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5.1 Introduction

K. Yano [21] introduced in 1963 the notion of f -structure on a (2m + s)-dimensional
manifold as a tensor field f of type (1, 1) and rank 2m satisfying f 3 + f = 0. Almost
complex (s = 0) and almost contact (s = 1) structures are well-known examples of
f -structures.ARiemannianmanifold endowedwith an f -structure (s ≥ 2) compatible
with the Riemannian metric is called a metric f -manifold (for s = 0 we have almost
Hermitianmanifolds and for s = 1, metric almost contact manifolds). In this context,
D.E. Blair [5] defined K-manifolds (and particular cases of S-manifolds and C-
manifolds) as the analogue of Kaehlerian manifolds in the almost complex geometry
and of quasi-Sasakian manifolds (and particular cases of Sasakian manifolds and
cosymplectic manifolds) in the almost contact geometry.

He also showed that the curvature of S-manifolds is completely determined by
their f -sectional curvatures. Later, M. Kobayashi and S. Tsuchiya [15] got expres-
sions for the curvature tensor field of S-manifolds when their f -sectional curvature
is constant depending on such a constant. Such spaces are called S-space-forms and
they generalize complex and Sasakian space-forms. Nice examples of S-space-forms
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can be found in [5, 6, 8, 13]. In particular, it is proved in [5, 8] that certain principal
toroidal bundles over complex-space-forms are S-space-forms and a generalization
of the Hopf fibration denoted byH2m+s is introduced as a canonical example of such
manifolds playing the role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry [5, 6].

When we want to study the submanifolds of a metric f -manifold, the natural first
step is to consider such submanifolds depending on their behavior with respect to
the f -structure. So, invariant and anti-invariant submanifolds (in the terminology of
the complex geometry, holomorphic and totally real submanifolds) appear if all the
tangent vector fields to the submanifold are transformed by f into tangent vector fields
or into normal vector fields. But since an hypersurface of a metric f -manifold tangent
to the structure vector fields is neither invariant nor anti-invariant, it is necessary to
introduce a wider class of submanifolds: the CR-submanifolds. This work was made
firstly by A. Bejancu and B.-Y. Chen [1, 10, 11] in the case s = 0 and by A. Bejancu
and N. Papaghiuc, M. Kobayashi and K. Yano and M. Kon in the case s = 1 (we
refer to the books [3, 22] for the background of these cases where a large list of
fundamental references can be found). For s ≥ 2, I. Mihai [16] introduced the notion
of CR-submanifold in a natural way.

Many authors have studied the geometry of submanifolds of locally conformal
almost Kaehler (l.c.a.K.) manifolds [10, 11, 14, 20], which are almost Hermitian
manifolds (˜M, J, g) such that every x ∈ ˜M has an open neighborhood U such that for
some differentiable function h : U −→ R, g̃U = e−hg|U is a (l.c.a.) Kaehler metric
on U. If one can take U = ˜M, the manifold is then called globally conformal almost
Kaeler (g.c.a.K) manifold. Examples of l.c.K. manifolds are provided by the Hopf
manifolds. So, it seems interesting to study CR-submanifolds of l.c.a.K. manifolds.

On the other hand, M. Okumura [17, 18] studied normal real hypersurfaces of
Kaehlerian manifolds and obtained nice properties. For this reason, it also seems
interesting to introduce and study normal CR-submanifolds. In the cases s = 0 and
s = 1, the papers [2] and [4] can be consulted.

The aim of the present work is to briefly summarize our contributions to the study
of CR-submanifolds of l.c.a.K. manifolds, normal CR-submanifolds of S-manifolds.
To this end, we separate them into two different sections, which can be read inde-
pendently.

5.2 CR-Submanifolds of (l.c.a.) Kaehler Manifolds

Let (˜M, J, g) be an almost Hermitian manifold (dim(˜M) = 2m) with almost com-
plex structure J and Hermitian metric g and let M be a Riemannian submanifold
isometrically immersed in ˜M.

A.Bejancu [1] introduced the notion of aCR-submanifold of ˜M. In fact,M is aCR-
submanifold of the almost Hermitian manifold ˜M if there exists onM a differentiable
holomorphic distributionD, i.e., J(Dx) ⊆ Dx for any x ∈ M such that its orthogonal
complement D⊥ in M is totally real in ˜M, i.e., J(D⊥

x ) ⊆ T⊥
x (M) for any x ∈ M,
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where T⊥
x (M) is the normal space at x. If dim(D) = 0, M is called a totally real

submanifold, and if dim(D⊥) = 0 M is a holomorphic submanifold.
We first discuss the Gauss–Weingarten equations of the submanifold with respect

to the metric g and with respect to the local conformal Kaehler metrics and then we
shall establish thereby the analytical conditions that characterize the important types
of submanifolds.

5.2.1 Preliminaries

Let (˜M, J, g) be an almost Hermitian manifold. It is easy to see [20] that (˜M, J, g)

is a l.c.(a).K. manifold if and only if there is a global closed 1-form ω on ˜M (the
Lee form) such that d� = ω ∧ � (� the fundamental form of the manifold) and
(˜M, J, g) is a g.c.(a).K. manifold if and only if ω is also exact. In case ω = 0, the
manifold is an (almost) Kaehler manifold.

Let (˜M, J, g) be a l.c.(a).K. manifold and consider the Lee vector field B [20] of
(˜M, J, g) defined by g(X, B) = ω(X). Denote by ˜∇ the Levi-Civita connection of g
and define

∇XY = ˜∇XY − 1

2
ω(X)Y − 1

2
ω(Y)X + 1

2
g(X, Y)B. (5.1)

Then ∇ is a torsionless linear connection on ˜M which is called the Weyl connection
of g. It is easy to see that ∇Xg = ω(X)g. We have

Theorem 5.1 ([20]) The almost Hermitian manifold (˜M, J, g) is a l.cK. manifold if
and only if there is a closed 1-form ω on ˜M such that the Weyl connection is almost
complex, That is, ∇J = 0.

Let (˜M, J, g) be a l.c.K. manifold and M a Riemannian manifold isometrically
immersed in ˜M.We denote by g the metric tensor of ˜M as well as that induced on M,

and let ∇, ∇M be the covariant derivations on M induced by ˜∇ and ∇, respectively.
Then, the Gauss–Weingarten formulas for M with respect to ˜∇ and ∇ are given by

˜∇XY = ∇XY + σ(X, Y), ˜∇X V = −AV X + DX V, (5.2)

∇XY = ∇M
X Y + σ(X, Y), ∇X V = −AV X + DX V, (5.3)

for any vector fields X, Y tangent to M and V normal to M,where σ (respectively, σ)
is the second fundamental form of M with respect to ˜∇(∇) and D (respectively, D)
is the normal connection. The formulas (5.3) are the Gauss–Weingarten equations of
M|U in (˜M|U , e−hg|U). The second fundamental tensors AV , AV are related to σ,σ
respectively by

g(AV X, Y) = g(σ(X, Y), V ), g(AV X, Y) = g(σ(X, Y), V ). (5.4)
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For any vector X tangent to M and V normal to M write

JX = TX + NX, JV = tV + nV, (5.5)

where TX andNX (respectively, tV and nV ) are the tangential and normal component
of J(X) (respectively JV ). For the Lee field B, we have

Bx = (Bx)1 + (Bx)2, x ∈ M, (5.6)

where (Bx)1 (resp.y (Bx)2) is the tangential (resp. normal) component of Bx.

If M is a CR-submanifold of an almost Hermitian manifold (˜M, J, g) let us denote
by ν the complementary orthogonal subbundle of JD⊥ in T⊥(M). Hence we have,
T⊥(M) = JD⊥ ⊕ ν.

5.2.2 Integrability Conditions of the Basic Distributions

First we give some general identities.

