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12.1 Introduction

An almost complex structure on a smooth manifold M is a (1, 1)-tensor field J
satisfying the condition

J2 = −I (12.1)

where I is the identity operator on the tangent space at each point. M furnished with
an almost complex structure is known as an almost complex manifold and is even-
dimensional and orientable. An almost complex structure that comes from a complex
structure is called integrable, and when one wishes to specify a complex structure as
opposed to an almost complex structure, one calls it an integrable complex structure.
This integrability condition is equivalent to the vanishing of the Nijenhuis’ tensor
[J, J] defined by

[J, J](X, Y) = [JX, JY ] − [X, Y ] − J[X, JY ] − J[JX, Y ]

for arbitrary vector fields X and Y on M. An almost complex manifold is called
an almost Hermitian manifold if there exists a Riemannian metric g such that
g(JX, JY) = g(X, Y). An almost Hermitian manifold is said to be Hermitian if the
underlying almost complex structure is integrable.

One may note that, if g is semi-Riemannian, then its signature has even number
(including 0) of positive signs and even number (including 0) of negative signs.
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AKaehler manifold is a Hermitianmanifold whose complex structure J is parallel
with respect to the Levi-Civita connection∇ of g. A holomorphic section of aKaehler
manifold is section obtained by a plane element spanned by a non-null tangent vector
X (i.e. g(X, X) �= 0) at a point and JX. The sectional curvature of M with respect
to a holomorphic section is called the holomorphic sectional curvature. A Kaehler
manifold is said to be a complex space-form if its holomorphic sectional curvature is
independent of the choice of a holomorphic section at each point. A complex space-
form with constant holomorphic sectional curvature c is denoted by M(c) whose
curvature tensor is given by

R(X, Y)Z = c

4
[g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX

− g(JX, Z)JY + 2g(X, JY)JZ] (12.2)

One can easily check that c is constant on M.
At this point, we denote an almost Hermitian manifold by (M̄, g) with the almost

complex structure J . Generalizing the cases of invariant and anti-invariant (i.e., totally
real) submanifolds, Bejancu [2] introduced the notion of a CR-submanifold as fol-
lows.

Definition 1 A CR-submanifold of a semi-Riemannian almost Hermitian manifold
(M̄, g) is a non-degenerate submanifold (M, g) of (M̄, g) admitting a smooth distri-
bution D : p → Dp ⊂ TpM such that

(1) D is invariant, i.e., JDp = Dp at each point p ∈ M and
(2) the orthogonal complementary distribution D⊥ is anti-invariant,

i.e. JD⊥
p ⊂ (TpM)⊥ for each p ∈ M.

Remark 1 The above definition would not be feasible if D was degenerate with
respect to g, because D and D⊥ are not necessarily complementary in TM for degen-
erate D. Henceforth, we will assume D and D⊥ both non-degenerate with respect to
g.

Recall that a CR-structure on a smooth manifold M is a complex subbundle H of
the complexified tangent bundle C(TM) of M such that (H ∩ H̄)p = 0 at each p ∈ M
andH is involutive, i.e.,X, Y ∈ H ⇒ [X, Y ] ∈ H. It is known that, on aCR-manifold,
there exist a real distribution D and a field of endomorphisms P : D → D such
that P2 = −I, D = Re(H ⊕ H̄) and Hp = {X − iPX : X ∈ Dp}. Blair and Chen [7]
proved that a proper CR-submanifold M of a Hermitian manifold is a CR-manifold.
This justifies the term “CR-submanifold.”

If the holomorphic distribution D is equal to the tangent bundle TM, then M
reduces to an invariant submanifold of M̄, and if the totally real distribution D⊥
equals TM then M reduces to a totally real submanifold of M̄. When the dimensions
of D⊥ and (TM)⊥ are equal, M is said to be a generic submanifold of M̄.

