 060804 (2015f)

dell’Isola, F., Della Corte, A., Giorgio, I.: Higher-gradient continua: the legacy of piola, mindlin,
sedov and toupin and some future research perspectives.Math.Mech. Solids 1081 (2016a). doi:10.
1177/1081286515616034

dell’Isola, F., Giorgio, I., Pawlikowski, M., Rizzi, N.L.: Large deformations of planar extensible
beams and pantographic lattices: heuristic homogenization, experimental and numerical examples
of equilibrium. Proc. R. Soc. A, R. Soc. 472, 20150790 (2016b)

Di Egidio, A., Luongo, A., Paolone, A.: Linear and non-linear interactions between static and
dynamic bifurcations of damped planar beams. Int. J. Non-Linear Mech. 42(1), 88–98 (2007)

Dos Reis, F., Ganghoffer, J.F.: Discrete homogenization of architectured materials: implementation
of themethod in a simulation tool for the systematic prediction of their effective elastic properties.
Technische Mechanik 30, 85–109 (2010)

Dos Reis, F., Ganghoffer, J.F.: Equivalent mechanical properties of auxetic lattices from discrete
homogenization. Comput. Mater. Sci. 51(1), 314–321 (2012)

Dunlop, J.W.C., Fratzl, P.: Multilevel architectures in natural materials. Scr. Mater. 68(1), 8–12
(2013)

Ebinger, T., Steeb, H., Diebels, S.: Modeling macroscopic extended continua with the aid of numer-
ical homogenization schemes. Comput. mater. sci. 32(3), 337–347 (2005)

Enakoutsa, K., Del Vescovo, D., Scerrato, D.: Combined polarization field gradient and strain
field gradient effects in elastic flexoelectric materials. Math. Mech. Solids (2015). doi:10.1177/
1081286515616048

Eringen, A.C.: Mechanics of Micromorphic Continua. Springer, Berlin (1968)
Federico, S., Grillo, A.: Elasticity and permeability of porous fibre-reinforced materials under large
deformations. Mech. Mater. 44, 58–71 (2012)

Feyel, F.: A multilevel finite element method (fe 2) to describe the response of highly non-linear
structures using generalized continua. Comput. Methods Appl. Mech. Eng. 192(28), 3233–3244
(2003)

Fleck, N.A., Deshpande, V.S., Ashby, M.F.: Micro-architectured materials: past, present and future.
Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci., R. Soc. 466, 2495–2516 (2010)

Gabriele, S., Rizzi, N., Varano, V.: On the imperfection sensitivity of thin-walled frames. Civil-
Comp Proceedings 99 (2012)

Germain, P.: The method of virtual power in continuum mechanics. part 2: microstructure. SIAM
J. Appl. Math. 25(3), 556–575 (1973)

http://dx.doi.org/10.1177/1081286515616034
http://dx.doi.org/10.1177/1081286515616034
http://dx.doi.org/10.1177/1081286515616048
http://dx.doi.org/10.1177/1081286515616048


544 F. dell’Isola et al.

Giorgio, I., Scerrato, D.: Multi-scale concrete model with rate-dependent internal friction. Eur. J.
Environ. Civil Eng. 1–19 (2016). doi:10.1080/19648189.2016.1144539

Giorgio, I., Culla, A., Del Vescovo, D.: Multimode vibration control using several piezoelectric
transducers shunted with a multiterminal network. Arch. Appl. Mech. 79(9), 859–879 (2009)

Giorgio, I., Andreaus, U., Lekszycki, T., Della Corte, A.: The influence of different geometries of
matrix/scaffold on the remodeling process of a bone and bioresorbable material mixture with
voids. Math. Mech. Solids (2015). doi:10.1177/1081286515616052

Giorgio, I., Andreaus, U., Madeo, A.: The influence of different loads on the remodeling process
of a bone and bioresorbable material mixture with voids. Contin. Mech. Thermodyn. 28(1–2),
21–40 (2016)

