Chapter 5 CR Submanifolds in (l.c.a.) Kaehler and S-manifolds

José Luis Cabrerizo, Alfonso Carriazo and Luis M. Fernández

2010 Mathematics Subject Classification 53C15 · 53C25 · 53C40

5.1 Introduction

K. Yano [21] introduced in 1963 the notion of f-structure on a (2m + s)-dimensional manifold as a tensor field f of type (1, 1) and rank 2m satisfying $f^3 + f = 0$. Almost complex (s = 0) and almost contact (s = 1) structures are well-known examples of f-structures. A Riemannian manifold endowed with an f-structure ($s \ge 2$) compatible with the Riemannian metric is called a metric f-manifold (for s = 0 we have almost Hermitian manifolds and for s = 1, metric almost contact manifolds). In this context, D.E. Blair [5] defined K-manifolds (and particular cases of S-manifolds and C-manifolds) as the analogue of Kaehlerian manifolds in the almost complex geometry and of quasi-Sasakian manifolds (and particular cases of Sasakian manifolds and cosymplectic manifolds) in the almost contact geometry.

He also showed that the curvature of S-manifolds is completely determined by their f-sectional curvatures. Later, M. Kobayashi and S. Tsuchiya [15] got expressions for the curvature tensor field of S-manifolds when their f-sectional curvature is constant depending on such a constant. Such spaces are called S-space-forms and they generalize complex and Sasakian space-forms. Nice examples of S-space-forms

J.L. Cabrerizo (🖂) · A. Carriazo · L.M. Fernández

A. Carriazo e-mail: carriazo@us.es

L.M. Fernández e-mail: lmfer@us.es

Faculty of Mathematics, Department of Geometry and Topology, University of Seville, c/ Tarfia s/n, 41012 Seville, Spain e-mail: jaraiz@us.es

[©] Springer Science+Business Media Singapore 2016

S. Dragomir et al. (eds.), *Geometry of Cauchy–Riemann Submanifolds*, DOI 10.1007/978-981-10-0916-7_5

can be found in [5, 6, 8, 13]. In particular, it is proved in [5, 8] that certain principal toroidal bundles over complex-space-forms are *S*-space-forms and a generalization of the Hopf fibration denoted by \mathbb{H}^{2m+s} is introduced as a canonical example of such manifolds playing the role of complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry [5, 6].

When we want to study the submanifolds of a metric *f*-manifold, the natural first step is to consider such submanifolds depending on their behavior with respect to the *f*-structure. So, invariant and anti-invariant submanifolds (in the terminology of the complex geometry, holomorphic and totally real submanifolds) appear if all the tangent vector fields to the submanifold are transformed by *f* into tangent vector fields or into normal vector fields. But since an hypersurface of a metric *f*-manifold tangent to the structure vector fields is neither invariant nor anti-invariant, it is necessary to introduce a wider class of submanifolds: the *CR*-submanifolds. This work was made firstly by A. Bejancu and B.-Y. Chen [1, 10, 11] in the case s = 0 and by A. Bejancu and N. Papaghiuc, M. Kobayashi and K. Yano and M. Kon in the case s = 1 (we refer to the books [3, 22] for the background of these cases where a large list of fundamental references can be found). For $s \ge 2$, I. Mihai [16] introduced the notion of *CR*-submanifold in a natural way.

Many authors have studied the geometry of submanifolds of locally conformal almost Kaehler (l.c.a.K.) manifolds [10, 11, 14, 20], which are almost Hermitian manifolds (\tilde{M}, J, g) such that every $x \in \tilde{M}$ has an open neighborhood U such that for some differentiable function $h : U \longrightarrow \mathbb{R}$, $\tilde{g}_U = e^{-h}g|_U$ is a (l.c.a.) Kaehler metric on U. If one can take $U = \tilde{M}$, the manifold is then called globally conformal almost Kaeler (g.c.a.K) manifold. Examples of l.c.K. manifolds are provided by the Hopf manifolds. So, it seems interesting to study *CR*-submanifolds of l.c.a.K. manifolds.

On the other hand, M. Okumura [17, 18] studied normal real hypersurfaces of Kaehlerian manifolds and obtained nice properties. For this reason, it also seems interesting to introduce and study normal *CR*-submanifolds. In the cases s = 0 and s = 1, the papers [2] and [4] can be consulted.

The aim of the present work is to briefly summarize our contributions to the study of *CR*-submanifolds of l.c.a.K. manifolds, normal *CR*-submanifolds of *S*-manifolds. To this end, we separate them into two different sections, which can be read independently.

5.2 CR-Submanifolds of (l.c.a.) Kaehler Manifolds

Let (\tilde{M}, J, g) be an almost Hermitian manifold $(dim(\tilde{M}) = 2m)$ with almost complex structure J and Hermitian metric g and let M be a Riemannian submanifold isometrically immersed in \tilde{M} .

A. Bejancu [1] introduced the notion of a *CR*-submanifold of \widetilde{M} . In fact, M is a *CR*-submanifold of the almost Hermitian manifold \widetilde{M} if there exists on M a differentiable holomorphic distribution \mathcal{D} , i.e., $J(\mathcal{D}_x) \subseteq \mathcal{D}_x$ for any $x \in M$ such that its orthogonal complement \mathcal{D}^{\perp} in M is totally real in \widetilde{M} , i.e., $J(\mathcal{D}_x^{\perp}) \subseteq T_x^{\perp}(M)$ for any $x \in M$,

where $T_x^{\perp}(M)$ is the normal space at *x*. If $dim(\mathcal{D}) = 0$, *M* is called a *totally real* submanifold, and if $dim(\mathcal{D}^{\perp}) = 0$ *M* is a *holomorphic* submanifold.

We first discuss the Gauss–Weingarten equations of the submanifold with respect to the metric g and with respect to the local conformal Kaehler metrics and then we shall establish thereby the analytical conditions that characterize the important types of submanifolds.

5.2.1 Preliminaries

Let (\widetilde{M}, J, g) be an almost Hermitian manifold. It is easy to see [20] that (\widetilde{M}, J, g) is a l.c.(a).K. manifold if and only if there is a global closed 1-form ω on \widetilde{M} (the Lee form) such that $d\Omega = \omega \wedge \Omega$ (Ω the fundamental form of the manifold) and (\widetilde{M}, J, g) is a g.c.(a).K. manifold if and only if ω is also exact. In case $\omega = 0$, the manifold is an (almost) Kaehler manifold.

Let (\widetilde{M}, J, g) be a l.c.(a).K. manifold and consider the Lee vector field *B* [20] of (\widetilde{M}, J, g) defined by $g(X, B) = \omega(X)$. Denote by $\widetilde{\nabla}$ the Levi-Civita connection of *g* and define

$$\overline{\nabla}_X Y = \widetilde{\nabla}_X Y - \frac{1}{2}\omega(X)Y - \frac{1}{2}\omega(Y)X + \frac{1}{2}g(X,Y)B.$$
(5.1)

Then $\overline{\nabla}$ is a torsionless linear connection on \widetilde{M} which is called the Weyl connection of g. It is easy to see that $\overline{\nabla}_X g = \omega(X)g$. We have

Theorem 5.1 ([20]) The almost Hermitian manifold (\tilde{M}, J, g) is a l.cK. manifold if and only if there is a closed 1-form ω on \tilde{M} such that the Weyl connection is almost complex, That is, $\nabla J = 0$.

Let (\widetilde{M}, J, g) be a l.c.K. manifold and M a Riemannian manifold isometrically immersed in \widetilde{M} . We denote by g the metric tensor of \widetilde{M} as well as that induced on M, and let ∇ , ∇^M be the covariant derivations on M induced by $\widetilde{\nabla}$ and $\overline{\nabla}$, respectively. Then, the Gauss–Weingarten formulas for M with respect to $\widetilde{\nabla}$ and $\overline{\nabla}$ are given by

$$\widetilde{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \ \widetilde{\nabla}_X V = -A_V X + D_X V,$$
(5.2)

$$\overline{\nabla}_X Y = \nabla_X^M Y + \overline{\sigma}(X, Y), \ \overline{\nabla}_X V = -\overline{A}_V X + \overline{D}_X V, \tag{5.3}$$

for any vector fields X, Y tangent to M and V normal to M, where σ (respectively, $\overline{\sigma}$) is the second fundamental form of M with respect to $\overline{\nabla}(\overline{\nabla})$ and D (respectively, \overline{D}) is the normal connection. The formulas (5.3) are the Gauss–Weingarten equations of $M|_U$ in $(\widetilde{M}|_U, e^{-h}g|_U)$. The second fundamental tensors A_V, \overline{A}_V are related to $\sigma, \overline{\sigma}$ respectively by

$$g(A_V X, Y) = g(\sigma(X, Y), V), \ g(A_V X, Y) = g(\overline{\sigma}(X, Y), V).$$
(5.4)

For any vector X tangent to M and V normal to M write

$$JX = TX + NX, \ JV = tV + nV, \tag{5.5}$$

where *TX* and *NX* (respectively, tV and nV) are the tangential and normal component of J(X) (respectively JV). For the Lee field *B*, we have

$$B_x = (B_x)_1 + (B_x)_2, \quad x \in M,$$
 (5.6)

where $(B_x)_1$ (resp.y $(B_x)_2$) is the tangential (resp. normal) component of B_x .

If *M* is a *CR*-submanifold of an almost Hermitian manifold (\tilde{M}, J, g) let us denote by ν the complementary orthogonal subbundle of $J\mathcal{D}^{\perp}$ in $T^{\perp}(M)$. Hence we have, $T^{\perp}(M) = J\mathcal{D}^{\perp} \oplus \nu$.

5.2.2 Integrability Conditions of the Basic Distributions

First we give some general identities.

Lemma 1 Let M be a CR-submanifold of a l.c.K. manifold (\widetilde{M}, J, g) . Then, we have

$$\nabla_X^M Y = \nabla_X Y - \frac{1}{2}\omega(X)Y - \frac{1}{2}\omega(Y)X + \frac{1}{2}g(X,Y)B_1$$
(5.7)

$$\overline{\sigma}(X,Y) = \sigma(X,Y) + \frac{1}{2}g(X,Y)B_2$$
(5.8)

$$\overline{A}_V X = A_V X + \frac{1}{2}\omega(V)X \tag{5.9}$$

$$\overline{D}_V X = D_V X - \frac{1}{2}\omega(X)V \tag{5.10}$$

for any vector fields X, Y tangent to M and V normal to M.