For a tangential vector field X and a normal vector field V on a CR-submanifold
of an almost Hermitian manifold M̄, we have the following decomposition formulas:
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JX = PX + FX (12.3)

JV = tV + f V (12.4)

where PX and tV are the tangential parts of JX and JV , respectively, and FX and
f V are the normal parts of JX and JV , respectively. It is easy to verify from the
preceding two equations that

g(FX, V ) + g(X, tV ) = 0 (12.5)

and that g(PX, Y) is skew-symmetric in X, Y , and g(fU, V ) is skew-symmetric in
U, V . Operation of J on Eqs. (12.3) and (12.4) yields the following relations:

P2 = −I − tF, FP + fF = 0 (12.6)

Pt + tf = 0, f 2 = −I − Ft (12.7)

Let us denote the projection operator on D by l and that on D⊥ bt l⊥. Then, evidently

l + l⊥ = I, l2 = l, (l⊥)2 = l⊥, ll⊥ = l⊥l = 0

l⊥Pl = 0, Fl = 0, Pl = P

Using this in the second equation of (12.6) one gets

FP = 0 (12.8)

Thus, the second equation of (12.6) reduces to

fF = 0

Taking f V for V in Eq. (12.5) we find

tf = 0 (12.9)

Using this in the first equation of (12.7) gives

Pt = 0 (12.10)

Consequently, the first equation of (12.6) implies

P3 + P = 0 (12.11)
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and the second equation of (12.7) implies

f 3 + f = 0 (12.12)

Equations (12.11) and (12.12) show that P and f define f -structures (for details on
an f -structure, we refer to Yano [18]) on the tangent and normal bundles of M,
respectively. Setting l = P2 and l⊥ = I − l, one can easily verify the following result
of Yano and Kon [21].

Theorem 12.1 A submanifold M of an almost Hermitian manifold M̄ is a CR-
submanifold if and only if FP = 0.

12.2 Basic Equations and Results

According to a theorem of Flaherty [12], we know that the signature of a Hermitian
metric g on an almost complex manifold has even number of positive signs and
even number of negative signs. Thus, g cannot be Lorentzian which is essential for a
physical space-time of relativity. For a four dimensional space-time, we can choose
a coordinate system comprising two real coordinates x, y and complex null coordi-
nates z + it and z − it. The aforementioned facts suggest that a complex structure
can be defined only on its two dimensional submanifold defined by x = constant
and y = constant. With this motivation and the purpose of applying our results in
relativity theory, we consider a class of submanifolds of a semi-Riemannian Kaehler
manifold such that there may be complementary complex and real distributions. One
of the settings for such a distribution can be provided by singling out holomorphic
distributions of the CR-submanifolds (see for example, Penrose [15]).

As pointed out in the previous section, a CR-submanifold (M, g) has an induced
f -structure defined by the (1, 1) tensor field P on M, and hence the metric g can
be Lorentzian. Our study is not only applicable within the framework of general
relativity, but also in the theory of semi-Riemannian manifolds whose metrics have
signatures compatible with the induced f -structure. We also note in our context that
indefinite Kaehler manifolds (in particular, complex space-forms) were studied by
Barros and Romero in [1].

We denote the Levi-Civita connection of the induced metric g on the CR-
submanifold (M, g) of a semi-Riemannian Kaehler manifold (M̄, g, J) by ∇ and
that of (M̄, g) by ∇̄. The second fundamental form of M is denoted by B and the
Weingarten operator by AV for an arbitrary normal vector field V on M. They are
related by g(AV X, Y) = g(B(X, Y), V ). The Gauss and Weingarten formulas are

∇̄XY = ∇XY + B(X, Y)

∇̄X V = −AV X + DX V
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The Gauss and Codazzi equations are

g(R̄(X, Y)Z, W ) = g(R(X, Y)Z, W ) − g(B(Y , Z), B(X, W )

+ g(B(X, Z), B(Y , W )

[R̄(X, Y)Z]⊥ = (∇XB)(Y , Z) − (∇Y B)(X, Z)

where

(∇XB)(Y , Z) = DX(B(Y , Z)) − B(∇XY , Z) − B(Y ,∇XZ) (12.13)

X, Y , Z, W denote arbitrary vector fields tangent to M, and D denotes the normal
connection ofM. Also,R and R̄ denote the curvature tensors of∇ and ∇̄, respectively.