Lemma 1 Let M be a CR-submanifold of a l.c.K. manifold (˜M, J, g). Then, we have

∇M
X Y = ∇XY − 1

2
ω(X)Y − 1

2
ω(Y)X + 1

2
g(X, Y)B1 (5.7)

σ(X, Y) = σ(X, Y) + 1

2
g(X, Y)B2 (5.8)

AV X = AV X + 1

2
ω(V )X (5.9)

DV X = DV X − 1

2
ω(X)V (5.10)

for any vector fields X, Y tangent to M and V normal to M.

Proof The assertions follow immediately from (5.1)–(5.3). �
The following result is well known:

Theorem 5.2 ([7]) The totally real distribution D⊥ of any CR-submanifold of a
l.c.K. manifold is integrable.

For the holomorphic distribution D, we have

Theorem 5.3 Let M be a submanifold of a l.c.K. manifold ˜M and let Dx de maximal
holomorphic subspace of Tx(M) and assume dim(Dx) is a constant. Then, the holo-
morphic distributionD is integrable if and only if the second fundamental form σ sat-
isfies σ(X, JY) = σ(JX, Y) or, equivalently, σ(X, JY) − σ(JX, Y) + �(X, Y)B2 =
0, for all vector fields X, Y ∈ D.
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If M is a CR-submanifold, the integrability condition onD in Theorem5.3 can be
replaced by a weaker condition.

Theorem 5.4 Let M be a CR-submanifold of a l.c.K. manifold ˜M. The holomorphic
distribution D is integrable if and only if

g
(

σ(X, JY) − σ(JX, Y) + �(X, Y)B, JD⊥) = 0,

for all X, Y ∈ D.

Theorems5.3 and 5.4 follow easily from similar theorems in the Kaehlerian case
([7]), from (5.8) and the fact that, locally, ˜M is endowed with Kaehler metrics g̃U

whose Levi-Civita connection is ∇.

With regard to integral submanifolds ofD⊥ andD (providedD is integrable), we
have the following theorem.

Theorem 5.5 For a CR-submanifold M of a l.c.K. manifold ˜M, the leaf M⊥ is totally
geodesic in M if and only if

g

(

AJW Z + 1

2
g(Z, W )JB,D

)

= 0,

that is,

g(σ(Z, X), JW ) = 1

2
g(Z, W )ω(JW ),

for any X ∈ D, Z, W ∈ D⊥.

Proof From (5.1), (5.2) and ∇J = 0, for any X ∈ D, Z, W ∈ D⊥, we obtain

g(J∇Z W, X) + 1

2
g(Z, W )g(JB, X) = −g(AJW Z, X). (5.11)

But M⊥ is totally geodesic in M if and only if ∇Z W ∈ D⊥ for all Z, W ∈ D⊥, and
then (5.11) gives the theorem. �

Theorem 5.6 Let M be a CR-submanifold of a l.c.K manifold ˜M. If the holomorphic
distributionD is integrable and MT is an integral submanifold ofD, then MT is totally
geodesic if and only if

g

(

Jσ(X, Y) + 1

2
g(X, Y)JB − 1

2
�(X, Y)B,D⊥

)

= 0,

for any X, Y ∈ D.
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Proof From (5.1), (5.3), and ∇J = 0, for any X, Y ∈ D and Z ∈ D⊥, we have

g(Jσ(X, Y), Z) + 1

2
g(X, Y)g(JB, Z) = g(∇X(JY), Z) + 1

2
�(X, Y)g(B, Z).

(5.12)

But MT is totally geodesic in M if and only if ∇XY ∈ D for all X, Y ∈ D, and hence
Eq. (5.12) gives the theorem. �

5.2.3 CR-Submanifolds of l.c.K. Manifolds

First of all, we shall give some identities for later use. Let T , N t, and n be the
endomorphisms and vector-valued 1-forms defined in (5.5). The following lemma
can be easily obtained from (5.3), (5.9), and ∇J = 0.

Lemma 2 Let M be an isometrically immersed submanifold of a l.c.K. manifold ˜M.

Then, we have
∇M

X (TY) − ANY X = T∇M
X Y + tσ(X, Y) (5.13)

σ(X, TY) + DX(NY) = N∇M
X Y + nσ(X, Y), (5.14)

∇M
X (tV ) − AnV X = −TAV X + tDX V, (5.15)

σ(X, tV ) + DX(nV ) = −NAV X + nDX V, (5.16)

[

AV , AV

] = [

AV , AV

]

, (5.17)

for any vector fields X, Y tangent to M and V, V normal to M.

Now, we shall study totally umbilical and totally geodesic CR-submanifolds.

Theorem 5.7 Let M be a totally umbilical CR-submanifold of a l.c.K. manifold ˜M.

Then, we have

(i) Either dim(D⊥) = 1 or the component HJ(TM) of the mean curvature tensor H
in J(TM) is given by HJ(TM) = − 1

2B2.
(ii) If dim(D⊥) > 1 and M is proper (neither holomorphic nor totally real) such that

B is tangent to M, then M is totally geodesic.

Proof First, since M is totally umbilical, σ(X, Y) = g(X, Y)H for any X, Y tangent
to M, and hence

g(σ(X, X), JW ) = g(X, X)g(H, JW ). (5.18)
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From (5.3) and (5.4) it is easy to see that

AJZ W = AJW Z (5.19)

and, then, if we take an unit vector field X = Z ∈ D⊥ orthogonal to W, (5.9), (5.18),
and (5.19) give

g(H, JW ) =g(AJW Z, Z) = g(AJZ W + 1

2
ω(JZ)W − 1

2
ω((JW )Z, Z)

= − 1

2
ω(JW ) = g(−1

2
B2, JW ),

so that (i) holds.
Now, since dim(D⊥) > 1, from (5.5) and assertion (i), we have tH = 0. Thus,

(5.15) gives tDY H = AnHY − TAHY , for any Y tangent to M. Therefore, for any Z
tangent to M, from (5.8) and (5.9) we get

g(tDY H, Z) = −g(AHY , TZ) − g(σ(Y , Z), nH) = −g(Y , TZ)g(H, H) (5.20)

and, if we take Z = TY , we have

− g(Y , T 2Y)g(H, H) = g(tDY H, TY) = g(TtDY H, Y) = 0. (5.21)

The last equation holds because Tt = 0 for any CR-submanifold of an almost
Hermitian manifold [22]. Moreover, it is easy to see [22] that T 2 = −I + tN and
then (5.21) gives

g(Y , Y)g(H, H) − g(NY , NY)g(H, H) = 0. (5.22)

Since M is proper, we can choose an unit vector field X in D. Thus, NX = 0 and
from (5.22) we have H = 0. �

Theorem 5.8 Let M be a totally geodesic CR-submanifold of a l.c.K. manifold ˜M.

We have

(i) If Bx ∈ Dx, for all x ∈ M, then D is integrable and any integral submanifold MT

of D is totally geodesic in ˜M.
(ii) If B is normal to M, any integral submanifold M⊥ of D⊥ is totally geodesic in

˜M. Furthermore, D is integrable if and only if Bx ∈ νx, for any x ∈ M, and in
this case any integral submanifold MT of D is totally geodesic in ˜M.

Proof Firstly, since B is tangent to M, from Theorem5.7 the distribution D is inte-
grable. Let MT be an integral submanifold of D. For any vector field X tangent to
M, Y ∈ D, Z ∈ D⊥, from (5.3) and (5.4) we get g(∇M

X Z, Y) = −g(σ(X, JY), JZ).

But from (5.7) and (5.8) we find
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g(∇XZ, Y) − 1

2
ω(Z)g(X, Y) + 1

2
g(X, Z)g(B, Y) = −g(σ(X, JY), JZ) = 0.

(5.23)

IfX ∈ D, (5.23) gives g(∇XZ, Y) = 0, or, equivalently, g(∇XY , Z) = 0 and there-
fore, ∇XY ∈ D. Thus MT is totally geodesic in M and hence in ˜M.