Proof The assertions follow immediately from (5.1)–(5.3).

The following result is well known:

Theorem 5.2 ([7]) The totally real distribution \mathcal{D}^{\perp} of any CR-submanifold of a *l.c.K. manifold is integrable.*

For the holomorphic distribution \mathcal{D} , we have

Theorem 5.3 Let M be a submanifold of a l.c.K. manifold \widetilde{M} and let \mathcal{D}_x de maximal holomorphic subspace of $T_x(M)$ and assume dim (\mathcal{D}_x) is a constant. Then, the holomorphic distribution \mathcal{D} is integrable if and only if the second fundamental form $\overline{\sigma}$ satisfies $\overline{\sigma}(X, JY) = \overline{\sigma}(JX, Y)$ or, equivalently, $\sigma(X, JY) - \sigma(JX, Y) + \Omega(X, Y)B_2 = 0$, for all vector fields $X, Y \in \mathcal{D}$.

If *M* is a *CR*-submanifold, the integrability condition on \mathcal{D} in Theorem 5.3 can be replaced by a weaker condition.

Theorem 5.4 Let M be a CR-submanifold of a l.c.K. manifold \widetilde{M} . The holomorphic distribution \mathcal{D} is integrable if and only if

$$g\left(\sigma(X, JY) - \sigma(JX, Y) + \Omega(X, Y)B, J\mathcal{D}^{\perp}\right) = 0,$$

for all $X, Y \in \mathcal{D}$.

Theorems 5.3 and 5.4 follow easily from similar theorems in the Kaehlerian case ([7]), from (5.8) and the fact that, locally, \tilde{M} is endowed with Kaehler metrics \tilde{g}_U whose Levi-Civita connection is $\overline{\nabla}$.

With regard to integral submanifolds of \mathcal{D}^{\perp} and \mathcal{D} (provided \mathcal{D} is integrable), we have the following theorem.

Theorem 5.5 For a CR-submanifold M of a l.c.K. manifold \widetilde{M} , the leaf M^{\perp} is totally geodesic in M if and only if

$$g\left(A_{JW}Z+\frac{1}{2}g(Z,W)JB,\mathcal{D}\right)=0,$$

that is,

$$g(\sigma(Z, X), JW) = \frac{1}{2}g(Z, W)\omega(JW),$$

for any $X \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}$.

Proof From (5.1), (5.2) and $\overline{\nabla}J = 0$, for any $X \in \mathcal{D}, Z, W \in \mathcal{D}^{\perp}$, we obtain

$$g(J\nabla_Z W, X) + \frac{1}{2}g(Z, W)g(JB, X) = -g(A_{JW}Z, X).$$
(5.11)

But M^{\perp} is totally geodesic in M if and only if $\nabla_Z W \in \mathcal{D}^{\perp}$ for all $Z, W \in \mathcal{D}^{\perp}$, and then (5.11) gives the theorem.

Theorem 5.6 Let M be a CR-submanifold of a l.c.K manifold \tilde{M} . If the holomorphic distribution \mathcal{D} is integrable and M^T is an integral submanifold of \mathcal{D} , then M^T is totally geodesic if and only if

$$g\left(J\sigma(X,Y) + \frac{1}{2}g(X,Y)JB - \frac{1}{2}\Omega(X,Y)B, \mathcal{D}^{\perp}\right) = 0.$$

for any $X, Y \in \mathcal{D}$.

Proof From (5.1), (5.3), and $\overline{\nabla}J = 0$, for any $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, we have

$$g(J\sigma(X,Y),Z) + \frac{1}{2}g(X,Y)g(JB,Z) = g(\nabla_X(JY),Z) + \frac{1}{2}\Omega(X,Y)g(B,Z).$$
(5.12)

But M^T is totally geodesic in M if and only if $\nabla_X Y \in \mathcal{D}$ for all $X, Y \in \mathcal{D}$, and hence Eq. (5.12) gives the theorem.

5.2.3 CR-Submanifolds of I.c.K. Manifolds

First of all, we shall give some identities for later use. Let *T*, *N t*, and *n* be the endomorphisms and vector-valued 1-forms defined in (5.5). The following lemma can be easily obtained from (5.3), (5.9), and $\overline{\nabla}J = 0$.

Lemma 2 Let M be an isometrically immersed submanifold of a l.c.K. manifold \widetilde{M} . Then, we have

$$\nabla_X^M(TY) - \overline{A}_{NY}X = T\nabla_X^M Y + t\overline{\sigma}(X,Y)$$
(5.13)

$$\overline{\sigma}(X, TY) + D_X(NY) = N\nabla_X^M Y + n\overline{\sigma}(X, Y), \qquad (5.14)$$

$$\nabla_X^M(tV) - \overline{A}_{nV}X = -T\overline{A}_VX + t\overline{D}_XV, \qquad (5.15)$$

$$\overline{\sigma}(X, tV) + \overline{D}_X(nV) = -N\overline{A}_V X + n\overline{D}_X V, \qquad (5.16)$$

$$\left[\overline{A}_V, \overline{A}_{\overline{V}}\right] = \left[A_V, A_{\overline{V}}\right],\tag{5.17}$$

for any vector fields X, Y tangent to M and V, \overline{V} normal to M.

Now, we shall study totally umbilical and totally geodesic CR-submanifolds.

Theorem 5.7 Let M be a totally umbilical CR-submanifold of a l.c.K. manifold \widetilde{M} . Then, we have

- (i) Either dim $(\mathcal{D}^{\perp}) = 1$ or the component $H_{J(TM)}$ of the mean curvature tensor H in J(TM) is given by $H_{J(TM)} = -\frac{1}{2}B_2$.
- (ii) If $dim(\mathcal{D}^{\perp}) > 1$ and M is proper (neither holomorphic nor totally real) such that B is tangent to M, then M is totally geodesic.

Proof First, since *M* is totally umbilical, $\sigma(X, Y) = g(X, Y)H$ for any *X*, *Y* tangent to *M*, and hence

$$g(\sigma(X, X), JW) = g(X, X)g(H, JW).$$
(5.18)

5 CR Submanifolds in (l.c.a.) Kaehler and S-manifolds

From (5.3) and (5.4) it is easy to see that

$$\overline{A}_{JZ}W = \overline{A}_{JW}Z \tag{5.19}$$

and, then, if we take an unit vector field $X = Z \in D^{\perp}$ orthogonal to W, (5.9), (5.18), and (5.19) give

$$g(H, JW) = g(A_{JW}Z, Z) = g(A_{JZ}W + \frac{1}{2}\omega(JZ)W - \frac{1}{2}\omega((JW)Z, Z)$$
$$= -\frac{1}{2}\omega(JW) = g(-\frac{1}{2}B_2, JW),$$

so that (i) holds.

Now, since $dim(\mathcal{D}^{\perp}) > 1$, from (5.5) and assertion (*i*), we have tH = 0. Thus, (5.15) gives $t\overline{D}_Y H = \overline{A}_{nH}Y - T\overline{A}_HY$, for any *Y* tangent to *M*. Therefore, for any *Z* tangent to *M*, from (5.8) and (5.9) we get

$$g(t\overline{D}_YH, Z) = -g(\overline{A}_HY, TZ) - g(\overline{\sigma}(Y, Z), nH) = -g(Y, TZ)g(H, H)$$
(5.20)

and, if we take Z = TY, we have

$$-g(Y, T^{2}Y)g(H, H) = g(t\overline{D}_{Y}H, TY) = g(Tt\overline{D}_{Y}H, Y) = 0.$$
(5.21)

The last equation holds because Tt = 0 for any *CR*-submanifold of an almost Hermitian manifold [22]. Moreover, it is easy to see [22] that $T^2 = -I + tN$ and then (5.21) gives

$$g(Y, Y)g(H, H) - g(NY, NY)g(H, H) = 0.$$
 (5.22)

Since *M* is proper, we can choose an unit vector field *X* in \mathcal{D} . Thus, *NX* = 0 and from (5.22) we have *H* = 0.

Theorem 5.8 Let M be a totally geodesic CR-submanifold of a l.c.K. manifold \widetilde{M} . We have

- (i) If $B_x \in D_x$, for all $x \in M$, then D is integrable and any integral submanifold M^T of D is totally geodesic in \widetilde{M} .
- (ii) If B is normal to M, any integral submanifold M^{\perp} of \mathcal{D}^{\perp} is totally geodesic in \widetilde{M} . Furthermore, \mathcal{D} is integrable if and only if $B_x \in \nu_x$, for any $x \in M$, and in this case any integral submanifold M^T of \mathcal{D} is totally geodesic in \widetilde{M} .

Proof Firstly, since *B* is tangent to *M*, from Theorem 5.7 the distribution \mathcal{D} is integrable. Let M^T be an integral submanifold of \mathcal{D} . For any vector field *X* tangent to *M*, $Y \in \mathcal{D}$, $Z \in \mathcal{D}^{\perp}$, from (5.3) and (5.4) we get $g(\nabla_X^M Z, Y) = -g(\overline{\sigma}(X, JY), JZ)$. But from (5.7) and (5.8) we find

$$g(\nabla_X Z, Y) - \frac{1}{2}\omega(Z)g(X, Y) + \frac{1}{2}g(X, Z)g(B, Y) = -g(\sigma(X, JY), JZ) = 0.$$
(5.23)

If $X \in \mathcal{D}$, (5.23) gives $g(\nabla_X Z, Y) = 0$, or, equivalently, $g(\nabla_X Y, Z) = 0$ and therefore, $\nabla_X Y \in \mathcal{D}$. Thus M^T is totally geodesic in M and hence in \widetilde{M} .

Next, if *B* is normal to *M*, from Theorem 5.5, any integral submanifold M^{\perp} of \mathcal{D}^{\perp} is totally geodesic in \widetilde{M} . The second statement follows immediately from Theorems 5.6 and 5.7.

Corollary 1 Let M be a totally geodesic proper CR-submanifold of a l.c.K. manifold \tilde{M} such that $B_x \in \nu_x$, for any $x \in M$. Then, M is locally the Riemannian product of a Kaehler submanifold and a totally real submanifold of \tilde{M} .

Proof From Theorem 5.8, M is locally the product of a holomorphic submanifold M^T and a totally real submanifold M^{\perp} of \widetilde{M} . But $\omega = 0$ on M, so that we have induced on M^T a Kaehlerian structure. Moreover, it can be easily seen that the projection map p (resp., q) onto \mathcal{D} (resp., \mathcal{D}^{\perp}) is parallel with respect to ∇ , so that this local product is actually a local Riemannian product.

