Chapter 5
CR Submanifolds in (l.c.a.) Kaehler

and S-manifolds

José Luis Cabrerizo, Alfonso Carriazo and Luis M. Fernandez

2010 Mathematics Subject Classification 53C15 - 53C25 - 53C40

5.1 Introduction

K. Yano [21] introduced in 1963 the notion of f-structure on a (2m + s)-dimensional
manifold as a tensor field f of type (1, 1) and rank 2m satisfying f> 4+ f = 0. Almost
complex (s = 0) and almost contact (s = 1) structures are well-known examples of
f-structures. A Riemannian manifold endowed with an f-structure (s > 2) compatible
with the Riemannian metric is called a metric f-manifold (for s = 0 we have almost
Hermitian manifolds and for s = 1, metric almost contact manifolds). In this context,
D.E. Blair [5] defined K-manifolds (and particular cases of S-manifolds and C-
manifolds) as the analogue of Kaehlerian manifolds in the almost complex geometry
and of quasi-Sasakian manifolds (and particular cases of Sasakian manifolds and
cosymplectic manifolds) in the almost contact geometry.

He also showed that the curvature of S-manifolds is completely determined by
their f-sectional curvatures. Later, M. Kobayashi and S. Tsuchiya [15] got expres-
sions for the curvature tensor field of S-manifolds when their f-sectional curvature
is constant depending on such a constant. Such spaces are called S-space-forms and
they generalize complex and Sasakian space-forms. Nice examples of S-space-forms
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can be found in [5, 6, 8, 13]. In particular, it is proved in [5, 8] that certain principal
toroidal bundles over complex-space-forms are S-space-forms and a generalization
of the Hopf fibration denoted by H>”** is introduced as a canonical example of such
manifolds playing the role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry [5, 6].

When we want to study the submanifolds of a metric f-manifold, the natural first
step is to consider such submanifolds depending on their behavior with respect to
the f-structure. So, invariant and anti-invariant submanifolds (in the terminology of
the complex geometry, holomorphic and totally real submanifolds) appear if all the
tangent vector fields to the submanifold are transformed by f into tangent vector fields
or into normal vector fields. But since an hypersurface of a metric f-manifold tangent
to the structure vector fields is neither invariant nor anti-invariant, it is necessary to
introduce a wider class of submanifolds: the CR-submanifolds. This work was made
firstly by A. Bejancu and B.-Y. Chen [1, 10, 11] in the case s = 0 and by A. Bejancu
and N. Papaghiuc, M. Kobayashi and K. Yano and M. Kon in the case s = 1 (we
refer to the books [3, 22] for the background of these cases where a large list of
fundamental references can be found). For s > 2, I. Mihai [16] introduced the notion
of CR-submanifold in a natural way.

Many authors have studied the geometry of submanifolds of locally conformal
almost Kaehler (l.c.a.K.) manifolds [10, 11, 14, 20], which are almost Hermitian
manifolds (M, J, g) such that every x € M has an open neighborhood U such that for
some differentiable function 4 : U — R, §y = ¢ "g|y is a (l.c.a.) Kaehler metric
on U. If one can take U = M, the manifold is then called globally conformal almost
Kaeler (g.c.a.K) manifold. Examples of 1.c.K. manifolds are provided by the Hopf
manifolds. So, it seems interesting to study CR-submanifolds of 1.c.a.K. manifolds.

On the other hand, M. Okumura [17, 18] studied normal real hypersurfaces of
Kaehlerian manifolds and obtained nice properties. For this reason, it also seems
interesting to introduce and study normal CR-submanifolds. In the cases s = 0 and
s = 1, the papers [2] and [4] can be consulted.

The aim of the present work is to briefly summarize our contributions to the study
of CR-submanifolds of 1.c.a.K. manifolds, normal CR-submanifolds of S-manifolds.
To this end, we separate them into two different sections, which can be read inde-
pendently.

5.2 CR-Submanifolds of (l.c.a.) Kaehler Manifolds

Let (A~/I ,J, g) be an almost Hermitian manifold (dim(]\71 ) = 2m) with almost com-
plex structure J and Hermitian metric g and let M be a Riemannian submanifold
isometrically immersed in M.

A.Bejancu [1] introduced the notion of a CR-submanifold of M.In fact, M is a CR-
submanifold of the almost Hermitian manifold M if there exists on M a differentiable
holomorphic distribution D, i.e., J(D;) € D, for any x € M such that its orthogonal
complement D+ in M is totally real in M ie., J (DJ—) C TL(M ) for any x e M,
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where TXL (M) is the normal space at x. If dim(D) = 0, M is called a totally real
submanifold, and if dim(DY) = 0M isa holomorphic submanifold.

We first discuss the Gauss—Weingarten equations of the submanifold with respect
to the metric g and with respect to the local conformal Kaehler metrics and then we
shall establish thereby the analytical conditions that characterize the important types
of submanifolds.

5.2.1 Preliminaries

Let (1\71 ,J, g) be an almost Hermitian manifold. It is easy to see [20] that (M ,J,9)
is a l.c.(a).K. manifold if and only if there is a global closed 1-form w on M (the
Lee form) such that d2 = w A Q (2 the fundamental form of the manifold) and
(1\71 ,J, g) is a g.c.(a).K. manifold if and only if w is also exact. In case w = 0, the
manifold is an (almost) Kaehler manifold.

Let (]l71 ,J, g) be al.c.(a).K. manifold and consider the Lee vector field B [20] of
(1\7 ,J, g) defined by g(X, B) = w(X). Denote by V the Levi-Civita connection of g
and define

_ . 1 1 1
Vi¥ = Vx¥ = SwX)Y = Sw)X + 2g(X. V)B. (5.1)

Then V is a torsionless linear connection on M which is called the Weyl connection
of g. It is easy to see that Vxg = w(X)g. We have

Theorem 5.1 ([20]) The almost Hermitian manifold (]l~4 ,J, 9) is a l.cK. manifold if
and only if there is a closed 1-form w on M such that the Weyl connection is almost
complex, That is, VJ = 0.

Let (M, J, ,9) be a l.c.K. manifold and M a Riemannian manifold isometrically
immersed in M. We denote by g the metric tensor of M as well as that induced on M,
and let V, V¥ be the covariant derivations on M induced by VandV, respectively.
Then, the Gauss—Weingarten formulas for M with respect to V and V are given by

VY = VY +0(X,Y), VxV = —AyX + Dy V, (5.2)
VxY =V¥Y +5(X,Y), VxV = —AyX + DxV, (5.3)
for any vector fields X, ¥ tangent to M and V normal to M, where o (respectively, 7)
is the second fundamental form of M with respect to V(V) and D (respectively, D)
is the normal connection. The formulas (5.3) are the Gauss—Weingarten equations of
M|y in M|y, e"g|y). The second fundamental tensors Ay, Ay are related to o, &

respectively by

gAVX.Y) = g(o(X,Y), V), gAvX,Y) = g@X, Y), V). (5.4
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For any vector X tangent to M and V normal to M write
JX=TX +NX, JV =tV +nV, (5.5)

where 7X and NX (respectively, ¢V and nV') are the tangential and normal component
of J(X) (respectively JV). For the Lee field B, we have

Bx == (Bx)l + (BX)Zv X € Ma (56)
where (B,) (resp.y (By)2) is the tangential (resp. normal) component of By.
If M is a CR-submanifold of an almost Hermitian manifold (M, J, g) let us denote

by v the complementary orthogonal subbundle of JD* in T+ (M). Hence we have,
T+M)=JD @ .