The covariant derivatives of the operators P, F, t, f are defined along M as

(∇XP)Y = ∇X(PY) − P(∇XY) (12.14)

(∇XF)Y = DX(FY) − F(∇XY) (12.15)

(∇Xt)V = ∇X(tV ) − t(DX V ) (12.16)

(∇Xf )V = DX(f V ) − f (DX V ) (12.17)

At this point, we use the Kaehlerian condition ∇̄J = 0. The Gauss and Weingarten
formulas provide the following equations

(∇XP)Y = AFY X + tB(X, Y) (12.18)

(∇XF)Y = −B(X, PY) + fB(X, Y) (12.19)

(∇Xt)V = Af V X − PAV X (12.20)

(∇Xf )V = −FAV X − B(X, tV ) (12.21)

We now recall the following results and definitions from Yano and Kon [20] and
Yano and Ishihara [19], that will be used later.

Lemma 1 Let M be a CR-submanifold of a Kaehler manifold M̄. Then, for any
vector fields X and Y in D⊥ we have

AFXY = AFY X. (12.22)

Theorem 12.2 Let M be a CR-submanifold of a Kaehler manifold M̄. Then, the
totally real distribution D⊥ is integrable and its maximal integral submanifold M⊥
is an anti-invariant (totally real) submanifold of M.
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Definition 2 The f -structure induced on the CR-submanifold of a Kaehler manifold
is said to be partially integrable if D is integrable and the almost complex structure
induced on each leaf of D is integrable.

Theorem 12.3 Let M be a CR-submanifold of a Kaehler manifold M̄. Then the
f -structure induced on M is partially integrable if and only if

B(PX, Y) = B(X, PY) (12.23)

for all X and Y in D.

Definition 3 The f -structure induced on the CR-submanifold M of a Kaehler man-
ifold is said to be normal if the (1, 2)-tensor field S defined by

S(X, Y) = [P, P](X, Y) − t((∇XF)Y − (∇Y F)X)

vanishes identically on M.

This normality condition is equivalent (see [20]) to AFX = PAFX for any X tangent
to M.

Definition 4 A CR-submanifold of a Kaehler manifold is said to be mixed totally
geodesic if B(X, Y) = 0 for any vector field X ∈ D and Y ∈ D⊥.

12.3 Mixed Foliate CR-Submanifolds

In this section, we will deal with a subclass of mixed totally geodesic
CR-submanifolds characterized by the partial integrability of f -structure induced
on them.

Definition 5 A CR-submanifold of a Kaehler manifold is called mixed foliate if it
is mixed totally geodesic and the f -structure induced on it is partially integrable.

Next, we recall the following lemma (see Yano and Kon [20]).

Lemma 2 Let M be a mixed foliate CR-submanifold of a Kaehler manifold M̄. Then,
for all V ∈ (TM)⊥ we have

AV P + PAV = 0 (12.24)

Now, we recall the following theorem of Bejancu et al. [4], which holds for a
positive definite Kaehler metric.

Theorem 12.4 If M is a mixed foliate proper CR-submanifold of a complex space-
form M̄(c), then c ≤ 0.
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So, the following question arises “what sort of constraint is imposed on the pos-
sible values of c when the metric of M̄(c) is indefinite?” Sharma and Duggal [17]
provided an answer to this question in a special case in the form of the following
result.

Theorem 12.5 If the mixed foliate proper CR-submanifold of a semi-Riemannian
complex space-form M̄(c) is such that the metric g restricted to D is definite and g
restricted to D⊥ is indefinite, then c = 0.

Proof The curvature tensor of M̄(c) is given by Eq. (12.2). Restricting the vector
fields X, Y to D and Z to D⊥ we find that

[R̄(X, Y)Z]⊥ = c

2
g(PY , X)JZ (12.25)

Equation (12.13) provides

(∇XB)(Y , Z) = −B(∇XY , Z) − B(Y ,∇XZ)

since M is mixed totally geodesic. Anti-symmetrizing the last equation with respect
to X and Y we get

(∇XB)(Y , Z) − (∇Y B)(X, Z) = −B([X, Y ], Z)

− B(Y ,∇XZ) + B(X,∇Y Z)

As per our hypothesis, M is mixed foliate and hence, by the integrability of D, the
above equation reduces to

(∇XB)(Y , Z) − (∇Y B)(X, Z) = −B(Y ,∇XZ) + B(X,∇Y Z) (12.26)

As Z is any vector field in D⊥, there is a normal vector field V such that Z = JV .
Therefore, Z = tV and f V = 0. Consequently, we have

∇Y Z = (∇Y t)V + tDY V = tDY V − PAV Y

where we used Eq. (12.20). The Eq. (12.10) shows that tDY V ∈ D⊥. The use of
Lemma2 transforms equation (12.26) into

