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Preface

The present volume gathers contributions by several experts in the theory of iso-
metric immersions between Riemannian manifolds, and focuses on the geometry of
CR structures on submanifolds in Hermitian manifolds. CR structures are a bundle
theoretic recast of the tangential Cauchy–Riemann equations in complex analysis in
several complex variables. Let X � C

n (n ≥ 2) be an open set and let

@f � @f
@z j

dz j ¼ 0 ð1Þ

be the ordinary Cauchy–Riemann equations in C
n. A function f 2 C1ðX;CÞ is

holomorphic in X if f satisfies (1) everywhere in X. Let M be an embedded real
hypersurface in C

n such that U ¼ M \X 6¼ ; and let us set

T1;0ðMÞx ¼ TxðMÞ �R C½ � \ T1;0ðCnÞx; x 2 M; ð2Þ

where T1;0ðCnÞ is the holomorphic tangent bundle over C
n (the span of

f@=@z j : 1� j� ng). Then T1;0ðMÞ is a rank n − 1 complex vector bundle over M,
referred to as the CR structure of M (induced on M by the complex structure of the
ambient space C

n) and one may consider the first order differential operator

@b : C
1ðM;CÞ ! C T0;1ðMÞ�� �

; ð3Þ

ð@buÞZ ¼ ZðuÞ; u 2 C1ðM;CÞ; Z 2 T1;0ðMÞ;

(the tangential Cauchy–Riemann operator) where T0;1ðMÞ ¼ T1;0ðMÞ (overbars
denote complex conjugates). A function u 2 C1ðM;CÞ is a CR function on M if
u satisfies

@bu ¼ 0 ð4Þ
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(the tangential Cauchy–Riemann equations) everywhere on M. Let CR1ðMÞ be the
space of all CR functions on M. The trace on U of any holomorphic function
f 2 OðXÞ is a CR function u 2 CR1ðUÞ. In other words, the Cauchy–Riemann
equations (1) induce on M the first order partial differential system (4).
A sufficiently small open piece U of M may be described by a smooth defining
function q : X ! R i.e.,

U ¼ fx 2 X : qðxÞ ¼ 0g

such that DqðxÞ 6¼ 0 for any x 2 U. By eventually restricting the open set U we may
assume that qznðxÞ 6¼ 0 for any x 2 U. Here qz j � @q=@z j for 1� j� n. The portion
of T1;0ðMÞ over U is then the span of

Za � qzn
@

@za
� qza

@

@zn
; 1� a� n� 1;

and the tangential Cauchy–Riemann equations (4) on U may be written as

ZaðuÞ ¼ 0; 1� a� n� 1; ð5Þ

where Za � Za. As such the tangential Cauchy–Riemann equations may be seen to
be a first order overdetermined PDEs system with smooth complex valued coeffi-
cients. While constant coefficient equations are nowadays fairly well understood,
there is still much work to do on variable coefficient PDEs such as (5).

The geometric approach to the study of (local and global properties of) solutions
to (4) or (5) is to study the complex vector bundle T1;0ðMÞ. This is commonly
accomplished by introducing additional geometric objects, familiar within differ-
ential geometry. For instance, should one need to compute the Chern classes of
T1;0ðMÞ, one would need a connection in T1;0ðMÞ. Indeed it is rather well known
(cf. e.g., [10]) that Tanaka and Webster built (cf. [14] and [15]) a linear connection
r on any nondegenerate real hypersurface M � C

n, uniquely determined by a fixed
contact from h on M [the Tanaka–Webster connection of ðM; hÞ] and such that r
descends to a connection in T1;0ðMÞ as a vector bundle. Chern classes of T1;0ðMÞ
may then be computed in terms of the curvature of the Tanaka–Webster connection,
in the presence of a fixed contact form on M.

CR structures induced on real hypersurfaces of Cn are but a particular instance of
a more general notion, that of an abstract CR structure on a ð2nþ kÞ-dimensional
manifold M. A complex subbundle T1;0ðMÞ � TðMÞ � C, of complex rank n, of the
complexified tangent bundle, is said to be an (abstract) CR structure on M if

T1;0ðMÞx \T0;1ðMÞx ¼ ð0Þ; x 2 M; ð6Þ

Z;W 2 C1ðU; T1;0ðMÞÞ ¼) Z;W½ � 2 C1ðU; T1;0ðMÞÞ; ð7Þ
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for any open subset U � M. The integers n and k are respectively the CR dimension
and CR codimension of T1;0ðMÞ while the pair ðn; kÞ is its type. A complex sub-
bundle T1;0ðMÞ � TðMÞ � C satisfying only axiom (6) is an almost CR structure on
M. Axiom (7) is often referred to as the formal (or Frobenius) integrability prop-
erty. An almost CR structure satisfying the formal integrability property (7) is a CR
structure. CR structures on real hypersurfaces M � C

n have type (n – 1, 1).
A large portion of the mathematical literature devoted to the study of CR

structures is confined to the case of CR codimension 1 in the presence of additional
nondegeneracy assumptions (cf. [16]). Let ðM;T1;0ðMÞÞ be a CR manifold of type
(n, k). The Levi distribution is the real rank 2n distribution

HðMÞ ¼ Re T1;0ðMÞ 	 T0;1ðMÞ� �
:

It carries the complex structure

J : HðMÞ ! HðMÞ; J Zþ �Zð Þ ¼ i Z � �Zð Þ; Z 2 T1;0ðMÞ;

(i ¼ ffiffiffiffiffiffiffi�1
p

). The Levi form of ðM; T1;0ðMÞÞ is

Lx : T1;0ðMÞx 
 T0;1ðMÞx !
TxðMÞ �R C

HðMÞx �R C
; x 2 M;

Lxðz;wÞ ¼ ipx Z;W
� �

x; z;w 2 T1;0ðMÞx;

where Z;W 2 C1ðT1;0ðMÞÞ are arbitrary globally defined smooth sections such that
Zx ¼ z and Wx ¼ w. Also p : TðMÞ � C ! ½TðMÞ � C�=½HðMÞ � C� is the natural
projection. The CR structure T1;0ðMÞ [or the CR manifold ðM; T1;0ðMÞÞ] is non-
degenerate if Lx is nondegenerate for any x 2 M. Assuming that k = 1 there is yet
another customary description of the Levi form and of nondegeneracy, as under-
stood in complex analysis. Let

HðMÞ?x ¼ x 2 T�
x ðMÞ : KerðxÞ � HðMÞx

� �
; x 2 M;

be the conormal bundle associated to HðMÞ. Assume that M is oriented, so that
TðMÞ is oriented as a vector bundle. The Levi distribution HðMÞ is oriented by its
complex structure J. Hence the quotient TðMÞ=HðMÞ is oriented. There are (non-
canonical) bundle isomorphisms HðMÞ? � TðMÞ=HðMÞ, hence HðMÞ? is ori-
ented, as well. Any oriented real line bundle over a connected manifold is trivial,
hence HðMÞ? � M 
 R (a vector bundle isomorphism). Hence globally defined
nowhere zero smooth sections h 2 C1ðHðMÞ?Þ [referred to as pseudohermitian
structures on M] do exist. Let P be the set of all pseudohermitian structures on M.
Given h 2 P one may set
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LhðZ;WÞ ¼ �iðdhÞðZ;WÞ; Z;W 2 T1;0ðMÞ;

and one may easily check that Lh and L agree. As it turns out, if T1;0ðMÞ is
nondegenerate then each h 2 P is a contact form, i.e., h ^ ðdhÞn is a volume form
on M.

Let ðM;T1;0ðMÞÞ be a nondegenerate CR manifold, of type (n, 1), and let h 2 P.
The Reeb vector of ðM; hÞ is the unique globally defined nowhere zero tangent
vector field n 2 XðMÞ determined by

hðnÞ ¼ 1; ncdh ¼ 0:

The Webster metric is the semi-Riemannian metric gh on M given by

ghðX; YÞ ¼ ðdhÞðX; JYÞ; ghðX; nÞ ¼ 0; ghðn; nÞ ¼ 1; ð8Þ

for any X; Y 2 HðMÞ. Axioms (8) uniquely determine gh because of
TðMÞ ¼ HðMÞ 	 Rn. For any nondegenerate CR manifold ðM; T1;0ðMÞÞ, on which
a contact form h 2 P has been specified, there is a unique linear connection r on
M [the Tanaka–Webster connection of ðM; hÞ] obeying to the following axioms
(i) HðMÞ is parallel with respect to r, (ii) rJ ¼ 0 and rgh ¼ 0, and (iii) the
torsion tensor field Tr is pure, i.e.,

TrðZ;WÞ ¼ 0; TrðZ;WÞ ¼ 2iLhðZ;WÞn;

s  J þ J  s ¼ 0;

for any Z;W 2 T1;0ðMÞ, where sðXÞ ¼ Trðn;XÞ for any X 2 XðMÞ. One should
notice that the existence of r is tied to that of n, which in turn is a direct conse-
quence of nondegeneracy and orientability.

We say ðM; T1;0ðMÞÞ is strictly pseudoconvex if Lh is positive definite for some
h 2 P. To emphasize on the role play by Chern classes cj T1;0ðMÞ� �

, let us recall (cf.
[13, 14]) the Lee conjecture according to which any abstract strictly pseudoconvex
CR manifold M with c1 T1;0ðMÞ� � ¼ 0 should admit a contact form h such that
ðM; hÞ is pseudo-Einstein [i.e., the pseudohermitian Ricci tensor (of the Tanaka–
Webster connection of ðM; hÞ) is proportional to the Levi form]. The sphere
S2n�1 � C

n is pseudo-Einstein with the canonical contact form h ¼ i
2 @ � @
� �

zj j2
[and of course c1 T1;0ðS2n�1Þ� � ¼ 0].

From the definition of the notion of an (abstract) CR structure, it is manifest that
the prospective study of the CR structure T1;0ðMÞ of a real hypersurface M � C

n

ignores the metric structure (the canonical Euclidean structure of Cn � R
2n) and

only takes into consideration the complex structure on C
n. Whatever metric

structure M is seen to possess a posteriori, such as the Levi form Lh, springs from
the CR structure (from the complex structure J along HðMÞ) and is determined by it
only up to a “conformal factor”, very much as in the theory of Riemann surfaces.
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Indeed if h;ĥ 2 P then ĥ ¼ kh for some C1 function k : M ! Rnf0g, implying
that Lĥ ¼ kLh. However, the fact that the Webster metric gh is semi-Riemannian is
tied to nondegeneracy (gh is actually Riemannian when ðM; T1;0ðMÞÞ is strictly
pseudoconvex) and none of these objects, including of course the Tanaka–Webster
connection, is available on a CR manifold whose Levi form has a degeneracy locus
(for instance in the extreme case where ðM; T1;0ðMÞÞ is Levi flat, i.e., Lh ¼ 0 for
some h 2 P, and thus for all). We also underline that everything said and done in
pseudohermitian geometry is confined to the starting assumption that the given CR
manifold has CR codimension k ¼ 1.

Examples of real hypersurfaces M � C
n which are not nondegenerate, abound

(for instance, boundaries of worm domains, cf. [12]). Also, CR manifolds of higher
CR codimension (k� 2) are frequently met, as submanifolds of certain Hermitian
manifolds. The absence of an analog to pseudohermitian geometry in these cases
may be compensated by making full use of the additional metric structure on M, as
the first fundamental form of a given immersion M ↪ ~M, where ~M is a Hermitian
manifold. This became apparent, and came as a surprise to the CR community, with
the work of A. Bejancu at the end of the 1970s (cf. [2–3]).

Let ~M be a Hermitian manifold, of complex dimension N, with the complex
structure J and the Hermitian metric ~g. Let M be a real m-dimensional submanifold,
i.e., the inclusion i : M ↪ ~M is an embedding. Let us assume that N ¼ mþ p and
m ¼ 2nþ k with p� 1 n� 1 and k� 1. Let D be a smooth real rank 2n distribution
on M such that (i) JxðDxÞ ¼ Dx and (ii) JxðD?

x Þ � TðMÞ?x , for any x 2 M. Here D?
x

is the gx-orthogonal complement of Dx in TxðMÞ and TðMÞ? ! M is the normal
bundle of the given immersion i [so that TðMÞ?x is the ~gx-orthogonal complement of
TxðMÞ in Txð ~MÞ]. Also g ¼ i�~g is the induced metric (the first fundamental form of
i). A pair ðM;DÞ, consisting of a ð2nþ kÞ-dimensional submanifold of ~M and of a
distribution D as above, is called a CR submanifold of the Hermitian manifold
ð ~M; J; ~gÞ. This is the notion of a CR submanifold as introduced by Bejancu (cf. [2])
except for Bejancu’s original request that the ambient space be a Kählerian man-
ifold, i.e., that ~g be a Kähler metric. Orientable real hypersurfaces M � C

n
fit into

this category, for one may choose a unit normal vector field N on M, take a rotation
of N of angle p=2 so that to get n ¼ J0N 2 XðMÞ, and set gðXÞ ¼ g0ðX; nÞ for any
X 2 XðMÞ, where J0 and g0 are respectively the canonical complex structure and
(flat) Kählerian metric on C

n. Then D ¼ KerðgÞ organizes M as a CR submanifold
of C

n; J0; g0ð Þ.
A CR submanifold ðM;DÞ with D ¼ TðMÞ is a complex submanifold of ~M,

while one with D ¼ ð0Þ is totally real (such submanidolds are also referred to as
anti-invariant). It has been argued by a number of authors that A. Bejancu has
introduced the notion of a CR submanifold in an attempt to unify the notions of
complex (or invariant) and totally real submanifolds, and of course that of a generic
submanifold (where JðD?Þ ¼ TðMÞ?). Whether or not A. Bejancu had the insight
that his notion was tied to the theory of tangential Cauchy–Riemann equations (as
understood in complex analysis) became soon irrelevant, with the nice and
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elementary discovery by Blair and Chen (cf. [5]) that each CR submanifold ðM;DÞ
of a Hermitian manifold may be organized as a CR manifold with the CR structure

T1;0ðMÞ ¼ fX � iJX : X 2 Dg:

With respect to this CR structure the inclusion is a CR immersion [i.e.,
ðdxiÞT1;0ðMÞx � T1;0ð ~MÞiðxÞ for any x 2 M, where T1;0ð ~MÞ is the holomorphic

tangent bundle over the complex manifold ð ~M; JÞ] so that Bejancu’s CR subman-
ifolds appear as embedded CR manifolds.

A CR manifold ðM; T1;0ðMÞÞ is locally embeddable if there is N[ dimðMÞ such
that for any point x0 2 M there is an open neighborhood U � M and a C1

immersion W : U ! C
N such that

ðdxWÞT1;0ðMÞx ¼ TWðxÞðWðUÞÞ �R C
� �\ T1;0ðCNÞWðxÞ; x 2 U:

At the time A. Bejancu introduced the notion of a CR submanifold L.
Nirenberg’s problem (i.e., whether a given abstract CR manifold may embed, even
if just locally, cf. e.g., [6]) was far less popular than nowadays, and perhaps
unknown to Riemannian geometers, who embraced early Bejancu’s notion and
produced a significant amount of work (cf. e.g., [16]). In the meanwhile it became
classical mathematics that real analytic CR manifolds are always locally embed-
dable (cf. [1]) while in the C1 category all strictly pseudoconvex CR manifolds of
dimension dimðMÞ� 7 embed locally (and there are known counterexamples in
dimension 3, while the case dimðMÞ ¼ 5 is open). The positive embeddability
results close a circle of ideas and incorporating the Hermitian manifold ~M in the
definition of a CR (sub) manifold may not any longer be seen as a limitation of
sorts. It should also be noticed that ~M in Bejancu’s definition is an arbitrary
Hermitian manifold, and not necessarily ~M ¼ C

N for some N (e.g., ~M may be the
complex projective space CPN , or the complex hyperbolic space CHN).

A comment is due on Bejancu’s motivation1 for fixing a complement to the
holomorphic, or invariant, distribution D (its orthogonal complement D?, with
respect to the induced metric g ¼ i�~g). As it appears, inspiration was drawn from
the work by S. Greenfield (cf. [11]) where a complement to the Levi distribution
HðMÞ is fixed to start with. S. Greenfield’s choice may be criticized as non-
canonical. Indeed, to make such a choice within pseudohermitian geometry (k ¼ 1)
one first requires nondegeneracy of the given CR structure and then chooses Rn as a
complement to HðMÞ, where n is the Reeb vector associated to a fixed contact form
h. This choice is perhaps natural enough, yet certainly has one leave the realm of
CR geometry (and confines oneself to pseudohermitian geometry). In turn

1Of course one may interview Professor Bejancu on the argument. Here we adopt the historian
perspective giving preference to historical reconstructions based on documents rather than
testimonies.
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Bejancu’s choice of D? as a complement to D uses the metric structure [say
g ¼ i�g0 for a given real hypersurface i :M↪ C

n] and, be it canonical or not, it fits
nicely into the adopted philosophy [which is to exploit the additional metric
structure to compensate for the eventual lack of nondegeneracy]. We end this
remark by recalling that Rn is certainly orthogonal to HðMÞ with respect to the
Webster metric gh, but in general it cannot be expected to be orthogonal to HðMÞ
with respect to the induced metric. For only in rare occasions [e.g., for the sphere
S2n�1 ↪ C

n] does the Webster metric (associated to some contact form) coincide
with the induced metric [in fact, all the (infinitely many) Webster metrics of the
boundary of the Siegel domain X ¼ fðz;wÞ 2 C

2 : ImðwÞ[ jzj2g are distinct from
the first fundamental form of the immersion @X ↪ C

2]. This is a point of diver-
gence between Bejancu’s theory and pseuodhermitian geometry (Webster’s theory)
yet hasn’t proved to be counterproductive so far. On the contrary, one was led to
study the geometry of the foliation tangent to D? [D? is always Frobenius inte-
grable, provided that the ambient space is Kählerian or locally conformal Kähler]
resulting into a deeper understanding of the geometry of the CR submanifold
ðM;DÞ itself.

Let ðM;DÞ be a CR submanifold of the Hermitian manifold ð ~M; J; ~gÞ. When ~g is
a Kählerian, or a locally conformal Kähler, metric, the Levi form L of M as a CR
manifold, and the second fundamental form h of the given immersion M ↪ ~M, are
related in a nice computable manner. Studying the geometry of h is then closely
related to the study of CR geometry (and pseudohermitian geometry, in the CR
codimension case) on M. Only now no nondegeneracy assumptions are needed to
start with, and the classical machinery in the theory of isometric immersions of
Riemannian manifolds (e.g., the Gauss–Ricci–Codazzi equations) becomes
available.

Besides from Nirenberg’s CR embedding problem mentioned above, one should
recall the equally classical CR extension problem. As already seen at the beginning
of this preface, traces of holomorphic functions on real hypersurfaces of Cn are
solutions to the tangential Cauchy–Riemann equations. Conversely, the CR
extension problem is whether CR functions (on embedded CR manifolds) extend, at
least locally, to holomorphic functions on (some open subset of) Cn. An interesting
feature of the generic CR submanifolds of higher CR codimension is that positive
CR extension results depend on the presence of particular cones in the normal space
at each point of the submanifold, and the metric structure of the ambient space may
not be ignored any longer (cf. [6]).

The past 30 years have seen a great increase in the volume of research devoted to
the geometry of CR submanifolds, from the point of view of Riemannian geometry.
The results at the level of K. Yano and M. Kon’s monograph mentioned above were
integrated by the publication of a book by Bejancu himself (cf. [4]) and by the
monograph [9] reporting on the case where the ambient metric ~g is locally con-
formal Kähler (and the list of monographs devoted to CR submanifolds is by far not
complete).
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Given the huge amount of work on CR submanifolds produced since the
appearance of the last monograph (i.e., [7]) on the argument, the editors thought it
appropriate to invite a number of specialists to contribute one or more papers,
perhaps of partially expositive nature, illustrating the state of the art in the theory.
The following colleagues answered our call (and are listed here in alphabetical
order).

Bang-Yen Chen contributes two papers (cf. Chaps. 1 and 2 in this book), one
about his theory of d-invariants as it applies to CR geometry, and another on the
geometry of CR-warped products in Kählerian manifolds.

Miroslava Antić and Luc Vrancken contribute a study (cf. Chap. 3 in this
book) of CR submanifolds of the nearly Kähler 6-sphere.