5.2.2 Integrability Conditions of the Basic Distributions

First we give some general identities.

Lemma 1 Let M be a CR-submanifold of a l.c.K. manifold M, J, q). Then, we have

1 1 1
VAY = VxY — Ew(X)Y - Ew(Y)X + Eg(X, Y)B, (5.7
1
7X,Y)=0(X,Y)+ 5g(x, Y)B, (5.8)
_ 1
_ 1

for any vector fields X, Y tangent to M and V normal to M.
Proof The assertions follow immediately from (5.1)—(5.3). |

The following result is well known:

Theorem 5.2 ([7]) The totally real distribution D+ of any CR-submanifold of a
l.c.K. manifold is integrable.

For the holomorphic distribution D, we have
Theorem 5.3 Let M be a submanifold of a l.c.K. manifold M and let Dy de maximal
holomorphic subspace of Ty(M) and assume dim(Dy) is a constant. Then, the holo-
morphic distribution D is integrable if and only if the second fundamental form & sat-
isfies 0(X,JY) =0 (JX,Y) or, equivalently, c(X,JY) —c(JX,Y) + QX, Y)B, =
0, for all vector fields X,Y € D.
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If M is a CR-submanifold, the integrability condition on D in Theorem 5.3 can be
replaced by a weaker condition.

Theorem 5.4 Let M be a CR-submanifold of a l.c.K. manifold M. The holomorphic
distribution D is integrable if and only if

g (0(X,JY) —0(JX,Y) + Q(X, Y)B,JD*) =0,

forallX,Y € D.

Theorems 5.3 and 5.4 follow easily from similar theorems in the Kaehlerian case
([7]), from (5.8) and the fact that, locally, M is endowed with Kaehler metrics gy
whose Levi-Civita connection is V.

With regard to integral submanifolds of D+ and D (provided D is integrable), we
have the following theorem.

Theorem 5.5 For a CR-submanifold M of a l.c.K. manifold M, the leaf M~ is totally
geodesic in M if and only if

1
g (AJWZ + EQ(Z, W)JB, D) =0,

that is, |
g(c(Z,X),JW) = EQ(Z, Wiw(I W),

forany X € D, Z, W € D+

Proof From (5.1), (5.2) and VJ =0, for anyX e D, Z, W e D+, we obtain
1
gUVzW,X) + EQ(Z, W)g(UB, X) = —g(AywZ, X). (5.11)

But M is totally geodesic in M if and only if V,W € D+ forall Z, W € D+, and
then (5.11) gives the theorem. |

Theorem 5.6 Let M be a CR-submanifold of a l.c.K manifold M. Ifthe holomorphic
distribution D is integrable and M is an integral submanifold of D, then M7 is totally
geodesic if and only if

1 1
g (JJ(X, Y)+ 29X, Y)JB ~ SQ(X. VB, DL) =0,

forany X, Y € D.
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Proof From (5.1), (5.3), and VJ =0, for any X,Y € D and Z € D*, we have

1 1
gUoX,Y),Z) + EQ(X, Y)g(UB.Z) = g(Vx(JY),Z) + EQ(X’ Y)g(B,2).
(5.12)

But M7 is totally geodesic in M if and only if VyY € D forall X, Y € D, and hence
Eq. (5.12) gives the theorem. |

5.2.3 CR-Submanifolds of l.c.K. Manifolds

First of all, we shall give some identities for later use. Let T, N t, and n be the
endomorphisms and vector-valued 1-forms d_eﬁned in (5.5). The following lemma
can be easily obtained from (5.3), (5.9), and VJ = 0.

Lemma 2 Let M be an isometrically immersed submanifold of a l.c.K. manifold M.
Then, we have

VM(TY) — AyyX = TVYY +15(X, Y) (5.13)
(X, TY) + Dx(NY) = NV¥Y +n5(X, Y), (5.14)
V¥ (V) —AwX = —TAyX +tDxV, (5.15)
7(X,tV)+Dx(nV) = —NAyX + nDxV, (5.16)
[Av.Av] = [Av. Ay], (5.17)

for any vector fields X, Y tangent to M and V, V normal to M.
Now, we shall study totally umbilical and totally geodesic CR-submanifolds.

Theorem 5.7 Let M be a totally umbilical CR-submanifold of a l.c.K. manifold M.
Then, we have

(i) Either dim(DV) = 1 or the component Hjrmy of the mean curvature tensor H
in J(TM) is given by H;rm) = —3Ba.

(ii) Ifdim(DY) > 1and M is proper (neither holomorphic nor totally real) such that
B is tangent to M, then M is totally geodesic.

Proof First, since M is totally umbilical, o (X, Y) = ¢g(X, Y)H for any X, Y tangent
to M, and hence
g(o(X, X),JW) = g(X, X)g(H,JW). (5.18)
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From (5.3) and (5.4) it is easy to see that
AW =AwZ (5.19)

and, then, if we take an unit vector field X = Z € D+ orthogonal to W, (5.9), (5.18),
and (5.19) give

1 1
gH,JW) =g(A;wZ,Z) = g(A;z W + EW(JZ)W - Ew((JW)Z, Z)
1 1
=——w(UW) =9g(—=B,,JW),
2w( ) =9( B2 )

so that (i) holds.

Now, since dim(D+) > 1, from (5.5) and assertion (i), we have tH = 0. Thus,
(5.15) gives tDyH = ZHHY — TAyY, for any Y tangent to M. Therefore, for any Z
tangent to M, from (5.8) and (5.9) we get

g(tDyH,Z) = —g(AyY,TZ) — g(c(Y, Z),nH) = —g(Y, TZ)g(H,H) ~ (5.20)
and, if we take Z = TY, we have
—g(Y,T?Y)g(H,H) = gtDyH, TY) = g(TtDyH, Y) = 0. (5.21)

The last equation holds because Tt = 0 for any CR-submanifold of an almost
Hermitian manifold [22]. Moreover, it is easy to see [22] that T2 = —] 4+ N and
then (5.21) gives

g(Y,Y)g(H,H) — g(NY, NY)g(H, H) = 0. (5.22)

Since M is proper, we can choose an unit vector field X in D. Thus, NX = 0 and
from (5.22) we have H = 0. |

Theorem 5.8 Let M be a totally geodesic CR-submanifold of a l.c.K. manifold M.
We have

(i) IfB, € Dy, forall x € M, then D is integrable and any integral submanifold M"
of D is totally geodesic in M.

(ii) If B is normal to M, any integral submanifold M L of Dt is totally geodesic in
M. Furthermore, D is integrable if and only if B, € v,, for any x € M, and in
this case any integral submanifold MT of D is totally geodesic in M.