Goda, I., Assidi, M., Belouettar, S., Ganghoffer, J.F.: A micropolar anisotropic constitutive model
of cancellous bone from discrete homogenization. J. mech. behav. biomed. mater. 16, 87–108
(2012)

Greco, L., Cuomo, M.: B-spline interpolation of Kirchhoff-Love space rods. Comput. Methods
Appl. Mech. Eng. 256, 251–269 (2013)

Greco, L., Cuomo, M.: An implicit G1 multi patch B-spline interpolation for Kirchhoff-Love space
rod. Comput. Methods Appl. Mech. Eng. 269, 173–197 (2014)

Greco, L., Cuomo, M.: An isogeometric implicit G1 mixed finite element for Kirchhoff space rods.
Comput. Methods Appl. Mech. Eng. 298, 325–349 (2016)

Green, A.E., Naghdi, P.M.: A unified procedure for construction of theories of deformable media.
ii. generalized continua. Proc. R. Soc. Lond. A: Math., Phys. Eng. Sci., R. Soc. 448, 357–377
(1995)

Javili, A., dell’Isola F, Steinmann P.: Geometrically nonlinear higher-gradient elasticity with ener-
getic boundaries. J. Mech. Phys. Solids 61(12), 2381–2401 (2013)

Lekszycki, T., Dell’Isola F.: A mixture model with evolving mass densities for describing synthesis
and resorption phenomena in bones reconstructed with bio-resorbable materials. Zeitschrift für
Angewandte Mathematik und Mechanik 92(6), 426–444 (2012)

Luongo, A.: A unified perturbation approach to static/dynamic coupled instabilities of nonlinear
structures. Thin-Walled Struct. 48(10), 744–751 (2010)

Luongo, A.: On the use of the multiple scale method in solving “difficult” bifurcation problems.
Math. Mech. Solids (2015). doi:10.1177/1081286515616053

Luongo, A., Piccardo, G.: Linear instability mechanisms for coupled translational galloping. J.
Sound Vib. 288(4), 1027–1047 (2005)

Masiani, R., Rizzi, N., Trovalusci, P.: Masonry as structured continuum.Meccanica 30(6), 673–683
(1995)

Misra, A., Roberts, L.A., Levorson, S.M.: Reliability analysis of drilled shaft behavior using finite
difference method and Monte Carlo simulation. Geotech. Geol. Eng. 25(1), 65–77 (2007)

Neff, P., Forest, S.: A geometrically exact micromorphic model for elastic metallic foams account-
ing for affine microstructure. modelling, existence of minimizers, identification of moduli and
computational results. J. Elast. 87(2–3), 239–276 (2007)

Pagnini, L.C.: Reliability analysis of wind-excited structures. J. Wind Eng. Ind. Aerodyn. 98(1),
1–9 (2010)

Papka, S.D., Kyriakides, S.: Experiments and full-scale numerical simulations of in-plane crushing
of a honeycomb. Acta mater. 46(8), 2765–2776 (1998)

Piccardo, G., Tubino, F., Luongo, A.: A shear–shear torsional beam model for nonlinear aeroelastic
analysis of tower buildings. Zeitschrift für angewandte Mathematik und Physik, pp 1–19 (2014)

Piccardo, G., Pagnini, L.C., Tubino, F.: Some research perspectives in galloping phenomena: critical
conditions and post-critical behavior. Contin. Mech. Thermodyn. 27(1–2), 261–285 (2015)

Pietraszkiewicz, W., Eremeyev, V.A.: On natural strain measures of the non-linear micropolar con-
tinuum. Int. J. Solids Struct. 46(3), 774–787 (2009a)

Pietraszkiewicz, W., Eremeyev, V.A.: On vectorially parameterized natural strain measures of the
non-linear Cosserat continuum. Int. J. Solids Struct. 46(11), 2477–2480 (2009b)

http://dx.doi.org/10.1080/19648189.2016.1144539
http://dx.doi.org/10.1177/1081286515616052
http://dx.doi.org/10.1177/1081286515616053