Elisabetta Barletta and Sorin Dragomir contribute new results (cf. Chap. 4 in
this book) on the interplay between the geometry of the second fundamental form of
a CR submanifold and the tangential Cauchy–Riemann equations.

J.L. Cabrerizo, A. Carriazo and L.M. Fernándes report on their work (cf.
Chap. 5 in this book) on CR submanifolds of (locally conformal) Kähler manifolds
and normal CR submanifolds of S-manifolds.

Krishan Lal Duggal surveys some of his work (cf. Chap. 6 in this book)
relating Lorentzian and Cauchy–Riemann geometry.

Hitoshi Furuhata and Izumi Hasegawa contribute their work (cf. Chap. 7 in
this book) on CR submanifolds of holomorphic statistical manifolds.

Ion Mihai and Adela Mihai contribute their work (cf. Chap. 8 in this book)
concerning minimality of warped product CR submanifolds in complex space
forms, and estimates on the scalar curvature of such submanifolds.

Andrea Olteanu presents results (cf. Chap. 9 in this book) on geometric
inequalities occurring on CR-doubly warped product submanifolds.

Toru Sasahara surveys the known results (cf. Chap. 10 in this book) on d-ideal
submanifolds in complex space forms, the nearly Kähler 6-sphere, and odd
dimensional spheres.

Mohammad Hasan Shahid, Falleh R. Al-Solamy and Mohammed Jamali
contribute a survey (cf. Chap. 11 in this book) on the geometry of submersions from
a CR submanifold.

Ramesh Sharma’s contribution (cf. Chap. 12 in this book) regards the geometry
of CR submanifolds in semi-Kählerian manifolds, hinting to possible applications
to space–time physics.

Gabriel-Eduard Vîlcu presents a generalization (cf. Chap. 13 in this book) of
CR submanifold theory to paraquaternionic geometry.

Potenza, Italy Sorin Dragomir
New Delhi, India Mohammad Hasan Shahid
Jeddah, Saudi Arabia Falleh R. Al-Solamy
October 2015
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Chapter 1
CR-Warped Submanifolds in Kaehler
Manifolds

Bang-Yen Chen

2000 Mathematics Subject Classification 53C40 · 53C42 · 53C50

1.1 Introduction

Let B and F be two Riemannian manifolds with Riemannian metrics gB and gF ,
respectively, and let f be a positive function on B. Consider the product manifold
B × F with its projection π : B × F → B and η : B × F → F. The warped product
M = B ×f F is the manifold B × F equipped with the warped product Riemannian
metric given by

g = gB + f 2gF (1.1)

We call the function f the warping function of the warped product [2]. The notion of
warped products plays important roles in differential geometry as well as in physics,
especially in the theory of general relativity (cf. [26, 40]).

A submanifold M of a Kaehler manifold (M̃, g̃, J) is called a CR-submanifold
if there exist a holomorphic distribution D and a totally real distribution D⊥ on M
such that TM = D ⊕ D⊥, where TM denotes the tangent bundle of M. The notion
of CR-submanifolds was introduced by A. Bejancu (cf. [1]).

On the other hand, the author proved in [14] that there do not exist warped product
submanifolds of the form M⊥ ×f NT in any Kaehler manifold M̃ such that NT is a
holomorphic submanifold and N⊥ is a totally real submanifold of M̃. Moreover, the
author introduced the notion of CR-warped products in [14] as follows. A subman-
ifold M of a Kaehler manifold M̃ is called a CR-warped product if it is a warped

B.-Y. Chen (B)
Department of Mathematics, Michigan State University, 619 Red Cedar Road,
East Lansing, MI 48824-1027, USA
e-mail: bychen@math.msu.edu

© Springer Science+Business Media Singapore 2016
S. Dragomir et al. (eds.), Geometry of Cauchy–Riemann Submanifolds,
DOI 10.1007/978-981-10-0916-7_1

1



2 B.-Y. Chen

product MT ×f N⊥ of a complex submanifold MT and a totally real submanifold M⊥
of M̃.

A famous embedding theorem of J.F. Nash [39] states that every Riemannian
manifold can be isometrically imbedded in a Euclidean space with sufficiently high
codimension. In particular, the Nash theorem implies that every warped product
manifold N1 ×f N2 can be isometrically embedded as a Riemannian submanifold in
a Euclidean space.

In view of Nash’s theorem, the author asked at the beginning of this century the
following two fundamental questions (see [17, 18, 26]).

Fundamental Question A. What can we conclude from an arbitrary isometric
immersion of a warped product manifold into a Euclidean space or more generally,
into an arbitrary Riemannian manifold?

Fundamental Question B. What can we conclude from an arbitrary CR-warped
product manifold into an arbitrary complex-space-form or more generally, into an
arbitrary Kaehler manifold?

The study of these two questions was initiated by the author in a series of his arti-
cles [11, 13–15, 17–25, 29, 34]. Since then the study ofwarped product submanifolds
has become an active research subject in differential geometry of submanifolds.

The purpose of this article is to survey recent results on warped product and
CR-warped product submanifolds in Kaehler manifolds.

1.2 Preliminaries

In this section, we provide some basic notations, formulas, definitions, and results.
For the submanifold M we denote by ∇ and ∇̃ the Levi-Civita connections of M

and M̃m, respectively. The Gauss and Weingarten formulas are given respectively by
(see, for instance, [3, 26, 27])

∇̃XY = ∇XY + σ(X, Y), (1.2)

∇̃Xξ = AξX + DXξ (1.3)

for any vector fields X, Y tangent to M and vector field ξ normal to M, where σ
denotes the second fundamental form, D the normal connection, and A the shape
operator of the submanifold.

Let M be an n-dimensional submanifold of a Riemannian m-manifold M̃m. We
choose a local field of orthonormal frame e1, . . . , en, en+1, . . . , em in M̃m such that,
restricted to M, the vectors e1, . . . , en are tangent to M and hence en+1, . . . , em are
normal to M. Let {σr

ij}, i, j = 1, . . . , n; r = n + 1, . . . , m, denote the coefficients of
the second fundamental form h with respect to e1, . . . , en, en+1, . . . , em. Then, we
have
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σr
ij = 〈σ(ei, ej), er〉 = 〈Aer ei, ej〉,

where 〈 , 〉 denotes the inner product.
The mean curvature vector

−→
H is defined by

−→
H = 1

n
traceσ = 1

n

n∑

i=1

σ(ei, ei), (1.4)

where {e1, . . . , en} is a local orthonormal frame of the tangent bundle TM of M. The
squared mean curvature is then given by

H2 = 〈−→H ,
−→
H 〉.

A submanifold M is called minimal in M̃m if its mean curvature vector vanishes
identically.

Let R and R̃ denote the Riemann curvature tensors of M and M̃m, respectively.
The equation of Gauss is given by

R(X, Y; Z, W ) = R̃(X, Y; Z, W ) + 〈σ(X, W ),σ(Y , Z)〉
− 〈σ(X, Z),σ(Y , W )〉 (1.5)

for vectors X, Y , Z, W tangent to M. For a submanifold of a Riemannian manifold
of constant curvature c, we have

R(X, Y; Z, W ) = c{〈X, W 〉〈Y , Z〉 − 〈X, Z〉〈Y , W 〉}
+ 〈σ(X, W ),σ(Y , Z)〉 − 〈σ(X, Z),σ(Y , W )〉. (1.6)

Let M be a Riemannian p-manifold and e1, . . . , ep be an orthonormal frame fields
on M. For differentiable function ϕ on M, the Laplacian �ϕ of ϕ is defined by

�ϕ =
p∑

j=1

{(∇ej ej)ϕ − ejejϕ}. (1.7)

For any orthonormal basis e1, . . . , en of the tangent space TpM at a point p ∈ M, the
scalar curvature τ of M at p is defined to be (cf. [9, 10, 26])

τ (p) =
∑

i<j

K(ei ∧ ej), (1.8)

where K(ei ∧ ej) denotes the sectional curvature of the plane section spanned by ei

and ej.
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1.3 Warped Products in Space Forms

Let M1, . . . , Mk be k Riemannian manifolds and let

f : M1 × · · · × Mk → E
N

be an isometric immersion of theRiemannian productM1 × · · · × Mk into theEuclid-
ean N-space E

N . J.D. Moore [38] proved that if the second fundamental form
σ of f has the property that σ(X, Y) = 0 for X tangent to Mi and Y tangent to
Mj, i 
= j, then f is a product immersion, that is, there exist isometric immersions
fi : Mi → Emi , 1 ≤ i ≤ k, such that

f (x1, . . . , xk) = (f (x1), . . . , f (xk)) (1.9)

when xi ∈ Mi for 1 ≤ i ≤ k.
Let φ : N1 ×f N2 → Rm(c) be an isometric immersion of a warped product N1 ×f

N2 into a Riemannian manifold with constant sectional curvature c. Denote by σ
the second fundamental form of φ. The immersion φ : N1 ×f N2 → Rm(c) is called
mixed totally geodesic if σ(X, Z) = 0 for any X in D1 and Z in D2.

The next theorem provides a solution to Fundamental Question A.

Theorem 1.1 ([17]) For any isometric immersion φ : N1 ×f N2 → Rm(c) of a
warped product N1 ×f N2 into a Riemannian manifold of constant curvature c, we
have

�f

f
≤ n2

4n2
H2 + n1c, (1.10)

where ni = dim Ni, n = n1 + n2, H2 is the squared mean curvature of φ, and �f is
the Laplacian of f on N1.

The equality sign of (1.10) holds identically if and only if ι : N1 ×f N2 → Rm(c)
is a mixed totally geodesic immersion satisfying trace h1 = trace h2, where trace h1
and trace h2 denote the trace of σ restricted to N1 and N2, respectively.

By making a minor modification of the proof of Theorem1.1 in [17], using the
method of [25], we also have the following general solution from [35] to the Funda-
mental Question A.

Theorem 1.2 If M̃m
c is a Riemannian manifold with sectional curvatures bounded

from above by a constant c, then for any isometric immersion φ : N1 ×f N2 → M̃m
c

from a warped product N1 ×f N2 into M̃m
c the warping function f satisfies

�f

f
≤ n2

4n2
H2 + n1c, (1.11)

where n1 = dim N1 and n2 = dim N2.
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An immediate consequence of Theorem1.2 is the following.

Corollary 1 There do not exist minimal immersions of a Riemannian product N1 ×
N2 of two Riemannian manifolds into a negatively curved Riemannian manifold M̃.

For arbitrary warped products submanifolds in complex hyperbolic spaces, we
have the following general results from [20].

Theorem 1.3 Let φ : N1 ×f N2 → CHm(4c) be an arbitrary isometric immersion
of a warped product N1 ×f N2 into the complex hyperbolic m-space CHm(4c) of
constant holomorphic sectional curvature 4c. Then, we have

�f

f
≤ (n1 + n2)2

4n2
H2 + n1c. (1.12)

The equality sign of (1.12) holds if and only if the following three conditions hold.

(1) φ is mixed totally geodesic,
(2) trace h1 = trace h2, and
(3) JD1 ⊥ D2, where J is the almost complex structure of CHm.

Some interesting immediate consequences of Theorem1.3 are the following
nonexistence results [20].

Corollary 2 Let N1 ×f N2 be a warped product whose warping function f is har-
monic. Then N1 ×f N2 does not admit an isometric minimal immersion into any
complex hyperbolic space.

Corollary 3 If f is an eigenfunction of Laplacian on N1 with eigenvalue λ > 0,
then N1 ×f N2 does not admit an isometric minimal immersion into any complex
hyperbolic space.

Corollary 4 If N1 is compact, then every warped product N1 ×f N2 does not admit
an isometric minimal immersion into any complex hyperbolic space.

For arbitrary warped products submanifolds in the complex projective m-space
CPm(4c) with constant holomorphic sectional curvature 4c, we have the following
results from [22].

Theorem 1.4 Let φ : N1 ×f N2 → CPm(4c) be an arbitrary isometric immersion of
a warped product into the complex projective m-space CPm(4c) of constant holo-
morphic sectional curvature 4c. Then, we have

�f

f
≤ (n1 + n2)2

4n2
H2 + (3 + n1)c. (1.13)
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The equality sign of (1.13) holds identically if and only if we have

(1) n1 = n2 = 1,
(2) f is an eigenfunction of the Laplacian of N1 with eigenvalue 4c, and
(3) φ is totally geodesic and holomorphic.

An immediate application of Theorem1.4 is the following non-immersion result.

Corollary 5 If f is a positive function on a Riemannian n1-manifold N1 such that
(�f )/f > 3 + n1 at some point p ∈ N1, then, for any Riemannian manifold N2, the
warped product N1 ×f N2 does not admit any isometric minimal immersion into
CPm(4) for any m.

Theorem1.4 can be sharpened as the following theorem for totally real minimal
immersions.

Theorem 1.5 If f is a positive function on a Riemannian n1-manifold N1 such that
(�f )/f > n1 at some point p ∈ N1, then, for any Riemannian manifold N2, the warped
product N1 ×f N2 does not admit any isometric totally real minimal immersion into
CPm(4) for any m.

The following examples illustrate that Theorems1.3–1.5 are sharp.

Example 1 Let I = (−π
4 , π

4 ), N2 = S1(1) and f = 1
2 cos 2s. Then the warped

product
N1 ×f N2 =: I ×(cos 2s)/2 S1(1)

has constant sectional curvature 4. Clearly, we have (�f )/f = 4. If we define the
complex structure J on thewarpedproduct by J

(
∂
∂s

) = 2(sec 2s) ∂
∂t , then (I ×(cos 2s)/2

S1(1), g, J) is holomorphically isometric to a dense open subset of CP1(4).
Let φ : CP1(4) → CPm(4) be a standard totally geodesic embedding of CP1(4)

into CPm(4). Then the restriction of φ to I ×(cos 2s)/2 S1(1) gives rise to a minimal
isometric immersion of I ×(cos 2s)/2 S1 into CPm(4) which satisfies the equality case
of inequality (1.13) on I ×(cos 2s)/2 S1(1) identically.

Example 2 Consider N1 ×f N2 = I ×(cos 2s)/2 S1(1) and let φ : CP1(4) → CPm(4)
be the totally geodesic holomorphic embedding of CP1(4) into CPm(4). Then the
restriction of φ to N1 ×f N2 is an isometric minimal immersion of N1 ×f N2 into
CPm(4) which satisfies (�f )/f = 3 + n1 identically. This example shows that the
assumption “(�f )/f > 3 + n1 at some point in N1” given in Theorem1.4 is best
possible.

Example 3 Let g1 be the standardmetric on Sn−1(1). Denote byN1 ×f N2 thewarped
product given byN1 = (−π/2,π/2), N2 = Sn−1(1) and f = cos s. Then thewarping
function of this warped product satisfies �f /f = n1 identically. Moreover, it is easy
to verify that this warped product is isometric to a dense open subset of Sn. Let
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φ : Sn(1)
projection−−−−−→

2:1
RPn(4)

totally geodesic−−−−−−−→
totally real

CPn(4)

be a standard totally geodesic Lagrangian immersion of Sn(1) into CPn(4). Then the
restriction of φ to N1 ×f N2 is a totally real minimal immersion. This example illus-
trates that the assumption “(�f )/f > n1 at some point in N1” given in Theorem1.5
is also sharp.

1.4 Segre Imbedding and Its Converse

For simplicity, we denote Sn(1), RPn(1), CPn(4) and CHn(−4) by Sn, RPn, CPn

and CHn, respectively.
Let (zi

0, . . . , zi
αi

), 1 ≤ i ≤ s, be homogeneous coordinates of CPαi . Define a map:

Sα1...αs : CPα1 × · · · × CPαs → CPN , N =
s∏

i=1

(αi + 1) − 1, (1.14)

which maps a point ((z10, . . . , z1α1
), . . . , (zs

0, . . . , zs
αs

)) in CPα1 × · · · × CPαs to the
point (z1i1 . . . zs

ij
)1≤i1≤α1,...,1≤is≤αs in CPN . The map Sα1...αs is a Kaehler embedding

which is known as the Segre embedding. The Segre embedding was constructed by
C. Segre in 1891.

The following results from [4, 31] established in 1981 can be regarded as the
“converse” to Segre embedding constructed in 1891.

Theorem 1.6 Let Mα1
1 , . . . , Mαs

s be Kaehler manifolds of dimensions α1, . . . , αs,
respectively. Then every holomorphically isometric immersion

f : Mα1
1 × · · · × Mαs

s → CPN , N =
s∏

i=1

(αi + 1) − 1,

of Mα1
1 × · · · × Mαs

s into CPN is locally the Segre embedding, i.e., Mα1
1 , . . . , Mαs

s are
open portions of CPα1 , . . . , CPαs , respectively. Moreover, f is congruent to the Segre
embedding.

Let ∇̄kσ, k = 0, 1, 2, . . ., denote the kth covariant derivative of the second fun-
damental form. Denoted by ||∇̄kσ||2 the squared norm of ∇̄kσ.

The following result was proved in [31].
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Theorem 1.7 Let Mα1
1 × · · · × Mαs

s be a product Kaehler submanifold of CPN . Then

||∇̄k−2σ||2 ≥ k! 2k
∑

i1<···<ik

α1 . . . αk, (1.15)

for k = 2, 3, . . . .
The equality sign of (1.15) holds for some k if and only if Mα1

1 , . . . , Mαs
s are open

parts of CPα1 , . . . , CPαs , respectively, and the immersion is congruent to the Segre
embedding.

If k = 2, Theorem1.7 reduces to the following result of [4].

Theorem 1.8 Let Mh
1 × Mp

2 be a product Kaehler submanifold of CPN . Then we
have

||σ||2 ≥ 8hp. (1.16)

The equality sign of inequality (1.16) holds if and only if Mh
1 and Mp

2 are open
portions of CPh and CPp, respectively, and moreover the immersion is congruent to
the Segre embedding Sh,p.

We may extend Theorem1.8 to the following for warped products.

Theorem 1.9 Let (Mh
1 , g1) and (Mp

2 , g2) be two Kaehler manifolds of complex
dimension h and p respectively and let f be a positive function on Mh

1 . If φ :
Mh

1 ×f Mp
2 → CPN is a holomorphically isometric immersion of the warped product

manifold Mh
1 ×f Mp

2 into CPN . Then f is a constant, say c. Moreover, we have

||σ||2 ≥ 8hp. (1.17)

The equality sign of (1.17) holds if and only if (Mh
1 , g1) and (Mp

2 , cg2) are open
portions of CPh and CPp, respectively, and moreover the immersion φ is congruent
to the Segre embedding.

Proof Under the hypothesis, the warped product manifold Mh
1 ×f Mp

2 must be a
Kaehler manifold. Therefore, the warping function f must be a positive constant.
Consequently, the theorem follows from Theorem1.8.

1.5 CR-Products in Kaehler Manifolds

A submanifold N in a Kaehler manifold M̃ is called a totally real submanifold if
the almost complex structure J of M̃ carries each tangent space TxN of N into
its corresponding normal space T⊥

x N [12, 16, 33]. The submanifold N is called a
holomorphic submanifold (or Kaehler submanifold) if J carries each TxN into itself.
The submanifold N is called slant [8] if for any nonzero vector X tangent to N the
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angle θ(X) between JX and TpN does not depend on the choice of the point p ∈ N
and of the choice of the vector X ∈ TpN . On the other hand, it depends only on the
point p, then the submanifold N is called pointwise slant [30].

Let M be a submanifold of a Kaehler manifold M̃. For each point p ∈ M, put

Hp = TpM ∩ J(TpM),

i.e., Hp is the maximal holomorphic subspace of the tangent space TpM. If the
dimension of Hp remains the same for each p ∈ M, then M is called a generic
submanifold [7].

A CR-submanifold of a Kaehler manifold M̃ is called a CR-product [4, 5] if it
is a Riemannian product NT × N⊥ of a Kaehler submanifold NT and a totally real
submanifold N⊥. A CR-submanifold is called mixed totally geodesic if the second
fundamental form of the CR-submanifold satisfying

σ(X, Z) = 0

for any X ∈ D and Z ∈ D⊥.
For CR-products in complex space forms, the following result are known.

Theorem 1.10 ([4]) We have

(i) A CR-submanifold in the complex Euclidean m-space Cm is a CR-product if and
only if it is a direct sum of a Kaehler submanifold and a totally real submanifold
of linear complex subspaces.