Next, we consider the particular case when M is either holomorphic or totally real.

Lemma 3 Let M be a holomorphic submanifold of a l.c.K. manifold \widetilde{M} . Then the subbundles TM and $T^{\perp}(M)$ are holomorphic. Moreover, we have

$$\overline{\sigma}(JX,Y) = \overline{\sigma}(X,JY) = J\overline{\sigma}(X,Y), \tag{5.24}$$

$$\overline{A}_{JV} = J\overline{A}_V = -\overline{A}_V J, \tag{5.25}$$

$$\overline{D}_X(JV) = J\overline{D}_X V, \tag{5.26}$$

$$\nabla_X^M(JY) = J\nabla_X^M Y,\tag{5.27}$$

for any vector fields X, Y tangent to M and V normal to M.

Proof As \widetilde{M} is locally endowed with Kaehler metrics \widetilde{g}_U whose Levi-Civita connection is $\overline{\nabla}$, these formulas follow from similar formulas in the Kaehlerian case.

Theorem 5.9 Let M be a holomorphic submanifold of a l.c.K. manifold \widetilde{M} . Then, we have

- (i) The mean curvature vector H of M is given by $H = -\frac{1}{2}B_2$.
- (ii) *M* is totally umbilical if and only if the Weingarten endomorphisms are commutative.

Proof Firstly, if dim(M) = 2k > 0, let $\{e_1, \ldots, e_k, Je_1, \ldots, Je_k\}$ be an orthonormal basis for $T_x(M), x \in M$. Then

$$2kH_x = (tr(\sigma))_x = \sum_{i=1}^k \sigma_x(e_i, e_i) + \sum_{i=1}^k \sigma_x(Je_i, Je_i).$$
(5.28)

But from (5.8) and (5.24), (5.28) gives $2kH_x = -k(B_2)_x$. Next, let V be a vector field normal to M. From (5.17) and (5.25), we have

$$0 = [A_V, A_{JV}] = [\overline{A}_V, \overline{A}_{JV}] = -2J(\overline{A}_V)^2,$$

Thus $\overline{A}_V = 0$ and from (5.9), we have $A_V = -\frac{1}{2}\omega(V)I$

The endomorphism n of the normal bundle $T^{\perp}M$ defined in (5.5) induces an fstructure in $T^{\perp}M$ [22]. For any vector field X tangent to M and V normal to M, we write

$$(\nabla'_X n)V = D_X(nV) - nD_XV,$$
$$(\overline{\nabla}'_X n)V = \overline{D}_X(nV) - n\overline{D}_XV.$$

When $\widetilde{\nabla}' n = 0$, the *f*-structure *n* is said to be parallel [10].

Lemma 4 Let M be an r-dimensional totally real submanifold of a 2m-dimensional l.c.K. manifold M. Then we have

- (i) $\overline{A}_{JX}Y = \overline{A}_{JY}X$, for any X, Y tangent to M. (ii) Ifr = m, then $\overline{D}_X(JY) = J\nabla_X^M Y$, $\nabla_X^M(JV) = J\overline{D}_X V$, and $\overline{\sigma}(X, JV) = -J\overline{A}_V X$.
- (*iii*) $\widetilde{\nabla}' n = \overline{\nabla}' n$.
- (iv) If the f-structure n is parallel, then

$$A_V = -\frac{1}{2}\omega(V)I, \qquad (5.29)$$

for any $V \in \nu$.

(v) If the Weingarten endomorphisms are commutative, then there is an orthonormal local basis $\{e_1, \ldots, e_r\}$ in M such that with respect to this basis $\overline{A}_{J_{e_i}}$ is a diagonal matrix

$$\overline{A}_{Je_i} = (0 \dots 0 \lambda_i 0 \dots 0), \quad i = 1, \dots, r.$$
 (5.30)

Proof Assertions (i) and (ii) follow immediately from similar formulas in the Kaehlerian case. From Eq. (5.10), we easily obtain (*iii*).

In order to prove (*iv*), we take $V \in \nu$, and $X \in T(M)$. Then, (*iii*) gives $(\nabla'_x n)V =$ $\overline{D}_X(nV) - n\overline{D}_X V = 0$. By using (5.25) and (5.26) this yields $J\overline{A}_V X = 0$. Therefore, $\overline{A}_V = 0$ and from (5.9), we obtain (*iv*).

Finally, from (5.17) we have $[\overline{A}_V, \overline{A}_{\overline{V}}] = 0$, for any V, \overline{V} normal to M. Then, we can find a local orthonormal basis $\{\tilde{e}_1 \dots, \tilde{e}_r\}$ in M (with respect to the local Kaehlerian metrics $\tilde{g}_U = e^{-h}g|_U$) such that $\overline{A}_{Je_i} = (0 \dots \mu_i \dots 0), i = 1, \dots, r$. If we start by using this basis, we can obtain an orthonormal (with respect to the metric g) local basis $\{e_1, \dots, e_n\}$ in M such that (v) holds.

Theorem 5.10 Let M be an r-dimensional totally real and minimal submanifold of a l.c.K. manifold \widetilde{M} such that their Weingarten endomorphisms are commutative and the f-structure n is parallel. Then, we have

- (i) If $r \ge 2$, *M* is totally geodesic if and only if the Lee vector field *B* is tangent to *M*.
- (ii) If r = 1 and B is orthogonal to ν , then M is a geodesic curve.

Proof First, since the Weingarten endomorphisms are commutative, let $\{e_1, \ldots, e_r\}$ be an orthonormal local basis as in Lemma 4 (*v*). From Eq. (5.8), we have

$$0 = g(H, Je_i) = \frac{1}{n} \sum_{j=1}^{n} g\left(\sigma(e_j, e_j), Je_i\right) = \frac{1}{n} \sum_{j=1}^{n} g\left(\overline{A}_{Je_i}e_j, e_j\right) - \frac{1}{2}\omega(Je_i)$$
$$= \frac{1}{n}\lambda_i - \frac{1}{2}\omega(Je_i), \quad i = 1, \dots, r.$$

Therefore,

$$\overline{A}_{Je_i}e_j = \delta_{ij}\lambda_i e_j = \delta_{ij}\frac{n}{2}\omega(Je_i)e_j, \quad i = 1, \dots, r.$$
(5.31)

Now, from (5.9) and (5.31) we obtain,

$$A_{Je_i}e_j = \frac{1}{2}(n\delta_{ij} - 1)\omega(Je_i)e_j, \quad i = 1, \dots, r.$$
 (5.32)

Thus, if $r \ge 2$ and *B* is tangent to *M*, Eq. (5.32) gives $A_{Je_i} = 0$, i = 1, ..., r. Moreover, from (iv) in Lemma 4, $A_V = -\frac{1}{2}\omega(V)I = 0$, for any $V \in \nu$. Then, $A_{\overline{V}} = 0$, for any vector field \overline{V} normal to *M*.

On the other hand, if there is $x \in M$ such that $(B_2)_x \neq 0$, from (5.32) and (*iv*) in Lemma 4, we can take a vector field V normal to M such that $A_V \neq 0$. This gives (*i*).

In order to prove (*ii*), let us take a unit vector field X tangent to M. We have $0 = g(H, JX) = g(\sigma(X, X), JX) = g(A_{JX}X, X)$, and, then, $A_{JX} = 0$. But, if B is orthogonal to ν , from (*iv*) in Lemma 4, $A_V = -\frac{1}{2}\omega(V) = 0$, for any $V \in \nu$. This means that $A_{\overline{V}} = 0$, for any vector field \overline{V} normal to M.

Theorem 5.11 Let M be an r-dimensional ($r \ge 2$) totally real and totally umbilical submanifold of a l.c.K. manifold \widetilde{M} such that the f-structure n is parallel. Then M is totally geodesic if and only if B is tangent to M.

Proof Let $\{u_1, \ldots, u_r\}$ be an orthonormal local basis in U. Since M is totally umbilical, for any vector field X tangent to M, by using Eqs. (5.8) and (5.9), we find

5 CR Submanifolds in (l.c.a.) Kaehler and S-manifolds

$$g(\overline{A}_{JX}u_j, u_k) = \frac{1}{r} \delta_{jk} tr(\overline{A}_{JX}).$$
(5.33)

But from Eq. (5.9) and (iv) in Lemma 4 we also have

$$\overline{A}_V = 0, \tag{5.34}$$

for any $V \in \nu$. On the other hand $[A_{\overline{V}}, A_{\overline{\overline{V}}}] = [\overline{A}_{\overline{V}}, \overline{A}_{\overline{\overline{V}}}] = 0$, for any vector fields $\overline{V}, \overline{\overline{V}}$ normal to M. Therefore, from (v) in Lemma 4, there is an orthonormal local basis $\{e_1, \ldots, e_r\}$ in M such that, with respect to this basis, Eq. (5.30) holds. But, from Eq. (5.33), we also have

$$g(\overline{A}_{Je_i}e_j, e_j) = \frac{1}{r}\lambda_i, \quad i.j = 1, \dots, n.$$
(5.35)

Since $r \ge 2$, we can take $j \ne i$ and then, Eqs. (5.30) and (5.35) give $\lambda_i = 0$, $i = 1, \ldots, r$. Thus, we get $\overline{A}_{Je_i} = 0$, $i = 1, \ldots, r$, which, together with (5.34) gives $\overline{A}_{\overline{V}} = 0$, for any vector field \overline{V} normal to M. Now, if B is tangent to M, Eq. (5.9) proves that M is totally geodesic.

Conversely, if *M* is totally geodesic, from (5.29) we have $0 = A_V = -\frac{1}{2}\omega(V)I$, for any $V \in \nu$. This means that *B* is normal to ν . Furthermore, from (v) in Lemma 4, we can find an orthonormal local basis $\{e_1, \ldots, e_r\}$ in *M* such that \overline{A}_{Je_i} has a diagonal matrix $\overline{A}_{Je_i} = (0 \dots 0 \lambda_i 0 \dots 0) = \frac{1}{2}\omega(Je_i)I$, $i = 1, \ldots, r$. Since $r \ge 2$, this means $\omega(Je_i) = 0$, $i = 1, \ldots, r$ so that *B* is normal to J(T(M)). Thus, *B* is tangent to *M*.