Against the Fragmentation of Knowledge … 545

Placidi, L.: A variational approach for a nonlinear one-dimensional damage-elasto-plastic second-
gradient continuum model. Contin. Mech. Thermodyn. (2014). doi:10.1007/s00161-014-0405-
2

Placidi, L.:Avariational approach for a nonlinear 1-dimensional second gradient continuumdamage
model. Contin. Mech. Thermodyn. 27(4), 623–638 (2015)

Placidi, L., Hutter, K.: An anisotropic flow law for incompressible polycrystalline materials.
Zeitschrift für angewandte Mathematik und Physik ZAMP 57(1), 160–181 (2005)

Placidi, L., Hutter, K.: Thermodynamics of polycrystalline materials treated by the theory of mix-
tures with continuous diversity. Contin. Mech. Thermodyn. 17(6), 409–451 (2006)

Placidi, L., Andreaus, U., Della Corte, A., Lekszycki, T.: Gedanken experiments for the determina-
tion of two-dimensional linear second gradient elasticity coefficients. Zeitschrift für angewandte
Mathematik und Physik 66(6), 3699–3725 (2015a)

Placidi, L., Giorgio, I., Della Corte, A., Scerrato, D.: Euromech 563 cisterna di latina 17–21 march
2014 generalized continua and their applications to the design of composites and metama-
terials: a review of presentations and discussions. Math. Mech. Solids (2015b). doi:10.1177/
1081286515576948

Rahali, Y., Giorgio, I., Ganghoffer, J.F., dell’Isola F, : Homogenization à la Piola produces second
gradient continuum models for linear pantographic lattices. Int. J. Eng. Sci. 97, 148–172 (2015)

Rinaldi, A., Placidi, L.: A microscale second gradient approximation of the damage parameter
of quasi-brittle heterogeneous lattices. ZAMM-Journal of Applied Mathematics and Mechan-
ics/Zeitschrift für Angewandte Mathematik und Mechanik 94(10), 862–877 (2014)

Rizzi, N.L., Varano, V., Gabriele, S.: Initial postbuckling behavior of thin-walled frames under
mode interaction. Thin-Walled Struct. 68, 124–134 (2013). doi:10.1016/j.tws.2013.03.004

Russo, L., et al.: The Forgotten Revolution: How Science was Born in 300 BC and Why it had to
be Reborn. Springer Science & Business Media, Berlin (2013)

Scerrato, D., Giorgio, I., Madeo, A., Limam, A., Darve, F.: A simple non-linear model for internal
friction in modified concrete. Int. J. Eng. Sci. 80, 136–152 (2014)

Scerrato, D., Giorgio, I., Della Corte, A., Madeo, A., Limam, A.: A micro-structural model for
dissipation phenomena in the concrete. Int. J. Numer. Anal. Methods Geomech. 39(18), 2037–
2052 (2015)

Steigmann, D.J., Dell’Isola, F.: Mechanical response of fabric sheets to three-dimensional bending,
twisting, and stretching. Acta Mech. Sinica 31(3), 373–382 (2015)

Thiagarajan, G., Misra, A.: Fracture simulation for anisotropic materials using a virtual internal
bond model. Int. J. Solids Struct. 41(11), 2919–2938 (2004)

Tomic, A., Grillo, A., Federico, S.: Poroelastic materials reinforced by statistically oriented fibres—
numerical implementation and application to articular cartilage. IMA J. Appl. Math. 79, 1027–
1059 (2014)

Trinh, D.K., Janicke, R., Auffray, N., Diebels, S., Forest, S.: Evaluation of generalized continuum
substitution models for heterogeneous materials. Int. J. Multiscale Comput. Eng. 10(6), (2012)