(ii) There do not exist CR-products in complex hyperbolic spaces other than Kaehler
submanifolds and totally real submanifolds.

CR-products NT × N⊥ in CPh+p+hp are obtained from the Segre embedding Sh,p;
namely, we have the following results.

Theorem 1.11 ([4]) Let Nh
T × Np

⊥ be the CR-product in CPm with constant holo-
morphic sectional curvature 4. Then

m ≥ h + p + hp. (1.18)

The equality sign of (1.18) holds if and only if

(a) Nh
T is a totally geodesic Kaehler submanifold,

(b) Np
⊥ is a totally real submanifold, and

(c) the immersion is given by

Nh
T × Np

⊥ −→ CPh × CPp Shp−−−−−−−−→
Segre imbedding

CPh+p+hp.



10 B.-Y. Chen

Theorem 1.12 ([4])Let Nh
T × Np

⊥ be the CR-product in CPm. Then the squared norm
of the second fundamental form satisfies

||σ||2 ≥ 4hp. (1.19)

The equality sign of (1.19) holds if and only if

(a) Nh
T is a totally geodesic Kaehler submanifold,

(b) Np
⊥ is a totally geodesic totally real submanifold, and

(c) the immersion is given by

Nh
T × Np

⊥
totally geodesic−−−−−−−→ CPh × CPp Shp−−−−−−−−→

Segre imbedding
CPh+p+hp ⊂ CPm.

1.6 Warped Product CR-Submanifolds

In this section we present known results on warped product CR-submanifold in
Kaehler manifolds. First, we mention the following result.

Theorem 1.13 ([14]) If N⊥ ×f NT is a warped product CR-submanifold of a
Kaehler manifold M̃ such that N⊥ is a totally real and NT a Kaehler submanifold of
M̃, then it is a CR-product.

Theorem1.13 shows that there does not exist warped product CR-submanifolds
of the form N⊥ ×f NT other than CR-products. So, we only need to consider warped
product CR-submanifolds of the form: NT ×f N⊥, by reversing the two factors NT

and N⊥ of the warped product. The author simply calls such CR-submanifolds CR-
warped products in [14].

CR-warped products are simply characterized as follows.

Proposition 1.1 ([14]) A proper CR-submanifold M of a Kaehler manifold M̃ is
locally a CR-warped product if and only if the shape operator A satisfies

AJZX = ((JX)μ)Z, X ∈ D, Z ∈ D⊥, (1.20)

for some function μ on M satisfying Wμ = 0, ∀W ∈ D⊥.

A fundamental result on CR-warped products in arbitrary Kaehler manifolds is
the following theorem.

Theorem 1.14 ([14]) Let NT ×f N⊥ be a CR-warped product submanifold in an
arbitrary Kaehler manifold M̃. Then the second fundamental form σ satisfies

||σ||2 ≥ 2p ||∇(ln f )||2, (1.21)
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where ∇(ln f ) is the gradient of ln f on NT and p = dim N⊥.
If the equality sign of (1.21) holds identically, then NT is a totally geodesic Kaehler

submanifold and N⊥ is a totally umbilical totally real submanifold of M̃. Moreover,
NT ×f N⊥ is minimal in M̃.

When M is anti-holomorphic, i.e., when JD⊥
x = T⊥

x N, and p > 1. The equality
sign of (1.21) holds identically if and only if N⊥ is a totally umbilical submanifold
of M̃.

If M is anti-holomorphic and p = 1, then the equality sign of (1.21) holds identi-
cally if and only if the characteristic vector field Jξ of M is a principal vector field
with zero as its principal curvature. (Notice that in this case, M is a real hypersurface
in M̃.) Also, in this case, the equality sign of (1.21) holds identically if and only if M
is a minimal hypersurface in M̃.

CR-warped products in complex space forms satisfying the equality case of (1.21)
have been completely classified in [14, 15].

Theorem 1.15 A CR-warped product NT ×f N⊥ in C
m satisfies

||σ||2 = 2p||∇(ln f )||2 (1.22)

identically if and only if the following four statements hold:

(i) NT is an open portion of a complex Euclidean h-space C
h,

(ii) N⊥ is an open portion of the unit p-sphere Sp,
(iii) there exists a = (a1, . . . , ah) ∈ Sh−1 ⊂ E

h such that f = √〈a, z〉2 + 〈ia, z〉2 for
z = (z1, . . . , zh) ∈ C

h, w = (w0, . . . , wp) ∈ Sp ⊂ E
p+1, and

(iv) up to rigid motions, the immersion is given by

x(z, w) =
⎛

⎝z1 + (w0 − 1)a1

h∑

j=1

ajzj, . . . , zh + a(w0 − 1)ah

h∑

j=1

ajzj,

w1

h∑

j=1

ajzj, . . . , wp

h∑

j=1

ajzj, 0, . . . , 0

⎞

⎠ .

A CR-warped product NT ×f N⊥ is said to be trivial if its warping function f
is constant. A trivial CR-warped product NT ×f N⊥ is nothing but a CR-product
NT × Nf

⊥, where Nf
⊥ is the manifold with metric f 2gN⊥ which is homothetic to the

original metric gN⊥ on N⊥.
The following result completely classifies CR-warped products in complex pro-

jective spaces satisfying the equality case of (1.21) identically.

Theorem 1.16 ([15]) A non-trivial CR-warped product NT ×f N⊥ in the complex
projective m-space CPm(4) satisfies the basic equality ||σ||2 = 2p||∇(ln f )||2 if and
only if we have
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(1) NT is an open portion of complex Euclidean h-space C
h,

(2) N⊥ is an open portion of a unit p-sphere Sp, and
(3) up to rigid motions, the immersion x of NT ×f N⊥ into CPm is the composition

π ◦ x̆, where

x̆(z, w) =
⎛

⎝z0 + (w0 − 1)a0

h∑

j=0

ajzj, . . . , zh + (w0 − 1)ah

h∑

j=0

ajzj,

w1

h∑

j=0

ajzj, . . . , wp

h∑

j=0

ajzj, 0, . . . , 0

⎞

⎠ ,

π is the projection π : Cm+1∗ → CPm, a0, . . . , ah are real numbers satisfying
a2
0 + a2

1 + · · · + a2
h = 1, z = (z0, z1, . . . , zh) ∈ C

h+1 and w = (w0, . . . , wp) ∈
Sp ⊂ E

p+1.

The following result completely classifiesCR-warped products in complex hyper-
bolic spaces satisfying the equality case of (1.21) identically.

Theorem 1.17 ([15]) A CR-warped product NT ×f N⊥ in the complex hyperbolic
m-space CHm(−4) satisfies the basic equality

||σ||2 = 2p||∇(ln f )||2

if and only if one of the following two cases occurs:

(1) NT is an open portion of complex Euclidean h-space Ch, N⊥ is an open portion
of a unit p-sphere Sp and, up to rigid motions, the immersion is the composition
π ◦ x̆, where π is the projection π : Cm+1

∗1 → CHm and

x̆(z,w) =
⎛

⎝z0 + a0(1 − w0)

h∑

j=0

ajzj, z1 + a1(w0 − 1)
h∑

j=0

ajzj, . . . , zh

+ah(w0 − 1)
h∑

j=0

ajzj, w1

h∑

j=0

ajzj, . . . , wp

h∑

j=0

ajzj, 0, . . . , 0

⎞

⎠

for some real numbers a0, . . . , ah satisfying a2
0 − a2

1 − · · · − a2
h = −1, where

z = (z0, . . . , zh) ∈ C
h+1
1 and w = (w0, . . . , wp) ∈ Sp ⊂ E

p+1.
(2) p = 1, NT is an open portion of Ch and, up to rigid motions, the immersion is

the composition π ◦ x̆, where
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x̆(z, t) =
⎛

⎝z0 + a0(cosh t − 1)
h∑

j=0

ajzj, z1 + a1(1 − cosh t)
h∑

j=0

ajzj, . . . , zh

+ah(1 − cosh t)
h∑

j=0

ajzj, sinh t
h∑

j=0

ajzj, 0, . . . , 0

⎞

⎠

for some real numbers a0, a1, . . . , ah+1 satisfying a2
0 − a2

1 − · · · − a2
h = 1.

A multiply warped product NT ×f2 N2 × · · · ×fk Nk in a Kaehler manifold M̃ is
called a multiply CR-warped product if NT is a holomorphic submanifold and N⊥ =
f2N2 × · · · ×fk Nk is a totally real submanifold of M̃.

The next theorem extends (1.14) for multiply CR-warped products.

Theorem 1.18 ([28]) Let N = NT ×f2 N2 × · · · ×fk Nk be a multiply CR-warped
product in an arbitrary Kaehler manifold M̃. Then the second fundamental form
σ and the warping functions f2, . . . , fk satisfy

||σ||2 ≥ 2
k∑

i=2

ni||∇(ln fi)||2. (1.23)

The equality sign of inequality (1.23) holds identically if and only if the following
four statements hold:

(a) NT is a totally geodesic holomorphic submanifold of M̃;
(b) For each i ∈ {2, . . . , k}, Ni is a totally umbilical submanifold of M̃ with −∇(ln fi)

as its mean curvature vector;
(c) f2N2 × · · · ×fk Nk is immersed as mixed totally geodesic submanifold in M̃; and
(d) For each point p ∈ N, the first normal space Im hp is a subspace of J(TpN⊥).

Remark 1 B. Sahin [41] extends Theorem1.13 to the following.

Theorem 1.19 There exist no warped product submanifolds of the type Mθ ×f MT

and MT ×f Mθ in a Kaehler manifold, where Mθ is a proper slant submanifold and
MT is a holomorphic submanifold of M̃.

Remark 2 As an extension of Theorem1.19 the following nonexistence result was
proved by K.A. Khan, S. Ali and N. Jamal.

Theorem 1.20 ([37]) There do not exist proper warped product submanifolds of the
type N ×f NT and NT ×f N in a Kaehler manifold, where NT is a complex subman-
ifold and N is any non-totally real generic submanifold of a Kaehler manifold M̃.

Remark 3 B. Sahin proved the following.

Theorem 1.21 ([42]) There do not exist doubly warped product CR-submanifolds
which are not (singly) warped product CR-submanifolds in the form f1MT ×f2 M⊥,
where MT is a holomorphic submanifold and M⊥ is a totally real submanifold of a
Kaehler manifold M̃.
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1.7 CR-Warped Products with Compact Holomorphic
Factor

When the holomorphic factor NT of a CR-warped product NT ×f N⊥ is compact, we
have the following sharp results.

Theorem 1.22 ([24]) Let NT ×f N⊥ be a CR-warped product in the complex pro-
jective m-space CPm(4) of constant holomorphic sectional curvature 4. If NT is
compact, then we have

m ≥ h + p + hp.

Remark 4 The example mentioned in Statement (c) of Theorem1.11 shows that
Theorem1.22 is sharp.

Theorem 1.23 ([24]) If NT ×f N⊥ is a CR-warped product in CPh+p+hp(4) with
compact NT , then NT is holomorphically isometric to CPh.

Theorem 1.24 ([24]) For any CR-warped product NT ×f N⊥ in CPm(4) with com-
pact NT and any q ∈ N⊥, we have

∫

NT ×{q}
||σ||2dVT ≥ 4hp vol(NT ), (1.24)

where ||σ|| is the norm of the second fundamental form, dVT is the volume element
of NT , and vol(NT ) is the volume of NT .

The equality sign of (1.24) holds identically if and only if we have:

(1) The warping function f is constant.
(2) (NT , gNT ) is holomorphically isometric to CPh(4)and it is isometrically immersed

in CPm as a totally geodesic complex submanifold.
(3) (N⊥, f 2gN⊥) is isometric to an open portion of the real projective p-space RPp(1)

of constant sectional curvature one and it is isometrically immersed in CPm as
a totally geodesic totally real submanifold.

(4) NT ×f N⊥ is immersed linearly fully in a complex subspace CPh+p+hp(4) of
CPm(4); and moreover, the immersion is rigid.

Theorem 1.25 ([24]) Let NT ×f N⊥ be a CR-warped product with compact NT in
CPm(4). If the warping function f is a non-constant function, then for each q ∈ N⊥
we have

∫

NT ×{q}
||σ||2dVT ≥ 2pλ1

∫

NT

(ln f )2dVT + 4hp vol(NT ), (1.25)

where λ1 is the first positive eigenvalue of the Laplacian � of NT .
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Moreover, the equality sign of (1.25) holds identically if and only if we have

(1) � ln f = λ1 ln f .
(2) The CR-warped product is both NT -totally geodesic and N⊥-totally geodesic.

The following example shows that Theorems1.24 and 1.25 are sharp.

Example 4 Let ι1 be the identity map of CPh(4) and let

ι2 : RPp(1) → CPp(4)

be a totally geodesic Lagrangian embedding of RPp(1) into CPp(4). Denote by

ι = (ι1, ι2) : CPh(4) × RPp(1) → CPh(4) × CPp(4)

the product embedding of ι1 and ι2. Moreover, let Sh,p be the Segre embedding of
CPh(4) × CPp(4) into CPhp+h+p(4). Then the composition

φ = Sh,p ◦ ι : CPh(4) × RPp(1)
(ι1,ι2)−−−−−−−→

totally geodesic
CPh(4) × CPp(4)

Sh,p−−−−−−−−→
Segre embedding

CPhp+h+p(4)

is a CR-warped product in CPh+p+hp(4) whose holomorphic factor NT = CPh(4) is
a compact manifold. Since the second fundamental form of φ satisfies the equation:
||σ||2 = 4hp, we have the equality case of inequality (1.24) identically.

The next example shows that the assumption of compactness in Theorems1.24
and 1.25 cannot be removed.

Example 5 Let C∗ = C − {0} and C
m+1∗ = C

m+1 − {0}. Denote by {z0, . . . , zh} a
natural complex coordinate system on C

m+1∗ .
Consider the action of C∗ on Cm+1∗ given by

λ · (z0, . . . , zm) = (λz0, . . . ,λzm)

for λ ∈ C∗. Let π(z) denote the equivalent class containing z under this action. Then
the set of equivalent classes is the complex projective m-space CPm(4) with the
complex structure induced from the complex structure on C

m+1∗ .
For any two natural numbers h and p, we define a map:

φ̆ : Ch+1
∗ × Sp(1) → C

h+p+1
∗

by
φ̆(z0, . . . , zh;w0, . . . , wp) = (

w0z0, w1z0, . . . , wpz0, z1, . . . , zh
)

for (z0, . . . , zh) in Ch+1∗ and (w0, . . . , wp) in Sp with
∑p

j=0 w2
j = 1.
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Since the image of φ̆ is invariant under the action of C∗, the composition:

π ◦ φ̆ : Ch+1
∗ × Sp φ̆−→ C

h+p+1
∗

π−→ CPh+p(4)

induces a CR-immersion of the product manifold NT × Sp into CPh+p(4), where

NT = {
(z0, . . . , zh) ∈ CPh : z0 
= 0

}

is a proper open subset ofCPh(4). Clearly, the inducedmetric onNT × Sp is a warped
product metric and the holomorphic factor NT is non-compact.

Notice that the complex dimension of the ambient space is h + p; far less than
h + p + hp.

1.8 Another Optimal Inequality for CR-Warped Products

AllCR-warped products in complex space forms also satisfy another general optimal
inequality obtained in [21].

Theorem 1.26 Let N = Nh
T ×f Np

⊥ be a CR-warped product in a complex space
form M̃(4c) of constant holomorphic sectional curvature c. Then we have

||σ||2 ≥ 2p
{||∇(ln f )||2 + �(ln f ) + 2hc

}
. (1.26)

If the equality sign of (1.26) holds identically, then NT is a totally geodesic sub-
manifold and N⊥ is a totally umbilical submanifold. Moreover, N is a minimal sub-
manifold in M̃(4c).

The following three theorems completely classify all CR-warped products which
satisfy the equality case of (1.26) identically.

Theorem 1.27 ([21])Let φ : Nh
T ×f Np

⊥ → C
m be a CR-warped product inCm. Then

we have
||σ||2 ≥ 2p

{||∇(ln f )||2 + �(ln f )
}
. (1.27)

The equality case of inequality (1.27) holds identically if and only if the following
four statements hold.

(1) NT is an open portion of Ch∗ := C
h − {0};

(2) N⊥ is an open portion of Sp;
(3) There is α, 1 ≤ α ≤ h, and complex Euclidean coordinates {z1, . . . , zh} on C

h

such that f =
√∑α

j=1 zjz̄j;

(4) Up to rigid motions, the immersion φ is given by
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φ = (
w0z1, . . . , wpz1, . . . , w0zα, . . . , wpzα, zα+1, . . . , zh, 0, . . . , 0

)

for z = (z1, . . . , zh) ∈ C
h∗ and w = (w0, . . . , wp) ∈ Sp(1) ⊂ E

p+1.

Theorem 1.28 ([21]) Let φ : NT ×f N⊥ → CPm(4) be a CR-warped product with
dimC NT = h and dimR N⊥ = p. Then we have

||σ||2 ≥ 2p
{||∇(ln f )||2 + �(ln f ) + 2h

}
. (1.28)

The CR-warped product satisfies the equality case of inequality (1.28) identically
if and only if the following three statements hold.

(a) NT is an open portion of complex projective h-space CPh(4);
(b) N⊥ is an open portion of unit p-sphere Sp(1); and
(c) There exists a natural number α ≤ h such that, up to rigid motions, φ is the

composition π ◦ φ̆, where

φ̆(z, w) =(
w0z0, . . . , wpz0, . . . , w0zα, . . . , wpzα, zα+1, . . . , zh, 0, . . . , 0

)

for z = (z0, . . . , zh) ∈ C
h+1∗ and w = (w0, . . . , wp) ∈ Sp(1) ⊂ E

p+1, where π is
the projection π : Cm+1∗ → CPm.

Theorem 1.29 ([21]) Let φ : NT ×f N⊥ → CHm(−4) be a CR-warped product with
dimC NT = h and dimR N⊥ = p. Then we have

||σ||2 ≥ 2p
{||∇(ln f )||2 + �(ln f ) − 2h

}
. (1.29)

The CR-warped product satisfies the equality case of (1.29) identically if and only
if the following three statements hold.

(a) NT is an open portion of complex hyperbolic h-space CHh(−4);
(b) N⊥ is an open portion of unit p-sphere Sp(1) (or R, when p = 1); and
(c) up to rigid motions, φ is the composition π ◦ φ̆, where either φ̆ is given by

φ̆(z, w) = (
z0, . . . , zβ, w0zβ+1, . . . , wpzβ+1, . . . , w0zh, . . . , wpzh, 0, . . . , 0

)

for 0 < β ≤ h, z = (z0, . . . , zh) ∈ C
h+1
∗1 and w = (w0, . . . , wp) ∈ Sp(1), or φ̆ is

given by

φ̆(z, u) =(
z0 cosh u, z0 sinh u, z1 cos u, z1 sin u, . . . ,

zα cos u, zα sin u, zα+1, . . . , zh, 0, . . . , 0
)

for z = (z0, . . . , zh) ∈ C
h+1
∗1 , where π is the projection π : Cm+1

∗1 → CHm(−4).
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1.9 Warped Product Real Hypersurfaces

For real hypersurfaces, we have the following nonexistence theorem.

Theorem 1.30 ([32]) There do not exist real hypersurfaces in complex projective
and complex hyperbolic spaces which are Riemannian products of two or more
Riemannian manifolds of positive dimension.

In other words, every real hypersurface in a non-flat complex space form is irre-
ducible.

A contact manifold is an odd-dimensional manifold M2n+1 with a 1-form η such
that η ∧ (dη)n 
= 0. A curve γ = γ(t) in a contact manifold is called a Legendre
curve if η(β′(t)) = 0 along β. Let S2n+1(c) denote the hypersphere in C

n+1 with
curvature c centered at the origin. Then S2n+1(c) is a contact manifold endowed with
a canonical contact structure which is the dual 1-form of the characteristic vector
field Jξ, where J is the complex structure and ξ the unit normal vector on S2n+1(c).

Legendre curves are known to play an important role in the study of contact
manifolds, e.g. a diffeomorphism of a contact manifold is a contact transformation
if and only if it maps Legendre curves to Legendre curves.

Contrast to Theorem1.30, there exist many warped product real hypersurfaces in
complex space forms as given in the following three theorems from [19].