5.2.4 CR-products in l.c.K. Manifolds

Let T, N, t, n be the endomorphisms and vector-valued 1-forms defined by (5.5). Let us write $\sim t_{1}$

$$(\overline{\nabla}'_{Z}T)W = \nabla_{Z}(TW) - T\nabla_{Z}W,$$

$$(\overline{\nabla}'_{Z}T)W = \nabla^{M}_{Z}(TW) - T\nabla^{M}_{Z}W,$$

(5.36)

for all Z, W tangent to M. On the other hand, T is said to be parallel if $\overline{\nabla} T = 0$. From (5.1)–(5.3) it is easy to prove that

$$(\overline{\nabla}'_{Z}T)W = (\widetilde{\nabla}'_{Z}T)W + \frac{1}{2}\omega(W)TZ - \frac{1}{2}\omega(TW)Z + \frac{1}{2}g(Z, TW)B_{1} - \frac{1}{2}g(Z, W)TB_{1}.$$
(5.37)

But, from (5.36) we see that

$$(\overline{\nabla}_{Z}^{\prime}T)W = t\overline{\sigma}(Z,W) + \overline{A}_{NW}Z.$$
(5.38)

Definition 1 A *CR*-submanifold of a l.c.K. manifold \widetilde{M} is called a *CR-product* if it is locally a Riemannian product of a holomorphic submanifold M^T and a totally real submanifold M^{\perp} of \widetilde{M} .

Theorem 5.12 Let M be a CR-submanifold of a l.c.K. manifold \widetilde{M} such that the Lee field B is normal to M. Then M is a CR-product if and only if T is parallel.

Proof Since *B* is normal to *M*, from Eq. (5.37), we have $\widetilde{\nabla}' T = \overline{\nabla}' T$. If *T* is parallel, from (5.8), (5.9), and (5.38), we find

$$t\sigma(Z, W) + \frac{1}{2}g(Z, W)tB = -A_{NW}Z - \frac{1}{2}\omega(NW)Z.$$
 (5.39)

But for any $X \in \mathcal{D}$, NX = 0, and the last equation gives

$$0 = g(A_{NW}Z, X) + \frac{1}{2}\omega(NW)g(Z, X),$$

or, equivalently, $g(\sigma(Z, X), JW) + \frac{1}{2}g(JW, B)g(Z, X) = 0$, for any W tangent to M. Therefore,

$$\sigma(Z, X) = -\frac{1}{2}g(Z, X)B.$$
 (5.40)

If we take $Z \in \mathcal{D}$, the last equation gives $\sigma(X, JY) - \sigma(JX, Y) = -\Omega(X, Y)B$, and, from Theorem 5.3, \mathcal{D} is integrable. Let M^T be an integral submanifold of \mathcal{D} . For any $Z \in \mathcal{D}^{\perp}$, Eq. (5.40) yields $g(\sigma(Z, X), JZ) = -\frac{1}{2}g(Z, Z)g(B, JZ)$ and, from Theorem 5.6, the submanifold M^T is totally geodesic in M. Now, let M^{\perp} be an integral submanifold od \mathcal{D}^{\perp} . From (5.40), if $Z \in \mathcal{D}^{\perp}$, then $\sigma(Z, X) = 0$ and, from Theorem 5.5, M^{\perp} is totally geodesic.

Conversely, assume that M is a CR-product. First, we prove that $\nabla_Z^M X \in \mathcal{D}$, for any $X \in \mathcal{D}$ and Z tangent to M. As M is locally a Riemannian product of M^T (holomorphic submanifold) and M^{\perp} (totally real submanifold), it suffices to prove that $\nabla_Z^M X \in \mathcal{D}$, for any $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. In fact, from (5.3) we have

$$J\nabla_Z^M X = \nabla_Z^M (JX) + \overline{\sigma}(Z, JX) - J\overline{\sigma}(Z, X).$$

Thus, if $W \in \mathcal{D}^{\perp}$, $g(J\nabla_Z^M X, JW) = g(\overline{\sigma}(Z, JX), JW)$. Since M^{\perp} is totally geodesic in M, from (5.8) and Theorem 5.5 we have $g(\nabla_Z^M X, W) = 0$, for any $W \in \mathcal{D}^{\perp}$. So, $\nabla_Z^M X \in \mathcal{D}$ and $\nabla_Z^M X \in \mathcal{D}$, for any Z tangent to M. From $\overline{\nabla}J = 0$, we find

$$J\nabla_Z^M X + J\overline{\sigma}(Z, X) = \nabla_Z^M(JX) + \overline{\sigma}(Z, JX),$$

and then, $J\nabla_Z^M X = \nabla_Z^M(JX), J\overline{\sigma}(Z, X) = \overline{\sigma}(Z, JX)$. Now, from (5.36) we get

$$(\overline{\nabla}_Z'T)X = \nabla_Z^M(TX) - T\nabla_Z^M X = \nabla_Z^M(JX) - J\nabla_Z^M X = 0,$$
(5.41)

for any $X \in \mathcal{D}$ and Z tangent to M.

In a similar way, we prove that $\nabla_Z^M Z \in \mathcal{D}^{\perp}$ for any $Z \in \mathcal{D}^{\perp}$ and Z tangent to M. Since M is a *CR*-product, it suffices to show this for $Z = X \in \mathcal{D}$. In fact, from (5.3), given any $Y \in \mathcal{D}$ we find that

$$g(J\nabla_X^M Z, Y) = -g(\overline{A}_{JZ}X, Y) - g(J\overline{\sigma}(X, Z), Y) = -g(\overline{\sigma}(X, Y), JZ) = 0,$$

where the last equation holds from (5.8) and Theorem 5.6. Then, $J\nabla_X^M Z$ is orthogonal to \mathcal{D} . On the other hand, if $W \in \mathcal{D}^{\perp}$, we have

$$g\left(\nabla_X^M Z, W\right) = -g(\overline{\sigma}(X, W), JZ) + g(\overline{\sigma}(X, Z), JW).$$

But, from Theorem 5.5 we have $g(J\nabla_X^M Z, W) = 0$, That is, $J\nabla_X^M Z$ is normal to M, so that $\nabla_X^M Z \in \mathcal{D}^{\perp}$. Therefore, we have

$$(\overline{\nabla}_Z' T)Z = \nabla_Z^M (TZ) - T\nabla_Z^M Z = 0.$$
(5.42)

Now, from (5.37), (5.41), and (5.42), we have $\tilde{\nabla}' T = 0$.

Theorem 5.13 Let M be a CR-submanifold of a l.c.K. manifold \widetilde{M} such that $B_x \in D_x$ for each $x \in M$. If T is parallel, then M is a CR-product. The converse does not holds unless dim $(\mathcal{D}) = 2$ or B = 0 on M.

Proof Since T is parallel, Eqs. (5.37) and (5.38) give

$$t\overline{\sigma}(Z,W) + \overline{A}_{NW}Z = \frac{1}{2}\omega(W)TZ - \frac{1}{2}\omega(TW)Z + \frac{1}{2}g(Z,TW)B - \frac{1}{2}g(Z,W)TB.$$
(5.43)

If $X \in \mathcal{D}$, then NX = 0 and (5.43) gives

$$-g(J\overline{\sigma}(X,Z),W) = \frac{1}{2}g(B,W)g(JZ,X) + \frac{1}{2}g(W,JB)g(Z,X) -\frac{1}{2}g(JZ,W)g(B,X) - \frac{1}{2}g(Z,W)g(JB,X),$$
(5.44)

for any vector field W tangent to M. From (5.8), (5.44) yields

$$-J\sigma(X, Z) = \frac{1}{2}g(JZ, X)B + \frac{1}{2}g(Z, X)JB - \frac{1}{2}g(B, X)JZ - \frac{1}{2}g(JB, X)Z.$$
(5.45)

For any $Z \in \mathcal{D}^{\perp}$, Eq. (5.45) gives $g(A_{JZ}, Z) = \frac{1}{2}\omega(JX)g(Z, Z)$, for any Z tangent to *M* and, hence, we have

$$A_{JZ}X = \frac{1}{2}\omega(JX)Z.$$
(5.46)

Next, for $Y \in \mathcal{D}$, from (5.46), we have

$$g(\sigma(X, Y), JZ) = 0, \quad for \ X \in \mathcal{D}, \ Z \in \mathcal{D}^{\perp}.$$
(5.47)

Therefore, $g(\sigma(X, JY) - \sigma(JX, Y, JD^{\perp}) = 0$ and, from Theorem 5.4, the distribution \mathcal{D} is integrable. Moreover, any integral submanifold M^{\perp} od \mathcal{D} is totally geodesic in M because of (5.47) and Theorem 5.6. Now, let M^{\perp} be an integral submanifold of \mathcal{D}^{\perp} . For any $W \in \mathcal{D}^{\perp}$, Eq. (5.46) gives

$$g\left(A_{JZ} + \frac{1}{2}g(Z, W)JB, X\right) = 0$$

and this means that M^{\perp} is totally geodesic in M (Theorem 5.5). Thus M is a CR-product.

In order to prove the converse, we first give the following Lemma.