Turco, E.: An effective algorithm for reconstructing boundary conditions in elastic solids. Comput.
Methods Appl. Mech. Eng. 190(29), 3819–3829 (2001)

Verhoosel, C.V., Scott,M.A., Borden,M.J., Hughes, T.J., deBorst, R.: Discretization of higher-order
gradient damage models using isogeometric finite elements. Technical report DTIC Document
(2011)

http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1007/s00161-014-0405-2
http://dx.doi.org/10.1177/1081286515576948
http://dx.doi.org/10.1177/1081286515576948
http://dx.doi.org/10.1016/j.tws.2013.03.004


On Equilibrium of a Second-Gradient Fluid
Near Edges and Corner Points

Victor A. Eremeyev

Abstract Within the framework of the model of second-gradient fluid we discuss
the natural boundary conditions along edges and at corner points. As for any strain
gradient model the model of second-gradient fluid demonstrates some peculiarities
related with necessity of additional boundary conditions. Here using the Lagrange
variational principle we derived the latter boundary conditions for various contact
angles.

1 Introduction

Recently, the interest to generalized model of continua grows with respect to mod-
elling of complex material behaviour and for proper description of materials at the
micro- and nano-scales. Among these generalized models there are micropolar or
Cosserat continua,microstretched andmicromorphicmedia,mediawith internal vari-
ables, gradient elasticity, see Eringen (1999, 2001, 2002), Green and Rivlin (1964),
Capriz (1989), Eremeyev et al. (2013), Maugin andMuschik (1994). The actual state
of the art may be found in recent collections (Maugin andMetrikine 2010; Altenbach
et al. 2011, 2013; Altenbach and Eremeyev 2013 and the references therein). Among
the mentioned generalized models of continua the strain gradient elasticity/plasticity
is widely used in the mechanics of solids, see e.g., Aifantis (2003), Gurtin (2002),
Gao et al. (1999), Huang et al. (2000), Mühlhaus and Aifantis (1991), Forest (2008),
Fleck and Hutchinson (1997). For example, the second-gradient models are fruitful
for analysis of several types of composites, as shown in dell’Isola and Steigmann
(2015), dell’Isola et al. (2015), Rahali et al. (2015).

Considering the gradient elasticity models it is worth to mention second-gradient
fluids. The second-gradient fluid called also Korteweg, or Cahn–Hilliard fluid. This
model relates to the original works by van der Waals (1893) and Korteweg (1901)
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al. Powstańców Warszawy 8, 35-959 Rzeszów, Poland
e-mail: veremeyev@prz.edu.pl

© Springer Science+Business Media Singapore 2016
K. Naumenko and M. Aßmus (eds.), Advanced Methods of Continuum Mechanics
for Materials and Structures, Advanced Structured Materials 60,
DOI 10.1007/978-981-10-0959-4_29

547



548 V.A. Eremeyev

and later to Cahn and Hilliard (1958, 1959). Recently, this model found applications
on the molecular theory of capillarity (Rowlinson and Widom 2003; de Gennes
et al. 2004). It is remarkable that unlike classic fluids second-gradient fluids can
exert shear stresses in statics (dell’Isola and Rotoli 1995; Seppecher 1996, 2002,
1989a; dell’Isola et al. 1996, see also Dunn and Serrin 1985; Fried and Gurtin 2006;
Brenner 2005; Heida and Málek 2010; Seppecher 1989b, 1993, 1996) where many
other properties of the model were discussed.

The paper continues the analysis presented in recent papers (Auffray et al. 2015;
dell’Isola et al. 2014; Eremeyev and Altenbach 2014) towards the analysis of the
boundary conditions near non-smooth boundaries. First, in Sect. 2 we introduce the
strain energy density for a second-gradient fluid which depends on the mass density
and norm of its gradient. Then we formulate the Lagrange variational principle in
Sect. 3. From this principle we derive the equilibrium equations in Sect. 4 and the
natural boundary conditions in Sect. 5.