Theorem 1.31 Let a be a positive number and γ(t) = (�1(t), �2(t)) be a unit speed
Legendre curve γ : I → S3(a2) ⊂ C

2 defined on an open interval I. Then

x(z1, . . . , zn, t) = (
a�1(t)z1, a�2(t)z1, z2, . . . , zn

)
, z1 
= 0 (1.30)

defines a real hypersurface which is the warped product Cn∗∗ ×a|z1| I of a complex
n-plane and I, where C

n∗∗ = {(z1, . . . , zn) : z1 
= 0}.
Conversely, up to rigid motions of Cn+1, every real hypersurface in C

n+1 which
is the warped product N ×f I of a complex hypersurface N and an open interval I
is either obtained in the way described above or given by the product submanifold
C

n × C ⊂ C
n × C

1 of Cn and a real curve C in C
1.

Let S2n+3(1) denote the unit hypersphere in Cn+2 centered at the origin and put

U(1) = {λ ∈ C : λλ̄ = 1}.

Then there is aU(1)-actiononS2n+3(1)definedby z �→ λz.At z ∈ S2n+3(1) the vector
V = iz is tangent to the flow of the action. The quotient space S2n+3(1)/ ∼, under the
identification induced from the action, is a complex projective space CPn+1 which
endows with the canonical Fubini-Study metric of constant holomorphic sectional
curvature 4.

The almost complex structure J on CPn+1(4) is induced from the complex struc-
ture J on C

n+2 via the Hopf fibration: π : S2n+3(1) → CPn+1(4). It is well-known
that the Hopf fibration π is a Riemannian submersion such that V = iz spans



1 CR-Warped Submanifolds in Kaehler Manifolds 19

the vertical subspaces. Let φ : M → CPn+1(4) be an isometric immersion. Then
M̂ = π−1(M) is a principal circle bundle over M with totally geodesic fibers. The
lift φ̂ : M̂ → S2n+3(1) of φ is an isometric immersion so that the diagram:

M̂
φ̂−−−−→ S2n+3(1)

π

⏐⏐�
⏐⏐�π

M
φ−−−−→ CPn+1(4)

commutes.
Conversely, if ψ : M̂ → S2n+3(1) is an isometric immersion which is invariant

under the U(1)-action, then there is a unique isometric immersion ψπ : π(M̂) →
CPn+1(4) such that the associated diagram commutes. We simply call the immersion
ψπ : π(M̂) → CPn+1(4) the projection of ψ : M̂ → S2n+3(1).

For a given vector X ∈ Tz(CPn+1)(4) and a point u ∈ S2n+2(1) with π(u) = z, we
denote by X∗

u the horizontal lift of X at u via π. There exists a canonical orthogonal
decomposition:

TuS2n+3(1) = (Tπ(u)CPn+1(4))∗u ⊕ Span {Vu}. (1.31)

Since π is a Riemannian submersion, X and X∗
u have the same length.

We put

S2n+1
∗ (1) =

{
(z0, . . . , zn) :

n∑

k=0

zk z̄k = 1, z0 
= 0

}
,

CPn
0 = π(S2n+1

∗ (1)).

(1.32)

The next theorem classifies all warped products hypersurfaces of the form N ×f I
in complex projective spaces.

Theorem 1.32 ([19]) Suppose that a is a positive number and γ(t) = (�1(t), �2(t))
is a unit speed Legendre curve γ : I → S3(a2) ⊂ C

2 defined on an open interval I.
Let x : S2n+1∗ × I → C

n+2 be the map defined by

x(z0, . . . , zn, t) = (
a�1(t)z0, a�2(t)z0, z1, . . . , zn

)
,

n∑

k=0

zk z̄k = 1. (1.33)

Then

(1) x induces an isometric immersion ψ : S2n+1∗ (1) ×a|z0| I → S2n+3(1).
(2) The image ψ(S2n+1∗ (1) ×a|z0| I) in S2n+3(1) is invariant under the action of U(1).
(3) the projection

ψπ : π(S2n+1
∗ (1) ×a|z0| I) → CPn+1(4)

of ψ via π is a warped product hypersurface CPn
0 ×a|z0| I in CPn+1(4).
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Conversely, if a real hypersurface in CPn+1(4) is a warped product N ×f I of
a complex hypersurface N of CPn+1(4) and an open interval I, then, up to rigid
motions, it is locally obtained in the way described above.

In the complex pseudo-Euclidean space C
n+2
1 endowed with pseudo-Euclidean

metric

g0 = −dz0dz̄0 +
n+1∑

j=1

dzjdz̄j, (1.34)

we define the anti-de Sitter space-time by

H2n+3
1 (−1) = {

(z0, z1, . . . , zn+1) : 〈z, z〉 = −1
}
. (1.35)

It is known that H2n+3
1 (−1) has constant sectional curvature −1. There is a U(1)-

action on H2n+3
1 (−1) defined by z �→ λz. At a point z ∈ H2n+3

1 (−1), iz is tangent to
the flow of the action. The orbit is given by zt = eitz with dzt

dt = izt which lies in the
negative-definite plane spanned by z and iz.

The quotient space H2n+3
1 (−1)/ ∼ is the complex hyperbolic space CHn+1(−4)

which endows a canonical Kaehler metric of constant holomorphic sectional curva-
ture−4. The complex structure J on CHn+1(−4) is induced from the canonical com-
plex structure J onCn+2

1 via the totally geodesic fibration: π : H2n+3
1 → CHn+1(−4).

Let φ : M → CHn+1(−4) be an isometric immersion. Then M̂ = π−1(M) is
a principal circle bundle over M with totally geodesic fibers. The lift φ̂ : M̂ →
H2n+3

1 (−1) of φ is an isometric immersion such that the diagram:

M̂
φ̂−−−−→ H2n+3

1 (−1)

π

⏐⏐�
⏐⏐�π

M
φ−−−−→ CHn+1(−4)

commutes.
Conversely, if ψ : M̂ → H2n+3

1 (−1) is an isometric immersion which is invari-
ant under the U(1)-action, there is a unique isometric immersion ψπ : π(M̂) →
CHn+1(−4), called the projection of ψ so that the associated diagram commutes.

We put

H2n+1
1∗ (−1) = {

(z0, . . . , zn) ∈ H2n+1
1 (−1) : zn 
= 0

}
, (1.36)

CHn
∗ (−4) = π(H2n+1

1∗ (−1)). (1.37)

The following theorem classifies all warped products hypersurfaces of the form
N ×f I in complex hyperbolic spaces.
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Theorem 1.33 ([19]) Suppose that a is a positive number and γ(t) = (�1(t), �2(t))
is a unit speed Legendre curve γ : I → S3(a2) ⊂ C

2. Let

y : H2n+1
1∗ (−1) × I → C

n+2
1

be the map defined by

y(z0, . . . , zn, t) = (z0, . . . , zn−1, a�1(t)zn, a�2(t)zn), (1.38)

z0z̄0 −
n∑

k=1

zk z̄k = 1. (1.39)

Then we have

(1) y induces an isometric immersion ψ : H2n+1
1∗ (−1) ×a|zn| I → H2n+3

1 (−1).
(2) The image ψ(H2n+1

1∗ (−1) ×a|zn| I) in H2n+3
1 (−1) is invariant under the U(1)-

action.
(3) the projection

ψπ : π(H2n+1
1∗ (−1) ×a|zn| I) → CHn+1(−4)

of ψ via π is a warped product hypersurface CHn∗ (−1) ×a|zn| I in CHn+1(−4).

Conversely, if a real hypersurface in CHn+1(−4) is a warped product N ×f I of
a complex hypersurface N and an open interval I, then, up to rigid motions, it is
locally obtained in the way described above.

1.10 Twisted Product CR-Submanifolds

Twisted products B ×λ F are natural extensions of warped products, namely the
function may depend on both factors (cf. [6, p. 66]). When λ depends only on B,
the twisted product becomes a warped product. If B is a point, the twisted product is
nothing but a conformal change of metric on F.

The study of twisted productCR-submanifolds was initiated by the author in 2000
(see [11]). In particular, the following results are obtained.

Theorem 1.34 ([11]) If M = N⊥ ×λ NT is a twisted product CR-submanifold of a
Kaehler manifold M̃ such that N⊥ is a totally real submanifold and NT is a holomor-
phic submanifold of M̃, then M is a CR-product.

Theorem 1.35 ([11]) Let M = NT ×λ N⊥ be a twisted product CR-submanifold of
a Kaehler manifold M̃ such that N⊥ is a totally real submanifold and NT is a holo-
morphic submanifold of M̃. Then we have
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(1) The squared norm of the second fundamental form of M in M̃ satisfies

||σ||2 ≥ 2 p ||∇T (ln λ)||2,

where ∇T (ln λ) is the NT -component of the gradient ∇(ln λ) of ln λ and p is the
dimension of N⊥.

(2) If ||σ||2 = 2p ||∇T ln λ||2 holds identically, then NT is a totally geodesic sub-
manifold and N⊥ is a totally umbilical submanifold of M̃.

(3) If M is anti-holomorphic in M̃ and dim N⊥ > 1, then ||σ||2 = 2p ||∇T ln λ||2
holds identically if and only if NT is a totally geodesic submanifold and N⊥ is a
totally umbilical submanifold of M̃.

For mixed foliate twisted product CR-submanifolds of Kaehler manifolds, we
have the following result.

Theorem 1.36 ([11]) Let M = NT ×λ N⊥ be a twisted product CR-submanifold of
a Kaehler manifold M̃ such that N⊥ is a totally real submanifold and NT is a holo-
morphic submanifold of M̃. If M is mixed totally geodesic, then we have

(1) The twisted function λ is a function depending only on N⊥.
(2) NT × Nλ

⊥ is a CR-product, where Nλ
⊥ denotes the manifold N⊥ equipped with the

metric gλ
N⊥ = λ2gN⊥ .

Next,we provide ample examples of twisted productCR-submanifolds in complex
Euclidean spaces which are not CR-warped product submanifolds.

Let z : NT → C
m be a holomorphic submanifold of a complex Euclidean m-space

C
m and w : N1

⊥ → C
� be a totally real submanifold such that the image of NT × N1

⊥
under the product immersion ψ = (z, w) does not contain the origin (0, 0) of Cm ⊕
C

�.
Let j : N2

⊥ → Sq−1 ⊂ E
q be an isometric immersion of a Riemannian manifold

N2
⊥ into the unit hypersphere Sq−1 of Eq centered at the origin.
Consider the map

φ = (z, w) ⊗ j : NT × N1
⊥ × N2

⊥ → (Cm ⊕ C
�) ⊗ E

q

defined by
φ(p1, p2, p3) = (z(p1), z(p2)) ⊗ j(p3), (1.40)

for p1 ∈ NT , p2 ∈ N1
⊥, p3 ∈ N2

⊥.
On (Cm ⊕ C

�) ⊗ E
q we define a complex structure J by

J((B, E) ⊗ F) = (iB, iE) ⊗ F, i = √−1,

for any B ∈ C
m, E ∈ C

� and F ∈ E
q. Then (Cm ⊕ C

�) ⊗ E
q becomes a complex

Euclidean (m + �)q-space C(m+�)q.
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Let us put N⊥ = N1
⊥ × N2

⊥. We denote by |z| the distance function from the origin
of Cm to the position of NT in C

m via z; and denote by |w| the distance function
from the origin of C� to the position of N1

⊥ in C
� via w. We define a function λ

by λ = √|z|2 + |w|2. Then λ > 0 is a differentiable function on NT × N⊥, which
depends on both NT and N⊥ = N1

⊥ × N2
⊥.

Let M denote the twisted product NT ×λ N⊥ with twisted function λ. Clearly, M
is not a warped product.

For such a twisted product NT ×λ N⊥ in C
(m+�)q defined above we have the fol-

lowing.

Proposition 1.2 ([11]) The map φ = (z, w) ⊗ j : NT ×λ N⊥ → C
(m+�)q defined by

(1.40) satisfies the following properties:

(1) φ = (z, w) ⊗ j : NT ×λ N⊥ → C
(m+�)q is an isometric immersion.

(2) φ = (z, w) ⊗ j : NT ×λ N⊥ → C
(m+�)q is a twisted product CR-submanifold

such that NT is a holomorphic submanifold and N⊥ is a totally real subman-
ifold of C(m+�)q.

Proposition1.2 shows that there are many twisted product CR-submanifolds
NT ×λ N⊥ such that NT are holomorphic submanifolds and N⊥ are totally real sub-
manifolds. Moreover, such twisted productCR-submanifolds are not warped product
CR-submanifolds.

Let (B, gB) and (F, gF) be Riemannian manifolds and let πB : B × F → B and
πF : B × F → F be the canonical projections. Also let b, f be smooth real-valued
functions on B × F. Then the doubly twisted product of (B, gB) and (F, gF) with
twisting functions b and f is defined to be the product manifold M = B × F with
metric tensor

g = f 2gB + b2gF .

We denote this kind manifolds by f B ×b F.

Remark 5 B. Sahin proved the following.

Theorem 1.37 ([42]) There does not exist doubly twisted product CR-submanifolds
in a Kaehler manifold which are not (singly) twisted product CR-submanifolds in
the form f1MT ×f2 M⊥, where MT is a holomorphic submanifold and M⊥ is a totally
real submanifold of the Kaehler manifold M̃.

An almost Hermitianmanifold (M, g, J)with almost complex structure J is called
a nearly Kähler manifold provided that [36]

(∇XJ)X = 0, ∀X ∈ TM. (1.41)

Remark 6 Theorem1.37 was extended by S. Uddin in [43] to doubly twisted product
CR-submanifolds in a nearly Kaehler manifold.

Remark 7 For further results on CR-submanifolds in nearly Kaehler manifolds, see
Luc Vrancken’s article “Nearly Kaehler 6-sphere and its CR-submanifold” to appear
in this volume.



24 B.-Y. Chen

References

1. Bejancu, A.: Geometry of CR-Submanifolds. D. Reidel Publishing Co., Dordrecht (1986)
2. Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49

(1969)
3. Chen, B.-Y.: Geometry of Submanifolds. M. Dekker, New York (1973)
4. Chen, B.-Y.: Some CR-submanifolds of a Kaehler manifold. I. J. Differ. Geom. 16(2), 305–322

(1981)
5. Chen, B.-Y.: SomeCR-submanifolds of aKaehlermanifold. II. J. Differ. Geom. 16(3), 493–509

(1981)
6. Chen, B.-Y.: Geometry of Submanifolds and Its Applications. Science University of Tokyo,

Tokyo (1981)
7. Chen, B.-Y.: Differential geometry of real submanifolds in a Kähler manifold. Monatsh. Math.

91, 257–274 (1981)
8. Chen, B.-Y.: Geometry of Slant Submanifolds. Katholieke University Leuven, Leuven (1990)
9. Chen, B.-Y.: Some pinching and classification theorems forminimal submanifolds.Arch.Math.

60(6), 568–578 (1993)
10. Chen, B.-Y.: Some new obstructions to minimal and Lagrangian isometric immersions. Jpn. J.

Math. 26(1), 105–127 (2000)
11. Chen, B.-Y.: Twisted product CR-submanifolds in Kaehler manifolds. Tamsui Oxf. J. Math.

Sci. 16(2), 105–121 (2000)
12. Chen, B.-Y.: Riemannian submanifolds. In: Dillen, F., Verstraelen, L. (eds.) Handbook of

Differential Geometry, vol. I, pp. 187–418. North Holland Publishing, Amsterdam (2000)
13. Chen, B.-Y.: Complex extensors, warped products and Lagrangian immersions. Soochow J.

Math. 26(1), 1–18 (2000)
14. Chen, B.-Y.: Geometry of warped product CR-submanifolds in Kaehler manifolds. Monatsh.

Math. 133(3), 177–195 (2001)
15. Chen, B.-Y.: Geometry of warped productCR-submanifolds in Kaehler manifolds. II.Monatsh.

Math. 134(2), 103–119 (2001)
16. Chen, B.-Y.: Riemannian geometry of Lagrangian submanifolds. Taiwan. J. Math. 5(4), 681–

723 (2001)
17. Chen, B.-Y.: On isometric minimal immersions from warped products into real space forms.

Proc. Edinb. Math. Soc. 45(3), 579–587 (2002)
18. Chen, B.-Y.: Geometry of warped products as Riemannian submanifolds and related problems.

Soochow J. Math. 28(2), 125–156 (2002)
19. Chen, B.-Y.: Real hypersurfaces in complex space forms which are warped products. Hokkaido

Math. J. 31(2), 363–383 (2002)
20. Chen, B.-Y.: Non-immersion theorems for warped products in complex hyperbolic spaces.

Proc. Jpn. Acad. Ser. A Math. Sci. 78(6), 96–100 (2002)
21. Chen, B.-Y.: Another general inequality for CR-warped products in complex space forms.

Hokkaido Math. J. 32(2), 415–444 (2003)
22. Chen, B.-Y.: A general optimal inequality for warped products in complex projective spaces

and its applications. Proc. Jpn. Acad. Ser. A Math. Sci. 79(4), 89–94 (2003)
23. Chen, B.-Y.: Warped products in real space forms. Rocky Mt. J. Math. 34(2), 551–563 (2004)
24. Chen, B.-Y.: CR-warped products in complex projective spaces with compact holomorphic

factor. Monatsh. Math. 141(3), 177–186 (2004)
25. Chen, B.-Y.: A general optimal inequality for arbitrary Riemannian submanifolds. J. Inequal.

Pure Appl. Math. 6(3), Article 77, 10 pp (2005)
26. Chen, B.-Y.: Pseudo-Riemannian geometry, δ-invariants and applications. World Scientific,

Hackensack (2011)
27. Chen, B.-Y.: Total mean curvature and submanifolds of finite type, 2nd edn. World Scientific,

Hackensack (2015)
28. Chen, B.-Y., Dillen, F.: Warped product decompositions of real space forms and Hamiltonian-

stationary Lagrangian submanifolds. Nonlinear Anal. 69(10), 3462–3494 (2008)



1 CR-Warped Submanifolds in Kaehler Manifolds 25

29. Chen, B.-Y., Dillen, F.: Optimal inequalities for multiply warped product submanifolds. Int.
Electron. J. Geom. 1(1), 1–11 (2008); Erratum, ibid 4(1), 138 (2011)

30. Chen, B.-Y., Garay, O.J.: Pointwise slant submanifolds in almost Hermitian manifolds. Turk.
J. Math. 36(4), 63–640 (2012)

31. Chen, B.-Y., Kuan, W.E.: The Segre imbedding and its converse. Ann. Fac. Sci. Toulouse,
Math. 7(1), 1–28 (1985)

32. Chen, B.-Y., Maeda, S.: Real hypersurfaces in nonflat complex space forms are irreducible.
Osaka J. Math. 40(1), 121–138 (2003)

33. Chen, B.-Y., Ogiue, K.: On totally real submanifolds. Trans. Am. Math. Soc. 193, 257–266
(1974)

34. Chen, B.-Y., Vrancken, L.: Lagrangian submanifolds satisfying a basic equality. Math. Proc.
Camb. Philos. Soc. 120(2), 291–307 (1996)

35. Chen, B.-Y., Wei, W.S.: Growth estimates for warping functions and their geometric applica-
tions. Glasg. Math. J. 51(3), 579–592 (2009)

36. Gray, A.: Nearly Kähler manifolds. J. Differ. Geom. 4, 283–309 (1970)
37. Khan, K.A., Ali, S., Jamal, N.: Generic warped product submanifolds in a Kaehler manifold.

Filomat 22(1), 139–144 (2008)
38. Moore, J.D.: Isometric immersions of Riemannian products. J. Differ. Geom. 5(1–2), 159–168

(1971)
39. Nash, J.F.: The imbedding problem for Riemannian manifolds. Ann. Math. 63, 20–63 (1956)
40. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Academic Press,

New York (1983)
41. Sahin, B.: Nonexistence of warped product semi-slant submanifolds of Kaehler manifolds.

Geom. Dedicata 117, 195–202 (2006)
42. Sahin, B.: Notes on doubly warped and doubly twisted product CR-submanifolds of Kaehler

manifolds. Mat. Vesnik 59(4), 205–210 (2007)
43. Uddin, S.: On doubly warped and doubly twisted product submanifolds. Int. Electron. J. Geom.

3(1), 35–39 (2010)



Chapter 2
CR-Submanifolds and δ-Invariants

Bang-Yen Chen
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2.1 Introduction

In 1956, John F. Nash proved in [34] the following famous embedding theorem.