Next, ifB is normal toM, fromTheorem5.5, any integral submanifoldM⊥ ofD⊥ is
totally geodesic in ˜M.The second statement follows immediately fromTheorems5.6
and 5.7. �

Corollary 1 Let M be a totally geodesic proper CR-submanifold of a l.c.K. manifold
˜M such that Bx ∈ νx, for any x ∈ M. Then, M is locally the Riemannian product of
a Kaehler submanifold and a totally real submanifold of ˜M.

Proof FromTheorem5.8,M is locally the product of a holomorphic submanifoldMT

and a totally real submanifold M⊥ of ˜M. But ω = 0 on M, so that we have induced
on MT a Kaehlerian structure. Moreover, it can be easily seen that the projection map
p (resp., q) ontoD (resp.,D⊥) is parallel with respect to ∇, so that this local product
is actually a local Riemannian product. �

Next, we consider the particular case when M is either holomorphic or totally
real.

Lemma 3 Let M be a holomorphic submanifold of a l.c.K. manifold ˜M. Then the
subbundles TM and T⊥(M) are holomorphic. Moreover, we have

σ(JX, Y) = σ(X, JY) = Jσ(X, Y), (5.24)

AJV = JAV = −AV J, (5.25)

DX(JV ) = JDX V, (5.26)

∇M
X (JY) = J∇M

X Y , (5.27)

for any vector fields X, Y tangent to M and V normal to M.

Proof As ˜M is locally endowed with Kaehler metrics g̃U whose Levi-Civita con-
nection is ∇, these formulas follow from similar formulas in the Kaehlerian
case. �

Theorem 5.9 Let M be a holomorphic submanifold of a l.c.K. manifold ˜M. Then,
we have

(i) The mean curvature vector H of M is given by H = − 1
2B2.

(ii) M is totally umbilical if and only if the Weingarten endomorphisms are commu-
tative.
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Proof Firstly, if dim(M) = 2k > 0, let {e1, . . . , ek, Je1, . . . , Jek} be an orthonormal
basis for Tx(M), x ∈ M. Then

2kHx = (tr(σ))x =
k

∑

i=1

σx(ei, ei) +
k

∑

i=1

σx(Jei, Jei). (5.28)

But from (5.8) and (5.24), (5.28) gives 2kHx = −k(B2)x.

Next, let V be a vector field normal to M. From (5.17) and (5.25), we have

0 = [AV , AJV ] = [AV , AJV ] = −2J(AV )2,

Thus AV = 0 and from (5.9), we have AV = − 1
2ω(V )I �

The endomorphism n of the normal bundle T⊥M defined in (5.5) induces an f -
structure in T⊥M [22]. For any vector field X tangent to M and V normal to M, we
write

(˜∇ ′
Xn)V = DX(nV ) − nDX V,

(∇ ′
Xn)V = DX(nV ) − nDX V .

When ˜∇ ′n = 0, the f -structure n is said to be parallel [10].

Lemma 4 Let M be an r-dimensional totally real submanifold of a 2m-dimensional
l.c.K. manifold ˜M. Then we have

(i) AJXY = AJY X, for any X, Y tangent to M.

(ii) If r = m, then DX(JY) = J∇M
X Y,∇M

X (JV ) = JDX V , andσ(X, JV ) = −JAV X.

(iii) ˜∇ ′n = ∇′
n.

(iv) If the f -structure n is parallel, then

AV = −1

2
ω(V )I, (5.29)

for any V ∈ ν.
(v) If the Weingarten endomorphisms are commutative, then there is an orthonor-

mal local basis {e1, . . . , er} in M such that with respect to this basis AJei is a
diagonal matrix

AJei = (0 . . . 0λi 0 . . . 0) , i = 1, . . . , r. (5.30)

Proof Assertions (i) and (ii) follow immediately from similar formulas in the
Kaehlerian case. From Eq. (5.10), we easily obtain (iii).

In order to prove (iv), we take V ∈ ν, and X ∈ T(M). Then, (iii) gives (∇′
Xn)V =

DX(nV ) − nDX V = 0. By using (5.25) and (5.26) this yields JAV X = 0. Therefore,
AV = 0 and from (5.9), we obtain (iv).
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Finally, from (5.17) we have [AV , AV ] = 0, for any V, V normal to M. Then,
we can find a local orthonormal basis {̃e1 . . . , ẽr} in M (with respect to the local
Kaehlerian metrics g̃U = e−hg|U ) such that AJei = (0 . . . μi . . . 0), i = 1, . . . , r. If
we start by using this basis, we can obtain an orthonormal (with respect to the metric
g) local basis {e1, . . . , en} in M such that (v) holds. �

Theorem 5.10 Let M be an r-dimensional totally real and minimal submanifold of
a l.c.K. manifold ˜M such that their Weingarten endomorphisms are commutative and
the f -structure n is parallel. Then, we have

(i) If r ≥ 2, M is totally geodesic if and only if the Lee vector field B is tangent to
M.

(ii) If r = 1 and B is orthogonal to ν, then M is a geodesic curve.

Proof First, since the Weingarten endomorphisms are commutative, let {e1, . . . , er}
be an orthonormal local basis as in Lemma4 (v). From Eq. (5.8), we have

0 = g(H, Jei) =1

n

n
∑

j=1

g
(

σ(ej, ej), Jei
) = 1

n

n
∑

j=1

g
(

AJei ej, ej
) − 1

2
ω(Jei)

=1

n
λi − 1

2
ω(Jei), i = 1, . . . , r.

Therefore,
AJei ej = δijλiej = δij

n

2
ω(Jei)ej, i = 1, . . . , r. (5.31)

Now, from (5.9) and (5.31) we obtain,

AJei ej = 1

2
(nδij − 1)ω(Jei)ej, i = 1, . . . , r. (5.32)

Thus, if r ≥ 2 and B is tangent to M, Eq. (5.32) gives AJei = 0, i = 1, . . . , r.
Moreover, from (iv) in Lemma4, AV = − 1

2ω(V )I = 0, for any V ∈ ν. Then, AV =
0, for any vector field V normal to M.

On the other hand, if there is x ∈ M such that (B2)x �= 0, from (5.32) and (iv) in
Lemma4, we can take a vector field V normal to M such that AV �= 0. This gives (i).

In order to prove (ii), let us take a unit vector field X tangent to M. We have
0 = g(H, JX) = g(σ(X, X), JX) = g(AJXX, X), and, then, AJX = 0. But, if B is
orthogonal to ν, from (iv) in Lemma4, AV = − 1

2ω(V ) = 0, for any V ∈ ν. This
means that AV = 0, for any vector field V normal to M. �

Theorem 5.11 Let M be an r-dimensional (r ≥ 2) totally real and totally umbilical
submanifold of a l.c.K. manifold ˜M such that the f -structure n is parallel. Then M is
totally geodesic if and only if B is tangent to M.

Proof Let {u1, . . . , ur} be an orthonormal local basis in U. Since M is totally umbil-
ical, for any vector field X tangent to M, by using Eqs. (5.8) and (5.9), we find
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g(AJXuj, uk) = 1

r
δjk tr(AJX). (5.33)

But from Eq. (5.9) and (iv) in Lemma4 we also have

AV = 0, (5.34)

for any V ∈ ν. On the other hand [AV , A
V
] = [AV , A

V
] = 0, for any vector fields

V , V normal to M. Therefore, from (v) in Lemma4, there is an orthonormal local
basis {e1, . . . , er} in M such that, with respect to this basis, Eq. (5.30) holds. But,
from Eq. (5.33), we also have

g(AJei ej, ej) = 1

r
λi, i.j = 1, . . . , n. (5.35)

Since r ≥ 2, we can take j �= i and then, Eqs. (5.30) and (5.35) give λi = 0, i =
1, . . . , r.Thus, we getAJei = 0, i = 1, . . . , r, which, together with (5.34) givesAV =
0, for any vector field V normal to M. Now, if B is tangent to M, Eq. (5.9) proves
that M is totally geodesic.