2 Energy Density of Second-Gradient Fluid

For a second-gradient fluid the energy density W takes the form (Seppecher 1996)

W = W (ρ,∇ρ), (1)

where ρ is the mass density, ∇ is the nabla operator (gradient operator) in the actual
configuration andW is the strain energy density per unit volume in the actual configu-
ration. Using the principle of material frame-indifference (Truesdell 1966; Truesdell
and Noll 2004) W reduces to the following form:

W = W (ρ, β), β = ∇ρ · ∇ρ, (2)

where dot stands for the inner (scalar) product.
As an example one may consider the following constitutive equation:

W = W0 (ρ) + 1

2
λ (∇ρ)2 ,

where λ is a capillary coefficient and W0(ρ) is the non-convex function of ρ. The
typical form of W0(ρ) is similar to the van der Waals gas constitutive equations, see
Fig. 1. Such constitutive relations may describe phase interfaces of finite thickness,
such as the interfacial layer between vapour and fluid, see Rowlinson and Widom
(2003), Seppecher (1996), Rosi et al. (2013). This is a simple example of localization
phenomenons observed in strain gradient materials.
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Fig. 1 The free energy of
the second-gradient fluid per
unit volume versus ρ

3 Lagrange Functional and the Principle of Virtual Work

For derivation of equilibrium equations we use the Lagrange variational principle
(Auffray et al. 2015; dell’Isola et al. 2014; Eremeyev and Altenbach 2014). The
energy functional is defined as follows:

E =
∫

v
W (ρ, β) dv, (3)

where v ≡ v f is the volume which occupies the fluid in the actual configuration at
instant t . From variational equation δE = 0, where δ is the variation symbol, we
obtain the equilibrium conditions. In order to find the first variation δEwe transform
E into Lagrangian form

E =
∫

V
W (ρ, β)J dV, (4)

where V the volume of the fluid in the reference configuration and J = det F,
F = Gradx = (∇Xx)T is the deformation gradient, x is the position vector of the
fluid particle in the actual configuration, ∇X is the nabla operator in the reference
configuration and the index T denotes the transposed.

The first variation of E becomes

δE =
∫

V

[

J
∂W

∂ρ
δρ + J

∂W

∂β
δβ + Wδ J

]

dV .

Introducing the variation of the position vector v = δx and using the standard for-
mulae
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ρ J = ρ0, FT · ∇ = ∇X , ∇ = F−T · ∇X ,

δF−T = −F−T · δFT · F−T , δF = (∇Xv)T ,

where F−T = (F−1)T and ρ0 is the density in the reference configuration, we obtain
the following relations (Eremeyev and Altenbach 2014):

δ J = J∇ · v, δρ = −ρ∇ · v, δ(∇ρ) = −∇v · ∇ρ − ∇(ρ∇ · v),

δβ = 2∇ρ · [−∇v · ∇ρ − ∇(ρ∇ · v)] .

With these formulae we derive δE expressed in terms of v and its spatial gradient
(Eremeyev and Altenbach 2014):

δE =
∫

v

{[

W − ρ
∂W

∂ρ

]

∇ · v − 2
∂W

∂β
∇ρ · [∇v · ∇ρ + ∇(ρ∇ · v)]

}

dv. (5)

For further transformations we use the spatial and surface divergence theorems
(Lebedev et al. 2010)

∫

v
∇ · T dv =

∫

a
n · T da, (6)

∫

a
(∇s · T + 2Kn · T) da =

∫

∂a
m · T ds, (7)

where T is a tensor field of any order, n is the vector of unit normal, a = ∂v,

∇s = ∇ − n(n · ∇)

is the surface nabla operator in the actual configuration, K is the mean curvature
of the surface a and m is the unit vector of the normal to ∂a such that m · n = 0.
Both theorems are fulfilled for smooth regions including ones with edges and corner
points, such as shown in Fig. 2. Let us note that for smooth closed surface a set ∂a
is empty. Here we keep the last integral in (7) for analysis of boundary conditions
along edges.