Theorem 2.1 Every Riemannian n-manifold can be isometrically embedded in a
Euclidean m-space E

m with m = n
2 (n + 1)(3n + 11).

For example, Nash’s theorem implies that every Riemannian 3-manifold can be
isometrically embedded in E120 with codimension 117.

The Nash embedding theorem was aimed for in the hope that if Riemannian
manifolds could always be regarded as Riemannian submanifolds, this would then
yield the opportunity to use extrinsic help. Till when observed in [32] as such by
M.L. Gromov, this hope had not been materialized however.

There were several reasons why it is so difficult to apply Nash’s theorem. One
reason is that it requires very large codimension for a Riemannian manifold to admit
an isometric embedding in Euclidean spaces in general. On the other hand, submani-
folds of higher codimension are very difficult to understand, e.g., there are no general
results for arbitrary Riemannian submanifolds, except the three fundamental equa-
tions of Gauss, Codazzi, and Ricci. Another reason for this is lack of controls of the
extrinsic invariants of the submanifold by the known classical intrinsic invariants.

In order to overcome such difficulties as well as to provide answers to an open
question on minimal immersions proposed by S.S. Chern in the 1960s, the author
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introduced in the early 1990s a new type of Riemannian invariants; namely, the
δ-invariants. At the same time, the author was able to establish universal optimal
inequalities for Riemannian submanifolds involving the intrinsic δ-invariants and
the most important extrinsic invariant; namely, the squared mean curvature.

The δ-invariants are very different in nature from the “classical” Ricci and scalar
curvatures; simply due to the fact that both scalar and Ricci curvatures are “total
sum” of sectional curvatures on a Riemannian manifold. In contrast, the author’s δ-
invariants are obtained from the scalar curvature by throwing away a certain amount
of sectional curvatures. After δ-invariants were introduced and the corresponding
inequalitieswere established, δ-invariantswere investigated bymanymathematicians
in the past two decades (see [21, 22] for recent surveys on δ-invariants and their
applications).

Let N be a Riemannian manifold isometrically immersed in a Kähler manifold M̃
with complex structure J . For each point x ∈ N , letDx denote the maximal complex
subspace TxN ∩ J(TxN) of the tangent space TxN, x ∈ N . If the dimension of Dx

is the same for all x ∈ N , then {Dx, x ∈ N} defines a complex distribution D on
N . A submanifold N in a Kähler manifold M̃ is called a CR-submanifold if there
exists on N a totally real distribution D⊥ whose orthogonal complement is D, i.e.,
TN = D ⊕ D⊥ and JD⊥

x ⊂ T⊥
x N, x ∈ N (cf. [3]).

A Riemannian submersion π : M → B is an everywhere surjective map from a
Riemannian manifold M onto another Riemannian manifold B such that the differ-
ential π∗ preserves lengths of horizontal vectors.

The main purpose of this article is to present recent results on CR-submanifolds
in complex space forms which are closely related to δ-invariants and Riemannian
submersions.

2.2 Preliminaries

LetM be an n-dimensional submanifold of aRiemannianm-manifold M̃m.We choose
a local field of orthonormal frame e1, . . . , en, en+1, . . . , em in M̃m such that, restricted
to M, the vectors e1, . . . , en are tangent to M and hence en+1, . . . , em are normal to
M.

For the submanifold M in M̃m, we denote by ∇ and ∇̃ the Levi-Civita connec-
tions of M and M̃m, respectively. The Gauss and Weingarten formulas are given,
respectively, by (see, for instance, [22])

∇̃XY = ∇XY + σ(X, Y), (2.1)

∇̃Xξ = −AξX + DXξ (2.2)

for any vector fields X, Y tangent to M and vector field ξ normal to M, where σ
denotes the second fundamental form, D the normal connection, and A the shape
operator of the submanifold.
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Let {σr
ij}, i, j = 1, . . . , n; r = n + 1, . . . , m, denote the coefficients of the second

fundamental form h with respect to e1, . . . , en, en+1, . . . , em. Then, we have

σr
ij = 〈

σ(ei, ej), er
〉 = 〈

Aer ei, ej
〉
,

where 〈 , 〉 denotes the inner product.
The mean curvature vector

−→
H is defined by

−→
H = 1

n
traceσ = 1

n

n∑

i=1

σ(ei, ei). (2.3)

The squared mean curvature is then given by

H2 = 〈−→H ,
−→
H 〉.

The submanifold M is called minimal in M̃m if its mean curvature vector vanishes
identically. It is called totally geodesic if its second fundamental form σ vanishes
identically.

Denote by R and R̃ the Riemann curvature tensors of M and M̃m, respectively.
Then the equation of Gauss is given by

R(X, Y; Z, W ) = R̃(X, Y; Z, W ) + 〈σ(X, W ),σ(Y , Z)〉
− 〈σ(X, Z),σ(Y , W )〉 (2.4)

for vectorsX, Y , Z, W tangent toM. In particular, for a submanifold of a Riemannian
manifold of constant sectional curvature c, we have

R(X, Y; Z, W ) = c{〈X, W 〉 〈Y , Z〉 − 〈X, Z〉 〈Y , W 〉}
+ 〈σ(X, W ),σ(Y , Z)〉 − 〈σ(X, Z),σ(Y , W )〉 . (2.5)

Let M be a Riemannian p-manifold and e1, . . . , ep be an orthonormal frame fields
on M. For differentiable function ϕ on M, the Laplacian �ϕ of ϕ is defined by

�ϕ =
p∑

j=1

{(∇ej ej)ϕ − ejejϕ}. (2.6)

We simply call a Kähler manifold of constant holomorphic sectional curvature a
complex space form. In this article, we denote a complete simply connected complex
m-dimensional complex space form of constant holomorphic sectional curvature 4c
by M̃m(4c).
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The curvature tensor R̃ of a complex space form M̃m(4c) satisfies

R̃(U, V, W ) = c{〈V, W 〉 U − 〈X, W 〉 V + 〈JV, W 〉 JU

− 〈JU, W 〉 JV + 2 〈U, JV 〉 JW }. (2.7)

It is well-known that M̃m(4c) is holomorphically isometric to the complex projective
m-space CPm(4c), the complex Euclidean m-space Cm, or the complex hyperbolic
m-space CHm(4c) according to c > 0, c = 0, or c < 0, respectively.

2.3 CR-Submanifolds and CR-Warped Products

AsubmanifoldN of aKählermanifold M̃ is called totally real if the complex structure
J of M̃ carries each tangent space TxN ofN into the normal spaceT⊥

x N for each x ∈ N
(cf. [25]). A totally real submanifold N is called Lagrangian if dimC M̃ = dim N .
For a point x ∈ N , we denote by Dx the maximal complex subspace TxN ∩ J(TxN)

of the tangent space TxN . If the dimension of Dx is the same for all x ∈ N , then
{Dx, x ∈ N} defines a complex distribution D on N .

A submanifold N in a Kähler manifold M̃ is called a CR-submanifold if there
exists on N a totally real distribution D⊥ whose orthogonal complement is D, i.e.,
TN = D ⊕ D⊥ and JD⊥

x ⊂ T⊥
x N, x ∈ N (cf. [3]).

For a CR-submanifold N with the complex distribution D and the totally real
distribution D⊥, we denote by ν the complementary orthogonal subbundle of JD⊥
in the normal bundle T⊥N of N . Then, we have the following orthogonal direct sum
decomposition:

T⊥N = JD⊥ ⊕ ν, JD⊥ ⊥ ν. (2.8)

A CR-submanifold is called proper if it is neither holomorphic nor totally real.
Throughout this article, let h denote the complex rank of the complex distributionD
and p the real rank of the totally real distribution D⊥.

A CR-submanifold N is called a CR-product if it is a Riemannian product of
a holomorphic submanifold NT and a totally real submanifold N⊥ of M̃. It was
proved in [8, Theorem 4.6] that every CR-product in a complex Euclidean space is
a direct product of a holomorphic submanifold of a linear complex subspace and a
totally real submanifold of another linear complex subspace. Also, it was proved in
[8, Theorem 4.4] that there do not exist proper CR-products in complex hyperbolic
spaces. Furthermore, it was known in [8, Theorem 5.3] that CR-products in complex
projective space CPh+p+hp are obtained from the Segre imbedding in a natural way.

Let B and F be two Riemannian manifolds endowed with Riemannian metrics gB

and gF , respectively, and let f be a positive differentiable function on B. The warped
product B ×f F is the manifold B × F equipped with the Riemannian metric

g = gB + f 2gF .
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The function f is called the warping function of the warped product (cf. [36]).
It was shown in [16, Theorem 3.1] that there do not exist warped products of the

form: N⊥ ×f NT in any Kähler manifold besides CR-products, where N⊥ is a totally
real submanifold and NT is a holomorphic submanifold.

By contrast, it was also shown in [16] that there exist many CR-submanifolds
which are warped products of the form NT ×f N⊥. Such a warped product CR-
submanifold is simply called a CR-warped product (see [16]). Furthermore, it was
proved in [16, Theorem 5.1] that every CR-warped product in an arbitrary Kähler
manifold satisfies the following optimal universal inequality:

||σ||2 ≥ 2p||∇(ln f )||2, (2.9)

where ∇(ln f ) denotes the gradient of ln f and σ is the second fundamental form of
the CR-warped product.

CR-warped products in complex space forms satisfying the equality case of (2.9)
have been completely classified in [16, 17]. Further results on CR-warped products
in complex space forms were obtained in [19, 20].

Lemma 1 ([8]) Let N be a CR-submanifold in a CPm(4). Then, we have
(a) 〈∇UZ, X〉 = 〈JAJZ U, X〉,
(b) AJZ W = AJW Z,
(c) AJηX = −AηJX, and
(d) 〈DUJZ, JW 〉 = 〈∇UZ, W 〉, 〈DUJZ, Jη〉 = 〈h(U, Z), η〉,
for any vector fields U ∈ TN; X, Y ∈ D; Z, W ∈ D⊥ and η ∈ ν, where ν is defined
by (2.8).

Lemma 2 The totally real distribution D⊥ of a CR-submanifold of a Kähler mani-
fold is an integrable distribution.

Lemma 3 Let N be a CR-submanifold of a Kähler manifold M̃. Then, we have:

(1) the complex distribution D is integrable if and only if

〈σ(X, JY), JZ〉 = 〈σ(JX, Y), JZ〉 (2.10)

holds for any X, Y ∈ D and Z ∈ D⊥,
(2) the leaves of the totally real distribution D⊥ are totally geodesic in N if and only

if 〈σ(X, Z), JW 〉 = 0 holds for any X ∈ D and Z, W ∈ D⊥.

A CR-submanifold N of a Kähler manifold M̃ is called anti-holomorphic if we
have JD⊥

x = T⊥
x N, x ∈ N . And it is called mixed totally geodesic if its second fun-

damental form σ satisfies σ(X, Z) = 0 for any X ∈ D and Z ∈ D⊥. A mixed totally
geodesic CR-submanifold is called mixed foliate if its complex distributionD is also
integrable. Obviously, real hypersurfaces of a Kähler manifold are anti-holomorphic
submanifolds with p = rankD⊥ = 1.

Lemma 4 A complex space form M̃m(4c) with c = 0 admits no mixed foliate proper
CR-submanifolds.
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Lemma 4 is due to [4] for c > 0 and due to [29] for c < 0.
For mixed foliate CR-submanifolds in a complex Euclidean space, we have the

following results from [8].

Lemma 5 Let N be a CR-submanifold of Cm. Then N is mixed foliate if and only if
N is a CR-product.

Lemma 6 Every CR-product in a complex Euclidean m-space Cm is a direct prod-
uct of a holomorphic submanifold of a linear complex subspace and a totally real
submanifold of another linear complex subspace.

Lemma 7 Let N be a mixed foliate CR-submanifold of a Kähler manifold M̃m(4c)
of constant holomorphic sectional curvature 4c. Then, for any unit vectors X ∈ D
and Z ∈ D⊥, we have ||AJZX||2 = −c.

Lemma 8 Let N be a CR-submanifold of a Kähler manifold M̃ with totally real dis-
tributionD⊥. Then at each point x ∈ N there exists an orthonormal basis {e1, . . . , ep}
of D⊥

x such that the second fundamental form h of N in M̃ satisfies

〈AJe1e1, ei〉 = 0, i = 2, . . . , p. (2.11)

Lemma 8 extends a result of [31].
For CR-warped products, we have [16]

Lemma 9 For a CR-warped product NT ×f N⊥ in a Kähler manifold M̃, we have

(1)
〈
σ(D,D), JD⊥〉 = 0;

(2) ∇XZ = ∇ZX = (X ln f )Z;
(3) 〈σ(JX, Z), JW 〉 = (X ln f ) 〈Z, W 〉;
(4) DX(JZ) = J∇XZ, whenever σ(D,D⊥) ⊂ JD⊥;
(5)

〈
σ(D,D⊥), JD⊥〉 = 0 if and only if NT ×f N⊥ is a trivial CR-warped product

in M̃,

where X, Y ∈ D and Z, W ∈ D⊥.

2.4 Riemannian Submersions

ARiemannian submersion π : M → B is a map from a RiemannianmanifoldM onto
another Riemannian manifold B such that π has maximal rank and the differential
π∗ preserves lengths of horizontal vectors. Throughout this article, we only consider
Riemannian submersions π : M → B with m > b > 0, where m = dim M and b =
dim B.

For each x ∈ B, π−1(x) is an (m − b)-dimensional submanifold of M. The sub-
manifolds π−1(x), x ∈ B, are called fibers. A vector field on M is called vertical if
it is always tangent to fibers; and horizontal if it is always orthogonal to fibers. We
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use corresponding terminology for individual tangent vectors as well. A vector field
on M is called basic if X is horizontal and π-related to a vector field X∗ on B, i.e.,
π∗Xu = X∗π(u), for all u ∈ M.

Let H and V denote the projections of tangent spaces of M onto the subspaces
of horizontal and vertical vectors, respectively. We use the same letters to denote the
horizontal and vertical distributions.

Let g and gB be the metric tensors of M and B, respectively, and gF the induced
metric on fibers. Denote by RM, RB and RF the Riemann curvature tensors of the
metrics g, gB and gF , respectively.

Associated with a Riemannian submersion π : M → B, there exists a natural
(1, 2)-tensor A on M, known as the O’Neill’s integrability tensor, defined by

AEF = H∇HE(VF) + V∇HE(HF) (2.12)

for vector fields E, F tangent to M. In particular, for a horizontal vector field X and
a vertical vector field V , we have

AX V = H∇X V . (2.13)

For horizontal vector fields X, Y , the tensor A has the alternation property

AXY = −AY X. (2.14)

Associated with π : M → B, the invariants Ăπ and Åπ on M are defined by
(cf. [22])

Ăπ =
b∑

i=1

m∑

s=b+1

||AXi Vs||2, Åπ =
∑

1≤i<j≤b

||AXi Xj||2, (2.15)

where X1, . . . , Xb are orthonormal basic horizontal vector fields and Vb+1, . . . , Vm

are orthonormal vertical vector fields.
The following lemma can be found in [22, 36].

Lemma 10 For vector fields X, Y tangent to B, we have
(1)

〈
X̄, Ȳ

〉 = 〈X, Y〉 ◦ π,
(2)H[X̄, Ȳ ] = [X, Y ]−,
(3)H∇X̄ Ȳ = (∇′

XY)−, where ∇′ is the Levi-Civita connection of B,
where X̄, Ȳ and [X, Y ]− are the horizontal lifts of X, Y and [X, Y ], respectively.

Lemma 11 Let X, Y be horizontal vector fields and E, F be vector fields on M.
Then, each of the following holds:
(a) AXY = −AY X, or equivalently, AXY = 1

2V[X, Y ],
(b) AHEF = AEF,
(c)AE maps the horizontal subspace into the vertical one and the vertical subspace

into the horizontal one.
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Lemma 12 Let π : M → B be a pseudo-Riemannian submersion. Then

RB(π∗X,π∗Y;π∗Y ,π∗X) = RM(X, Y; Y , X) + 3||AXY ||2. (2.16)

Moreover, if π has totally geodesic fibers, then we also have
(1) RM(U, V ; V, U) = RF(U, V ; V, U),
(2) RM(X, U; U, X) = ||AXU||2,
for horizontal vector filed X, Y and vertical vector field U.

Lemma 13 For a Riemannian submersion π : M → B, we have

KM(X̄, Ȳ) = KB(X, Y) − 3 ||AX̄ Ȳ ||2

for orthonormal vector fields X, Y on B.

Let Cm+1 denote the complex Euclidean (m + 1)-space and let

S2m+1 = {z = (z1, . . . , zm+1) ∈ C
m+1 : 〈z, z〉 = 1}

be the unit hypersphere of Cm+1. Consider the Hopf fibration

π : S2m+1(c) → CPm(4c). (2.17)

Then, π is a Riemannian submersion with totally geodesic fibers.
Given z ∈ S2m+1, the vector ξ = iz is tangent to the fibers and the horizontal

space at z is the orthogonal complement of iz with respect to the induced metric on
S2m+1 from the standard metric onCm+1. Moreover, given a horizontal vector X, then
iX is again horizontal and π∗(iX) = J(π∗(X)), where J is the complex structure on
CPm(4). It is well-known that S2m+1 is a Sasakianmanifold with characteristic vector
field ξ and with the contact structure obtained from the projection of the complex
structure J of Cm+1.

Let φ : N → CPm(4) be an isometric immersion of a Riemannian n-manifold
N into CPm(4). Then, Ñ = π−1(N) is a principal circle bundle over N with totally
geodesic fibers and the lift φ̃ : Ñ → S2m+1 of φ is an isometric immersion such that

Ñ
φ̃−−−−→ S2m+1

π̃

⏐⏐�
⏐⏐�π

N
φ−−−−→ CPm(4)

commutes. Since ξ generate the vertical subspaces of π : S2m+1(c) → CPm(4c), we
have the orthogonal decomposition

TzÑ = Tπ(z)N ⊕ Span{ξ}.
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2.5 Warped Product CR Submanifolds and δ-Invariants

Let M be a Riemannian n-manifold. Let K(π) be the sectional curvature associated
with a plane section π ⊂ TpM, p ∈ M. For an orthonormal basis e1, . . . , en of TpM,
the scalar curvature τ at p is defined to be

τ (p) =
∑

i<j

K(ei ∧ ej).

Let L be a subspace of TpM of dimension r ≥ 2 and {e1, . . . , er} an orthonormal
basis of L. We define the scalar curvature τ (L) of L by

τ (L) =
∑

α<β

K(eα ∧ eβ), 1 ≤ α,β ≤ r.

Let N be a CR-submanifold of a Kähler manifold. Denote by D and D⊥ the
complex and the totally real distributions of N as before. The CR δ-invariant δ(D)

is then defined by

δ(D)(x) = τ (x) − τ (Dx), (2.18)

where τ (x) and τ (Dx) denote the scalar curvature of N at x ∈ N and the scalar
curvature of Dx ⊂ TxN , respectively (see [23] for details).

For a CR-warped product NT ×f N⊥ in the complex space form M̃h+p(4c)
with h = dimC NT and p = dim N⊥, let us choose a local orthonormal frame
{e1, . . . , e2h+p} on N such that e1, . . . , eh, eh+1 = Je1, . . . , e2h = Jeh are in D and
e2h+1, . . . , e2h+p are in D⊥.

In the following, we shall use the following convention on the range of indices
unless mentioned otherwise:

i, j, k = 1, . . . , 2h; α,β, γ = 1, . . . , h,

r, s, t = 2h + 1, . . . , 2h + p; A, B, C = 1, . . . , 2h + p.

Let us put σr
AB = 〈σ(eA, eB), Jer〉.

It follows from Lemma 9(2) that we have

�f

f
=

2h∑

j=1

K(ej ∧ er) (2.19)

for each r ∈ {2h + 1, . . . , 2h + p}.
The next theorem provides an optimal inequality for CR-warped submanifolds in

complex space forms involving the CR δ-invariant.
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Theorem 2.2 ([23]) Let N = NT ×f N⊥ be a CR-warped product in a complex
space form M̃h+p(4c) with h = dimC NT ≥ 1 and p = dim N⊥ ≥ 2. Then, we have

H2 ≥ 2(p + 2)

(2h + p)2(p − 1)

{
δ(D) − p�f

f
− p(p − 1)c

2

}
, (2.20)

where �f is the Laplacian of the warping function f and H2 is the squared mean
curvature.