Conversely, if M is totally geodesic, from (5.29) we have 0 = AV = − 1
2ω(V )I ,

for any V ∈ ν. This means that B is normal to ν. Furthermore, from (v) in Lemma4,
we can find an orthonormal local basis {e1, . . . , er} in M such that AJei has a
diagonal matrixAJei = (0 . . . 0λi 0 . . . 0) = 1

2ω(Jei)I , i = 1, . . . , r. Since r ≥ 2, this
means ω(Jei) = 0, i = 1, . . . , r so that B is normal to J(T(M)). Thus, B is tangent
to M. �

5.2.4 CR-products in l.c.K. Manifolds

Let T , N, t, n be the endomorphisms and vector-valued 1-forms defined by (5.5). Let
us write

(˜∇ ′
Z T)W = ∇Z(T W ) − T∇Z W,

(∇ ′
ZT)W = ∇M

Z (T W ) − T∇M
Z W,

(5.36)

for all Z, W tangent to M. On the other hand, T is said to be parallel if ∇ T = 0.
From (5.1)–(5.3) it is easy to prove that

(∇ ′
ZT)W = (˜∇ ′

ZT)W + 1

2
ω(W )TZ − 1

2
ω(T W )Z

+ 1

2
g(Z, T W )B1 − 1

2
g(Z, W )TB1. (5.37)

But, from (5.36) we see that

(∇ ′
ZT)W = tσ(Z, W ) + ANW Z. (5.38)
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Definition 1 A CR-submanifold of a l.c.K. manifold ˜M is called a CR-product if it
is locally a Riemannian product of a holomorphic submanifold MT and a totally real
submanifold M⊥ of ˜M.

Theorem 5.12 Let M be a CR-submanifold of a l.c.K. manifold ˜M such that the Lee
field B is normal to M. Then M is a CR-product if and only if T is parallel.

Proof Since B is normal to M, from Eq. (5.37), we have˜∇ ′T = ∇ ′
T . If T is parallel,

from (5.8), (5.9), and (5.38), we find

tσ(Z, W ) + 1

2
g(Z, W )tB = −ANW Z − 1

2
ω(NW )Z. (5.39)

But for any X ∈ D, NX = 0, and the last equation gives

0 = g(ANW Z, X) + 1

2
ω(NW )g(Z, X),

or, equivalently, g(σ(Z, X), JW ) + 1
2g(JW, B)g(Z, X) = 0, for any W tangent toM.

Therefore,

σ(Z, X) = −1

2
g(Z, X)B. (5.40)

If we take Z ∈ D, the last equation gives σ(X, JY) − σ(JX, Y) = −�(X, Y)B,

and, from Theorem5.3, D is integrable. Let MT be an integral submanifold of D.

For any Z ∈ D⊥, Eq. (5.40) yields g(σ(Z, X), JZ) = − 1
2g(Z, Z)g(B, JZ) and, from

Theorem5.6, the submanifold MT is totally geodesic in M. Now, let M⊥ be an
integral submanifold od D⊥. From (5.40), if Z ∈ D⊥, then σ(Z, X) = 0 and, from
Theorem5.5, M⊥ is totally geodesic.

Conversely, assume thatM is aCR-product. First, we prove that∇M
Z X ∈ D, for any

X ∈ D andZ tangent toM.AsM is locally aRiemannian product ofMT (holomorphic
submanifold) and M⊥ (totally real submanifold), it suffices to prove that ∇M

Z X ∈ D,
for any X ∈ D and Z ∈ D⊥. In fact, from (5.3) we have

J∇M
Z X = ∇M

Z (JX) + σ(Z, JX) − Jσ(Z, X).

Thus, if W ∈ D⊥, g(J∇M
Z X, JW ) = g(σ(Z, JX), JW ). Since M⊥ is totally geo-

desic in M, from (5.8) and Theorem5.5 we have g(∇M
Z X, W ) = 0, for any W ∈ D⊥.

So, ∇M
Z X ∈ D and ∇M

Z X ∈ D, for any Z tangent to M. From ∇J = 0, we find

J∇M
Z X + Jσ(Z, X) = ∇M

Z (JX) + σ(Z, JX),

and then, J∇M
Z X = ∇M

Z (JX), Jσ(Z, X) = σ(Z, JX). Now, from (5.36) we get

(∇ ′
Z T)X = ∇M

Z (TX) − T∇M
Z X = ∇M

Z (JX) − J∇M
Z X = 0, (5.41)

for any X ∈ D and Z tangent to M.
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In a similar way, we prove that ∇M
Z Z ∈ D⊥ for any Z ∈ D⊥ and Z tangent to M.

Since M is a CR-product, it suffices to show this for Z = X ∈ D. In fact, from (5.3),
given any Y ∈ D we find that

g(J∇M
X Z, Y) = −g(AJZX, Y) − g(Jσ(X, Z), Y) = −g(σ(X, Y), JZ) = 0,

where the last equation holds from (5.8) and Theorem5.6. Then, J∇M
X Z is orthogonal

to D. On the other hand, if W ∈ D⊥, we have

g
(∇M

X Z, W
) = −g(σ(X, W ), JZ) + g(σ(X, Z), JW ).

But, from Theorem5.5 we have g(J∇M
X Z, W ) = 0, That is, J∇M

X Z is normal to
M, so that ∇M

X Z ∈ D⊥. Therefore, we have

(∇ ′
ZT)Z = ∇M

Z (TZ) − T∇M
Z Z = 0. (5.42)

Now, from (5.37), (5.41), and (5.42), we have ˜∇ ′T = 0. �

Theorem 5.13 Let M be a CR-submanifold of a l.c.K. manifold ˜M such that Bx ∈ Dx

for each x ∈ M. If T is parallel, then M is a CR-product. The converse does not holds
unless dim(D) = 2 or B = 0 on M.

Proof Since T is parallel, Eqs. (5.37) and (5.38) give

tσ(Z, W ) + ANW Z = 1

2
ω(W )TZ − 1

2
ω(T W )Z

+ 1

2
g(Z, T W )B − 1

2
g(Z, W )TB. (5.43)

If X ∈ D, then NX = 0 and (5.43) gives

−g(Jσ(X, Z), W ) = 1

2
g(B, W )g(JZ, X) + 1

2
g(W, JB)g(Z, X)

− 1

2
g(JZ, W )g(B, X) − 1

2
g(Z, W )g(JB, X), (5.44)

for any vector field W tangent to M. From (5.8), (5.44) yields

−Jσ(X, Z) = 1

2
g(JZ, X)B + 1

2
g(Z, X)JB

− 1

2
g(B, X)JZ − 1

2
g(JB, X)Z. (5.45)

For any Z ∈ D⊥, Eq. (5.45) gives g(AJZ , Z) = 1
2ω(JX)g(Z, Z), for any Z tangent to

M and, hence, we have

AJZX = 1

2
ω(JX)Z. (5.46)
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Next, for Y ∈ D, from (5.46), we have

g(σ(X, Y), JZ) = 0, for X ∈ D, Z ∈ D⊥. (5.47)

Therefore, g(σ(X, JY) − σ(JX, Y , JD⊥) = 0 and, from Theorem5.4, the distribu-
tionD is integrable. Moreover, any integral submanifoldM⊥ odD is totally geodesic
in M because of (5.47) and Theorem5.6. Now, let M⊥ be an integral submanifold of
D⊥. For any W ∈ D⊥, Eq. (5.46) gives

g

(

AJZ + 1

2
g(Z, W )JB, X

)

= 0

and this means that M⊥ is totally geodesic in M (Theorem5.5). Thus M is a
CR-product. �

In order to prove the converse, we first give the following Lemma.