Proof Firstly, since B is tangent to M, from Theorem 5.7 the distribution D is inte-
grable. Let M7 be an integral submanifold of D. For any vector field X tangent to
M,Y € D, Z € D+, from (5.3) and (5.4) we get g(V%Z, Y)=—g(@(X,JY),JZ).
But from (5.7) and (5.8) we find
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1 1
g(VxZ,Y) — Ew(Z)g(X, Y)+ EQ(X, Z)g(B,Y) = —g(o(X,JY),JZ) = 0.
(5.23)

IfX € D,(5.23) gives g(VxZ, Y) = 0, or, equivalently, g(Vx Y; Z) = 0 and there-
fore, VxY € D. Thus M7 is totally geodesic in M and hence in M.
Next, if Bis normal to M, from Theorem 5.5, any integral submanifold M Lof Dtis

totally geodesic in M. The second statement follows immediately from Theorems 5.6
and 5.7. |

Corollary 1 Let M be a totally geodesic proper CR-submanifold of a l.c.K. manifold
M such that By € vy, for any x € M. Then, M is locally the Riemannian product of
a Kaehler submanifold and a totally real submanifold of M.

Proof From Theorem 5.8, M is locally the product of a holomorphic submanifold M r
and a totally real submanifold M L of M. But w = 0 on M, so that we have induced
on MT a Kaehlerian structure. Moreover, it can be easily seen that the projection map
p (resp., g) onto D (resp., D) is parallel with respect to V, so that this local product
is actually a local Riemannian product. |

Next, we consider the particular case when M is either holomorphic or totally
real.

Lemma 3 Let M be a holomorphic submanifold of a l.c.K. manifold M. Then the
subbundles TM and T+ (M) are holomorphic. Moreover, we have

FUX,Y) =a(X,JY) =J5(X,Y), (5.24)
Ay =JAy = —AyJ, (5.25)
Dx(JV) =JDyV, (5.26)
VYY) =JVYY, (5.27)

for any vector fields X, Y tangent to M and V normal to M.

Proof As M is locally endowed with Kaehler metrics gy whose Levi-Civita con-
nection is V, these formulas follow from similar formulas in the Kaehlerian
case. |

Theorem 5.9 Let M be a holomorphic submanifold of a l.c.K. manifold M. Then,
we have

(i) The mean curvature vector H of M is given by H = —%Bz.
(ii) M is totally umbilical if and only if the Weingarten endomorphisms are commu-
tative.
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Proof Firstly, if dim(M) = 2k > 0, let {ey, ..., e, Jey, . .., Je;} be an orthonormal
basis for T,(M), x € M. Then

k k
2UH, = (tr(0)s = D oxleie) + Y oulJe;, Jey). (5.28)
i=1 i=1

But from (5.8) and (5.24), (5.28) gives 2kH, = —k(B3);.
Next, let V be a vector field normal to M. From (5.17) and (5.25), we have

0=I[Ay, Ayl =[Av,Av] = —2J(Ay)%,

Thus Ay = 0 and from (5.9), we have Ay = —%w(V)I |

The endomorphism n of the normal bundle 7+M defined in (5.5) induces an f-
structure in T+M [22]. For any vector field X tangent to M and V normal to M, we
write B

(Vyn)V = Dx(nV) —nDxV,

(Vyn)V = Dx(nV) — nDxV.

When V'n = 0, the f-structure n is said to be parallel [10].

Lemma 4 Let M be an r-dimensional totally real submanifold of a 2m-dimensional
l.c.K. manifold M. Then we have

(i) Z_]XY = K]yX,for any X, Y tangent to M.

(ii) Ifr = m,thenDx(JY) = JVYY, VM (V) =JDxV,andc(X,JV) = —JAvX.
(iii) V'n=V'n.
(iv) If the f-structure n is parallel, then

Ay = —%w(V)I, (5.29)

forany V € v.

(v) If the Weingarten endomorphisms are commutative, then there is an orthonor-
mal local basis {ey, ..., e.} in M such that with respect to this basis A Je; IS a
diagonal matrix

As, =(0...0X0...0), i=1,...,r (5.30)

Proof Assertions (i) and (ii) follow immediately from similar formulas in the
Kaehlerian case. From Eq. (5.10), we easily obtain (iii).

In order to prove (iv), wetake V € v, and X € T(M). Then, (iii) gives (Vyn)V =
Dx(nV) —nDyxV = 0. By using (5.25) and (5.26) this yields JAy X = 0. Therefore,
Ay = 0 and from (5.9), we obtain (iv).
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Finally, from (5.17) we have [ZV,ZV] =0, for any V, V normal to M. Then,
we can find a local orthonormal basis {e; ..., e} in M (with respect to the local
Kaehlerian metrics gy = e "g|y) such that Zki =0...4...0,i=1,...,r. If
we start by using this basis, we can obtain an orthonormal (with respect to the metric
g) local basis {ey, ..., e,} in M such that (v) holds. |

Theorem 5.10 Ler M be an r-dimensional totally real and minimal submanifold of
a l.c.K. manifold M such that their Weingarten endomorphisms are commutative and
the f-structure n is parallel. Then, we have

(i) If r = 2, M is totally geodesic if and only if the Lee vector field B is tangent to
M.
(ii) If r = 1 and B is orthogonal to v, then M is a geodesic curve.

Proof First, since the Weingarten endomorphisms are commutative, let {ey, ..., e}
be an orthonormal local basis as in Lemma4 (v). From Eq. (5.8), we have

1< I~ 1
0= g(H, Jei) :; Zg (O’(Ej, Ej), J@i) = ; zg (Aje[€j, Ej) - Ew(]ei)
j=1 Jj=1

1 1
=\ ——-wlle), i=1,...,r.
n 2

Therefore,
— n
A]eiej = (Sij/\,‘ei = 5,;,5w(Je,~)e,~, = 1, ey I (531)

Now, from (5.9) and (5.31) we obtain,
1 .
Ajeej = E(né,j —Dwlee;, i=1,...,r. (5.32)

Thus, if » > 2 and B is tangent to M, Eq.(5.32) gives Aj,, =0,i=1,...,r.
Moreover, from (iv) in Lemma4, Ay = —%w(V)I =0, forany V € v. Then, Ay =
0, for any vector field V normal to M.

On the other hand, if there is x € M such that (B;), # 0, from (5.32) and (iv) in
Lemma4, we can take a vector field V normal to M such that Ay # 0. This gives (i).

In order to prove (ii), let us take a unit vector field X tangent to M. We have
0=g(H,JX) =g(0X,X),JX) = g(A;xX, X), and, then, A;x = 0. But, if B is
orthogonal to v, from (iv) in Lemmad4, Ay = —%w(V) =0, for any V € v. This
means that Ay; = 0, for any vector field V normal to M. |

Theorem 5.11 Let M be an r-dimensional (r > 2) totally real and totally umbilical
submanifold of a l.c.K. manifold M such that the f-structure n is parallel. Then M is
totally geodesic if and only if B is tangent to M.