(∇XB)(Y , Z) − (∇Y B)(X, Z) = B(X, AV PY) + B(PY , AV X) (12.27)

Taking X = PY , substituting the value JV for Z , and taking inner product with V
provides

g(AV PY , AV PY) = − c

4
g(PY , PY)g(V, V ) (12.28)

By hypothesis, g restricted to D is definite. By Lemma2, AV PY = −PAV Y . Thus,
the above equation implies the inequality

http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
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cg(V, V ) = cg(Z, Z) ≤ 0

for any Z ∈ D⊥. Again, by hypothesis, g restricted to D⊥ is indefinite, and therefore,
D⊥ does contain at least one space-like vector field Z1 (i.e., g(Z1, Z1) > 0) and a
time-like vector field Z2 (i.e., g(Z2, Z2) < 0). Consequently, we get c ≥ 0 and c ≤ 0.
Thus, we conclude that c = 0, completing the proof.

Corollary 1 Under the hypothesis of the preceding theorem, we have

AV P = 0 (12.29)

for every V ∈ JD⊥.

Proof It follows from (12.28) and the conclusion c = 0 of Theorem12.5, that
g(AV PY , AV PY) = 0. Since AV P = −PAV , the vector field AV PY ∈ D. The hypoth-
esis that g is definite on D, implies that (12.28) holds.

Remark 2 The following result of Chen [8] “A CR-submanifold of Cn is mixed
foliate if and only if it is a CR-product, i.e., the product of the leaves of D and D⊥”
can be shown to be valid for both definite and indefinite metrics.

Employing it for the mixed foliate CR-submanifold M under the hypothesis of the
Theorem12.5, it follows straightaway that M is a CR-product. This can be proved
independently (without using Chen’s theorem) in another way to gain more insight
into the structure of M. First, let us establish the following lemma.

Lemma 3 A necessary and sufficient condition for the integrability of the f -structure
induced on a mixed foliate proper CR-submanifold M of a Kaehler manifold M̄ is
that AFY P = 0 for any vector field Y tangent to M.

Proof Weknow that a propermixed foliateCR-submanifoldM of aKaehlermanifold
M̄ has a partially integrable f -structure and integrable D⊥. The f -structure would be
completely integrable if its Nijenhuis tensor [P, P] vanishes identically, i.e.,

[PX, PY ] + P2[X, Y ] − P[PX, Y ] − P[X, PY ] = 0.

For X, Y ∈ D, the integrability of D implies [P, P](X, Y) = 0. For X, Y ∈ D⊥, the
integrability of D⊥ implies [P, P](X, Y) = 0. For X ∈ D and Y ∈ D⊥ we observe
that

[P, P](X, Y) = (∇PXP)Y − (∇PY P)X − P[(∇XP)Y − (∇Y P)X]
= AFY PX − PAFY X = 2AFY PX

where Eqs. (12.18) and (12.24) have been used. Hence, the f -structure induced on
M is integrable if and only if AFY P = 0 for any V in JD⊥.
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Definition 6 The f -structure induced on the CR-submanifold of a Kaehler manifold
is said to be normal if the (1, 2)-tensor field S defined by

S(X, Y) = [P, P](X, Y) − t[(∇XF)Y − (∇Y F)X]

vanishes identically.

It has been shown in [20] that the normality of the f -structure induced on the CR-
submanifold of aKaehlermanifold is equivalent toAFX P = PAFX , for any vector field
X tangent toM. This holds for a definite as well as an indefinite metric. The following
result characterizes the intrinsic structure of M hypothesized as in Theorem12.5.

Theorem 12.6 Under the hypothesis of Theorem12.5, the f -structure induced on M
is integrable and normal. Moreover, if D⊥ is parallel, then M is locally a CR-product
MT × M⊥, where MT is flat and M⊥ is a totally geodesic real submanifold of M.