Lemma 5 If M is a CR-product in a l.c.K. manifold ˜M such that Bx ∈ Dx for any
x ∈ M, then

∇ZX ∈ D, (5.48)

∇XZ ∈ D⊥, (5.49)

J ∇ZX = ∇Z(JX), (5.50)

for any X ∈ D and Z ∈ D⊥.

Proof If X ∈ D and Z ∈ D⊥, then from (5.7) and (5.8), we obtain

J ∇ZX = 1

2
ω(X)JZ − Jσ(Z, X) + ∇Z(JX) + ∇Z(JX)

− 1

2
ω(JX)Z + σ(Z, JX). (5.51)

Now, for any W ∈ D⊥, (5.51) yields

g(J ∇ZX, JW ) = g(∇ZX, W ) = g

(

AJW Z + 1

2
g(Z, W )JB, JX

)

= 0.

The last equation holds because any leaf M⊥ of D⊥ is totally geodesic in M
(Theorem5.5). Thus ∇ZX ∈ D and this is assertion (5.48). Now, take X, Y ∈ D and
Z ∈ D⊥. From (5.1) and (5.2), we find that

g(J ∇XZ, Y) = −g(AJZ , Y) = −g(σ(X, Y), JZ) = 0 (5.52)
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The last equation holds because of Theorem5.6. If X ∈ D and Z, W ∈ D⊥, from
(5.1) and (5.2) again we have

g(J ∇XZ, W ) = g(AJW Z, X) − g(AJZ W, X).

But, from Theorem5.5 we obtain

g(AJW Z, X) − g(AJZ W, X) = −1

2
g(Z, W )g(JB, X) + 1

2
g(W, Z)g(JB, X) = 0

and, hence
g(J ∇XZ, W ) = 0. (5.53)

Now, (5.49) follows from (5.52) and (5.53). Finally, (5.48) and (5.51) give (5.50). �

Now we prove the converse of Theorem5.13. From (5.36) and (5.48), for any
X ∈ D and Z tangent to M we have

(˜∇ ′
Z , T)X = ∇Z(JX) − J(∇Z X).

On the other hand, we write Z = Y + Z , where Y ∈ D and Z ∈ D⊥. Then, from
(5.50) we have

(˜∇ ′
Z T)X = ∇Y (JX) − J ∇Y X. (5.54)

But (5.1)–(5.3) give

∇Y (JX) − J∇Y X = 1

2
ω(Y)JX − 1

2
(JY)X − 1

2
g(X, Y)JB + 1

2
g(X, JY)B. (5.55)

Now we have
(a) If dim(D) ≥ 4 and Bx �= 0 for some x ∈ M, there are X, Y ∈ D such that the

right-hand side of (5.55) does not vanish at x. Therefore, T is not parallel.
(b) If dim(D) = 2, then the right-hand side of (5.55) vanishes and, hence

(˜∇ ′
Z T)X = 0, (5.56)

for any X ∈ D and Z tangent to M. But (5.49) implies ∇ZZ ∈ D⊥, for any Z ∈ D⊥
and Z tangent to M, so that

(˜∇ ′
Z T)Z = ∇Z(TZ) − T∇Z Z = −T∇Z Z = 0. (5.57)

Then, (5.56) and (5.57) prove that T is parallel. �
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5.3 Normal CR-Submanifolds of S-manifolds

Wewant to study here the normal CR-submanifolds for general S-manifolds. In fact,
the normal CR-submanifolds become to be a very wide class of CR-submanifolds.
Actually, either totally f -umbilical submanifolds (see [19] for more details) or CR-
products (see [12]) of an S-manifold are normal CR-submanifolds. We also study
normalCR-submanifolds of an S-space-form, specially in the concrete cases ofR2m+s

(with constant f -sectional curvature c = −3s) and H2m+s (with constant f -sectional
curvature c = 4 − 3s).

5.3.1 Preliminaries

A (2m + s)-dimensional Riemannianmanifold (∧M, g) endowedwith an f -structure
f (that is, a tensor field of type (1, 1) and rank 2m satisfying f 3 + f = 0 [21]) is said
to be a metric f -manifold if, moreover, there exist s global vector fields ξ1, . . . , ξs

on ∧M (called structure vector fields) such that, if η1, . . . , ηs are the dual 1-forms of
ξ1, . . . , ξs, then

f ξα = 0; ηα ◦ f = 0; f 2 = −I +
s

∑

α=1

ηα ⊗ ξα;

g(X, Y) = g(fX, fY) +
s

∑

α=1

ηα(X)ηα(Y), (5.58)

for any X, Y ∈ X (∧M) and α = 1, . . . , s.
Let F be the 2-form on ∧M defined by F(X, Y) = g(X, fY), for any X, Y ∈

X (∧M). Since f is of rank 2m, then

η1 ∧ · · · ∧ ηs ∧ Fm �= 0

and, particularly, ∧M is orientable.
The f -structure f is said to be normal if

[f , f ] + 2
s

∑

α=1

ξα ⊗ dηα = 0,

where [f , f ] is the Nijenhuis torsion of f .
A metric f -manifold is said to be a K-manifold [5] if it is normal and dF = 0.

A K-manifold is called an S-manifold if F = dηα, for any α. Note that, for s = 0,
a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a quasi-
Sasakian manifold and an S-manifold is a Sasakianmanifold.When s ≥ 2, nontrivial
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examples can be found in [5, 13].Moreover, aK-manifold∧M is an S-manifold if and
only if

∧ ∇Xξα = −fX, (5.59)

for any X ∈ X (∧M) and any α = 1, . . . , s, where ∧∇ denotes the Levi-Civita con-
nection of g. It is easy to show that in any S-manifold

(∧∇Xf )Y =
s

∑

α=1

{

g(fX, fY)ξα + ηα(Y)f 2X
}

, (5.60)

for any X, Y ∈ X (∧M). A plane section π on a metric f -manifold ∧M is said to
be an f -section if it is determined by a unit vector X, normal to the structure vector
fields and fX. The sectional curvature of π is called an f -sectional curvature. An
S-manifold is said to be an S-space-form if it has a constant f -sectional curvature
c and then, it is denoted by ∧M(c). In such case, the curvature tensor field ∧R of
∧M(c) satisfies [15]

∧ R(X, Y , Z, W )

=
∑

α,β

(g(fX, f W )ηα(Y)ηβ(Z) − g(fX, fZ)ηα(Y)ηβ(W )

+ g(fY , fZ)ηα(X)ηβ(W ) − g(fY , f W )ηα(X)ηβ(Z))

+ c + 3s

4
(g(fX, f W )g(fY , fZ) − g(fX, fZ)g(fY , f W ))

+ c − s

4
(F(X, W )F(Y , Z) − F(X, Z)F(Y , W )

− 2F(X, Y)F(Z, W )), (5.61)

for any X, Y , Z, W ∈ X (∧M). Next, let M be a isometrically immersed submanifold
of a metric f -manifold ∧M (for the general theory of submanifolds, we refer to [3,
22]).We denote byX (M) the Lie algebra of tangent vector fields toM and by T(M)⊥
the set of tangent vector fields to ∧M which are normal to M. For any vector field
X ∈ X (M), we write

fX = TX + NX, (5.62)

where TX and NX are the tangential and normal components of fX, respectively.
Then, T is an endomorphism of the tangent bundle of M and N is a normal bundle
valued 1-form on such tangent bundle. It is easy to show that if T does not vanish, it
defines an f -structure in the tangent bundle of M. The submanifold M is said to be
invariant if N is identically zero, that is, if fX is tangent to M, for any X ∈ X (M).
On the other hand, M is said to be an anti-invariant submanifold if T is identically
zero, that is, if fX is normal to M, for any X ∈ X (M). In the same way, for any
V ∈ T(M)⊥, we write

f V = tV + nV, (5.63)
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where tV and nV are the tangential and normal components of f V , respectively.
Then, t is a tangent bundle valued 1-form on the normal bundle of M and n is an
endomorphism of the normal bundle ofM. It is easy to show that if n does nor vanish,
it defines an f -structure in the normal bundle of M. From now on, we suppose that
all the structure vector fields are tangent to the submanifold M and so, dim(M) ≥ s.
Then, the distribution on M spanned by the structure vector fields is denoted by
M and its complementary orthogonal distribution is denoted by L. Consequently,
if X ∈ L, then ηα(X) = 0, for any α = 1, . . . , s and if X ∈ M, then fX = 0. In this
context, M is said to be a CR-submanifold of ∧M if there exist two differentiable
distributions D and D⊥ on M satisfying

(i) X (M) = D ⊕ D⊥ ⊕ M, whereD,D⊥ andM are mutually orthogonal to each
other;

(ii) The distribution D is invariant by f , that is, fDx = Dx, for any x ∈ M;
(iii) ThedistributionD⊥ is anti-invariant by f , that is, fD⊥

x ⊆ Tx(M)⊥, for any x ∈ M.