Proof Let{uy, ..., u,}bean orthonormal local basis in U. Since M is totally umbil-
ical, for any vector field X tangent to M, by using Eqgs. (5.8) and (5.9), we find
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_ 1 _
g(Ayxu;j, up) = - ikt (Ax). (5.33)
But from Eq. (5.9) and (iv) in Lemma4 we also have
Ay =0, (5.34)

for any V € v. On the other hand [Av, A;] = [ZV, Z;] = 0, for any vector fields

vV, ? normal to M. Therefore, from (v) in Lemma4, there is an orthonormal local
basis {ej, ..., e,} in M such that, with respect to this basis, Eq.(5.30) holds. But,
from Eq. (5.33), we also have

— 1
g(Ajg,.Ej,ej‘) = —>\l', l]: 1,...,?1. (535)
r

Since r > 2, we can take j # i and then, Egs. (5.30) and (5.35) give \; =0, i =
1, ..., r.Thus, we getzki =0,i=1, ..., r,which, together with (5.34) givesKV =
0, for any vector field V normal to M. Now, if B is tangent to M, Eq.(5.9) proves
that M is totally geodesic.

Conversely, if M is totally geodesic, from (5.29) we have 0 = Ay = —%w(V)I ,
for any V' € v. This means that B is normal to v. Furthermore, from (v) in Lemma4,

we can find an_orthonormal local basis {ej,...,e,} in M such that A Je; has a
diagonal matrix Ay, = (0...0X;0...0) = %w(]e[)l,i =1,...,r.Sincer > 2, this
means w(Je;)) =0,i=1,...,r sothat B is normal to J(T(M)). Thus, B is tangent
toM. |

5.2.4 CR-products in l.c.K. Manifolds

LetT, N, t, n be the endomorphisms and vector-valued 1-forms defined by (5.5). Let

us write _
(V,TYW = Vz(TW) =TV W,

_ (5.36)
(V,THW = V¥ TW) - TVIW,

for all Z, W tangent to M. On the other hand, T is said to be parallel if VT=0.
From (5.1)—(5.3) it is easy to prove that

_, ~ 1 1
(V,TYW = (V,T)W + Ew(W)TZ — Ew(TW)Z
1 1
+ zg(Z, TW)B, — EQ(Z, W)TB,. (5.37)
But, from (5.36) we see that

V, W = 15(Z, W) + AywZ. (5.38)



134 J.L. Cabrerizo et al.

Definition 1 A CR-submanifold of a l.c.K. manifold M is called a CR-product if it
is locally a Riemannian product of a holomorphic submanifold M T and a totally real
submanifold M+ of M.

Theorem 5.12 Let M be a CR-submanifold of a l.c.K. manifold M such that the Lee
field B is normal to M. Then M is a CR-product if and only if T is parallel.

Proof Since Bis normal to M, from Eq. (5.37), we have V'T=V'T.IfTis parallel,
from (5.8), (5.9), and (5.38), we find

1 1
to(Z, W) + Eg(Z, W)tB = —AywZ — Ew(NW)Z. (5.39)
But for any X € D, NX = 0, and the last equation gives
1
0=gAnwZ, X) + EW(NW)Q(Z, X),

or, equivalently, g(o(Z, X), JW) + %g(JW, B)g(Z, X) = 0, for any W tangent to M.
Therefore,

o(Z,X) = —%g(Z,X)B. (5.40)

If we take Z € D, the last equation gives o(X,JY) —o(JX,Y) = —Q(X, Y)B,
and, from Theorem 5.3, D is integrable. Let M T be an integral submanifold of D.
Forany Z € DL, Eq.(5.40) yields g(c(Z, X), JZ) = —%g(Z, Z)g(B, JZ) and, from
Theorem 5.6, the submanifold M7 is totally geodesic in M. Now, let M+ be an
integral submanifold od DL. From (5.40), if Z € D+, then o(Z, X) = 0 and, from
Theorem 5.5, M~ is totally geodesic.

Conversely, assume that M is a CR-product. First, we prove that VXX € D, for any
X € Dand Z tangentto M. As M is locally a Riemannian product of M (holomorphic
submanifold) and M~ (totally real submanifold), it suffices to prove that V%l X eD,
forany X e Dand Z € DL In fact, from (5.3) we have

JVIX = VY (IX) +5(Z,JX) — J5(Z, X).

Thus, if W € DY, g(JVYX,JW) = g(5(Z, JX),JW). Since M~ is totally geo-
desic in M, from (5.8) and Theorem 5.5 we have g(Vg”X, W) = 0,forany W DL,
So, VX € D and V)X € D, for any Z tangent to M. From VJ = 0, we find

JV?X +Jo(Z,X) = V%”(JX) +0(Z,JX),
and then, JVYX = VY (JX), J5(Z, X) = 5(Z, JX). Now, from (5.36) we get
(V,T)X = VY(TX) = TVYX = V¥ (JX) —JV¥X =0, (5.41)

for any X € D and Z tangent to M.
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In a similar way, we prove that V'Z € D+ for any Z € D+ and Z tangent to M.
Since M is a CR-product, it suffices to show this for Z = X € D. In fact, from (5.3),
given any Y € D we find that
g(JVj}”Z, Y)=—gAX,Y)—gUa(X,2),Y) = —g@(X,Y),JZ) =0,

where the last equation holds from (5.8) and Theorem 5.6. Then, J Vﬁ}l Z is orthogonal
to D. On the other hand, if W € DL, we have

g(V¥Z, W) = —g@X, W),JZ) + g@X, Z), IW).

But, from Theorem5.5 we have g(JVY¥Z, W) = 0, That is, JV Z is normal to
M, so that V¥ Z € D=. Therefore, we have

(V,1Z =V¥T2) - TVYZ = 0. (5.42)

Now, from (5.37), (5.41), and (5.42), we have V'T =0. |

Theorem 5.13 Let M be a CR-submanifold of a l.c.K. manifold M such that B, € D,
foreachx € M.IfT is parallel, then M is a CR-product. The converse does not holds
unless dim(D) =2 orB=0o0on M.

Proof Since T is parallel, Eqs. (5.37) and (5.38) give
7(Z, W) +AywZ = %w(W)TZ — %w(TW)Z
+ %g(Z, TW)B — %g(Z, W)TB. (5.43)
If X € D, then NX = 0 and (5.43) gives
—9(Jo(X,2), W) = %g(B, W)g(UZ, X) + %Q(W, IB)g(Z, X)
— %g(JZ, W)g(B, X) — %g(Z, W)g(UB, X), (5.44)
for any vector field W tangent to M. From (5.8), (5.44) yields
—Jo(X,Z) = %g(JZ,X)B + %g(Z,X)JB
- % g(B, X)JZ — %g(JB, X)Z. (5.45)
For any Z € D+, Eq.(5.45) gives g(Ajz, Z) = %w(JX)g(Z, Z), for any Z tangent to

M and, hence, we have |
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Next, for Y € D, from (5.46), we have
g(c(X,Y),JZ) =0, forXeD,ZeD". (5.47)

Therefore, g(oc(X,JY) —c(JX, Y, JD1) = 0 and, from Theorem 5.4, the distribu-
tion D is integrable. Moreover, any integral submanifold M~ od D is totally geodesic
in M because of (5.47) and Theorem 5.6. Now, let M be an integral submanifold of
DL For any W € D+, Eq.(5.46) gives

1
g (AJZ + EQ(Z, W)JB, X) =0
and this means that M* is totally geodesic in M (Theorem5.5). Thus M is a

CR-product. |

In order to prove the converse, we first give the following Lemma.