Lemma 5 If M is a CR-product in a l.c.K. manifold \widetilde{M} such that $B_x \in D_x$ for any $x \in M$, then

$$\nabla_Z X \in \mathcal{D},\tag{5.48}$$

$$\nabla_X Z \in \mathcal{D}^\perp, \tag{5.49}$$

$$J \nabla_Z X = \nabla_Z (JX), \tag{5.50}$$

for any $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof If $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$, then from (5.7) and (5.8), we obtain

$$J \nabla_Z X = \frac{1}{2} \omega(X) JZ - J\sigma(Z, X) + \nabla_Z (JX) + \nabla_Z (JX)$$

$$- \frac{1}{2} \omega(JX) Z + \sigma(Z, JX).$$
(5.51)

Now, for any $W \in \mathcal{D}^{\perp}$, (5.51) yields

$$g(J \nabla_Z X, JW) = g(\nabla_Z X, W) = g\left(A_{JW}Z + \frac{1}{2}g(Z, W)JB, JX\right) = 0.$$

The last equation holds because any leaf M^{\perp} of \mathcal{D}^{\perp} is totally geodesic in M (Theorem 5.5). Thus $\nabla_Z X \in \mathcal{D}$ and this is assertion (5.48). Now, take $X, Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. From (5.1) and (5.2), we find that

$$g(J \nabla_X Z, Y) = -g(A_{JZ}, Y) = -g(\sigma(X, Y), JZ) = 0$$
(5.52)

The last equation holds because of Theorem 5.6. If $X \in \mathcal{D}$ and $Z, W \in \mathcal{D}^{\perp}$, from (5.1) and (5.2) again we have

$$g(J \nabla_X Z, W) = g(A_{JW}Z, X) - g(A_{JZ}W, X).$$

But, from Theorem 5.5 we obtain

$$g(A_{JW}Z, X) - g(A_{JZ}W, X) = -\frac{1}{2}g(Z, W)g(JB, X) + \frac{1}{2}g(W, Z)g(JB, X) = 0$$

and, hence

$$g(J \nabla_X Z, W) = 0. \tag{5.53}$$

Now, (5.49) follows from (5.52) and (5.53). Finally, (5.48) and (5.51) give (5.50). ■

Now we prove the converse of Theorem 5.13. From (5.36) and (5.48), for any $X \in \mathcal{D}$ and Z tangent to M we have

$$(\widetilde{\nabla}_{Z}', T)X = \nabla_{Z}(JX) - J(\nabla_{Z}X).$$

On the other hand, we write Z = Y + Z, where $Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. Then, from (5.50) we have

$$(\nabla_Z' T)X = \nabla_Y (JX) - J \nabla_Y X.$$
(5.54)

But (5.1)-(5.3) give

$$\nabla_Y(JX) - J\nabla_Y X = \frac{1}{2}\omega(Y)JX - \frac{1}{2}(JY)X - \frac{1}{2}g(X,Y)JB + \frac{1}{2}g(X,JY)B.$$
(5.55)

Now we have

(a) If $dim(\mathcal{D}) \ge 4$ and $B_x \ne 0$ for some $x \in M$, there are $X, Y \in \mathcal{D}$ such that the right-hand side of (5.55) does not vanish at x. Therefore, T is not parallel.

(b) If $dim(\mathcal{D}) = 2$, then the right-hand side of (5.55) vanishes and, hence

$$(\nabla_Z' T)X = 0, \tag{5.56}$$

for any $X \in \mathcal{D}$ and Z tangent to M. But (5.49) implies $\nabla_Z Z \in \mathcal{D}^{\perp}$, for any $Z \in \mathcal{D}^{\perp}$ and Z tangent to M, so that

$$(\widetilde{\nabla}_{Z}^{\prime}T)Z = \nabla_{Z}(TZ) - T\nabla_{Z}Z = -T\nabla_{Z}Z = 0.$$
(5.57)

Then, (5.56) and (5.57) prove that T is parallel.

5.3 Normal CR-Submanifolds of S-manifolds

We want to study here the normal *CR*-submanifolds for general *S*-manifolds. In fact, the normal *CR*-submanifolds become to be a very wide class of *CR*-submanifolds. Actually, either totally *f*-umbilical submanifolds (see [19] for more details) or *CR*-products (see [12]) of an *S*-manifold are normal *CR*-submanifolds. We also study normal *CR*-submanifolds of an *S*-space-form, specially in the concrete cases of \mathbb{R}^{2m+s} (with constant *f*-sectional curvature c = -3s) and \mathbb{H}^{2m+s} (with constant *f*-sectional curvature c = 4 - 3s).

5.3.1 Preliminaries

A (2m + s)-dimensional Riemannian manifold $(\wedge M, g)$ endowed with an *f*-structure *f* (that is, a tensor field of type (1, 1) and rank 2m satisfying $f^3 + f = 0$ [21]) is said to be a *metric f-manifold* if, moreover, there exist *s* global vector fields ξ_1, \ldots, ξ_s on $\wedge M$ (called *structure vector fields*) such that, if η_1, \ldots, η_s are the dual 1-forms of ξ_1, \ldots, ξ_s , then

$$f\xi_{\alpha} = 0; \ \eta_{\alpha} \circ f = 0; \ f^{2} = -I + \sum_{\alpha=1}^{s} \eta_{\alpha} \otimes \xi_{\alpha};$$
$$g(X, Y) = g(fX, fY) + \sum_{\alpha=1}^{s} \eta_{\alpha}(X)\eta_{\alpha}(Y),$$
(5.58)

for any $X, Y \in \mathcal{X}(\wedge M)$ and $\alpha = 1, \ldots, s$.

Let *F* be the 2-form on $\wedge M$ defined by F(X, Y) = g(X, fY), for any $X, Y \in \mathcal{X}(\wedge M)$. Since *f* is of rank 2*m*, then

$$\eta_1 \wedge \cdots \wedge \eta_s \wedge F^m \neq 0$$

and, particularly, $\wedge M$ is orientable.

The f-structure f is said to be *normal* if

$$[f,f] + 2\sum_{\alpha=1}^{s} \xi_{\alpha} \otimes d\eta_{\alpha} = 0,$$

where [f, f] is the Nijenhuis torsion of f.

A metric *f*-manifold is said to be a *K*-manifold [5] if it is normal and dF = 0. A *K*-manifold is called an *S*-manifold if $F = d\eta_{\alpha}$, for any α . Note that, for s = 0, a *K*-manifold is a Kaehlerian manifold and, for s = 1, a *K*-manifold is a quasi-Sasakian manifold and an *S*-manifold is a Sasakian manifold. When $s \ge 2$, nontrivial examples can be found in [5, 13]. Moreover, a *K*-manifold $\wedge M$ is an *S*-manifold if and only if

$$\wedge \nabla_X \xi_\alpha = -fX, \tag{5.59}$$

for any $X \in \mathcal{X}(\wedge M)$ and any $\alpha = 1, \ldots, s$, where $\wedge \nabla$ denotes the Levi-Civita connection of *g*. It is easy to show that in any *S*-manifold

$$(\wedge \nabla_{X} f)Y = \sum_{\alpha=1}^{s} \left\{ g(fX, fY)\xi_{\alpha} + \eta_{\alpha}(Y)f^{2}X \right\},$$
(5.60)

for any $X, Y \in \mathcal{X}(\wedge M)$. A plane section π on a metric *f*-manifold $\wedge M$ is said to be an *f*-section if it is determined by a unit vector *X*, normal to the structure vector fields and *fX*. The sectional curvature of π is called an *f*-sectional curvature. An *S*-manifold is said to be an *S*-space-form if it has a constant *f*-sectional curvature *c* and then, it is denoted by $\wedge M(c)$. In such case, the curvature tensor field $\wedge R$ of $\wedge M(c)$ satisfies [15]

$$\wedge R(X, Y, Z, W)$$

$$= \sum_{\alpha,\beta} (g(fX, fW)\eta_{\alpha}(Y)\eta_{\beta}(Z) - g(fX, fZ)\eta_{\alpha}(Y)\eta_{\beta}(W)$$

$$+ g(fY, fZ)\eta_{\alpha}(X)\eta_{\beta}(W) - g(fY, fW)\eta_{\alpha}(X)\eta_{\beta}(Z))$$

$$+ \frac{c+3s}{4}(g(fX, fW)g(fY, fZ) - g(fX, fZ)g(fY, fW))$$

$$+ \frac{c-s}{4}(F(X, W)F(Y, Z) - F(X, Z)F(Y, W)$$

$$- 2F(X, Y)F(Z, W)),$$

$$(5.61)$$

for any *X*, *Y*, *Z*, $W \in \mathcal{X}(\wedge M)$. Next, let *M* be a isometrically immersed submanifold of a metric *f*-manifold $\wedge M$ (for the general theory of submanifolds, we refer to [3, 22]). We denote by $\mathcal{X}(M)$ the Lie algebra of tangent vector fields to *M* and by $T(M)^{\perp}$ the set of tangent vector fields to $\wedge M$ which are normal to *M*. For any vector field $X \in \mathcal{X}(M)$, we write

$$fX = TX + NX, \tag{5.62}$$

where *TX* and *NX* are the tangential and normal components of *fX*, respectively. Then, *T* is an endomorphism of the tangent bundle of *M* and *N* is a normal bundle valued 1-form on such tangent bundle. It is easy to show that if *T* does not vanish, it defines an *f*-structure in the tangent bundle of *M*. The submanifold *M* is said to be *invariant* if *N* is identically zero, that is, if *fX* is tangent to *M*, for any $X \in \mathcal{X}(M)$. On the other hand, *M* is said to be an *anti-invariant* submanifold if *T* is identically zero, that is, if *fX* is normal to *M*, for any $X \in \mathcal{X}(M)$. In the same way, for any $V \in T(M)^{\perp}$, we write

$$fV = tV + nV, (5.63)$$

where tV and nV are the tangential and normal components of fV, respectively. Then, t is a tangent bundle valued 1-form on the normal bundle of M and n is an endomorphism of the normal bundle of M. It is easy to show that if n does nor vanish, it defines an f-structure in the normal bundle of M. From now on, we suppose that all the structure vector fields are tangent to the submanifold M and so, $dim(M) \ge s$. Then, the distribution on M spanned by the structure vector fields is denoted by \mathcal{M} and its complementary orthogonal distribution is denoted by \mathcal{L} . Consequently, if $X \in \mathcal{L}$, then $\eta_{\alpha}(X) = 0$, for any $\alpha = 1, \ldots, s$ and if $X \in \mathcal{M}$, then fX = 0. In this context, M is said to be a *CR-submanifold* of $\wedge M$ if there exist two differentiable distributions \mathcal{D} and \mathcal{D}^{\perp} on M satisfying

- (i) $\mathcal{X}(M) = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \mathcal{M}$, where $\mathcal{D}, \mathcal{D}^{\perp}$ and \mathcal{M} are mutually orthogonal to each other;
- (ii) The distribution \mathcal{D} is invariant by f, that is, $f\mathcal{D}_x = \mathcal{D}_x$, for any $x \in M$;
- (iii) The distribution \mathcal{D}^{\perp} is anti-invariant by f, that is, $f\mathcal{D}_x^{\perp} \subseteq T_x(M)^{\perp}$, for any $x \in M$.

This definition is motivated by the following theorem.

Theorem 5.14 ([16]) Let $\wedge M$ be an S-manifold which is the bundle space of a principal toroidal bundle over a Kaehler manifold $\wedge M'$, $\wedge \pi : \wedge M \longrightarrow \wedge M'$, M a submanifold immersed in $\wedge M$, tangent to the structure vector fields and M' a submanifold immersed in $\wedge M'$ such that there exists a fibration $\pi : M \longrightarrow M'$, the diagram

$$\begin{array}{ccc} M & \stackrel{i}{\longrightarrow} & \wedge M \\ \pi & \downarrow & \downarrow & \wedge \pi \\ M' & \stackrel{i'}{\longrightarrow} & \wedge M' \end{array}$$

commutes and the immersion *i* is a diffeomorphism on the fibers. Then, *M* is a CR-submanifold of $\wedge M$ if and only if *M'* is a CR-submanifold of $\wedge M'$.