Finally, we obtain the first variation of the Lagrangian E in the form

δE =
∫

v

{

−∇
[

W − ρ
∂W

∂ρ
+ ρ∇ ·

(

2
∂W

∂β
∇ρ

)]

+ ∇ ·
(

2
∂W

∂β
∇ρ ⊗ ∇ρ

)}

· v dv

+
∫

a

{(

W − ρ
∂W

∂ρ
+ ∇ ·

(

2
∂W

∂β
∇ρ

)

ρ

)

n − 2
∂W

∂β
n · ∇ρ ⊗ ∇ρ

+ 4
∂W

∂β
(n · ∇ρ)ρKn +∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]}

· v da
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(a) (b)

Fig. 2 a Volume v with edges � and corner points P and b part of the volume near edge

−
∫

a
2
∂W

∂β
(n · ∇ρ)ρn · (n · ∇)v da −

∫

∂a
2ρ

∂W

∂β
(n · ∇ρ)m · v ds. (8)

The latter formula dictates the possible form of the virtual work functional for the
second-gradient fluid. The virtual work is defined as follows:

δA =
∫

v
ρ f · v dv +

∫

a
[t · v + c n · (n · ∇)v] da +

∫

�

ζm · v ds. (9)

Here f is the vector of external forces per unit mass, t is the vector of external surface
traction and c and ζ are a surface density of double force and the line density of
forces acting along the edges �, respectively.

As a result, we formulate the principle of virtual work for a second-gradient fluid
as follows:

The fluid is in equilibrium if and only if the following relation holds true:

δE − δA = 0 (10)

for every kinematically admissible virtual displacements v, i.e., for any v satisfying
the kinematic boundary conditions.

For formulations of the principle of virtual power we refer to the landmark papers
by Sedov (1968) and Germain (1973a, b), see also Auffray et al. (2015), dell’Isola
et al. (2014), dell’Isola and Seppecher (1995, 1997).

4 Equilibrium Equations

From (8), (9) and (10), we obtain the Eulerian equilibrium equation
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∇
[

W − ρ
∂W

∂ρ
+ ρ∇ ·

(

2
∂W

∂β
∇ρ

)]

− ∇ ·
(

2
∂W

∂β
∇ρ ⊗ ∇ρ

)

+ ρf = 0. (11)

We transform (11) into the following compact form:

∇ · T + ρf = 0, (12)

where the symmetric Cauchy-type stress tensor is defined by

T = −P I − 2
∂W

∂β
∇ρ ⊗ ∇ρ (13)

and

P = −W + ρ
∂W

∂ρ
− ρ∇ ·

(

2
∂W

∂β
∇ρ

)

.

Here I is the three-dimensional identity tensor, P plays a role of pressure and T is
often called the Korteweg stress tensor (Brenner 2005; Podio-Guidugli and Vianello
2013; Dunn and Serrin 1985).

5 Natural Boundary Conditions

The natural boundary conditions follow from the variational equation

∫

a

{(

W − ρ
∂W

∂ρ
+ ∇ ·

(

2
∂W

∂β
∇ρ

)

ρ

)

n − 2
∂W

∂β
n · ∇ρ ⊗ ∇ρ (14)

+ 4
∂W

∂β
(n · ∇ρ)ρKn +∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]}

· v da

−
∫

a
2
∂W

∂β
(n · ∇ρ)ρn · (n · ∇)v da −

∫

∂a
2ρ

∂W

∂β
(n · ∇ρ)m · v ds = 0. (15)

For derivation of natural boundary conditions let us consider two types of kinemati-
cally admissible fields v. The first case relates to the free surface. In this case there
are no constraints for v. The second type of v is the case of rigid walls; in other
words, we assume that a is fixed, so we have the classic condition n · v = 0 which
simply means that the fluid cannot penetrate a solid surface.