Lemma 5 If M is a CR-product in a l.c.K. manifold M such that By € D, for any
x €M, then

VX € D, (5.48)
VyZ € D, (5.49)
J VX = Vz(JX), (5.50)

foranyX € D and Z € D+.

Proof If X € D and Z € D™, then from (5.7) and (5.8), we obtain
JVzX = %w(X)JZ —Jo(Z,X) + Vz(UX) + Vz(JX)
— %w(JX)Z +0(Z,JX). (5.51)
Now, for any W € D+, (5.51) yields

1
g VX, IJW) = g(V,X, W) =g (A,Wz +59(Z. W)JB. JX) =0.

The last equation holds because any leaf M+ of Dt is totally geodesic in M
(Theorem 5.5). Thus VzX € D and this is assertion (5.48). Now, take X, Y € D and
Z € D*. From (5.1) and (5.2), we find that

gU VxZ,Y) = —g(Ayz,Y) = —g(0(X,Y),JZ) =0 (5.52)
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The last equation holds because of Theorem5.6. If X € D and Z, W € D+, from
(5.1) and (5.2) again we have

g VxZ, W) = g(AywZ, X) — g(Aiz W, X).

But, from Theorem 5.5 we obtain
1 1
gAwZ,X) — g(AzW, X) = —zg(Z, W)g(IB, X) + Eg(W, Z)9(UB,X) =0

and, hence
g VxZ, W) =0. (5.53)

Now, (5.49) follows from (5.52) and (5.53). Finally, (5.48) and (5.51) give (5.50). &

Now we prove the converse of Theorem5.13. From (5.36) and (5.48), for any
X € D and Z tangent to M we have

(V). T)X = V;(JX) — J(V,X).
On the other hand, we write Z = Y 4+ Z, where Y € D and Z € D+. Then, from
(5.50) we have B
(V,/T)X = Vy(JX) — J VyX. (5.54)

But (5.1)(5.3) give
1 1 1 1
VyUX) = JVyX = Sw(N)JX = (VX = ~g(X. Y)JB + 59(X. JY)B. (5.55)

Now we have
(a) If dim(D) > 4 and B, # 0 for some x € M, there are X, Y € D such that the
right-hand side of (5.55) does not vanish at x. Therefore, T is not parallel.
(b) If dim(D) = 2, then the right-hand side of (5.55) vanishes and, hence
(V)X =0, (5.56)

for any X € D and Z tangent to M. But (5.49) implies V,Z € D+, for any Z € D+
and Z tangent to M, so that

(VJT)Z = V4(TZ) — TV,Z = —TV,Z = 0. (5.57)

Then, (5.56) and (5.57) prove that T is parallel. [ |
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5.3 Normal CR-Submanifolds of S-manifolds

We want to study here the normal CR-submanifolds for general S-manifolds. In fact,
the normal CR-submanifolds become to be a very wide class of CR-submanifolds.
Actually, either totally f-umbilical submanifolds (see [19] for more details) or CR-
products (see [12]) of an S-manifold are normal CR-submanifolds. We also study
normal CR-submanifolds of an S-space-form, specially in the concrete cases of R?"+$
(with constant f-sectional curvature ¢ = —3s) and H>"*+* (with constant f-sectional
curvature ¢ = 4 — 3s).

5.3.1 Preliminaries

A (2m + s)-dimensional Riemannian manifold (AM, g) endowed with an f-structure
f (that is, a tensor field of type (1, 1) and rank 2m satisfying > + f = 0 [21]) is said

to be a metric f-manifold if, moreover, there exist s global vector fields &1, ..., &
on AM (called structure vector fields) such that, if 1y, . . ., 1, are the dual 1-forms of
&, ..., &, then

ffuz(); 77u°f=0;f2=—1+z77a®€a;

a=1

9, Y) = (X, V) + D 1a(X)na(Y), (5.58)

a=1

forany X, Y e X(AM)anda=1,...,s.
Let F be the 2-form on AM defined by F(X,Y) = g(X, fY), for any X, Y €
X (AM). Since f is of rank 2m, then

MA-- AN AF" £0

and, particularly, AM is orientable.
The f-structure f is said to be normal if

[fﬂf]_’_zzga@dna :O»

a=1

where [f, f] is the Nijenhuis torsion of f.

A metric f-manifold is said to be a K-manifold [5] if it is normal and dF = 0.
A K-manifold is called an S-manifold if F = dn,, for any a. Note that, for s = 0,
a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a quasi-
Sasakian manifold and an S-manifold is a Sasakian manifold. When s > 2, nontrivial
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examples can be found in [5, 13]. Moreover, a K-manifold AM is an S-manifold if and
only if
A Vx&a = —fX, (5.59)

forany X € X(AM) and any o = 1, ..., s, where AV denotes the Levi-Civita con-
nection of g. It is easy to show that in any S-manifold

(AVXNY = D {g(X, Méa + na (X}, (5.60)

a=1

for any X, Y € X(AM). A plane section 7 on a metric f-manifold AM is said to
be an f-section if it is determined by a unit vector X, normal to the structure vector
fields and fX. The sectional curvature of 7 is called an f-sectional curvature. An
S-manifold is said to be an S-space-form if it has a constant f-sectional curvature
c and then, it is denoted by AM(c). In such case, the curvature tensor field AR of
AM (c) satisfies [15]

ARX,Y,Z, W)
= D (9K fWna(YIN(Z) = g(X, f2)11a (Y )13(W)
a3
+ 9, fO)na X)ns(W) — g(fY, f W)n.(X)ns(Z))
¢+ 3s

3
+ G fW)g(Y . f2) — g(X. f2)g(fY . f W)