We denote by 2p and q the real dimensions of \mathcal{D} and \mathcal{D}^{\perp} , respectively. Then, we see that for p = 0 we obtain an anti-invariant submanifold tangent to the structure vector fields and for q = 0 an invariant submanifold. A *CR*-submanifold of an *S*-manifold is said to be a *generic submanifold* if given any $V \in T(M)^{\perp}$, there exists $Z \in \mathcal{D}^{\perp}$ such that V = fZ, a $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic submanifold if $\sigma(X, Z) = 0$, for any $X \in \mathcal{D}$ and any $Z \in \mathcal{D}^{\perp}$ and a \mathcal{D}^{\perp} -geodesic submanifold if $\sigma(Y, Z) = 0$, for any $Y, Z \in \mathcal{D}^{\perp}$. As an example, it is easy to show that each hypersurface of $\wedge M$ which is tangent to the structure vector fields is a *CR*-submanifold. Now, we write by *P* and *Q* the projections morphisms of $\mathcal{X}(M)$ on \mathcal{D} and \mathcal{D}^{\perp} , respectively. Thus, for any $X \in \mathcal{X}(M)$, we have that

$$X = PX + QX + \sum_{\alpha=1}^{s} \eta_{\alpha}(X)\xi_{\alpha}.$$

We define the tensor field v of type (1, 1) by vX = fPX and the non-null, normal bundle valued 1-form u by uX = fQX, for any $X \in \mathcal{X}(M)$. Then, it is easy to show

that $u \circ v = 0$ and $\eta_{\alpha} \circ u = \eta_{\alpha} \circ v = 0$, for any $\alpha = 1, ..., s$. Moreover, a direct computation gives

$$g(X, Y) = g(uX, uY) + g(vX, vY) + \sum_{\alpha=1}^{s} \eta_{\alpha}(X)\eta_{\alpha}(Y),$$
(5.64)

$$F(X, Y) = g(X, vY), \quad F(X, Y) = F(vX, vY),$$
 (5.65)

for any $X, Y \in \mathcal{X}(M)$. From Gauss–Weingarten formulas and by using (5.59), for any $X \in \mathcal{X}(M)$, $V \in T(M)^{\perp}$, and $\alpha = 1, \ldots, s$, we have

$$\nabla_X \xi_\alpha = -vX, \tag{5.66}$$

$$\sigma(X,\xi_{\alpha}) = -uX,\tag{5.67}$$

$$A_V \xi_\alpha \in \mathcal{D}^\perp. \tag{5.68}$$

Moreover, from (5.60) and the Gauss–Weingarten formulas, if $X, Y \in \mathcal{X}(M)$, comparing the components in $\mathcal{D}, \mathcal{D}^{\perp}$ and $T(M)^{\perp}$ respectively, we get

$$P\nabla_X vY - PA_{uY}X = v\nabla_X Y - \sum_{\alpha=1}^s \eta_\alpha(Y)PX,$$
(5.69)

$$Q\nabla_X vY - QA_{uY}X = t\sigma(X, Y) - \sum_{\alpha=1}^s \eta_\alpha(Y)QX,$$
(5.70)

$$\sigma(X, vY) + D_X uY = u\nabla_X Y + n\sigma(X, Y).$$
(5.71)

From the above formulas and (5.60) we obtain

$$(\nabla_X v)Y = A_{uY}X + t\sigma(X, Y) - \sum_{a=1}^{s} \{\eta_{\alpha}(Y)f^2X + g(fX, fY)\xi_{\alpha}\},$$
(5.72)

$$(\nabla_X u)Y = n\sigma(X, Y) - \sigma(X, vY), \qquad (5.73)$$

for any $X, Y \in \mathcal{X}(M)$. Also, from (5.60) and the Gauss–Weingarten formulas again, we have

$$\nabla_X Z = v A_{fZ} X - t D_X fZ, \qquad (5.74)$$

$$tD_X fZ = -Q\nabla_X Z, \tag{5.75}$$

for any $X \in \mathcal{X}(M)$ and any $Z \in \mathcal{D}^{\perp}$. With regard to the integrability of the distributions involved in the definition of a *CR*-submanifold, I. Mihai [16] proved that the

distributions $\mathcal{D}^{\perp} \oplus \mathcal{M}$ and $\mathcal{D}^{\perp} \oplus \mathcal{M}$ are always integrable. On the other hand, if p > 0, the distributions \mathcal{D} and $\mathcal{D} \oplus \mathcal{D}^{\perp}$ are not integrable and the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable if and only if

$$\sigma(X, fY) = \sigma(fX, Y), \tag{5.76}$$

for any $X, Y \in \mathcal{D}$. In [12], *CR*-products of *S*-manifolds are defined as *CR*-submanifolds such that the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable and locally they are Riemannian products $M_1 \times M_2$, where M_1 (resp., M_2) is a leaf of $\mathcal{D} \oplus \mathcal{M}$ (resp., \mathcal{D}^{\perp}). From Theorem 3.1 and Proposition 3.2 in [12], we know that a *CR*-submanifold *M* of an *S*-manifold is a *CR*-product if and only if one of the following assertions is satisfied:

$$A_{f\mathcal{D}^{\perp}}f\mathcal{D} = 0, \tag{5.77}$$

$$g(\sigma(X, Y), fZ) = 0, \ X \in \mathcal{D}, \ Y \in \mathcal{X}(M), \ Z \in \mathcal{D}^{\perp},$$
(5.78)

$$\nabla_X Y \in \mathcal{D} \oplus \mathcal{M}, \ X \in \mathcal{D}, \ Y \in \mathcal{X}(M).$$
 (5.79)

5.3.2 Normal CR-Submanifolds of an S-manifold

Let *M* be a *CR*-submanifold of an *S*-manifold $\wedge M$. We say that *M* is a normal *CR*-submanifold if

$$N_{\nu}(X,Y) = 2t du(X,Y) - 2\sum_{\alpha=1}^{s} F(X,Y)\xi_{\alpha},$$
(5.80)

for any $X, Y \in \mathcal{X}(M)$, where N_v is denoting the Nijenhuis torsion of v, that is

$$N_{v}(X, Y) = (\nabla_{vX}v)Y - (\nabla_{vY}v)X + v((\nabla_{Y}v)X - (\nabla_{X}v)Y).$$

We notice that (5.80) is equivalent to

$$S^{*}(X, Y) = N_{v}(X, Y) - t((\nabla_{X}u)Y - (\nabla_{Y}u)X) + 2\sum_{\alpha=1}^{s} F(X, Y)\xi_{\alpha} = 0,$$

for any $X, Y \in \mathcal{X}(M)$. Now, we can prove the following characterization theorem in terms of the shape operator.

Theorem 5.15 A CR-submanifold M of an S-manifold $\wedge M$ is normal if and only if

$$A_{uY}vX = vA_{uY}X, (5.81)$$

for any $X \in \mathcal{D}$ and any $Y \in \mathcal{D}^{\perp}$.

Proof A direct expansion by using (5.72) and (5.73) gives that

$$S^{*}(X, Y) = A_{uY}vX - vA_{uY}X - A_{uX}vY + vA_{uX}Y,$$
(5.82)

for any $X, Y \in \mathcal{X}(M)$. Now, if M is a normal CR-submanifold of $\wedge M$, (5.81) follows form (5.82) since uX = 0, for any $X \in \mathcal{D}$. Conversely, if (5.81) holds, we use the decomposition $\mathcal{X}(M) = \mathcal{D} \oplus \mathcal{D}^{\perp} \oplus \mathcal{M}$. First, since uX = 0 for any $X \in \mathcal{D}$ and $v\xi_{\alpha} = 0 = u\xi_{\alpha}$, for any α , we deduce from (5.81) and (5.82) that $S^*(X, Y) = 0$, for any $X \in \mathcal{D}$ and any $Y \in \mathcal{X}(M)$. Moreover, if $Y \in \mathcal{D}^{\perp}$, from (5.68) we have $A_{uY}\xi_{\alpha} \in \mathcal{D}^{\perp}$ and so, $vA_{uY}\xi_{\alpha} = 0$ dfor any α . Consequently, $S^*(X, \xi_{\alpha}) = 0$, for any $X \in \mathcal{X}(M)$. Finally, if $X, Y \in \mathcal{D}^{\perp}$, (5.82) becomes

$$S^*(X, Y) = v(A_{fX}Y - A_{fY}X),$$

since vX = vY = 0 and uX = fX, uY = fY. But, from (5.60) we easily show that $A_{fX}Y = A_{fY}X$.

Corollary 2 A CR-submanifold M of an S-manifold is normal if and only if

$$g(\sigma(X, vY) + \sigma(Y, vX), fZ) = 0, \qquad (5.83)$$

$$g(\sigma(X, Z)fW) = 0, \tag{5.84}$$

for any $X, Y \in \mathcal{D}$ and any $Z, W \in \mathcal{D}^{\perp}$.

Proof Since v is skew-symmetric, from (5.81) we see that M is normal if and only if

$$g(\sigma(X, vY), uZ) = -g(\sigma(Y, vX), uZ)m$$
(5.85)

for any $X \in \mathcal{X}(M)$, $Y \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. Now, if M is normal, from (5.85) we get (5.83) taking $X \in \mathcal{D}$ and (5.84) taking $X \in \mathcal{D}^{\perp}$. Conversely, if (5.83) and (5.84) are satisfied, we observe that (5.85) is satisfied too if $X \in \mathcal{D}$ and $X \in \mathcal{D}^{\perp}$, respectively. Finally, if $X \in \mathcal{M}$, we have vX = 0 and, by using that $u \circ v = 0$ and (5.67), $\sigma(X, vY) = 0$, for any $Y \in \mathcal{D}$. Thus, (5.85) holds for any $X \in \mathcal{X}(M)$.

Corollary 3 Any normal generic submanifold of an S-manifold is a $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic submanifold.

From (5.60), (5.67), (5.83), and (5.84), we have

$$\sigma(fX, Z) = f \sigma(X, Z), \tag{5.86}$$

$$t\sigma(fX, fX) = t\sigma(X, X), \tag{5.87}$$

$$A_{fZ}X \in \mathcal{D},\tag{5.88}$$

for any $X \in$ and any $Z \in \mathcal{D}^{\perp}$. On the other hand, from (5.78) and (5.83)–(5.84), we deduce

Proposition 1 Each CR-product in an S-manifold is a normal CR-submanifold.