This definition is motivated by the following theorem.

Theorem 5.14 ([16]) Let ∧M be an S-manifold which is the bundle space of a
principal toroidal bundle over a Kaehler manifold ∧M ′, ∧π : ∧M −→ ∧M ′, M
a submanifold immersed in ∧M, tangent to the structure vector fields and M ′ a
submanifold immersed in ∧M ′ such that there exists a fibration π : M −→ M ′, the
diagram

M
i−→ ∧M

π ↓ ↓ ∧π

M ′ i′−→ ∧M ′

commutes and the immersion i is a diffeomorphism on the fibers. Then, M is a CR-
submanifold of ∧M if and only if M ′ is a CR-submanifold of ∧M ′.

We denote by 2p and q the real dimensions of D and D⊥, respectively. Then,
we see that for p = 0 we obtain an anti-invariant submanifold tangent to the struc-
ture vector fields and for q = 0 an invariant submanifold. A CR-submanifold of an
S-manifold is said to be a generic submanifold if given any V ∈ T(M)⊥, there exists
Z ∈ D⊥ such that V = fZ , a (D,D⊥)-geodesic submanifold if σ(X, Z) = 0, for any
X ∈ D and any Z ∈ D⊥ and a D⊥-geodesic submanifold if σ(Y , Z) = 0, for any
Y , Z ∈ D⊥. As an example, it is easy to show that each hypersurface of ∧M which
is tangent to the structure vector fields is a CR-submanifold. Now, we write by P
and Q the projections morphisms ofX (M) onD andD⊥, respectively. Thus, for any
X ∈ X (M), we have that

X = PX + QX +
s

∑

α=1

ηα(X)ξα.

We define the tensor field v of type (1, 1) by vX = fPX and the non-null, normal
bundle valued 1-form u by uX = fQX, for any X ∈ X (M). Then, it is easy to show
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that u ◦ v = 0 and ηα ◦ u = ηα ◦ v = 0, for any α = 1, . . . , s. Moreover, a direct
computation gives

g(X, Y) = g(uX, uY) + g(vX, vY) +
s

∑

α=1

ηα(X)ηα(Y), (5.64)

F(X, Y) = g(X, vY), F(X, Y) = F(vX, vY), (5.65)

for any X, Y ∈ X (M). From Gauss–Weingarten formulas and by using (5.59), for
any X ∈ X (M), V ∈ T(M)⊥, and α = 1, . . . , s, we have

∇Xξα = −vX, (5.66)

σ(X, ξα) = −uX, (5.67)

AV ξα ∈ D⊥. (5.68)

Moreover, from (5.60) and the Gauss–Weingarten formulas, if X, Y ∈ X (M), com-
paring the components in D, D⊥ and T(M)⊥ respectively, we get

P∇XvY − PAuY X = v∇XY −
s

∑

α=1

ηα(Y)PX, (5.69)

Q∇XvY − QAuY X = tσ(X, Y) −
s

∑

α=1

ηα(Y)QX, (5.70)

σ(X, vY) + DXuY = u∇XY + nσ(X, Y). (5.71)

From the above formulas and (5.60) we obtain

(∇Xv)Y = AuY X + tσ(X, Y) −
s

∑

a=1

{ηα(Y)f 2X + g(fX, fY)ξα}, (5.72)

(∇Xu)Y = nσ(X, Y) − σ(X, vY), (5.73)

for any X, Y ∈ X (M). Also, from (5.60) and the Gauss–Weingarten formulas again,
we have

∇XZ = vAfZ X − tDXfZ, (5.74)

tDXfZ = −Q∇XZ, (5.75)

for any X ∈ X (M) and any Z ∈ D⊥. With regard to the integrability of the distrib-
utions involved in the definition of a CR-submanifold, I. Mihai [16] proved that the
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distributions D⊥ and D⊥ ⊕ M are always integrable. On the other hand, if p > 0,
the distributions D and D ⊕ D⊥ are not integrable and the distribution D ⊕ M is
integrable if and only if

σ(X, fY) = σ(fX, Y), (5.76)

for anyX, Y ∈ D. In [12],CR-products ofS-manifolds are defined asCR-submanifolds
such that the distributionD ⊕ M is integrable and locally they are Riemannian prod-
ucts M1 × M2, where M1 (resp., M2) is a leaf ofD ⊕ M (resp.,D⊥). From Theorem
3.1 and Proposition 3.2 in [12], we know that a CR-submanifold M of an S-manifold
is a CR-product if and only if one of the following assertions is satisfied:

AfD⊥ fD = 0, (5.77)

g(σ(X, Y), fZ) = 0, X ∈ D, Y ∈ X (M), Z ∈ D⊥, (5.78)

∇XY ∈ D ⊕ M, X ∈ D, Y ∈ X (M). (5.79)

5.3.2 Normal CR-Submanifolds of an S-manifold

Let M be a CR-submanifold of an S-manifold ∧M. We say that M is a normal
CR-submanifold if

Nv(X, Y) = 2tdu(X, Y) − 2
s

∑

α=1

F(X, Y)ξα, (5.80)

for any X, Y ∈ X (M), where Nv is denoting the Nijenhuis torsion of v, that is

Nv(X, Y) = (∇vXv)Y − (∇vYv)X + v((∇Yv)X − (∇Xv)Y).

We notice that (5.80) is equivalent to

S∗(X, Y) = Nv(X, Y) − t((∇Xu)Y − (∇Y u)X) + 2
s

∑

α=1

F(X, Y)ξα = 0,

for any X, Y ∈ X (M). Now, we can prove the following characterization theorem in
terms of the shape operator.
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Theorem 5.15 A CR-submanifold M of an S-manifold ∧M is normal if and only if

AuYvX = vAuY X, (5.81)

for any X ∈ D and any Y ∈ D⊥.

Proof A direct expansion by using (5.72) and (5.73) gives that

S∗(X, Y) = AuYvX − vAuY X − AuXvY + vAuXY , (5.82)

for any X, Y ∈ X (M). Now, if M is a normal CR-submanifold of ∧M, (5.81) fol-
lows form (5.82) since uX = 0, for any X ∈ D. Conversely, if (5.81) holds, we use
the decomposition X (M) = D ⊕ D⊥ ⊕ M. First, since uX = 0 for any X ∈ D and
vξα = 0 = uξα, for any α, we deduce from (5.81) and (5.82) that S∗(X, Y) = 0,
for any X ∈ D and any Y ∈ X (M). Moreover, if Y ∈ D⊥, from (5.68) we have
AuYξα ∈ D⊥ and so, vAuYξα = 0 dfor any α. Consequently, S∗(X, ξα) = 0, for any
X ∈ X (M). Finally, if X, Y ∈ D⊥, (5.82) becomes

S∗(X, Y) = v(AfXY − AfY X),

since vX = vY = 0 and uX = fX, uY = fY . But, from (5.60) we easily show that
AfXY = AfY X. �

Corollary 2 A CR-submanifold M of an S-manifold is normal if and only if

g(σ(X, vY) + σ(Y , vX), fZ) = 0, (5.83)

g(σ(X, Z)f W ) = 0, (5.84)

for any X, Y ∈ D and any Z, W ∈ D⊥.