4
+ %(F(X, WYF(Y,Z) — F(X,Z)F(Y, W)
—2F(X,Y)F(Z, W)), 5.61)

forany X, Y, Z, W € X(AM). Next, let M be a isometrically immersed submanifold
of a metric f-manifold AM (for the general theory of submanifolds, we refer to [3,
22]). We denote by X' (M) the Lie algebra of tangent vector fields to M and by T'(M)+
the set of tangent vector fields to AM which are normal to M. For any vector field
X € X(M), we write

fX =TX + NX, (5.62)

where TX and NX are the tangential and normal components of fX, respectively.
Then, T is an endomorphism of the tangent bundle of M and N is a normal bundle
valued 1-form on such tangent bundle. It is easy to show that if 7 does not vanish, it
defines an f-structure in the tangent bundle of M. The submanifold M is said to be
invariant if N is identically zero, that is, if fX is tangent to M, for any X € X' (M).
On the other hand, M is said to be an anti-invariant submanifold if T is identically
zero, that is, if fX is normal to M, for any X € X' (M). In the same way, for any
V e T(M)*, we write

fV =tV +nVv, (5.63)
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where tV and nV are the tangential and normal components of fV, respectively.
Then, ¢ is a tangent bundle valued 1-form on the normal bundle of M and n is an
endomorphism of the normal bundle of M. It is easy to show that if n does nor vanish,
it defines an f-structure in the normal bundle of M. From now on, we suppose that
all the structure vector fields are tangent to the submanifold M and so, dim(M) > s.
Then, the distribution on M spanned by the structure vector fields is denoted by
M and its complementary orthogonal distribution is denoted by £. Consequently,
if X € £, then n,(X) =0, forany o« = 1, ..., s and if X € M, then fX = 0. In this
context, M is said to be a CR-submanifold of AM if there exist two differentiable
distributions D and D+ on M satisfying

(i) X(M) =D & D+ @ M, where D, D+ and M are mutually orthogonal to each
other;
(ii) The distribution D is invariant by f, that is, f D, = D,, for any x € M,
(iii) Thedistribution D+ is anti-invariant byf,thatis, f Dj C T.(M)*, for anyx € M.

This definition is motivated by the following theorem.

Theorem 5.14 ([16]) Let AM be an S-manifold which is the bundle space of a
principal toroidal bundle over a Kaehler manifold A\M', A : AM —> AM', M
a submanifold immersed in AM, tangent to the structure vector fields and M' a
submanifold immersed in AM' such that there exists a fibration 1 : M —> M’, the
diagram

M - AM

T U A
M 5 AM’

commutes and the immersion i is a diffeomorphism on the fibers. Then, M is a CR-
submanifold of AM if and only if M’ is a CR-submanifold of AM'.

We denote by 2p and ¢ the real dimensions of D and D+, respectively. Then,
we see that for p = 0 we obtain an anti-invariant submanifold tangent to the struc-
ture vector fields and for ¢ = 0 an invariant submanifold. A CR-submanifold of an
S-manifold is said to be a generic submanifold if given any V € T(M)*, there exists
Z € Dt such that V = fZ, a (D, D+)-geodesic submanifold if (X, Z) = 0, for any
X € D and any Z € D+ and a D+-geodesic submanifold if o(Y,Z) = 0, for any
Y,Z € D*. As an example, it is easy to show that each hypersurface of AM which
is tangent to the structure vector fields is a CR-submanifold. Now, we write by P
and Q the projections morphisms of X' (M) on D and D+, respectively. Thus, for any
X € X(M), we have that

X = PX + OX + Zna(X)fa.

a=1

We define the tensor field v of type (1, 1) by vX = fPX and the non-null, normal
bundle valued 1-form u by uX = fOX, for any X € X (M). Then, it is easy to show
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that uov=0and n,ou=mn,0v =0, forany a« = 1, ..., s. Moreover, a direct
computation gives

9(X, Y) = g(uX, u¥) + gwX, v¥) + D" na(X)na(¥), (5.64)

a=1

FX,Y)=g9X,vY), FX,Y)=FQWX,vY), (5.65)

for any X, Y € X(M). From Gauss—Weingarten formulas and by using (5.59), for
any X e X(M), V € TM)t,anda =1, ..., s, we have

Vx&a = —vX, (5.66)
o(X, &) = —uX, (5.67)
Avé, € D (5.68)

Moreover, from (5.60) and the Gauss—Weingarten formulas, if X, Y € X (M), com-
paring the components in D, D+ and T'(M)" respectively, we get

PVyvY — PAyX = vVyY — Z na(Y)PX, (5.69)
a=1
N
QVxvY — QAyX = to(X.Y) = > na(Y)0X, (5.70)
a=1
o(X,vY) + DxuY = uVyY +no(X,Y). (5.71)

From the above formulas and (5.60) we obtain

(Vx0)Y = AwX + 10 (X, Y) = D" (Nf*X + g(iX, f¥)&a), (5.72)
a=1
(Vxu)Y = no(X,Y) — (X, vY), (5.73)

forany X, Y € X(M). Also, from (5.60) and the Gauss—Weingarten formulas again,
we have
VxZ = UAfo — thfZ, (5.74)

tDxfZ = —QVxZ, (5.75)

for any X € X'(M) and any Z € D*. With regard to the integrability of the distrib-
utions involved in the definition of a CR-submanifold, I. Mihai [16] proved that the
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distributions D+ and D+ @ M are always integrable. On the other hand, if p > 0,
the distributions D and D @ D+ are not integrable and the distribution D @ M is
integrable if and only if

o(X,fY) = o(fX, Y), (5.76)

forany X, Y € D.In[12], CR-products of S-manifolds are defined as CR-submanifolds
such that the distribution D @ M is integrable and locally they are Riemannian prod-
ucts My x M,, where M (resp., M) is a leaf of D & M (resp., D). From Theorem
3.1 and Proposition 3.2 in [12], we know that a CR-submanifold M of an S-manifold
is a CR-product if and only if one of the following assertions is satisfied:

Arpof D =0, (5.77)
90X, Y),fZ) =0, X €D, Y € X(M), Z € D", (5.78)
VY eDOM, XD, Y € X(M). (5.79)

5.3.2 Normal CR-Submanifolds of an S-manifold

Let M be a CR-submanifold of an S-manifold AM. We say that M is a normal
CR-submanifold if

N,(X,Y) =2rdu(X,Y) — 22F(X, Y)é,, (5.80)
a=1
for any X, Y € X (M), where N, is denoting the Nijenhuis torsion of v, that is
Ny (X, Y) = (Vix0)Y — (Vyyv)X + v((Vyv)X — (Vxv)Y).
We notice that (5.80) is equivalent to
S*X,Y) =N,(X,Y) —t((Vxuw)Y — (Vyw)X) + ZZS:F(X, V)¢, =0,
a=1

forany X, Y € X(M). Now, we can prove the following characterization theorem in
terms of the shape operator.
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Theorem 5.15 A CR-submanifold M of an S-manifold AM is normal if and only if
AyyvX = vAyX, (5.81)

forany X € D and any Y € D+.

Proof A direct expansion by using (5.72) and (5.73) gives that
S*(X, Y) = A”YvX - UAqu - AuXvY + UAqu, (582)

for any X, Y € X(M). Now, if M is a normal CR-submanifold of AM, (5.81) fol-
lows form (5.82) since uX = 0, for any X € D. Conversely, if (5.81) holds, we use
the decomposition X (M) = D @ D+ & M. First, since uX = 0 for any X € D and
v€, = 0 = u&,, for any «, we deduce from (5.81) and (5.82) that S*(X,Y) =0,
for any X € D and any Y € X(M). Moreover, if Y € DL, from (5.68) we have
Auyé, € DY and so, vA,y€, = 0 dfor any a. Consequently, S*(X, &,) = 0, for any
X € X(M). Finally, if X, Y € D+, (5.82) becomes

S*(X,Y) = v(AxY — Ay X),

since vX = vY =0 and uX = fX, uY = fY. But, from (5.60) we easily show that
AxY = AxX. |

Corollary 2 A CR-submanifold M of an S-manifold is normal if and only if
gloX,vY)+ oY, vX),fZ) =0, (5.83)
g(cX,2)fW) =0, (5.84)
foranyX,Y € D and any Z, W € D*.