5.1 Natural Boundary Conditions for Free Surface

In this case the natural boundary conditions on the surface a take the form
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(

W − ρ
∂W

∂ρ
+ ∇ ·

(

2
∂W

∂β
∇ρ

)

ρ

)

n − 2
∂W

∂β
n · ∇ρ ⊗ ∇ρ + 4ρK

∂W

∂β
(n · ∇ρ)n

+ ∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]

= t, x ∈ a, (16)

− 2ρ
∂W

∂β
(n · ∇ρ) = c, x ∈ a. (17)

With T Eq. (16) transforms into

n · T + 4ρK
∂W

∂β
(n · ∇ρ)n + ∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]

= t, x ∈ a. (18)

It is obvious that n · T does not coincide with the surface traction t as in the case
of the simple materials. Boundary condition (17) plays a role which is similar to
additional boundary condition for hyperstresses in the strain gradient elasticity. Let
us note that the boundary equations explicitly depend on the mean curvature K of
the boundary in the actual configuration.

5.2 Natural Boundary Conditions for Rigid Surface

Here v is tangent vector to the boundary: n · v = 0. Thus, Eq. (15) takes the form

∫

a

{

−2
∂W

∂β
n · ∇ρ ⊗ ∇ρ + ∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]}

· v da (19)

−
∫

a
2
∂W

∂β
(n · ∇ρ)ρn · (n · ∇)v da −

∫

∂a
2ρ

∂W

∂β
(n · ∇ρ)m · v ds = 0. (20)

Here the admissible surface traction t is also tangent. From (20) we obtain that

− 2
∂W

∂β
n · ∇ρ ⊗ ∇ρ · A + ∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]

= t, x ∈ a, (21)

− 2ρ
∂W

∂β
(n · ∇ρ) = c, x ∈ a. (22)

where A = I − n ⊗ n is the projector operator. The first equation can be also trans-
formed into compact form

n · T · A + ∇s

[

2ρ
∂W

∂β
(n · ∇ρ)

]

= t, x ∈ a. (23)
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Fig. 3 a Edge with nonzero
contact angle and b edge
with zero contact angle
(cusp)

(a) (b)

5.3 On Edge Conditions

From (8), it also follows the boundary condition along �

− 2ρ
∂W

∂β
(n+ · ∇ρ)m+

∣
∣
∣
∣
�=∂a+

− 2ρ
∂W

∂β
(n− · ∇ρ)m−

∣
∣
∣
∣
�=∂a−

= ζ+
∣
∣
∣
∣
�=∂a+

m+ + ζ−
∣
∣
∣
∣
�=∂a−

m−, x ∈ �. (24)

Here a± is the external surfaces of the fluid; n± andm± are the unit vectors of normal
to a± and ∂a±, respectively, see Fig. 3a.

Let us note that the edge condition depends also on the geometrical shape of the
contacting surfaces. For example, in the case of cusp, that is when the contact angle
is zero, see Fig. 3b, the edge condition transforms into

−2ρ
∂W

∂β
(n · ∇ρ)m

∣
∣
∣
∣
�

= ζm

∣
∣
∣
∣
�

, x ∈ �. (25)

The edge conditions (24) or (25) can be generalized taking into account line
tension as in Pietraszkiewicz et al. (2007) as well as for the presence of corner
points. For detailed general analysis of edge conditions in strain gradient media we
refer to dell’Isola and Seppecher (1995, 1997), dell’Isola et al. (2012).

6 Conclusions

Using the Lagrange variational principle and the principle of virtual powerwe present
the week formulation of the static problem for a second-gradient fluid. As well as
for any strain gradient model here the boundary-value problem contains non-classic
boundary conditions relatedwith given double forces and line forces. Unlike classical
media for a second-gradient fluid, we have to introduce not only surface traction and
surface double force density, but also forces acting along edges. The latter may be
interpreted as line tension forces.
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