Proof We conclude from Eq. (12.28) and the conclusion c = 0 of Theorem12.5
that AV P = 0. Hence Lemma3 asserts that the f -structure on M is integrable. Now,
the necessary and sufficient condition for the normality of the f -structure on M
is PAV = AV P for any V ∈ JD⊥. This is automatically satisfied since we have
AV P = 0 (corollary to Theorem12.5 and Lemma2). Thus, the structure is also nor-
mal. It can be shown with the aid of Eq. (12.18) that the fundamental 2-form �

of the f -structure is closed. It therefore follows from a result of Goldberg [13] that
(∇XP)Y = 0 forX ∈ D. The expression (12.18) for (∇XP)Y ensures that it lies inD⊥,
which is clear from the result PAV X = −AV PX = 0 so that AV X ∈ D⊥. Next, from
Eq. (12.18) and Lemma1 we have (∇XP)Y = (∇Y P)X for all X, Y ∈ D⊥. There-
fore, g((∇XP)Y , Z) = g((∇Y P)X, Z) for all X, Y ∈ D⊥ and Z ∈ T(M). This means,
(∇X�)(Y , Z) = −(∇Y�)(Z, X) whence we find (∇Z�)(X, Y) = 0. This shows that
(∇ZP)X ∈ D, but as shown earlier, (∇ZP)X ∈ D⊥ for any Z and X tangent to M. We
had also proved that (∇ZP)X = 0 whenever X ∈ D and Z is tangent to M. Conse-
quently, we obtain (∇ZP)X = 0 for any Z and X tangent toM, i.e.∇P = 0. Applying
Chen’s result [8] “A CR-submanifold of a Kaehler manifold is a CR-product if and
only if ∇P = 0,” we conclude that M is MT × M⊥, where MT is a leaf of D totally
geodesic in M and M⊥ is a leaf of D⊥ totally geodesic in M. This shows that MT is
flat, and hence completes the proof.

Proposition 1 Under the hypothesis of Theorem12.5, if D⊥ is parallelizable and
the normal connection is flat, then M is locally flat.

Proof Since D⊥ is parallelizable, we can choose an orthonormal base (ξa) of D⊥.
If (ηa) denotes its dual, then one can show that FX = ηa(X)Jξa and tJξa = −ξa.
Hence, we have

S(X, Y) = NP(X, Y) − t[(∇XF)Y − (∇Y F)X]

http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
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Therefore, as the f -structure is integrable and normal, we obtain

(dηa)(X, Y)ξa − ηa(Y)tDXJξa + ηa(X)tDY Jξa = 0

But the normal connection is flat, and so dηa = 0. For such a structure we know from
Blair [5] that Lξag = 0. Consequently, ∇ξa = 0 and hence R(X, Y)ξa = 0, i.e., M⊥
is locally flat. Hence, M is locally flat. This completes the proof.

Remark 3 If M of the foregoing proposition was of dimension 4 and complete,
and the f -structure globally framed, then M would be a quotient of the Minkowski
space-time of special relativity.

12.4 Normal Mixed Totally Geodesic CR-Submanifolds

Let us consider a class of CR-submanifolds of a Kaehler manifold, which are mixed
totally geodesic with distribution D not necessarily integrable (unlike that of a mixed
foliate CR-submanifold) and the f -structure induced on M is normal.

Definition 7 A CR-submanifold M of a Kaehler manifold M̄ is said to be normal
mixed totally geodesic if it is mixed totally geodesic and the f -structure induced on
M is normal.

We state and prove the following result.

Theorem 12.7 Let M be a normal mixed totally geodesic CR-submanifold of a
complex space-form M̄(c). Then,

(1) if g and W = A2
V + AFAV Z (V ∈ JD⊥ and Z = JV ) are positive definite on D,

then c ≥ 0 and
(2) if g is positive definite on D and indefinite on D⊥, then W cannot be definite on

D. Also, c = 0 if and only if W = 0 on D.

Proof Supposing X, Y ∈ D, using Codazzi equation and the expression (12.2) for
the curvature tensor of M̄(c) we can show that

B(Y , PAV X) − B(X, PAV Y) − B([X, Y ], Z) = c

2
g(PY , X)JZ

where Z = JV ∈ D⊥. Taking its inner product with V we get

g(AV Y , PAV X) − g(AV X, PAV Y) − g(AV Z, [X, Y ]) + c

2
g(PY , X)g(V, V ) = 0

(12.30)
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It can be shown by a straightforward computation that

B(PX, Y) − B(X, PY) = F[X, Y ]

which, in turn, implies that

g(AV PX + PAV X, Y) = g([X, Y ], Z)

Substituting PY for X in Eq. (12.30) gives

g(W Y , Y) = c

2
g(V, V )g(Y , Y) (12.31)

where we have used the normality condition AV P = PAV . If g and W (as defined
in Theorem12.7) are positive definite on D, then (12.31) implies that c ≥ 0, which
proves part (1). Let W be definite on D. If g is positive definite on D and indefinite
on D⊥, then (12.31) implies cg(V, V ) = cg(Z, Z) ≥ 0. Now, Z being in D⊥ could
be space-like or time-like. Hence c = 0, and therefore the operator W vanishes on
D, which contradicts our hypothesis that W is definite. The last part of (2) follows
from Eq. (12.31). This completes the proof.