For the converse we prove the following theorems.

Theorem 5.16 Let M be a normal CR-submanifold of an S-manifold. Then, M is a CR-product if and only if the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable.

Proof The necessary condition is obvious. Conversely, let $X \in \mathcal{D}$. If $Y \in \mathcal{D}^{\perp}$, then (5.78) is (5.84). Further, if $Y \in \mathcal{M}$, from (5.67) we get $\sigma(X, Y) = 0$. Finally, if $Y \in \mathcal{D}$, from (5.76) and (5.83) we obtain (5.78).

Theorem 5.17 Let M be a normal CR-submanifold of an S-manifold such that du = 0. Then, M is a CR-product.

Proof A straightforward computation gives, by using the hypothesis and (5.72),

$$g((\nabla_X v)Y, Z) = \sum_{\alpha=1}^{s} \{ \mathrm{d}\eta_\alpha(vX, Y)\eta_\alpha(Z) - \mathrm{d}\eta_\alpha(vZ, X)\eta_\alpha(Y) \},$$
(5.89)

for any $X, Y, Z \in \mathcal{X}(M)$. Now, if $Y \in \mathcal{D}$, from (5.64) and (5.65) we get $d\eta_{\alpha}(vX, Y) = F(vX, Y) = g(vX, vY) = g(X, Y)$. So, (5.89) becomes

$$(\nabla_X v)Y = \sum_{\alpha=1}^{3} g(X, Y)\xi_{\alpha}$$

for any $X \in \mathcal{X}(M)$ and any $Y \in \mathcal{D}$. Comparing with (5.72) we have $\sigma(X, Y) = 0$ and so (5.78) holds.

We say that v is η -parallel if

$$(\nabla_X v)Y = \sum_{\alpha=1}^s \{g(PX, PY)\xi_\alpha - \eta_\alpha(Y)PX\},\$$

for any $X, Y \in \mathcal{X}(M)$. Then, from (5.64), (5.65), and (5.89), we prove

Proposition 2 Any normal CR-submanifold of an S-manifold such that du = 0 is η -parallel.

Given a *CR*-submanifold *M* of an *S*-manifold, a vector field $X \in \mathcal{X}(M)$ is said to be *D*-*Killing* if

$$g(P\nabla_Z X, PY) + g(P\nabla_Y X, PZ) = 0, \qquad (5.90)$$

for any $Y, Z \in \mathcal{X}(M)$. We notice that it is possible to characterize normal *CR*-submanifolds in terms of \mathcal{D} -Killing vector fields.

Theorem 5.18 A CR-submanifold M of an S-manifold is a normal CR-submanifold if and only if any $Z \in D^{\perp}$ is a D-Killing vector field

Proof Given $X, Y \in \mathcal{X}(M)$ and $Z \in \mathcal{D}^{\perp}$, from (5.74) we get

$$g(\nabla_X Z, Y) + g(\nabla_Y Z, X) = g(vA_{fZ}X, Y) - g(tD_X fZ, Y) + g(vA_{fZ}Y, X) - g(tD_Y fZ, X).$$
(5.91)

But $g(vA_{fZ}Y, X) = -g(A_{fZ}vX, Y)$ and so, from (5.91)

$$g(P\nabla_X Z, PY) + g(P\nabla_Y Z, PX) + g(Q\nabla_X Z, QY) + g(Q\nabla_Y Z, QX) + \sum_{\alpha=1}^{s} \{\eta_\alpha(\nabla_X Z)\eta_\alpha(Y) + \eta_\alpha(\nabla_Y Z)\eta_\alpha(X)\} = g((vA_{fZ} - A_{fZ}v)X, Y) - g(tD_X fZ, Y) - g(tD_Y fZ, X).$$
(5.92)

Now, since it is easy to show that $\eta_{\alpha}(\nabla_X Z) = 0$ for any $\alpha = 1, ..., s$, by using (5.75), we deduce that (5.92) becomes

$$g(P\nabla_X Z, PY) + g(P\nabla_Y Z, PX) = g((vA_{fZ} - A_{fZ}v)X, Y).$$
(5.93)

Consequently, if *Z* is a \mathcal{D} -Killing vector field, from (5.81) we obtain that *M* is a normal *CR*-submanifold. Conversely, if $X \in \mathcal{D}$, the right part of the equality (5.93) vanishes by using (5.81). If $X \in \mathcal{D}^{\perp}$, then vX = 0 and from (5.84), $A_{fZ}X \in \mathcal{D}^{\perp}$, that is, $vA_{fZ}X = 0$ and the right part of (5.93) vanishes again. Finally, if $X \in \mathcal{M}$, vX = 0 and from (5.68), $A_{fZ}X \in \mathcal{D}^{\perp}$. In any case, from (5.93) we have (5.90).

To end this section, we recall that a submanifold M of an S-manifold is said to be *totally f-umbilical* [19] if there exists a normal vector field V such that

$$\sigma(X,Y) = g(fX,fY)V + \sum_{\alpha=1}^{s} \{\eta_a(Y)\sigma(X,\xi_\alpha) + \eta_\alpha(X)\sigma(Y,\xi_\alpha)\},$$
(5.94)

for any $X, Y \in \mathcal{X}(M)$. These submanifolds have been studied and classified in [9]. Since from (5.94) we easily get (5.83) and (5.84), then we have the following theorem.

Theorem 5.19 Any totally *f*-umbilical CR-submanifold of an S-manifold is a normal CR-submanifold.

5.3.3 Normal CR-Submanifolds of an S-space-form

Let $\wedge M(c)$ a (2m + s)-dimensional *S*-space-form, where *c* is denoting the constant *f*-sectional curvature and let *M* be a *CR*-submanifold. Firstly, we can prove

Proposition 3 If M is a normal CR-submanifold, then

$$\|A_{fZ}X\|^2 + \|\sigma(X,Z)\|^2 - g(t\sigma(Z,Z),t\sigma(X,X)) = \frac{c+3s}{4},$$
(5.95)

for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof From the Codazzi equation, we have

$$\wedge R(X, fX, Z, fZ) = g(D_X \sigma(fX, Z) - D_{fX} \sigma(X, Z), fZ) - g(\sigma([X, fX], Z), fZ) + g(\sigma(X, \nabla_{fX}Z) - \sigma(fX, \nabla_X Z), fZ).$$
(5.96)

Now, from (5.60), (5.84), and (5.86), a direct expansion gives

$$g(D_X \sigma(fX, Z) - D_{fX} \sigma(X, Z), fZ) = -2 \|\sigma(X, Z)\|^2.$$
(5.97)

On the other hand, since $X \in D$ is a unit vector field (and so, fX too), we see from (5.59) that $\eta_{\alpha}([X, fX]) = 2$ for any α and from (5.70) that $Q[X, fX] = t\sigma(X, X) + t\sigma(fX, fX)$. Thus, taking into account (5.67), (5.84), and (5.87), we get

$$g(\sigma([X, fX], Z), fZ) = 2g(\sigma(t\sigma(X, X), Z), fZ) - 2s.$$
(5.98)

However, since $Z \in \mathcal{D}^{\perp}$, by using (5.70) it is easy to show that

$$g(\sigma(t\sigma(X,X),Z),fZ) = -g(t\sigma(X,X),t\sigma(Z,Z)).$$

Therefore, from (5.98) we have

$$g(\sigma([X, fX], Z), fZ) = -2s - 2g(t\sigma(X, X), t\sigma(Z, Z)).$$
(5.99)

Next, since $\eta_{\alpha}(\nabla_{fX}Z) = \eta_{\alpha}(\nabla_{X}Z) = 0$ for any α , from (5.69), (5.83), (5.84), and (5.88), we obtain

$$g(\sigma(X, \nabla_{fX}Z) - \sigma(fX, \nabla_XZ), fZ) = -2\|A_{fZ}X\|^2.$$
(5.100)

Finally, from (5.61) we deduce $\land R(X, fX, Z, fZ) = -(c - s)/2$. Then, substituting (5.97), (5.99), and (5.100) into (5.96), we complete the proof.

Corollary 4 If *M* is a normal \mathcal{D}^{\perp} -geodesic *CR*-submanifold of an *S*-space-form $\wedge M(c)$, then $c \geq -3s$.

Proposition 4 If M is a normal CR-submanifold of an S-space-form $\land M(c)$ such the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable, then $c \ge -3s$ and M is a CR-product.

Proof It is clear that *M* is a *CR*-product due to Theorem 5.16. Moreover, from (5.78) we have $g(\sigma(X, Y), fZ) = 0$. for any $X, Y \in \mathcal{D}$. Then, if $X \in \mathcal{D}$ is a unit vector field, $t\sigma(X, X) = 0$ and, by using (5.95), $c \ge -3s$.

Now, we are going to study the concrete case of the (2m + s)-dimensional euclidean *S*-space-form $\mathbb{R}^{2m+s}(-3s)$ (see [13] for the details of this structure). In this context, we can prove

Theorem 5.20 If M is a normal $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic and \mathcal{D}^{\perp} -geodesic *CR*-submanifold of $\mathbb{R}^{2m+s}(-3s)$, then it is a *CR*-product.

Proof From (5.95), we have $A_{fZ}X = 0$ for any $X \in \mathcal{D}$ and any $Z \in \mathcal{D}^{\perp}$. So, from (5.77), *M* is a *CR*-product.

Corollary 5 A normal \mathcal{D}^{\perp} -geodesic generic submanifold of $\mathbb{R}^{2m+s}(-3s)$ is a CR-product.

Another interesting example of *S*-space-form is $\mathbb{H}^{2m+s}(4-3s)$, a generalization of the Hopf fibration $\pi : \$^{2m+1} \longrightarrow \mathbb{P}C^m$, introduced by Blair in [5] as a canonical example of an *S*-manifold playing the role of the complex projective space in Kaehler geometry and the odd-dimensional sphere in Sasakian geometry. This space is given by (see [5, 6] for more details)

$$\mathbb{H}^{2m+s} = \{ (x_1, \dots, x_s) \in \S^{2m+1} \times \stackrel{s_1}{\cdots} \times \S^{2m+1} / \pi(x_1) = \dots = \pi(x_s) \}$$

and its *f*-sectional curvature is constant equal to 4 - 3s. Let *M* be a *CR*-submanifold of $\mathbb{H}^{2m+s}(4-3s)$ (we always suppose $s \ge 2$). Denote by ν the orthogonal complementary distribution of $f\mathcal{D}^{\perp}$ in $T(M)^{\perp}$. Then, $f\nu \subseteq \nu$. Let

 $\{E_1, \ldots, E_{2p}\}, \{F_1, \ldots, F_q\}, \{V_1, \ldots, V_r, fV_1, \ldots, fV_r\},\$

be local fields of orthonormal frames on \mathcal{D} , \mathcal{D}^{\perp} and ν , respectively, where 2r is the real dimension of ν . First, we prove

Lemma 6 If M is a CR-product in $\mathbb{H}^{2m+s}(4-3s)$, then

$$\|\sigma(X, Z)\| = 1, \tag{5.101}$$

for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$.