Proof Since v is skew-symmetric, from (5.81) we see that M is normal if and only if

g(σ(X, vY), uZ) = −g(σ(Y , vX), uZ)m (5.85)

for any X ∈ X (M), Y ∈ D and Z ∈ D⊥. Now, if M is normal, from (5.85) we get
(5.83) taking X ∈ D and (5.84) taking X ∈ D⊥. Conversely, if (5.83) and (5.84)
are satisfied, we observe that (5.85) is satisfied too if X ∈ D and X ∈ D⊥, respec-
tively. Finally, if X ∈ M, we have vX = 0 and, by using that u ◦ v = 0 and (5.67),
σ(X, vY) = 0, for any Y ∈ D. Thus, (5.85) holds for any X ∈ X (M). �

Corollary 3 Any normal generic submanifold of an S-manifold is a (D,D⊥)-
geodesic submanifold.



144 J.L. Cabrerizo et al.

From (5.60), (5.67), (5.83), and (5.84), we have

σ(fX, Z) = f σ(X, Z), (5.86)

tσ(fX, fX) = tσ(X, X), (5.87)

AfZ X ∈ D, (5.88)

for any X ∈ and any Z ∈ D⊥. On the other hand, from (5.78) and (5.83)–(5.84), we
deduce

Proposition 1 Each CR-product in an S-manifold is a normal CR-submanifold.

For the converse we prove the following theorems.

Theorem 5.16 Let M be a normal CR-submanifold of an S-manifold. Then, M is a
CR-product if and only if the distribution D ⊕ M is integrable.

Proof The necessary condition is obvious. Conversely, let X ∈ D. If Y ∈ D⊥, then
(5.78) is (5.84). Further, ifY ∈ M, from (5.67)wegetσ(X, Y) = 0. Finally, ifY ∈ D,
from (5.76) and (5.83) we obtain (5.78). �

Theorem 5.17 Let M be a normal CR-submanifold of an S-manifold such that du =
0. Then, M is a CR-product.

Proof A straightforward computation gives, by using the hypothesis and (5.72),

g((∇Xv)Y , Z) =
s

∑

α=1

{dηα(vX, Y)ηα(Z) − dηα(vZ, X)ηα(Y)}, (5.89)

for anyX, Y , Z ∈ X (M). Now, ifY ∈ D, from (5.64) and (5.65)we get dηα(vX, Y) =
F(vX, Y) = g(vX, vY) = g(X, Y). So, (5.89) becomes

(∇Xv)Y =
s

∑

α=1

g(X, Y)ξα

for any X ∈ X (M) and any Y ∈ D. Comparing with (5.72) we have σ(X, Y) = 0 and
so (5.78) holds. �

We say that v is η-parallel if

(∇Xv)Y =
s

∑

α=1

{g(PX, PY)ξα − ηα(Y)PX},

for any X, Y ∈ X (M). Then, from (5.64), (5.65), and (5.89), we prove
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Proposition 2 Any normal CR-submanifold of an S-manifold such that du = 0 is
η-parallel.

Given a CR-submanifold M of an S-manifold, a vector field X ∈ X (M) is said to
be D-Killing if

g(P∇ZX, PY) + g(P∇Y X, PZ) = 0, (5.90)

for any Y , Z ∈ X (M). We notice that it is possible to characterize normal CR-
submanifolds in terms of D-Killing vector fields.

Theorem 5.18 A CR-submanifold M of an S-manifold is a normal CR-submanifold
if and only if any Z ∈ D⊥ is a D-Killing vector field

Proof Given X, Y ∈ X (M) and Z ∈ D⊥, from (5.74) we get

g(∇XZ, Y) + g(∇Y Z, X) = g(vAfZ X, Y) − g(tDXfZ, Y)

+ g(vAfZ Y , X) − g(tDY fZ, X). (5.91)

But g(vAfZ Y , X) = −g(AfZvX, Y) and so, from (5.91)

g(P∇XZ, PY) + g(P∇Y Z, PX) + g(Q∇XZ, QY) + g(Q∇Y Z, QX)

+
s

∑

α=1

{ηα(∇XZ)ηα(Y) + ηα(∇Y Z)ηα(X)}

= g((vAfZ − AfZv)X, Y) − g(tDXfZ, Y) − g(tDY fZ, X). (5.92)

Now, since it is easy to show that ηα(∇XZ) = 0 for anyα = 1, . . . , s, by using (5.75),
we deduce that (5.92) becomes

g(P∇XZ, PY) + g(P∇Y Z, PX) = g((vAfZ − AfZv)X, Y). (5.93)

Consequently, if Z is a D-Killing vector field, from (5.81) we obtain that M is a
normal CR-submanifold. Conversely, if X ∈ D, the right part of the equality (5.93)
vanishes by using (5.81). If X ∈ D⊥, then vX = 0 and from (5.84), AfZ X ∈ D⊥, that
is, vAfZ X = 0 and the right part of (5.93) vanishes again. Finally, if X ∈ M, vX = 0
and from (5.68), AfZX ∈ D⊥. In any case, from (5.93) we have (5.90). �

To end this section, we recall that a submanifold M of an S-manifold is said to be
totally f -umbilical [19] if there exists a normal vector field V such that

σ(X, Y) = g(fX, fY)V +
s

∑

α=1

{ηa(Y)σ(X, ξα) + ηα(X)σ(Y , ξα)}, (5.94)

for any X, Y ∈ X (M). These submanifolds have been studied and classified in [9].
Since from (5.94)we easily get (5.83) and (5.84), thenwehave the following theorem.
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Theorem 5.19 Any totally f -umbilical CR-submanifold of an S-manifold is a normal
CR-submanifold.

5.3.3 Normal CR-Submanifolds of an S-space-form

Let ∧M(c) a (2m + s)-dimensional S-space-form, where c is denoting the constant
f -sectional curvature and let M be a CR-submanifold. Firstly, we can prove

Proposition 3 If M is a normal CR-submanifold, then

‖AfZ X‖2 + ‖σ(X, Z)‖2 − g(tσ(Z, Z), tσ(X, X)) = c + 3s

4
, (5.95)

for any unit vector fields X ∈ D and Z ∈ D⊥.

Proof From the Codazzi equation, we have

∧R(X, fX, Z, fZ) = g(DXσ(fX, Z) − DfXσ(X, Z), fZ)

− g(σ([X, fX], Z), fZ)

+ g(σ(X,∇fXZ) − σ(fX,∇XZ), fZ). (5.96)

Now, from (5.60), (5.84), and (5.86), a direct expansion gives

g(DXσ(fX, Z) − DfXσ(X, Z), fZ) = −2‖σ(X, Z)‖2. (5.97)

On the other hand, since X ∈ D is a unit vector field (and so, fX too), we see from
(5.59) that ηα([X, fX]) = 2 for any α and from (5.70) that Q[X, fX] = tσ(X, X) +
tσ(fX, fX). Thus, taking into account (5.67), (5.84), and (5.87), we get

g(σ([X, fX], Z), fZ) = 2g(σ(tσ(X, X), Z), fZ) − 2s. (5.98)

However, since Z ∈ D⊥, by using (5.70) it is easy to show that

g(σ(tσ(X, X), Z), fZ) = −g(tσ(X, X), tσ(Z, Z)).