Remark 4 For the case when g is definite on D and indefinite on D⊥, we compare
Theorem12.5 and part (2) of the Theorem12.7. As a consequence of Theorem12.5,
M reduces to a CR-product provided the f -structure on it is globally framed. On the
other hand Theorem12.7 involves the operator W on D. The condition that c may
vanish, is that W must vanish identically on D. This is quite compatible with the
consequence of Theorem12.5 in that if we assume that M of Theorem12.7 (part
(2)) is a CR-product then we must have AV vanish on D and hence the operator
W vanishes on D, thus reducing c to 0. Hence, we claim to have gotten a wider
class of CR-submanifolds, as hypothesized in part (2) of Theorem12.7, which can
be embedded in Cn.

12.5 Totally Umbilical CR-Submanifolds

This section is devoted to totally umbilical CR-submanifolds of a Kaehler manifold.
We denote the dimension of the totally real distribution D⊥ by q. First, we state and
prove

Proposition 2 Let M be a CR-submanifold of a Kaehler manifold. Then both the
distributions D and D⊥ are non-degenerate.

Proof Let D be degenerate. Then there exists a nonzero vector field X ∈ D such that
g(X, Y) = 0 for all Y ∈ D. As D and D⊥ are complementary and orthogonal to each
other, we conclude that g(X, Y) = 0 for all Y ∈ TM. Hence X = 0 because TM is
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nondegenerate. But X is nonzero. Hence, we arrive at a contradiction. This proves
that D is nondegenerate. Similarly, one can show that D⊥ is non-degenerate.

Next, we state and prove

Proposition 3 The mean curvature vector μ of a totally umbilical CR-submanifold
of a Kaehler manifold belongs to JD⊥.

Proof Total umbilicity of M means B(X, Y) = g(X, Y)μ. Consider any X ∈ D and
V in the complementary orthogonal subbundle to JD⊥ in TM⊥. Then we have

g(J(∇̄XX), JV ) = g(∇̄XJX, JV )

= g(∇XJX + g(X, JX)μ, JV ) = 0

g(J(∇̄XX), JV ) = g(∇̄XX, V )

= g(∇XX + g(X, X)μ, V ) = g(X, X)g(μ, V ).

Thus we find g(X, X)g(μ, V ) = 0. By the preceding proposition, we conclude that
g(μ, V ) = 0, i.e. f μ = 0. Hence μ ∈ JD⊥, completing the proof.

Let us recall the following result of Bejancu [3] for a positive definite metric.

Theorem 12.8 Let M be a totally umbilical proper CR-submanifold of a Kaehler
manifold M. For q > 1, M reduces to a totally geodesic submanifold and is locally
a Riemannian product of an invariant and an anti-invariant submanifold of M.

That this theorem holds for an indefinite metric, was proved by Duggal and Sharma
[11]. The proof is slightly longer than that for the positive definite case, and is given
below.

Proof By virtue of Lemma1, we have AFXY = AFY X for all X, Y ∈ D⊥. As tμ ∈
D⊥, for any X ∈ D⊥ we have AFXtμ = AFtμX. As M is totally umbilical, we have
B(X, Y) = g(X, Y)μ and AV X = g(μ, V )X. Hence we obtain

g(tμ, X)tμ = g(tμ, tμ)X (12.32)

for all X ∈ D⊥. Since q > 1, it follows, upon contraction of Eq. (12.32) at X with
respect to a local orthonormal basis of D⊥, that g(tμ, tμ) = 0. Hence tμ = 0. Now,
let X be a vector field tangent to M. Then