The equality sign of (2.20) holds at a point x ∈ N if and only if there exists an
orthonormal basis {e2h+1, . . . , en} of D⊥

x such that the coefficients of the second
fundamental σ with respect to {e2h+1, . . . , en} satisfy

σr
rr = 3σr

ss, for 2h + 1 ≤ r = s ≤ 2h + p,

σr
st = 0, for distinct r, s, t ∈ {2h + 1, . . . , 2h + p}. (2.21)

Proof Let N = NT ×f N⊥ be a CR-warped product in a complex space form
M̃h+p(4c) with h = dimC NT ≥ 1 and p = dim N⊥ ≥ 2. Let us choose an ortho-
normal frame {e1, . . . , e2h+p} on N as above.

It follows from Gauss’ equation, (2.18), and (2.19) that δ(D) satisfies

δ(D) =
∑

i,r

K(ei, er) +
∑

r<s

K(er, es)

= p�f

f
+

∑

r<s

〈σ(er, er),σ(es, es)〉 −
∑

r<s

||σ(er, es)||2 + p(p − 1)

2
c.

(2.22)

On the other hand, it follows from Lemma 9(1) and JD⊥ = T⊥N that

∑

r<s

〈σ(er, er),σ(es, es)〉 −
∑

r<s

||σ(er, es)||2 = n2

2
||H||2 − 1

2
||σ⊥||2, (2.23)

where n = 2h + p and ||σ⊥||2 is the squared norm of σ restricted to D⊥, i.e.

||σ⊥||2 =
∑

r,s

||σ(er, es)||2. (2.24)

By combining (2.22) and (2.23) we find

δ(D) = p�f

f
+ p(p − 1)

2
c + n2

2
||H||2 − 1

2
||σ⊥||2. (2.25)
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Thus we obtain

n2||H||2 + 2(p + 2)

p − 1

(
p�f

f
− δ(D)

)
+ p(p + 2)c

= 3n2

1 − p
||H||2 + p + 2

p − 1
||σ⊥||2. (2.26)

From Lemma 1(a) we find σr
st = σs

rt = σt
rs. Now, we derive from (2.26) and

Lemma 9(1) that

n2||H||2 + 2(p + 2)

p − 1

(
p�f

f
− δ(D)

)
+ p(p + 2)c

=
∑

r

( ∑

s

σr
ss

)2 + 3(p + 1)

p − 1

∑

r =s

(σr
ss)

2 + 6(p + 2)

p − 1

∑

r<s<t

(σr
st)

2

+ 2(p + 2)

p − 1

∑

r

∑

s<t

σr
ssσ

r
tt

=
∑

r

(σr
rr)

2 + 3(p + 1)

p − 1

∑

r =s

(σr
ss)

2 + 6(p + 2)

p − 1

∑

r<s<t

(σr
st)

2

− 6

p − 1

∑

r

∑

s<t

σr
ssσ

r
tt

= 6(p + 2)

p − 1

∑

r<s<t

(σr
st)

2 + 3

p − 1

∑

r =s,t

∑

s<t

(σr
ss − σr

tt)
2

+ 1

p − 1

∑

s =r

(σr
rr − 3σr

ss)
2

≥ 0. (2.27)

Consequently, inequality (2.20) follows from (2.27). Moreover, it is easy to verify
that the equality sign of (2.20) holds if and only if (2.21) holds.

All CR-warped products in the complex Euclidean (h + p)-space Ch+p satisfying
the equality case of inequality (2.20) identically have been completely classified in
[23] as follows.

Theorem 2.3 Let ψ : NT ×f N⊥ → C
h+p be a CR-warped product in C

h+p with
h = dimC NT ≥ 1 and p = dim N⊥ ≥ 2. Then

H2 ≥ 2(p + 2)

(2h + p)2(p − 1)

{
δ(D) − p�f

f

}
. (2.28)

The equality sign of (2.28) holds identically if and only if, up to dilations and rigid
motions of Ch+p, one of the following three cases occurs:
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(a) The CR-warped product is an open part of the CR-productCh × W p ⊂ C
h × C

p,
where W p is the Whitney p-sphere in C

p;
(b) NT is an open part of Ch, N⊥ is an open part of the unit p-sphere Sp, f = |z1|

and ψ is the minimal immersion defined by

(
z1w0, · · · , z1wp, z2, . . . , zh

)
,

where z = (z1, . . . , zh) ∈ C
h and w = (w0, . . . , wp) ∈ Sp ⊂ E

p+1;
(c) NT is an open part of Ch, N⊥ is the warped product of a curve and an open

part of Sp−1 with warping function ϕ = (
√

c2 − 1/
√
2)cn

(
c t,

√
c2 − 1/

√
2c

)
,

c > 1, f = |z1|, and ψ is the non-minimal immersion defined by

(
z1e

∫ ϕ(ϕ′+ikϕ2)

ϕ2−1
dt
, z1ϕeik

∫
ϕdtw1, · · · z1ϕeik

∫
ϕdtwp, z2, . . . , zh

)
,

with z = (z1, . . . , zh) ∈ C
h, (w1, . . . , wp) ∈ Sp−1(1) ⊂ E

p, and k = √
c4 − 1/2,

where cn is a Jacobi’s elliptic function.

For the proof of Theorem 2.3, see [23].

2.6 Anti-holomorphic Submanifolds with p ≥ 2

For aCR-submanifoldN of aKählermanifold, the two partial mean curvature vectors−→
H D and

−→
H D⊥ of N are defined by

−→
H D = 1

2h

2h∑

i=1

σ(ei, ei),
−→
H D⊥ = 1

p

2h+p∑

r=2h+1

σ(er, er). (2.29)

An anti-holomorphic submanifold N of a Kähler manifold M̃ is called mini-

mal (resp., D-minimal or D⊥-minimal) if H = 0 holds identical (resp.,
−→
H D = 0 or−→

H D⊥ = 0 hold identically).
For anti-holomorphic submanifoldswith p = rankD⊥ ≥ 2,we have the following

optimal inequality.

Theorem 2.4 ([2]) Let N be an anti-holomorphic submanifold of a complex space
form M̃h+p(4c) with h = rankC D ≥ 1 and p = rankD⊥ ≥ 2. Then we have

δ(D) ≤ (p − 1)(2h + p)2

2(p + 2)
H2 + p

2
(4h + p − 1)c. (2.30)

The equality sign of inequality (2.30) holds identically if and only if the following
three conditions are satisfied:
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(a) N is D-minimal, i.e.,
−→
H D = 0,

(b) N is mixed totally geodesic, and
(c) there exist an orthonormal frame {e2h+1, . . . , en} of D⊥ such that the second

fundamental σ of N satisfies

{
σr

rr = 3σr
ss, for 2h + 1 ≤ r = s ≤ 2h + p,

σr
st = 0, for distinct r, s, t ∈ {2h + 1, . . . , 2h + p}. (2.31)

Proof LetN be an anti-holomorphic submanifold in a complex space form M̃h+p(4c).
Let us choose an orthonormal frame {e1, . . . , e2h+p} on N as above.

It follows from the equation of Gauss and the definition of CR δ-invariant that
δ(D) satisfies

δ(D) =
2h∑

i=1

2h+p∑

r=2h+1

K(ei, er) +
∑

2h+1≤r =s≤2h+p

1

2
K(er, es)

=
2h∑

i=1

2h+p∑

r=2h+1

〈σ(ei, ei),σ(er, er)〉 +
2h+p∑

r,s=2h+1

1

2
〈σ(er, er),σ(es, es)〉

−
2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2 −
2h+p∑

r,s=2h+1

1

2
||σ(er, es)||2 + p

2
(4h + p − 1)c.

(2.32)

On the other hand, we have

2h∑

i=1

2h+p∑

r=2h+1

〈σ(ei, ei),σ(er, er)〉 +
2h+p∑

r,s=2h+1

1

2
〈σ(er, er),σ(es, es)〉

−
2h+p∑

r,s=2h+1

1

2
||σ(er, es)||2

= (2h + p)2

2
H2 − 2h2|−→H D|2 − 1

2
||σD⊥||2, (2.33)

where ||σD⊥||2 is defined by

||σ⊥||2 =
2h+p∑

r,s=2h+1

||σ(er, es)||2. (2.34)

By combining (2.32) and (2.33) we find
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δ(D) = (2h + p)2

2
H2 + p

2
(4h + p − 1)c − 2h2|−→H D|2

−
2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2 − 1

2
||σD⊥||2. (2.35)

It follows from statement (2) of Lemma 1 the coefficients of the second funda-
mental form satisfy

σr
st = σs

rt = σt
rs. (2.36)

We find from (2.29), (2.34), and (2.36) that

(p + 2)||σD⊥||2 − 3p2|HD⊥|2

= (p − 1)
2h+p∑

r=2h+1

( 2h+p∑

s=2h+1

σr
ss

)2

+
∑

2h+1≤r =s≤2h+p

3(p + 1)(σr
ss)

2 +
∑

2h+1≤r<s<t≤2h+p

6(p + 2)(σr
st)

2

+
2h+p∑

r=2h+1

∑

2h+1≤s<t≤2h+p

2(p + 2)σr
ssσ

r
tt

=
2h+p∑

r=2h+1

(p − 1)(σr
rr)

2 +
∑

2h+1≤r =s≤2h+p

3(p + 1)(σr
ss)

2

+
∑

2h+1≤r<s<t≤2h+p

6(p + 2)(σr
st)

2 −
2h+p∑

r=2h+1

∑

2h+1≤s<t≤2h+p

6σr
ssσ

r
tt

=
∑

2h+1≤r<s<t≤2h+p

6(p + 2)(σr
st)

2 +
∑

2h+1≤s =r≤2h+p

(σr
rr − 3σr

ss)
2

+
∑

r =s,t

∑

2h+1≤s<t≤2h+p

3(σr
ss − σr

tt)
2

≥ 0. (2.37)

Thus, we get

||σD⊥||2 ≥ 3p2

p + 2
|HD⊥|2, (2.38)

with equality holding if and only if

σr
rr = 3σr

ss, for 2h + 1 ≤ r = s ≤ 2h + p,

σr
st = 0, for distinct r, s, t ∈ {2h + 1, . . . , 2h + p}. (2.39)
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Now, by combining (2.35) and (2.38), we obtain

(2h + p)2

2
H2 + p

2
(4h + p − 1)c − δ(D)

≥ 2h2|−→H D|2 +
2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2 + 3p2

2(p + 2)
|HD⊥|2

= 3

2(p + 2)

{
(2h + p)2H2 − 4h2|−→H D|2 − 2

2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2
}

+ 2h2|−→H D|2 +
2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2.

= 3(2h + p)2

2(p + 2)
H2 + 2h2(p − 1)

p + 2
|−→H D|2 + p − 1

p + 2

2h∑

i=1

2h+p∑

r=2h+1

||σ(ei, er)||2

≥ 3(2h + p)2

2(p + 2)
H2. (2.40)

It is obvious that the equality of the last inequality in (2.40) holds if and only if N
is D-minimal and mixed totally geodesic. Consequently, we may obtain inequality
(2.30) from (2.40).

It is straightforward to verify that the equality sign of (2.30) holds identically if
and only if conditions (a), (b) and (c) of Theorem 2.4 are satisfied.

2.7 Anti-holomorphic Submanifolds with Equality in (2.30)

The notion of H-umbilical Lagrangian submanifolds was introduced in [12, 13].

Definition 1 A Lagrangian submanifold is said to be H-umbilical if its second fun-
damental form satisfies the following simple form:

σ(e1, e1) = λJe1, σ(e1, ej) = μJej,

σ(e2, e2) = · · · = σ(en, en) = μJe1, (2.41)

σ(ej, ek) = 0, j = k, j, k = 2, . . . , n,

for some suitable functions ϕ and ψ with respect to some suitable orthonormal local
frame field {e1, . . . , en}.
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Since there do not exist umbilical Lagrangian submanifold in Kähler manifolds
other than totally geodesic ones (cf. [26]), H-umbilical Lagrangian submanifolds are
the simplest Lagrangian submanifolds next to totally geodesic one (cf. [12, 13]).

LetG : Np−1 → E
p be an isometric immersion of aRiemannian (p − 1)-manifold

into the Euclidean p-space E
p and let F : I → C

∗ be a unit speed curve in C
∗ =

C − {0}. We extend G : Np−1 → E
p to an immersion of I × Np−1 into Cp as

F ⊗ G : I × Np−1 → C ⊗ E
p = C

p, (2.42)

where (F ⊗ G)(s, q) = F(s) ⊗ G(q) for s ∈ I, q ∈ Np−1. This extension F ⊗ G of
G via tensor product is called the complex extensor of G via F.

Example 1 (Whitney sphere) Let w : Sp(1) → C
p be the map of the unit p-sphere

into Cp defined by

w(y0, y1, . . . , yp) = 1 + iy0
1 + y20

(y1, . . . , yp), y20 + y21 + · · · + y2p = 1.

The map w is a (non-isometric) Lagrangian immersion with one self-intersection
point which is called the Whitney p-sphere. The Whitney p-sphere is a complex
extensorφ = F ⊗ ιof ι : Sp−1(1) ⊂ E

p viaF, whereF = F(s) is an arclength repara-
metrization of the curve f : I → C defined by

f (t) = sin t + i sin t cos t

1 + cos2 t
.

Up to rigid motions and dilations, the Whitney sphere is the only Lagrangian H-
umbilical submanifold in Cp which satisfies (2.41) with λ = 3μ (see [12]).

Consider the product immersion

φ : Ch × Sp(1) → Ch ⊕ Cp = Ch+p

defined by

φ(z, x) = (z, w(x)), ∀z ∈ Ch, ∀x ∈ Sp(1). (2.43)

It is straightforward to verify that φ is an anti-holomorphic isometric immersion
which satisfies the equality sign of (2.30) identically.

Anti-holomorphic submanifolds satisfying the equality case of inequality (2.30)
were classified by the following two theorems.

Theorem 2.5 ([2]) Let N be an anti-holomorphic submanifold of a complex space
form M̃h+p(4c) with h = rankC D ≥ 1 and p = rankD⊥ ≥ 2. If N satisfies the equal-
ity case of (2.30) identically and if the complex distributionD is integrable, then c = 0
so that M̃h+p(4c) = Ch+p. Moreover, we have either
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(i) N is a totally geodesic anti-holomorphic submanifold of Ch+p or,
(ii) up to dilations and rigid motions of Ch+p, N is given by an open portion of the

following product immersion:

φ : Ch × Sp(1) → Ch+p; (z, x) �→ (z, w(x)), z ∈ Ch, x ∈ Sp(1),

where w : Sp(1) → Cp is the Whitney p-sphere.

Proof Assume that N is an anti-holomorphic submanifold of a complex space form
M̃h+p(4c) with h = rankC D ≥ 1 and p = rankD⊥ ≥ 2. If N satisfies the equality
case of (2.30) and if the complex distribution D is integrable, then it follows from
Theorem 2.4 that N is mixed foliate. Hence Lemma 4 implies that c = 0. Thus,
according to Lemma 5, N is a CR-product. Therefore, N is locally a CR-product
given by

Ch × N⊥ ⊂ Ch × Cp,

where Ch is a complex Euclidean h-subspace and N⊥ is a Lagrangian submanifold
of Cp. Consequently, condition (c) of Theorem 2.4 implies that N⊥ is a Lagrangian
H-umbilical submanifold in Cp whose second fundamental form satisfying

σ(e2h+1, e2h+1) = 3λJe2h+1,

σ(e2h+1, es) = λJes,

σ(e2h+2, e2h+2) = · · · = σ(e2h+p, e2h+p) = λJe2h+1,

σ(er, es) = 0, 2h + 2 ≤ r = s ≤ 2h + p, (2.44)

for some suitable function λ with respect to some suitable orthonormal local frame
field {e2h+1, . . . , e2h+p} of TN⊥.

If λ = 0, then N⊥ is an open portion of a totally geodesic totally real p-plane in
Cp. Hence, in this case, N is a totally geodesic anti-holomorphic submanifold.

If λ = 0, it follows from (2.44) that, up to dilations and rigid motions, N⊥ is an
open part of the Whitney p-sphere in Cp (cf. [7, 22]). Consequently, up to dilations
and rigid motions of Ch+p, the anti-holomorphic submanifold is locally given by the
product immersion

φ : Ch × Sp(1) → Ch+p; (z, x) �→ (z, w(x)), (2.45)

for z ∈ Ch and x ∈ Sp(1), where w : Sp(1) → Cp is the Whitney p-sphere.
The converse is easy to verify.

Theorem 2.6 ([2]) Let N be an anti-holomorphic submanifold in a complex space
form M̃1+p(4c) with h = rankC D = 1 and p = rankD⊥ ≥ 2. Then, we have

δ(D) ≤ (p − 1)(p + 2)2

2(p + 2)
H2 + p

2
(p + 3)c. (2.46)
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The equality case of (2.46) holds identically if and only if c = 0 and either

(i) N is a totally geodesic anti-holomorphic submanifold of Ch+p or,
(ii) up to dilations and rigid motions, N is given by an open portion of the following

product immersion:

φ : C × Sp(1) → C1+p; (z, x) �→ (z, w(x)), z ∈ C, x ∈ Sp(1),

where w : Sp(1) → Cp is the Whitney p-sphere.

Proof LetN be an anti-holomorphic submanifold in a complex space form M̃1+p(4c).
Then we have inequality (2.44) from inequality (2.30).

Assume that N satisfies the equality case of (2.46) identically. Then, Theorem 2.4
implies that N satisfies conditions (a), (b), and (c) of Theorem 2.4.

By condition (a), N is D-minimal. Thus, we find

σ(Je1, Je1) = −σ(e1, e1) (2.47)

for any unit vector e1 ∈ D. It is direct to verify from (2.47) and polarization that the
second fundamental form satisfies the following condition:

σ(X, JY) = σ(JX, Y), ∀X, Y ∈ D.

Therefore, according to Lemma 2(1), we may conclude that D is integrable. Conse-
quently, we obtain Theorem 2.6 from Theorem 2.5.

2.8 An Optimal Inequality for Real Hypersurfaces

Obviously, anti-holomorphic submanifolds with rankD⊥ = 1 are nothing but real
hypersurfaces. A real hypersurface N of a Kähler manifold M̃ is called a Hopf hyper-
surface if Jξ is a principal curvature vector, i.e., an eigenvector of the shape operator
Aξ , where ξ is a unit normal vector of N . In the following, we call a Hopf hypersur-
face N special if the vector field Jξ is an eigenvector field of Aξ with eigenvalue 0,
i.e., Aξ(Jξ) = 0.

For real hypersurfaces, we have the following:

Theorem 2.7 ([2]) If N is a real hypersurface of a complex space form M̃h+1(4c),
then the Ricci tensor Ric of N satisfies

Ric(Jξ, Jξ) ≤ (2h + 1)2

2
H2 + 2hc. (2.48)

where ξ is a unit normal vector field of N in M̃h+1(4c).
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The equality sign of inequality (2.48) holds identically if and only if N is a minimal
special Hopf hypersurface.

Proof Let N be a real hypersurface of a complex space form M̃h+1(4c). Then it
follows from the definition of δ(D) that

δ(D) = Ric(Jξ, Jξ). (2.49)

Let us choose an orthonormal frame

{e1, . . . , eh, eh+1 = Je1, . . . , e2h = Jeh}

for the complex distribution D and let e2h+1 be a unit vector field in D⊥.
We put

σa,b = 〈σ(ea, eb), Je2h+1〉 , a, b = 1, . . . , 2h + 1. (2.50)

Let us define the connection forms by

∇Xei =
2h∑

j=1

ω
j
i(X)ej + ω2h+1

i (X)e2h+1,

∇Xe2h+1 =
2h∑

j=1

ω
j
2h+1(X)ej, (2.51)

for i = 1, . . . , 2h. It follows from (2.18) and the equation of Gauss that

δ(D) =
2h∑

i=1

σi,iσ2h+1,2h+1 −
2h∑

i=1

(σi,2h+1)
2 + 2hc. (2.52)

On the other hand, we have

2h∑

i=1

σi,iσ2h+1,2h+1 = (2h + 1)2

2
H2 − 1

2
(σ2h+1,2h+1)

2 − 2h2|−→H D|2. (2.53)

By combining (2.52) and (2.53) we obtain

δ(D) = (2h + 1)2

2
H2 + 2hc − 2h2|−→H D|2 − 1

2
(σ2h+1,2h+1)

2

−
2h∑

i=1

(σi,2h+1)
2

≤ (2h + 1)2

2
H2 + 2hc. (2.54)
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It follows from (2.54) and Lemma 3(2) that the equality sign of inequality (2.48)
holds identically if and only if the following two statements hold:

(i) N is a special Hopf hypersurface and
(ii) N is D-minimal in M̃h+1(4c).