Therefore, from (5.98) we have

g(σ([X, fX], Z), fZ) = −2s − 2g(tσ(X, X), tσ(Z, Z)). (5.99)

Next, since ηα(∇fXZ) = ηα(∇XZ) = 0 for any α, from (5.69), (5.83), (5.84), and
(5.88), we obtain

g(σ(X,∇fXZ) − σ(fX,∇XZ), fZ) = −2‖AfZ X‖2. (5.100)
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Finally, from (5.61) we deduce ∧R(X, fX, Z, fZ) = −(c − s)/2. Then, substituting
(5.97), (5.99), and (5.100) into (5.96), we complete the proof. �

Corollary 4 If M is a normal D⊥-geodesic CR-submanifold of an S-space-form
∧M(c), then c ≥ −3s.

Proposition 4 If M is a normal CR-submanifold of an S-space-form ∧M(c) such
the distribution D ⊕ M is integrable, then c ≥ −3s and M is a CR-product.

Proof It is clear that M is a CR-product due to Theorem5.16. Moreover, from (5.78)
we have g(σ(X, Y), fZ) = 0. for any X, Y ∈ D. Then, if X ∈ D is a unit vector field,
tσ(X, X) = 0 and, by using (5.95), c ≥ −3s. �

Now, we are going to study the concrete case of the (2m + s)-dimensional euclid-
ean S-space-form R

2m+s(−3s) (see [13] for the details of this structure). In this
context, we can prove

Theorem 5.20 If M is a normal (D,D⊥)-geodesic and D⊥-geodesic
CR-submanifold of R2m+s(−3s), then it is a CR-product.

Proof From (5.95), we have AfZ X = 0 for any X ∈ D and any Z ∈ D⊥. So, from
(5.77), M is a CR-product. �

Corollary 5 A normal D⊥-geodesic generic submanifold of R2m+s(−3s) is a CR-
product.

Another interesting example of S-space-form is H2m+s(4 − 3s), a generalization
of the Hopf fibration π : §2m+1 −→ PCm, introduced by Blair in [5] as a canonical
example of an S-manifold playing the role of the complex projective space in Kaehler
geometry and the odd-dimensional sphere in Sasakian geometry. This space is given
by (see [5, 6] for more details)

H
2m+s = {(x1, . . . , xs) ∈ §2m+1× s)· · · ×§2m+1/π(x1) = · · · = π(xs)}

and its f -sectional curvature is constant equal to 4 − 3s. Let M be a CR-submanifold
of H2m+s(4 − 3s) (we always suppose s ≥ 2). Denote by ν the orthogonal comple-
mentary distribution of fD⊥ in T(M)⊥. Then, f ν ⊆ ν. Let

{E1, . . . , E2p}, {F1, . . . , Fq}, {V1, . . . , Vr, f V1, . . . , f Vr},

be local fields of orthonormal frames on D, D⊥ and ν, respectively, where 2r is the
real dimension of ν. First, we prove

Lemma 6 If M is a CR-product in H
2m+s(4 − 3s), then

‖σ(X, Z)‖ = 1, (5.101)

for any unit vector fields X ∈ D and Z ∈ D⊥.
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Proof We know, from Proposition1, that M is a normal CR-submanifold. Since,
c = 4 − 3s, from (5.77), (5.78) and (5.95) we complete the proof. �

Lemma 7 If M is a CR-product in H
2m+s(4 − 3s), the vector field σ(Ei, Fa), i =

1, . . . , 2p and a = 1, . . . , q, are 2pq orthonormal vector fields on ν.

Proof From (5.101) and by the linearity, we get g(σ(Ei, Z),σ(Ej, Z)) = 0, for any
i, j = 1, . . . , 2p, i �= j and any unit vector field Z ∈ D⊥. Now, from (5.84), if q = 1,
we complete the proof. Ifq ≥ 2, by linearity again,wehave g(σ(Ei, Fa),σ(Ej, Fb)) +
g(σ(Ei, Fb),σ(Ej, Fa)) = 0, for any i, j = 1, . . . , 2p, i �= j, a, b = 1, . . . , q, a �= b.
Next, by using (5.79) and the Bianchi identity, we obtain R(X, Y , Z, W ) = 0, for any
X, Y ∈ D, Z, W ∈ D⊥, where R is denoting the curvature tensor field of M. But, if
i �= j and a �= b, (5.61) gives∧R(Ei, Ej, Fa, Fb) = 0. Then, from the Gauss equation
we get

g(σ(Ei, Fa),σ(Ej, Fb)) − g(σ(Ei, Fb),σ(Ej, Fa)) = 0,

for any i, j = 1, . . . , 2p, i �= j, a, b = 1, . . . , q, a �= b and this completes the
proof. �

Now, we study the normal CR-submanifolds of H2m+s(4 − 3s).

Theorem 5.21 Let M be a normal CR-submanifold of H2m+s(4 − 3s), s ≥ 2, such
that the distribution D ⊕ M is integrable. Then

(i) M is a CR-product M1 × M2.
(ii) m ≥ pq + p + q.

(iii) If n = pq + p + q, then M1 is an invariant totally geodesic submanifold
immersed in H

2m+s(4 − 3s).
(iv) ‖σ‖2 ≥ 2q(2p + s).
(v) If ‖σ‖2 = 2q(2p + s), then M1 is an S-space-form of constant f -sectional cur-

vature 4 − 3s and M2 has constant curvature 1.
(vi) If M is a minimal submanifold, then ρ ≤ 4p(p + 1) + 2p(q + s) + q(q − 1),

where ρ denotes the scalar curvature and the equality holds if and only if
‖σ‖2 = 2q(2p + s).

Proof (i) follows directly fromProposition4. Now, fromLemma7, dim(ν) = 2(m −
p) − 2q ≥ 2pq. So (ii) holds.Next, suppose thatm = pq + p + q. IfX, Y , Z ∈ D and
W ∈ D⊥, from (5.61), ∧R(X, Y , Z, W ) = 0 and, by using a similar proof to that one
of Lemma7, R(X, Y , Z, W ) = 0. So, the Gauss equation gives

g(σ(X, W ),σ(Y , Z)) − g(σ(X, Z),σ(Y , W )) = 0. (5.102)

Since from Proposition 3.2 of [12], σ(fX, Z) = f σ(X, Z), if we put Y = fX, we
have, by using (5.86), g(σ(fX, W ), (σ(X, Z)) = 0. Now, if we put Z = fY , then
g(σ(X, Y),σ(X, W )) = 0. Thus, by linearity, we get g(σ(X, W ),σ(Y , Z)) +
g(σ(X, Z),σ(Y , W )) = 0. Consequently, from (5.102)
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g(σ(X, W ),σ(Y , Z)) = 0, (5.103)

for any X, Y , Z ∈ D and W ∈ D⊥. Since now dim(ν) = 2pq, (5.103) implies that
σ(X, Y) = 0, for any X, Y ∈ D and so, (iii) holds from Theorem 2.4(ii) of [12].
Assertions (iv) and (v) follow from Theorem 4.2 of [12]. Finally, if M is a minimal
normal CR-submanifold of H2m+s(4 − 3s), a straightforward computation gives

ρ = 4p(p + 1) + 2s(p + q) + q(q − 1) + 6pq − ‖σ‖2.

Then, by using (iv), the proof is complete. �

Theorem 5.22 Let M be a normal, (D,D⊥)-geodesic and D⊥-geodesic CR-sub-
manifold of H2m+s(4 − 3s). Then,

(i) ‖AfZ X‖ = 1, for any unit vector fields X ∈ D and Z ∈ D⊥.
(ii) ‖σ‖2 ≥ 2q(p + s) and the equality hold if and only if σ(D,D) ∈ fD⊥.

Proof (i) follows immediately from (5.95). Now, considering the above-mentioned
local fields of orthonormal frames for D, D⊥, and ν, a straightforward computation
using the hypothesis gives (ii). �

Finally, from (5.84) and (5.95), we can prove

Corollary 6 Let M be a normal D⊥-geodesic generic submanifold of H2m+s(4 −
3s). Then

(i) ‖AfZ X‖ = 1, for any unit vector fields X ∈ D and Z ∈ D⊥.
(ii) ‖σ‖2 = 2q(p + s).
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