Proof Since v is skew-symmetric, from (5.81) we see that M is normal if and only if
gloX,vY),uZ) = —g(o(Y,vX), uZ)m (5.85)

for any X € X(M), Y € D and Z € D*. Now, if M is normal, from (5.85) we get
(5.83) taking X € D and (5.84) taking X € D+. Conversely, if (5.83) and (5.84)
are satisfied, we observe that (5.85) is satisfied too if X € D and X € D+, respec-
tively. Finally, if X € M, we have vX = 0 and, by using that u o v = 0 and (5.67),
o(X,vY) =0, forany Y € D. Thus, (5.85) holds for any X € X'(M). |

Corollary 3 Any normal generic submanifold of an S-manifold is a (D, D*)-
geodesic submanifold.
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From (5.60), (5.67), (5.83), and (5.84), we have

o(fX,2) =fo(X,2), (5.86)
to(fX, fX) = to(X, X), (5.87)
AzX €D, (5.88)

for any X € and any Z € D*. On the other hand, from (5.78) and (5.83)—(5.84), we
deduce

Proposition 1 Each CR-product in an S-manifold is a normal CR-submanifold.

For the converse we prove the following theorems.

Theorem 5.16 Let M be a normal CR-submanifold of an S-manifold. Then, M is a
CR-product if and only if the distribution D & M is integrable.

Proof The necessary condition is obvious. Conversely, let X € D. If Y € D+, then
(5.78)is (5.84). Further, if Y € M, from (5.67) we geto (X, Y) = 0. Finally,if Y € D,
from (5.76) and (5.83) we obtain (5.78). |

Theorem 5.17 Let M be a normal CR-submanifold of an S-manifold such that du =
0. Then, M is a CR-product.

Proof A straightforward computation gives, by using the hypothesis and (5.72),
g((Vxv)Y,Z) = Z{dna(vX, V)1 (Z) — dne(WZ, X)na(Y)}, (5.89)

a=1

forany X, Y,Z € X(M).Now,if Y € D, from (5.64) and (5.65) we getdn, (vX,Y) =
FwX,Y) = gwX,vY) = g(X,Y). So, (5.89) becomes

(Vxv)Y = > g(X, V)&,

a=1

forany X € X(M) and any Y € D. Comparing with (5.72) we have o(X, ¥) = 0 and
so (5.78) holds. |

We say that v is n-parallel it

(Vx0)Y = D {g(PX, PY){, — na(Y)PX),

a=1

for any X, Y € X(M). Then, from (5.64), (5.65), and (5.89), we prove
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Proposition 2 Any normal CR-submanifold of an S-manifold such that du = 0 is
n-parallel.

Given a CR-submanifold M of an S-manifold, a vector field X € X' (M) is said to
be D-Killing if
g(PVzX,PY)+ g(PVyX, PZ) =0, (5.90)

for any Y,Z € X(M). We notice that it is possible to characterize normal CR-
submanifolds in terms of D-Killing vector fields.

Theorem 5.18 A CR-submanifold M of an S-manifold is a normal CR-submanifold
if and only if any Z € D~ is a D-Killing vector field

Proof GivenX,Y € X (M) and Z € D+, from (5.74) we get

9(VxZ,Y) +g(VyZ, X) = g(AzX,Y) — g(tDxfZ, Y)
+ gAY, X) — g(tDyfZ, X). (5.91)

But g(vAg Y, X) = —g(AzvX, Y) and so, from (5.91)
g(PVxZ, PY) + g(PVyZ, PX) + g(QVxZ, QY) + g(QVyZ, 0X)

+ > 10 (VxZ)a(Y) + 10 (VyZ)na (X))}

a=1

= g((WAz —Azv)X,Y) — gtDxfZ,Y) — g(tDyfZ, X). (5.92)

Now, since itis easy to show that 7, (VxZ) = Oforanya = 1, ..., s, by using (5.75),
we deduce that (5.92) becomes

g(PVxZ, PY) + g(PVyZ, PX) = g((vAy; — Azv)X, Y). (5.93)

Consequently, if Z is a D-Killing vector field, from (5.81) we obtain that M is a
normal CR-submanifold. Conversely, if X € D, the right part of the equality (5.93)
vanishes by using (5.81). If X € D+, then vX = 0 and from (5.84), AzX € D™, that
is, vA;zX = 0 and the right part of (5.93) vanishes again. Finally, if X ¢ M, vX =0
and from (5.68), Az X € D+, In any case, from (5.93) we have (5.90). |

To end this section, we recall that a submanifold M of an S-manifold is said to be
totally f-umbilical [19] if there exists a normal vector field V such that

o(X,Y) =g(fX. MV + Z{Ua(Y)U(X, o) + (X))o (Y, &)}, (5.94)

a=1

for any X, Y € X(M). These submanifolds have been studied and classified in [9].
Since from (5.94) we easily get (5.83) and (5.84), then we have the following theorem.
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Theorem 5.19 Any totally f-umbilical CR-submanifold of an S-manifold is anormal
CR-submanifold.

5.3.3 Normal CR-Submanifolds of an S-space-form

Let AM(c) a (2m + s)-dimensional S-space-form, where ¢ is denoting the constant
f-sectional curvature and let M be a CR-submanifold. Firstly, we can prove

Proposition 3 [f M is a normal CR-submanifold, then

c+3s
IAZX|1* + lloX, 2)|I> — g(to(Z, Z), to(X, X)) = 1 (5.95)
for any unit vector fields X € D and Z € D*.
Proof From the Codazzi equation, we have
ARX,fX,Z,fZ) = g(Dxo(fX,Z) — Dxo(X, Z), fZ)
—g(o(X, /X1, 2),f2)
+ 90X, VxZ) — o(fX, VxZ), fZ). (5.96)
Now, from (5.60), (5.84), and (5.86), a direct expansion gives
9(Dxo(fX, Z) — Do (X, Z),fZ) = —2|lo(X, 2)|I*. (5.97)

On the other hand, since X € D is a unit vector field (and so, fX too), we see from
(5.59) that n,([X, fX]) = 2 for any « and from (5.70) that Q[X, fX] =to (X, X) +
to(fX, fX). Thus, taking into account (5.67), (5.84), and (5.87), we get
9o (X, fX], 2),f2) = 2g(o(to(X, X), Z), fZ) — 2s. (5.98)
However, since Z € D+, by using (5.70) it is easy to show that
Therefore, from (5.98) we have
g(o(X, /X1, 2),fZ) = =25 — 2g(to(X, X), to(Z, Z)). (5.99)

Next, since 17, (VixZ) = 1,(VxZ) = 0 for any «, from (5.69), (5.83), (5.84), and
(5.88), we obtain

90X, VxZ) — o(fX, VxZ),fZ) = =2||AX|*. (5.100)
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Finally, from (5.61) we deduce AR(X, fX, Z,fZ) = —(c — s)/2. Then, substituting
(5.97), (5.99), and (5.100) into (5.96), we complete the proof. [ |

Corollary 4 If M is a normal D*-geodesic CR-submanifold of an S-space-form
AM(c), then ¢ > —3s.