(∇Xt)μ = ∇Xtμ − tDXμ = −tDXμ

Using Eq. (12.20) in the above equation provides

−tDXμ = Af μX − PAμX = −g(μ,μ)PX

http://dx.doi.org/10.1007/978-981-10-0916-7_2
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UsingPt = 0,we get g(μ,μ)P2X = 0.AsM is properCR-submanifold, we conclude
that g(μ,μ) = 0. Further, (∇XP)Y = AFY X + tB(X, Y) = −g(Y , tμ) = 0. Thus we
obtain∇XP = 0, which implies through Chen’s result [8] mentioned earlier, thatM is
locally a product of an invariant submanifold MT and an anti-invariant submanifold
M⊥ ofM. What remains to be proved is that μ = 0. Suppose that Y ∈ D so that FY =
0. As D is parallel, ∇XY ∈ D and hence F(∇XY) = 0. Consequently, (∇XF)Y = 0
and usingEq. (12.19)we have g(X, PY)μ = g(X, Y)f μ for everyY ∈ D. Substituting
X = PY and noting the skew-symmetry g(PX, Y) = −g(PY , X) we find that μ = 0.
Hence B = 0, i.e., M is totally geodesic and locally a CR-product of the leaves of D
and D⊥. This completes the proof.

The case q = 1 was not covered in the preceding theorem. Chen [9] proved the
following result.

Theorem 12.9 Let M be a totally umbilical CR-submanifold of a Kaehler manifold
M̄. Then (i) M is totally geodesic, or (ii) q = 1, or (iii) M is totally real.

Note that if M was a proper CR-submanifold in the above theorem, then the
possibility (iii) would be ruled out. Also, note that (i) and (ii) are not mutually
exclusive. The case (ii) has been investigated by Chen [9], in the context of a locally
Hermitian symmetric space M̄ with dim. M̄ ≥ 5. In [11], Duggal and Sharma studied
the case (ii) by relaxing these conditions and assuming M to be proper, and proved
the following result.

Theorem 12.10 Let M be a proper totally umbilical CR-submanifold of a semi-
Riemannian Kaehler manifold M̄ with q = 1 and g positive definite on D⊥. Suppose
that the mean curvature vector μ vanishes nowhere on M. Then the following state-
ments are equivalent: (1) M has an α-Sasakian structure, (2) μ has a constant norm,
(3) μ is parallel in the normal bundle, (4) second fundamental form of M is parallel.

For α-Sasakian structures, we refer to [6, 14].

Proof As μ �= 0 and μ ∈ JD⊥ by Proposition3, it follows that tμ �= 0 and lies in
D⊥. Now since q = 1, any vector field in D⊥ is a scalar multiple of tμ. For any X
tangent to M we can show, using Eq. (12.20), that

g(μ,μ)P2X = g(tμ, X)tμ − g(tμ, tμ)X

Operating P on this gives g(μ,μ) = g(tμ, tμ). Hence we get

g(tμ, tμ)(P2X + X) = g(tμ, X)tμ (12.33)

In this case too, Eq. (12.32) holds, which shows (q = 1) that g(tμ, tμ) �= 0 and hence
g(μ,μ) �= 0. Hence the Eq. (12.33) assumes the form

P2X = −X + [g(tμ, tμ)]−1g(tμ, X)tμ (12.34)

http://dx.doi.org/10.1007/978-981-10-0916-7_3
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As g is positive definite on D⊥, and μ vanishes nowhere on M, we have g(tμ, tμ) =
α2. Hence Eq. (12.34) becomes

P2X = −X + η(X)ξ (12.35)

where ξ = 1
α

tμ is a unit vector field, and η is a 1-form onM given by η(X) = g(X, ξ).
One can easily verify that Pξ = 0, η(PX) = 0, rank(P) = n − 1, and

g(PX, PY) = g(X, Y) − η(X)η(Y) (12.36)

Use of Eq. (12.18) and total umbilicity shows that

(∇XP)Y = α[g(X, Y)ξ − g(ξ, Y)X] (12.37)

Equations (12.35)–(12.37) show that (M, g) is an α-Sasakian manifold if and only if
g(μ,μ) is constant. This proves the equivalence of (1) to (2). In virtue of the equality
(whose proof is easy)

tDXμ = (Xln|g(tμ, tμ)|)tμ

the statement (2) is equivalent to tDXμ = 0.Differentiating the result f μ = 0obtained
earlier, and operating f 2 on the derived equation provides f (DXμ) = 0. Hence (2) is
equivalent to DXμ = 0, i.e. the statement (3). The statement (4) means

DX(B(Y , Z)) = B(∇XY , Z) + B(Y ,∇XZ)

Substituting totally umbilical condition (hypothesis) B(X, Y) = g(X, Y)μ in the pre-
ceding equation shows that (4) is equivalent to (3). This completes the proof.