Obviously, conditions (i) and (ii) imply that N is a minimal real hypersurface of
M̃h+1(4c).

The converse is easy to verify.

The following corollary follows from Theorem 2.7.

Corollary 6 ([2]) Let N be a real hypersurface of a complex space form M̃h+1(4c).
If N satisfies the equality case of (2.48) identically, then the complex distribution of
N is non-integrable, unless c = 0 and N is totally geodesic.

Proof Under the hypothesis, if N satisfies the equality case of (2.48) identically and
if the complex distributionD is integrable, then Theorem 2.7 implies that N is mixed
foliate. So, it follows from Lemmas 4 and 5 that c = 0 and N is a CR-product of a
complex h-subspace in Ch and an open portion of line in C. Consequently, N must
be totally geodesic.

The following results are some further applications of Theorem 2.7

Theorem 2.8 ([2]) If N is a real hypersurface of M̃2(4c), then we have

Ric(Jξ, Jξ) ≤ 9

2
H2 + 2c. (2.55)

The equality sign of inequality (2.55) holds identically if and only if c = 0 and N
is totally geodesic.

Theorem 2.9 ([2]) Let N be a real hypersurface of C3. We have

Ric(Jξ, Jξ) ≤ 25

2
H2. (2.56)

If the equality case of inequality (2.56) holds identically, then N is a totally real
3-ruled minimal submanifold of C3.

Theorem 2.10 ([2]) If N is a real hypersurface of CP3(4), then we have

Ric(Jξ, Jξ) ≤ 25

2
H2 + 4. (2.57)

The equality sign of inequality (2.57) holds identically if and only if locally there
exists an orthonormal frame {e1, e2, e3 = Je1, e4 = Je2, e5} such that
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σ(e1, e1) = λξ, σ(e2, e2) = −λξ,

σ(e3, e3) = 1

λ
ξ, σ(e4, e4) = − 1

λ
ξ,

σ(ea, eb) = 0 otherwise,

where λ is a nowhere zero function.

Theorem 2.11 ([2]) If N is a real hypersurface of CH3(−4), then we have

Ric(Jξ, Jξ) ≤ 25

2
H2 − 4. (2.58)

The equality sign of inequality (2.58) holds identically if and only if locally there
exists an orthonormal frame {e1, e2, e3 = Je1, e4 = Je2, e5} on N such that

σ(e1, e1) = λξ, σ(e2, e2) = −λξ,

σ(e3, e3) = − 1

λ
ξ, σ(e4, e4) = 1

λ
ξ,

σ(ea, eb) = 0 otherwise,

where λ is a nowhere zero function.

Corollary 7 ([2]) Every real hypersurface of CP3(4) (resp., of CH3(−4)) satisfying
the equality case of (2.57) (resp., the equality case of (2.58) is δ(2, 2)-ideal in the
sense of [15, 22].

For the proofs of the above, see [2].

2.9 An Inequality Involving a Submersion δ-Invariant

Let π : M → B be a Riemannian submersion with totally geodesic fibers and let N
be a Riemannian n-manifold isometrically immersed in B. Denote the pre-image
π−1(N) of N in M by Ñ . Then π̃ : Ñ → N is also a Riemannian submersion with
totally geodesic fibers, where π̃ is the restriction π|Ñ .

For a horizontal 2-plane Px ⊂ TxÑ we denote the (m−b+2)–subspace spanned
by Px and the vertical Vx by P̄x. The submersion δ-invariant δH on Ñ is defined by
(cf. [1]):

δH(x) = τÑ (x) − inf
P̄x

τÑ (P̄x), (2.59)

where P̄x runs over (m−b+2)–subspaces associated with all horizontal 2-planes Px

at x ∈ Ñ . Obviously, we have δÑ (r) ≥ δH with r = 2 + m − b.
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Lemma 14 ([1]) Let π : M → B be a Riemannian submersion with totally geodesic
fibers. Then the scalar curvature τM of M and the scalar curvature τB of B satisfy

τM = τB + Ăπ − 3Åπ + τF, (2.60)

where τF is the scalar curvature of fibers.

Proof Let π : M → B be a Riemannian submersion with totally geodesic fibers.
For orthonormal basic horizontal vector fields X1, . . . , Xb and orthonormal vertical
vector fields Vb+1, . . . , Vm on M, it follows from Lemma 12(2) that

KM(Xi ∧ Vα) = ||AXi Vα||2. (2.61)

Also, it follows from Lemma 4 and (2.15) that the scalar curvature τ (H) of the
horizontal space satisfies

τ (H) = τB − 3Åπ. (2.62)

Moreover, since π has totally geodesic fibers, the scalar curvature τF equals the scalar
curvature τ (V) of the vertical distribution. Consequently, we obtain (2.60) from (2.7),
(2.61) and (2.62).

Lemma 15 Let π : M → B be a Riemannian submersion with totally geodesic fibers
and N be a submanifold of B. Then, for orthonormal vectors e1, e2 atπ(x) ∈ N, x ∈ Ñ ,
we have

τÑ (x) − τÑ (P̄x) = τN − KN (e1, e2) − 3(Åπ̃ − ||Aē1ē2||2)

+ Ăπ̃ −
2∑

i=1

m−b∑

α=1

KÑ (ēi, vα), (2.63)

where ē1, ē2 are horizontal vectors at x, {v1, . . . , vm−b} is an orthonormal basis of
the vertical space Vx, and P̄x is the subspace spanned by ē1, ē2 and Vx.

Proof Under the hypothesis, π̃ : Ñ = π−1(N) → N is a Riemannian submersion
with totally geodesic fibers. Thus it follows from Lemma 14 that

τÑ = τN + Ăπ̃ − 3Åπ̃ + τF . (2.64)

Let x ∈ Ñ and e1, e2 orthonormal vectors at π(x) ∈ N . Denote by ē1, ē2 the hori-
zontal lifts of e1, e2 at x ∈ Ñ . As before let P̄x denote the subspace of TxÑ spanned
by ē1, ē2 and Vx. Then we have

τÑ (P̄x) = τF + KÑ (ē1, ē2) +
2∑

i=1

m−b∑

α=1

KÑ (ēi, vα). (2.65)
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From Lemma 4 we find

KÑ (ē1, ē2) = KN (e1, e2) − 3 ||Aē1ē2||2. (2.66)

By combining (2.64)–(2.66) and Lemma 10(2), we obtain (2.63).

Let N be a Riemannian submanifold of a Kähler manifold. For X ∈ TN we put

JX = PX + FX, (2.67)

where PX and FX are the tangential and normal components of JX, respectively. It
follows from J2 = −I and (2.67) that

〈PX, Y〉 = − 〈X, PY〉 (2.68)

for X, Y tangent to N .
Let ψ be a 2-plane section of Tx̄N , x̄ ∈ N , spanned by two orthonormal vectors

e1, e2 ∈ Tx̄N . We put

�(ψ) = 〈Pe1, e2〉2 . (2.69)

If {e1, . . . , en} is an orthonormal frame of N , then the squared norms ||P||2 and ||F||2
of P and F are defined, respectively, by

||P||2 =
n∑

i=1

||Pei||2, ||F||2 =
n∑

i=1

||Fei||2. (2.70)

Lemma 16 ([11]) Let φ : N → CPm(4) be an isometric immersion from a Rie-
mannian n-manifold N into the complex projective m-space CPm(4). Then, for any
2-plane section ψ ⊂ TyN, y ∈ N, we have

τN − KN (ψ) ≤ n2(n − 2)

2(n − 1)
‖H‖2 + (n + 1)(n − 2)

2
+ 3

2
||P||2 − 3�(ψ). (2.71)

The equality of inequality (2.71) holds at a point y ∈ N if and only if there is an
orthonormal basis e1, . . . , em at y such that
(i) ψ = Span{e1, e2} and
(ii) the shape operator A at y satisfies

Aes =
⎛

⎝
Bs 0

0 μsI

⎞

⎠, s = n + 1, . . . , 2m, (2.72)

where I is an identity (n − 2) × (n − 2)-submatrix and Bs are symmetric 2 × 2 sub-
matrices with μs = trace Bs, s = n + 1, . . . , 2m.
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An important application of Lemma 15 is the following.

Theorem 2.12 ([1]) Let π : S2m+1 → CPm(4) be the Hopf fibration and let N be an
n-dimensional submanifold of CPm(4). Then we have

δH ≤ n2(n − 2)

2(n − 1)
||H||2 + ||P||2 + 1

2
(n2 − n − 2), (2.73)

where ||H||2 is the squared mean curvature of N in CPm(4).
The equality sign of (2.73) holds identically if and only if there is an orthonormal

frame e1, . . . , em such that
(a) the shape operator A of N in CPm(4) satisfies

Aes =
⎛

⎝
Bs 0

0 μsI

⎞

⎠, s = n + 1, . . . , 2m, (2.74)

where I is an identity (n − 2) × (n − 2) matrix and Bs are symmetric 2 × 2 subma-
trices satisfying μs = trace Bs, s = n + 1, . . . , 2m, and
(b) Pe1 = Pe2 = 0.

Proof Let π : S2m+1 → CPm(4) be the Hopf fibration and put ξ = iz as before.
Denote by ∇̂ and ∇̌ the Levi-Civita connections of S2m+1 and CPm(4), respectively.
For vector fields X, Y tangent to CPm(4), we have

∇̂X̄ Ȳ = ∇̌XY − 〈JX, Y〉 ξ, (2.75)

∇̂X̄ξ = ∇̂ξX̄ = JX. (2.76)

Let N be an n-dimensional submanifold of CPm(4). Denote by Ñ the pre-image
of N via the Hopf fibration π : S2m+1 → CPm(4). Let Py be a 2-plane section of a
tangent space TyN of N spanned by two orthonormal vectors e1, e2. As before, we
denote by P̄x the 3-plane spanned by ξx and the horizontal lifts ē1, ē2 of e1, e2 at a
point x with π(x) = y. Then it follows from Lemma 15 that

τÑ (x) − τÑ (P̄x) = τN −KN (e1, e2)−3Åπ̃+3||Aē1ē2||2

+ Ăπ̃−
2∑

i=1

KÑ (ēi, ξ), (2.77)

where ξ = iz is the characteristic vector field of the Sasakian space form S2m+1.
If η is a normal vector field of N in CPm(4), then by using ξ = iz we find

∇̂X̄ η̄ = ∇̌Xη − 〈FX, η〉 ξ. (2.78)
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Hence, Weingarten’s formula yields

Âξ̄X̄ = AξX + 〈FX, η〉 ξ, D̂X̄ η̄ = DXη, (2.79)

where A, Â are the shape operators of N in CPm(4) and Ñ in S2m+1, respectively, and
D and D̂ are the corresponding normal connections.

From (2.75) we get

ĥ(X̄, Ȳ) = h(X, Y), (2.80)

where ĥ is the second fundamental form of Ñ in S2m+1.
By using (2.75) we find

∇̃X̄ Ȳ = ∇XY − 〈JX, Y〉 ξ, (2.81)

where ∇̃ and ∇ are the Levi-Civita connections of Ñ and N , respectively. Also, it
follows from (2.76) that

ĥ(X̄, ξ) = FX, ∇̃X̄ξ = ∇̃ξX̄ = FX (2.82)

for X ∈ TN . Moreover, since Hopf’s fibration has totally geodesic fibers, we get

ĥ(ξ, ξ) = 0. (2.83)

Now, it follows from (2.82), (2.83) and Gauss’ equation that

KÑ (X̄, ξ) = 1 − ||FX||2 (2.84)

for each unit tangent vector X of N .
By applying (2.12), (2.15) and (2.84) we find

Ăπ̃ = n − ||F||2. (2.85)

For an orthonormal frame {e1, . . . , en}, we find from ξ = iz and Lemma 11(a) that

2Aēi ēj = V[ēi, ēj] =
〈
∇̆ēi ēj − ∇̆ēj ēi, ξ

〉
ξ

=
〈
ēi, i∇̆ēj z

〉
ξ −

〈
ēj, i∇̆ēi z

〉
ξ

= 2
〈
ēi, iēj

〉
ξ = 2

〈
ei, Pej

〉
ξ, (2.86)

where ∇̆ is the Levi-Civita connection of Cm+1. Combining (2.15) and (2.86) gives
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Åπ̃ = 1

2
||P||2. (2.87)

By applying (2.77), (2.84), (2.86) and (2.87), we obtain

τÑ (x) − τÑ (P̄x) = τN − KN (e1, e2) − 3

2
||P||2 + 3 〈Pe1, e2〉2

+ n − 2 − ||F||2 +
2∑

i=1

||Fei||2. (2.88)

Since ||PX||2 + ||FX||2 = ||X||2, we derive from Lemma 16 and (2.88) that

τÑ (x) − τÑ (P̄x) ≤ n2(n − 2)

2(n − 1)
‖H‖2 + n2 + n − 6

2
− ||F||2 +

2∑

i=1

||Fei||2

= n2(n − 2)

2(n − 1)
‖H‖2 + n2 − n − 6

2
+ ||P||2 +

2∑

i=1

||Fei||2

= n2(n − 2)

2(n − 1)
‖H‖2 + n2 − n − 2

2
+ ||P||2 −

2∑

i=1

||Pei||2

≤ n2(n − 2)

2(n − 1)
‖H‖2 + n2 − n − 2

2
+ ||P||2, (2.89)

which gives inequality (2.73).
From Lemma 16 and (2.79) we conclude that the equality sign of (2.73) holds

identically if and only if there exists an orthonormal frame e1, . . . , em such that
statements (a) and (b) of the theorem hold.

Let N be a CR-submanifold of CPm(4). The next result from [1] provides the
necessary and sufficient condition for the pre-image π−1(N) to satisfy the equality
case of the inequality (2.73).

Theorem 2.13 ([1]) Let N be a CR-submanifold of the complex projective m-space
CPm(4). Then, N satisfies the equality case of (2.73) identically if and only if N is a
totally real submanifold satisfying

δ(2) = n2(n − 2)

2(n − 1)
||H||2 + 1

2
(n2 − n − 2) (2.90)

identically.

For the proof of this theorem, see [1].
Finally, we provide many examples of totally real submanifolds of CPm(4)which

satisfy the equality case of inequality (2.73).
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Theorem 2.14 If N is a totally real totally geodesic submanifold of CPm(4), then
the equality sign of (2.73) holds identically.

Proof LetN be an n-dimensional totally real totally geodesic submanifold ofCPm(4)
with n ≥ 3. In view of (2.84), we have

τÑ = n(n − 1)

2
, τÑ (P̄x) = 1.

Thus, δH = 1
2 (n

2 − n − 2). Hence, we obtain the equality sign of (2.73) identically
due to ||H|| = P = 0.

Theorem 2.15 There exist many non-totally geodesic totally real submanifolds of
CPm(4) which satisfy the equality case of inequality (2.73) identically.

Proof Let N be an n-dimensional submanifold in the unit m-sphere Sm satisfying

δ(2) = n2(n − 2)

2(n − 1)
||H||2 + 1

2
(n2 − n − 2). (2.91)

Then, N can be isometrically immersed as a totally real submanifold of CPm(4)
satisfying the equality case of (2.73) via the following standard isometric immersion:

Sm 2 to 1−−−−→
covering

RPm(1)
totally geodesic−−−−−−−→

totally real
CPm(4). (2.92)

Since N in Sm satisfies equality (2.91), the shape operator of N in Sm satisfies
statement (a) of Theorem 2.12, the shape operator of N in CPm(4) satisfies (a) as
well. Because N is totally real in CPm(4), it also satisfies statement (b) of Theorem
2.12. It is known that there exist ample submanifolds in spheres which satisfy equal-
ity (2.91) identically. Consequently, there exist many non-totally geodesic, totally
real submanifolds of CPm(4) which satisfy the equality case of inequality (2.73)
identically according to Theorem 2.12.

Remark 8 For further results on the CR-submanifolds in Kaehler manifolds related
to δ-invariants, in particular for CR-submanifolds in complex hyperbolic spaces, see
[14, 27, 28, 37, 38].
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CR-Submanifolds of the Nearly Kähler
6-Sphere
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3.1 Introduction

ConsideringR7 as the imaginary Cayley numbers, it is possible to introduce a vector
cross product × on R

7, which in its turn induces an almost complex structure J on
the standard unit sphere S6(1) in R

7 which is compatible with the standard metric.
It was shown by Calabi and Gluck, see [9], that this structure, from a geometric
viewpoint, is the best possible almost complex structure on S6(1). Details about this
construction are recalled in the next section.

With respect to the almost complex structure J , it is natural to study submanifolds
for which J maps the tangent space into the tangent space (and hence also the normal
space into the normal space) and those for which J maps the tangent into the normal
space. The first class are called almost complex submanifolds and the second class
of submanifolds mentioned are called totally real submanifolds.
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58 M. Antić and L. Vrancken

One of the natural generalization of almost complex and totally real submanifolds
areCR-submanifolds and there are twodifferent notions of this therm.By thefirst one,
if the dimension of the holomorphic tangent space, the maximal J-invariant subspace
HxM = JTxM ∩ TxM, x ∈ M is independent on the choice of x ∈ M then the sub-
manifold M is called the Cauchy-Riemann submanifold, or briefly CR-submanifold
with the CR dimension being the constant complex dimension of HxM. By the defin-
ition of Bejancu, see [4], a submanifold M is called a CR submanifold if there exists
on M a differentiable holomorphic distribution H such that its orthogonal comple-
ment H⊥ ⊂ TM is a totally real distribution. It is clear that the CR-submanifold by
Bejancu’s definition it is also CR by the other definition. The converse is true for

submanifolds of the maximal CR dimension
m − 1

2
, where m is the dimension of

the submanifold. Note that in this survey, we will focus on CR-submanifolds in the
sense Bejancu. A CR submanifold is called proper if it is neither totally real (i.e.,
H⊥ = TM) nor almost complex (i.e.,H = TM).

From the definition, we see that the dimension of a proper CR-submanifold can
be either three, four, or five. Note, however, that from the definition it immediately
follows that any five-dimensional submanifold of the six-sphere is automatically a
CR-submanifold. In view of this, we will restrict ourselves in this survey to the three
dimensional and four dimensional case, which are, respectively, treated in Sects. 3.3
and 3.4.

3.2 Preliminaries

We give a brief exposition of how the standard nearly Kähler structure on S6(1)
arises in a natural manner from the Cayley multiplication. For further details about
the Cayley numbers and their automorphism group G2, we refer the reader to [28]
and [21].

The multiplication on the Cayley numbersO may be used to define a vector cross
product × on the purely imaginary Cayley numbers R7 using the formula

u × v = 1

2
(uv − vu), (3.1)

while the standard inner product on R7 is given by

〈u, v〉 = −1

2
(uv + vu). (3.2)

It is now elementary [21] to show that

u × (v × w) + (u × v) × w = 2〈u, w〉v − 〈u, v〉w − 〈w, v〉u, (3.3)
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and that the triple scalar product 〈u × v, w〉 is skew symmetric in u, v, w. From this
it also follows that

〈u × v, u × w〉 = 〈u, u〉〈v, w〉 − 〈u, v〉〈u, w〉. (3.4)

The Cayley multiplication onO is given in terms of the vector cross product and
the inner product by

(r + u)(s + v) = rs − 〈u, v〉 + rv + su + u × v, r, s ∈ Re(O), u, v ∈ Im(O).

(3.5)

In view of (3.1), (3.2) and (3.5), it is clear that the group G2 of automorphisms ofO
is precisely the group of isometries of R7 preserving the vector cross product.