Proposition 4 [f M is a normal CR-submanifold of an S-space-form AM(c) such
the distribution D ® M is integrable, then ¢ > —3s and M is a CR-product.

Proof 1Ttis clear that M is a CR-product due to Theorem 5.16. Moreover, from (5.78)
we have g(0(X, Y),fZ) = 0.forany X, Y € D. Then, if X € D is a unit vector field,
to(X, X) = 0 and, by using (5.95), ¢ > —3s. |

Now, we are going to study the concrete case of the (2m + s)-dimensional euclid-
ean S-space-form R?"*+$(—3s) (see [13] for the details of this structure). In this
context, we can prove

Theorem 520 If M is a normal (D, D )-geodesic and D*-geodesic
CR-submanifold of R¥?"+5(=3s), then it is a CR-product.

Proof From (5.95), we have AzX =0 for any X € D and any Z € D+. So, from
(5.77), M is a CR-product. |

Corollary 5 A normal D*-geodesic generic submanifold of R*"+5(—3s) is a CR-
product.

Another interesting example of S-space-form is H?"+5(4 — 3s), a generalization
of the Hopf fibration 7 : §2m+l 5 PC™ introduced by Blair in [5] as a canonical
example of an S-manifold playing the role of the complex projective space in Kaehler
geometry and the odd-dimensional sphere in Sasakian geometry. This space is given
by (see [5, 6] for more details)

B = (.. ox) € 0 @ ) = o= ()
and its f-sectional curvature is constant equal to 4 — 3s. Let M be a CR-submanifold
of H?"+5(4 — 3s) (we always suppose s > 2). Denote by v the orthogonal comple-
mentary distribution of fD+ in T(M)*. Then, fv C v. Let

{Ela-~-7E2p}» {Flv-~~qu}7 {V19~-~aVr7fV]v~-~aer}v

be local fields of orthonormal frames on D, D+ and v, respectively, where 2r is the
real dimension of v. First, we prove

Lemma 6 IfM is a CR-product in H*"*(4 — 3s), then
loX,2)|| =1, (5.101)

for any unit vector fields X € D and Z € D*.
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Proof We know, from Proposition 1, that M is a normal CR-submanifold. Since,
¢ =4 —3s, from (5.77), (5.78) and (5.95) we complete the proof. [ |

Lemma 7 If M is a CR-product in H?"+5(4 — 35), the vector field o(E;, F,), i =
1,....2panda =1, ...,q, are 2pq orthonormal vector fields on v.

Proof From (5.101) and by the linearity, we get g(o(E;, Z), 0(E;, Z)) = 0, for any
i,j=1,...,2p,i # jand any unit vector field Z € D+. Now, from (5.84), ifg=1,
we complete the proof. If ¢ > 2, by linearity again, we have g(o (E;, F,), o (Ej, Fp)) +
g(o(E;, Fy), 0(E;, Fy)) =0,forany i,j=1,...,2p,i#j,a,b=1,...,q,a #b.
Next, by using (5.79) and the Bianchi identity, we obtain R(X, Y, Z, W) = 0, for any
X, YeD,Z, W e DL, where R is denoting the curvature tensor field of M. But, if
i #janda # b, (5.61) gives AR(E;, Ej, F,, F;) = 0. Then, from the Gauss equation
we get
90 (Ei. Fo). 0(E;. Fy)) — g(0(Er. Fy). 0(E;. Fo)) = 0,

for any i,j=1,...,2p, i #j, a,b=1,...,q, a# b and this completes the
proof. |

Now, we study the normal CR-submanifolds of H>"*+$(4 — 3s).

Theorem 5.21 Let M be a normal CR-submanifold of H?"*(4 — 3s), s > 2, such
that the distribution D & M is integrable. Then

(i) M is a CR-product My x M.

(ii) m=pg+p+gq.

(iii) If n=pq+p+q, then M, is an invariant totally geodesic submanifold
immersed in H2"t5 (4 — 3s).

(iv) llol? = 29(2p + 5).

v) Ifloll?> = 2g2p + s), then M, is an S-space-form of constant f-sectional cur-
vature 4 — 3s and M»> has constant curvature 1.

(vi) If M is a minimal submanifold, then p <4p(p + 1)+ 2p(g+s) +q(g — 1),
where p denotes the scalar curvature and the equality holds if and only if
loll2 = 29(2p + ).

Proof (i) follows directly from Proposition4. Now, from Lemma 7, dim(v) = 2(m —
p) —2q > 2pq. So (ii) holds. Next, suppose thatm = pg + p 4+ q.If X, Y, Z € D and
W e D+, from (5.61), AR(X, Y, Z, W) = 0 and, by using a similar proof to that one
of Lemma7, R(X, Y, Z, W) = 0. So, the Gauss equation gives

gloX, W), 0(Y,Z)) —g(oc(X,Z),0(Y, W)) =0. (5.102)

Since from Proposition 3.2 of [12], o(fX, Z) = fo(X, Z), if we put ¥ = fX, we
have, by using (5.86), g(c(fX, W), (c(X, Z)) = 0. Now, if we put Z = fY, then
g(c(X,Y),0(X,W)) =0. Thus, by linearity, we get g(c(X,W),o(Y,Z)) +
g(c(X,Z),0(Y, W)) = 0. Consequently, from (5.102)
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glo(X, W),o(Y,Z)) =0, (5.103)

for any X,Y,Z € D and W € D*. Since now dim(v) = 2pq, (5.103) implies that
0(X,Y) =0, for any X, Y € D and so, (iii) holds from Theorem 2.4(ii) of [12].
Assertions (iv) and (v) follow from Theorem 4.2 of [12]. Finally, if M is a minimal
normal CR-submanifold of H?"+¥(4 — 3s), a straightforward computation gives

p=4p(p+1)+25(p+9) +qg—1) +6pg— llo]*.
Then, by using (iv), the proof is complete. |

Theorem 5.22 Let M be a normal, (D, D*)-geodesic and D*-geodesic CR-sub-
manifold of H*"*5(4 — 3s). Then,

(i) AzX| = 1, for any unit vector fields X € D and Z € D+.
(ii) ||o|l> > 2q(p + s) and the equality hold if and only if (D, D) € fD*.

Proof (i) follows immediately from (5.95). Now, considering the above-mentioned
local fields of orthonormal frames for D, D+, and v, a straightforward computation
using the hypothesis gives (ii). |

Finally, from (5.84) and (5.95), we can prove

Corollary 6 Let M be a normal D*-geodesic generic submanifold of H*"** (4 —
3s). Then

(1) AzX | = 1, for any unit vector fields X € D and Z € D
(i) llol> =2q(p + ).
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