Remark 5 In particular, if M was a real hypersurface of M̄ (as hypothesized in the
foregoing theorem, second case), then the statement (3) would have been automati-
cally true, as apparent from the fact that DXμ does not belong to JD⊥.

12.6 Application to General Relativity

The CR-submanifolds under the hypothesis of Theorem12.8 are locally decom-
posable as MT × M⊥. Recall that these submanifolds carry a parallel f -structure:
P3 + P = 0, rank (P) = 2p, and ∇P = 0, where 2p is the dimension of D. M has a
pair of complementary orthogonal distributions D⊥ (of dimension q) and D defined
respectively by the projection operators −P2 and P2 + I acting on the tangent space
of M at every point. For simplicity, we assume that D and D⊥ are each of dimension
2 (i.e. 2p = 2, q = 2). Let D⊥ be parallelizable so that there exist vector fields ξ1, ξ2
spanning D⊥ and their duals η1, η2 such that
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P2(X) = −X + η1(X)ξ1 + η2(X)ξ2

Pξ1 = Pξ2 = 0, Pξ3 = ξ4, Pξ4 = −ξ3

where ξ3, ξ4 is a basis of D such that (ξ1, ξ2, ξ3, ξ4) is an orthonormal basis of TM.
Thus, if the metric g on M is indefinite on D⊥ and positive definite on D, then it can
be expressed canonically as

g = −η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3 + η4 ⊗ η4.

Using the condition ∇P = 0, we can show that

∇Xξ1 = h(X)ξ2,∇Xξ2 = h(X)ξ1

∇Xξ3 = w(X)ξ4,∇Xξ4 = −w(X)ξ3

where h and w are smooth 1-forms on M. A straightforward computation gives the
curvature tensor R, Ricci tensor Ric and scalar curvature r as follows:

R(X, Y)Z = 2H(η2 ∧ η1)(X, Y)[η1(Z)ξ2 + η2(Z)ξ1]
+ 2W (η4 ∧ η3)(X, Y)[η3(Z)ξ4 − η4(Z)ξ3]

Ric = H(−η1 ⊗ η1 + η2 ⊗ η2) + W (η3 ⊗ η3 + η4 ⊗ η4)

r = 2(H + W )

where H = (dh)(ξ2, ξ1) and W = (dw)(ξ4, ξ3). Let us call such a manifold (M, g) a
Lorentzian Framed (LF)-manifold.

Evidently, LF-manifolds are Ricci-flat if and only if h andw are closed. Also, LF-
manifolds are Einstein if and only if 4H = 4W = r. By a straightforward calculation
one can verify that LF-manifolds are conformally flat if and only if r = 0. Let us
consider a coordinate frame ( ∂

∂xi ) (abbreviated ∂i) compatible with the LF-structure,
for a local coordinate system (t, x, y, z) = (xi) such that

∂1 = σξ1, ∂2 = σξ2, ∂3 = τξ3, ∂4 = τξ4

where σ and τ are nonzero smooth functions. Under such a coordinate system, the
metric g takes the form

ds2 = σ2(−dt2 + dx2) + τ 2(dy2 + dz2)

where σ = σ(t, x) and τ = τ (y, z) and are related to H and W by partial differential
equations

(lnσ),tt − (lnσ),xx = Hσ2, (lnτ ),yy + (lnτ ),zz = −Wτ 2
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The Ricci tensor is expressed in terms of the coordinates (t, x, y, z) as

Ric = H(−dt ⊗ dt + dx ⊗ dx) + W (dy ⊗ dy + dz ⊗ dz).

Exact solutions of the Einstein’s field equations

Ric − r

2
g = 8πT

with a given energy-momentum tensor T , have been obtained by Duggal and Sharma
in [10] under various cases such as flat (Minkowski), Einstein, Conformally flat,
Scalar field and nonsingular simple electromagnetic field. For details we refer to
[10] and the Ph.D. dissertation of Sharma [16].
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