Proof We know, from Proposition 1, that *M* is a normal *CR*-submanifold. Since, c = 4 - 3s, from (5.77), (5.78) and (5.95) we complete the proof.

Lemma 7 If M is a CR-product in $\mathbb{H}^{2m+s}(4-3s)$, the vector field $\sigma(E_i, F_a)$, $i = 1, \ldots, 2p$ and $a = 1, \ldots, q$, are 2pq orthonormal vector fields on ν .

Proof From (5.101) and by the linearity, we get $g(\sigma(E_i, Z), \sigma(E_j, Z)) = 0$, for any $i, j = 1, ..., 2p, i \neq j$ and any unit vector field $Z \in D^{\perp}$. Now, from (5.84), if q = 1, we complete the proof. If $q \geq 2$, by linearity again, we have $g(\sigma(E_i, F_a), \sigma(E_j, F_b)) + g(\sigma(E_i, F_b), \sigma(E_j, F_a)) = 0$, for any $i, j = 1, ..., 2p, i \neq j, a, b = 1, ..., q, a \neq b$. Next, by using (5.79) and the Bianchi identity, we obtain R(X, Y, Z, W) = 0, for any $X, Y \in D, Z, W \in D^{\perp}$, where *R* is denoting the curvature tensor field of *M*. But, if $i \neq j$ and $a \neq b$, (5.61) gives $\land R(E_i, E_j, F_a, F_b) = 0$. Then, from the Gauss equation we get

$$g(\sigma(E_i, F_a), \sigma(E_j, F_b)) - g(\sigma(E_i, F_b), \sigma(E_j, F_a)) = 0,$$

for any i, j = 1, ..., 2p, $i \neq j$, a, b = 1, ..., q, $a \neq b$ and this completes the proof.

Now, we study the normal *CR*-submanifolds of $\mathbb{H}^{2m+s}(4-3s)$.

Theorem 5.21 Let M be a normal CR-submanifold of $\mathbb{H}^{2m+s}(4-3s)$, $s \ge 2$, such that the distribution $\mathcal{D} \oplus \mathcal{M}$ is integrable. Then

- (i) *M* is a CR-product $M_1 \times M_2$.
- (*ii*) $m \ge pq + p + q$.
- (iii) If n = pq + p + q, then M_1 is an invariant totally geodesic submanifold immersed in $\mathbb{H}^{2m+s}(4-3s)$.
- (*iv*) $\|\sigma\|^2 \ge 2q(2p+s)$.
- (v) If $||\sigma||^2 = 2q(2p + s)$, then M_1 is an S-space-form of constant f-sectional curvature 4 3s and M_2 has constant curvature 1.
- (vi) If M is a minimal submanifold, then $\rho \leq 4p(p+1) + 2p(q+s) + q(q-1)$, where ρ denotes the scalar curvature and the equality holds if and only if $\|\sigma\|^2 = 2q(2p+s)$.

Proof (*i*) follows directly from Proposition 4. Now, from Lemma 7, $dim(\nu) = 2(m - p) - 2q \ge 2pq$. So (*ii*) holds. Next, suppose that m = pq + p + q. If $X, Y, Z \in D$ and $W \in D^{\perp}$, from (5.61), $\wedge R(X, Y, Z, W) = 0$ and, by using a similar proof to that one of Lemma 7, R(X, Y, Z, W) = 0. So, the Gauss equation gives

$$g(\sigma(X, W), \sigma(Y, Z)) - g(\sigma(X, Z), \sigma(Y, W)) = 0.$$
(5.102)

Since from Proposition 3.2 of [12], $\sigma(fX, Z) = f\sigma(X, Z)$, if we put Y = fX, we have, by using (5.86), $g(\sigma(fX, W), (\sigma(X, Z)) = 0$. Now, if we put Z = fY, then $g(\sigma(X, Y), \sigma(X, W)) = 0$. Thus, by linearity, we get $g(\sigma(X, W), \sigma(Y, Z)) + g(\sigma(X, Z), \sigma(Y, W)) = 0$. Consequently, from (5.102)

$$g(\sigma(X, W), \sigma(Y, Z)) = 0, \qquad (5.103)$$

for any $X, Y, Z \in \mathcal{D}$ and $W \in \mathcal{D}^{\perp}$. Since now $dim(\nu) = 2pq$, (5.103) implies that $\sigma(X, Y) = 0$, for any $X, Y \in \mathcal{D}$ and so, (*iii*) holds from Theorem 2.4(*ii*) of [12]. Assertions (*iv*) and (*v*) follow from Theorem 4.2 of [12]. Finally, if *M* is a minimal normal *CR*-submanifold of $\mathbb{H}^{2m+s}(4-3s)$, a straightforward computation gives

$$\rho = 4p(p+1) + 2s(p+q) + q(q-1) + 6pq - ||\sigma||^2.$$

Then, by using (iv), the proof is complete.

Theorem 5.22 Let M be a normal, $(\mathcal{D}, \mathcal{D}^{\perp})$ -geodesic and \mathcal{D}^{\perp} -geodesic CR-submanifold of $\mathbb{H}^{2m+s}(4-3s)$. Then,

(i) $||A_{fZ}X|| = 1$, for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. (ii) $||\sigma||^2 \ge 2q(p+s)$ and the equality hold if and only if $\sigma(\mathcal{D}, \mathcal{D}) \in f\mathcal{D}^{\perp}$.

Proof (*i*) follows immediately from (5.95). Now, considering the above-mentioned local fields of orthonormal frames for $\mathcal{D}, \mathcal{D}^{\perp}$, and ν , a straightforward computation using the hypothesis gives (*ii*).

Finally, from (5.84) and (5.95), we can prove

Corollary 6 Let M be a normal \mathcal{D}^{\perp} -geodesic generic submanifold of $\mathbb{H}^{2m+s}(4-3s)$. Then

(i) $||A_{fZ}X|| = 1$, for any unit vector fields $X \in \mathcal{D}$ and $Z \in \mathcal{D}^{\perp}$. (ii) $||\sigma||^2 = 2q(p+s)$.

Acknowledgments The authors are partially supported by the PAI group FQM-327 (Junta de Andalucía, Spain) and by the MINECO-FEDER project MTM2011-22621 (MINECO, Spain).

References

- 1. Bejancu, A.: *CR*-submanifolds of a Kaehler manifold I. Proc. Am. Math. Soc. **69**, 135–142 (1978)
- Bejancu, A.: Normal *CR*-submanifolds of a Kaehler manifold. An. St. Univ. "Al. I. Cuza" Iasi 26(1), 123–132 (1980)
- 3. Bejancu, A.: Geometry of CR-submanifolds. Mathematics and its Applications. D. Reidel Publishing Company, Dordrecht (1986)
- Bejancu, A., Papaghiuc, N.: Normal semi-invariant submanifolds of a sasakian manifold. Mat. Vesnick 35(4), 345–355 (1983)
- 5. Blair, D.E.: Geometry of manifolds with structural group $U(n) \times O(s)$. J. Differ. Geom. 4, 155–167 (1970)
- Blair, D.E.: On a generalization of the Hopf fibration. Ann. Stiint. Univ. "Al. I. Cuza" Iasi 17(1), 171–177 (1971)
- Blair, D.E., Chen, B.-Y.: On CR-submanifolds of Hermitian manifolds. Isr. J. Math. 34, 353– 363 (1979)

- Blair, D.E., Ludden, G.D., Yano, K.: Differential geometric structures on principal toroidal bundles. Trans. Am. Math. Soc. 181, 175–184 (1973)
- Cabrerizo, J.L., Fernández, L.M., Fernández, M.: A classification of totally *f*-umbilical submanifolds of an *S*-manifold. Soochow J. Math. 18(2), 211–221 (1992)
- 10. Chen, B.-Y.: CR-submanifolds of a Kaehler manifold I. J. Differ. Geom. 16, 305–322 (1981)
- 11. Chen, B.-Y.: CR-submanifolds of a Kaehler manifold II. J. Differ. Geom. 16, 493–509 (1981)
- 12. Fernández, L.M.: CR-products of S-manifolds. Port. Math. 47(2), 167-181 (1990)
- Hasegawa, I., Okuyama, Y., Abe, T.: On *p*-th Sasakian manifolds. J. Hokkaido Univ. of Educ., Sect. II A 37(1), 1–16 (1986)
- Kashiwada, T.: Some properties of locally conformal Kaehler manifolds. Hokkaido Math. J. 8, 191–198 (1979)
- Kobayashi, M., Tsuchiya, S.: Invariant submanifolds of an *f*-manifold with complemented frames. Kodai Math. Sem. Rep. 24, 430–450 (1972)
- Mihai, I.: CR-subvarietati ale unei f-varietati cu repere complementare. Stud. Cerc. Mat. 35(2), 127–136 (1983)
- Okumura, M.: Certain almost contact hypersurfaces in Kaehlerian manifolds of constant holomorphic sectional curvature. Tohoku Math. J. 16, 270–284 (1964)
- Okumura, M.: On some real hypersurfaces of a complex projective space. Trans. Am. Math. Soc. 212, 355–364 (1975)
- Ornea, L.: Subvarietati Cauchy-Riemann generice in S-varietati. Stud. Cerc. Mat. 36(5), 435– 443 (1984)
- 20. Vaisman, I.: On locally conformal almost Kaehler manifolds. Isr. J. Math. 24, 338–351 (1976)
- 21. Yano, K.: On a structure defined by a tensor field f of type (1,1) satisfying $f^3 + f = 0$. Tensor **14**, 99–109 (1963)
- 22. Yano, K., Kon, M.: *CR*-submanifolds of Kaehlerian and Sasakian manifolds. Progress in Mathematics, vol. 30. Birkhäuser, Boston (1983)