An ordered basis e0, ..., e6 is said to be a G2-frame if

e2 = e0 × e1, e4 = e0 × e3, e5 = e1 × e3, e6 = e2 × e3. (3.6)

For example, the standard basis e0, . . . , e6 of R7 is a G2-frame. Two G2-frames are
related by a unique element ofG2.Moreover, if e0, e1, e3 aremutually orthogonal unit
vectors with e3 orthogonal to e0 × e1, then e0, e1, e3 determine a unique G2-frame
e0, . . . , e6 and (R7,×) is generated by e0, e1, e3 subject to the relations:

ei × (ej × ek) + (ei × ej) × ek = 2δikej − δijek − δjkei. (3.7)

Therefore, for any G2-frame, we have the following very useful multiplication
table [28]:

× e0 e1 e2 e3 e4 e5 e6
e0 0 e2 −e1 e4 −e3 −e6 e5
e1 −e2 0 e0 e5 e6 −e3 −e4
e2 e1 −e0 0 e6 −e5 e4 −e3
e3 −e4 −e5 −e6 0 e0 e1 e2
e4 e3 −e6 e5 −e0 0 −e2 e1
e5 e6 e3 −e4 −e1 e2 0 −e0
e6 −e5 e4 e3 −e2 −e1 e0 0

The standard nearly Kähler structure on S6(1) is then obtained as follows:

Ju = x × u, u ∈ TxS6(1), x ∈ S6(1).

It is clear that J is an orthogonal almost complex structure on S6(1). In fact, J is a
nearly Kähler structure in the sense that the (2, 1)-tensor field G on S6(1) defined by

G(X, Y) = (∇̃XJ)Y ,
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where ∇̃ is the Levi-Civita connection on S6(1) is skew symmetric. A straightforward
computation also shows that

G(X, Y) = X × Y − 〈x × X, Y〉x, X, Y ∈ TxS6(1).

Let M be a Riemannian submanifold of M̃. If we denote by 〈i, i〉, D and D̃ metric
and Levi-Civita connections on M and M̃, respectively, and by D⊥ the correspond-
ing normal connection of the immersion M → M̃ then the formulas of Gauss and
Weingarten are given by

D̃XY = DXY + h(X, Y), (3.8)

D̃Xξ = −AξX + D⊥
X ξ, (3.9)

where X and Y are vector fields on M and ξ is a normal vector field on M, and h and
A are the second fundamental form and the shape operator, respectively. The second
fundamental form and the shape operator are related by

〈h(X, Y), ξ〉 = 〈AξX, Y〉. (3.10)

Let us denote by ∇, ∇̃ and D the Levi-Civita connections on M, S6(1) and R
7,

respectively. Let h and h̃ be the second fundamental forms corresponding to the
immersions M → S6(1) and S6(1) → R

7, respectively. Let p be the position vector
field of the immersion of M into R

7. Then, the following equations hold

h̃(X, Y) = −〈X, Y〉p, (3.11)

DXp = X, (3.12)

where X, Y ∈ TM. Considering (3.8), (3.9) and (3.11) we get for X, Y ∈ TM and
ξ ∈ T⊥M, ξ ∈ TS6(1)

DXY = ∇̃XY + h̃(X, Y) = ∇XY + h(X, Y) − 〈X, Y〉p, (3.13)

DXξ = ∇̃Xξ + h̃(X, ξ) = ∇̃Xξ − 〈X, ξ〉p = −AξX + ∇⊥
X ξ, (3.14)

where ∇⊥ denotes the normal connection corresponding to the immersion of M into
S6(1). Also, we can denote

(∇h)(X, Y , Z) = ∇⊥
X h(Y , Z) − h(∇XY , Z) − h(Y ,∇XZ), (3.15)

for X, Y , Z ∈ T(M).
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Then Gauss, Codazzi, and Ricci equations state that

R(X, Y , Z, W ) = 〈X, W 〉〈Y , Z〉 − 〈X, Z〉〈Y , W 〉
+ 〈h(X, W ), h(Y , Z)〉 − 〈h(X, Z), h(Y , W )〉, (3.16)

(∇h)(X, Y , Z) = (∇h)(Y , X, Z), (3.17)

〈R⊥(X, Y)ξ,μ〉 = 〈[Aξ, Aμ]X, Y〉. (3.18)

Also, the following lemma holds

Lemma 1 DX(Y × Z) = DXY × Z + Y × DXZ.

3.3 Three Dimensional CR-Submanifolds of S6(1)

3.3.1 An Existence and Uniqueness Theorem

In this section,we considerM to be a three-dimensional orientableCRsubmanifold of
the sphere S6(1). Then, there exist the following local orthonormal vector fields: the
position vector field p, E1 and E2 = JE1 which span the almost complex distribution
H, E3 which spans the totally real distribution H⊥, and the normal vector fields are
obtained by E4 = JE3, E5 = E1 × E3 and E6 = E2 × E3.

Note that by assuming that E1, E2 and E3 are positively oriented, we have that the
choice of E3 is unique. Nevertheless, we still have the following freedom of rotation
of E1 in the holomorphic distribution, with corresponding rotation in the normal
bundle:

Ẽ1 = cos θE1 + sin θE2, Ẽ2 = JẼ1 = − sin θE1 + cos θE2,

Ẽ3 = E3, Ẽ4 = E4,

Ẽ5 = cos θE5 + sin θE6, Ẽ6 = − sin θE5 + cos θE6.

As M is a CR-submanifold we already have that TM = H ⊕ H⊥, where H and H⊥
are respectively the almost complex and the totally real distribution. It is immedi-
ately clear that the restriction of the nearly Kähler structure to the tangent space
automatically induces an almost contact structure (ϕ, ξ, η) on the three dimensional
CR-submanifold where ϕ is a (1, 1) tensor field, ξ is a vector field and η a 1-form in
the following way:

ξ = E3, η(X) = 〈X, ξ〉, ϕ(xE1 + yE2 + zE3) = −yE1 + xE2.
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Note that the above structure is independent of the choice of E1 and E2 and satisfies

〈ϕ(X),ϕ(Y)〉 = 〈X, Y〉 − η(X)η(Y),

showing that the induced metric is compatible with the almost contact structure. This
makes M an almost contact metric manifold. For more details about almost contact
structures we refer to [6].

Moreover, from the above formulas it also follows that the map � : TM → NM
given by

�(xE1 + yE2 + zE3) = xE5 + yE6 + zE4,

is well defined and describes a natural identification between the normal and the
tangent bundle. This identification can be expressed without the use of a frame by
the condition that

�(X) = G(X, E3) + η(X)JE3 = G(X, ξ) + η(X)Jξ,

for any tangent vector X. It this identification maps an orthonormal frame to an
orthonormal frame it is an isometry. Note that also the normal bundle can be splitted
in a two-dimensional part which is J invariant and a one-dimensional part which by
J is mapped to the tangent space.

Wewill nowfirst showan existence anduniqueness theorem forCR-submanifolds,
using the notion of the almost contact metric manifold. We already have seen that
a CR-submanifold M admits a natural almost contact metric structure (ϕ, ξ, η)

described earlier.
Denote by

ωk
ij = 〈DEi Ej, Ek〉, hk

ij = 〈DEi Ej, Ek+3〉, βk
ij = 〈DEi Ej+3, Ek+3〉,

for 1 ≤ i, j, k ≤ 3.Using the standard symmetries for a connection and for the second
fundamental form, we find that

ωk
ij = −ω

j
ik, hk

ij = hj
ik, βk

ij = −β
j
ik .

Taking X ∈ {E1, E2, E3} and Y , Z ∈ {p, E1, . . . , E6} in Lemma 1 we get

Lemma 2 For the previously defined coefficient the following equations hold

β3
11 = −h2

13, β2
11 = 1 + h3

13, h1
11 = −ω3

12, h1
12 = ω3

11, β3
21 = 1 − h2

23,

β2
21 = h3

23, h1
22 = ω3

21, ω3
22 = −ω3

11, β2
31 = h3

33, β3
31 = −h2

33,

h1
23 = ω3

31, h1
13 = −ω3

32, h3
11 = h2

12, h2
11 = −h3

12, h2
22 = h3

12,

h3
22 = −h2

12, h2
23 = h3

13 − 1, h3
23 = −h2

13, β3
12 = ω2

11 − ω3
32,

β3
22 = ω2

21 + ω3
31, β3

32 = ω2
31 + h1

33.
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We now define σ(X, Y) such that for any X, Y ∈ H we have that

�(σ(X, Y)) = 〈h(X, Y), E5〉E5 + 〈h(X, Y), E6〉E6,

�(σ(X, ξ)) = �(σ(ξ, ξ)) = 0.

In components, writing σk
ij = 〈σ(Ei, Ej), Ek〉, this means that the only possible non

vanishing components are

σ1
ij = h2

ij, σ2
ij = h3

ij.

where 1 ≤ i, j ≤ 2.
It now follows that the symmetric bilinear form σ, satisfies:

σ(ϕ(X), Y) = −ϕσ(X, Y), X, Y ∈ ϕ(TM), (3.19)

σ(X, ξ) = 0, X ∈ ϕ(TM) (3.20)

and by denoting σ11 = σ1
11,σ12 = σ1

12 we can write

σ(E1, E1) = σ11E1 + σ12E2,

σ(E1, E2) = σ12E1 − σ11E2,

σ(E2, E2) = −σ11E1 − σ12E2.

In the same way, we define a 1-1 tensor field S, by

�(SX) = 〈h(X, ξ), E5〉E5 + 〈h(X, ξ), E6〉E6,

�(Sξ) = 0.

From the previous lemma, we get that

Sϕ(X) + ϕ(SX) + X = 0, X ∈ H, (3.21)

Sξ = 0, (3.22)

so we can write

SE1 = s1E5 + s2E6, SE2 = (s2 − 1)E1 − s1E6,

for some functions s1 and s2. We notice also that the previous lemma implies that

〈h(X, Y), E4〉 = −〈∇X(ϕ(Y)), ξ〉,

for X, Y ∈ H. Therefore, for X, Y ∈ H we have that

h(X, Y) = �(σ(X, Y) − 〈∇X(ϕ(Y)), ξ〉ξ). (3.23)
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Similarly, for X ∈ H, we get that

h(X, ξ) = �(SX + 〈∇ξξ,ϕ(X)〉ξ). (3.24)

So, if we define a vector field W such that

�(W ) = h(ξ, ξ),

we see that we can write the second fundamental form as

h(X, Y) = �(σ(X, Y) + η(Y)SX + η(X)SY)

+ �(η(Y)〈∇ξξ,ϕ(X)〉ξ − 〈∇X(ϕ(Y)), ξ〉ξ) + η(X)η(Y)W ).

Denote wi = 〈W, Ei〉, i = 1, 2.
We put:

α(X, Y) = (σ(X, Y) + η(Y)SX + η(X)SY + η(Y))

+ 〈∇ξξ,ϕ(X)〉ξ − 〈∇X(ϕ(Y)), ξ〉ξ) + η(X)η(Y)W.

Similarly, we can again use the correspondence between the tangent bundle and
the normal bundle to define a metric connection ∇̃⊥ with torsion on M by the relation

�(∇̃⊥
X (Y)) = ∇⊥

X �(Y). (3.25)

This gives for vector fields X, Y , and Z orthogonal to ξ that

∇̃⊥
Y ξ = −ϕ(SY) + Y , (3.26)

∇̃⊥
ξ ξ = −ϕ(W ), (3.27)

〈∇̃⊥
X Y , Z〉 = 〈∇XY , Z〉 + 〈∇ξξ,ϕ(X)〉〈ϕ(Y), Z〉, (3.28)

〈∇̃⊥
ξ Y , Z〉 = 〈∇ξY , Z〉 + 〈W, ξ〉〈ϕ(Y), Z〉. (3.29)

Conversely, we can now formulate an existence and uniqueness theorem for CR
submanifolds of the nearly Kähler 6-sphere.

Theorem 3.1 Let M be a simply connected three dimensional, oriented Riemannian
manifold with almost contact metric structure (ϕ, ξ, η). Let σ : TM × TM → TM,
S : TM → TM and W be respectively a symmetric bilinear form, a 1-1 tensor field
and a vector field which satisfy (3.19) upto (3.22). Define

α(X, Y) = (σ(X, Y) + η(Y)SX + η(X)SY + η(Y))

+ 〈∇ξξ,ϕ(X)〉ξ − 〈∇X(ϕ(Y)), ξ〉ξ) + η(X)η(Y)W
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and a metric connection with torsion on M by (3.26) upto (3.29). Suppose that

(∇̃α)(Z, X, Y) = ∇̃⊥
Z α(X, Y) − α(∇Z X, Y) − α(X,∇Z Y),

is symmetric in X, Y and Z and that

〈R(X, Y)Z, W 〉 = 〈Y , Z〉〈X, W 〉 − 〈Y , Z〉〈X, W 〉
+ 〈α(Y , Z),α(X, W )〉 − 〈α(X, Z),α(Y , W )〉.

Then, there exist a CR immersion of M into S6(1) with (ϕ, ξ, η) as induced metric
contact structure and �(α(X, Y)) as second fundamental form.

Proof We take NM = TM. We define a bundle E over M such that the fibre over the
point p satisfies Ep = R ⊕ TMp ⊕ NMp. We take a local unit length tangent vector
field V , orthogonal to ξ and define a local frame along M by

E0 = (1, 0, 0), E1 = (0, V, 0), E2 = (0,ϕ(V ), 0),

E3 = (0, ξ, 0), E4 = (0, 0, ξ), E5 = (0, 0, V ),

E6 = (0, 0,ϕ(V )).

Let�be an isomorphismofbundlesTM andNM definedby�(E3) = E4,�(E1) =
E5,�(E2) = E6. If we denote by ∇ the Levi-Civita connection of the manifold M,
we define the second fundamental form on NM by

h(X, Y) = �(α(X, Y)),

and the normal connection on NM by

∇⊥
X �(Y) = �(∇̃⊥

X (Y)), (3.30)

where ∇̃⊥ is defined by (3.26) upto (3.29).
Note that, by definition, the second fundamental form and the normal connection

satisfy the equations of Gauss and Codazzi. Whereas, a straightforward calculation
shows that the Ricci equations are a consequence of the Gauss and Codazzi equa-
tions. Hence, by the standard existence and uniqueness theorem for submanifolds
in space forms we know that there exist an immersion F : M → S6(1) ⊂ R

7. We
now define a vector cross product along M by using the previously constructed mul-
tiplication table. It is then straightforward to check that for X ∈ {E1, E2, E3} and
Y , Z ∈ {E0, E1, E2, E3, E4, E5, E6} we have that

DX(Y × Z) = (DXY) × Z + Y × (DXZ).
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Hence, the product × is parallel along M, implying that we get a CR immer-
sion. By construction, we have (ϕ, ξ, η) as the induced metric contact structure
and �(α(X, Y)) as the second fundamental form.

Theorem 3.2 Let M be a metric almost contact manifold and let f1 : M → S6(1) and
f2 : M → S6(1) be two isometric CR immersions of M into S6(1) which induce the
given metric almost contact structure. Suppose moreover, that for both immersions
the previously introduced invariants σ, S and W coincide. Then both immersions are
G2 congruent.

Proof It follows immediately fromLemma 2 that there exist a normal bundle isomor-
phism such that for both immersions the second fundamental form and the normal
connections coincide. Hence, see Spivak [27], both immersions are congruent by an
element A ∈ SO(7). Moreover, as A maps the G2-frame of the first immersion to the
G2-frame of the second immersion, it follows that A actually preserves the vector
product. Hence, A ∈ G2.

Note that if we assume that the immersion is minimal, it follows from Lemma 2 that
the vector field W can be determined by the induced connection. Indeed we have
that

Lemma 3 Let M be a proper minimal orientable three dimensional CR-submanifold
of S6(1). Then,

W = (ω3
12 − ω3

21)E3.

Proof As M is minimal we have that

h(E1, E1) + h(E2, E2) + h(E3, E3) = 0.

Using (3.23) this implies that

〈σ(E1, E1) + σ(E2, E2), E1〉 + 〈W, E1〉 = 0,

〈σ(E1, E1) + σ(E2, E2), E2〉 + 〈W, E2〉 = 0,

− 〈∇E1ϕ(E1), ξ〉 − 〈∇E2ϕ(E2), ξ〉 + 〈W, ξ〉 = 0.

Note that the first two equations imply that W ∈ H⊥, whereas the last one implies
that

w3 = 〈W, ξ〉 = (ω3
12 − ω3

21).

3.3.2 Properties of Distributions and Elementary Examples

Before introducing some more properties of CR-submanifolds, we recall the follow-
ing definitions.
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Definition 1 Let M be a proper orientable CR-submanifold. Then,

(1) M is called H geodesic if and only if h(X, Y) = 0 for all X, Y ∈ H,
(2) M is called H⊥ geodesic if and only if h(ξ, ξ) = 0,
(3) M is called mixed totally geodesic if and only if h(X, ξ) = 0 for all X ∈ H.

Note that a totally geodesic submanifold satisfies all 3 conditions in the previous
definition. Whereas, a totally umbilical submanifold, defined by

〈h(X, Y), N〉 = λN 〈X, Y〉,

for an arbitrary normal vector field N and tangent vector fields X and Y is automati-
cally mixed geodesic.

Notice also that from the way the second fundamental form is decomposed, we
have the following lemmas.

Lemma 4 Let M be a proper three dimensional orientable CR-submanifold of S6(1).
Then, M is H totally geodesic if and only if

(1) the symmetric bilinear form σ vanished identically,
(2) the distribution H is totally geodesic.

Lemma 5 Let M be a proper three dimensional orientable CR-submanifold of S6(1).
Then M is H⊥ totally geodesic if and only if the vector field W vanished.

Lemma 6 There does not exist a proper three dimensional orientable
CR-submanifold of S6(1) which is mixed totally geodesic.

Proof From (3.24) we see that M is mixed totally geodesic if and only if S vanished
identically and the integral curves of ξ are geodesics.

However from (3.21) we deduce that the vanishing of S leads to a contradiction.

As corollaries we have

Theorem 3.3 There does not exist a proper three dimensional orientable
CR-submanifold of S6(1) which is totally geodesic.

and

Theorem 3.4 There does not exist a proper three dimensional orientable
CR-submanifold of S6(1) which is totally umbilical.

As there are no totally geodesic or totally umbilical examples of three dimen-
sional proper CR-submanifolds it was a nontrivial question to obtain examples of
CR-submanifolds. The first such example was discovered in [26]. The example con-
structedwas bothH totally geodesic andH⊥ totally geodesic. It was later generalised
in [22]where they constructed awhole family of such examples. They are immersions
of S2 × R and are given by
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Fλ((y1, y2, y3), s) = y1(cos se0 + sin se4) + y2(cos(λs)e1 + sin(λs)e5)

+ y3(cos((1 + λ)s)e2 − sin((1 + λ)s)e6),

where y21 + y22 + y23 = 1 and {e0, . . . , e6} is a G2-frame. Note that in [22] these exam-
ples were only defined for λ �= 0 and λ �= −1. However, it is easy to check that also
forλ ∈ {0,−1}, the resulting immersion is a CR immersionwith the same properties.

Note that the parameter λ can also be represented projectively by the relation

(1 : λ : −1 − λ) = (μ1 : μ2 : μ3),

with μ1 + μ2 + μ3 = 0. Rescaling the constants μi simply corresponds to a rescaling
of the parameter s.

Note, moreover, that all of these examples satisfy

(1) the immersion is minimal
(2) the immersion is contained in a totally geodesic hypersphere
(3) the immersion is H totally geodesic
(4) the immersion is H⊥ totally geodesic.

Conversely from [3], we recall that

Theorem 3.5 Let M be a minimal proper three dimensional CR-submanifold of
S6(1) which is not linearly full in S6(1). Then, M is locally congruent to the immersion

F(s, x1, x2) = cos x1 cos x2 [cos(μ1s)e0 + sin(μ1s)e4]

+ sin x1 cos x2 [cos(μ2s)e1 + sin(μ2s)e5]

+ sin x2 [cos(μ3s)e2 + sin(μ3s)e6] ,

μ1 + μ2 + μ3 = 0, μ2
1 + μ2

2 + μ2
3 �= 0,

where e0, . . . , e6 is a standard G2-basis of the space R
7.

and

Theorem 3.6 Let M be a proper three dimensional CR-submanifold of S6(1).
Assume that it is both H and H⊥ totally geodesic. Then, M is locally congruent
to the immersion

F(s, x1, x2) = cos x1 cos x2 [cos(μ1s)e0 + sin(μ1s)e4]

+ sin x1 cos x2 [cos(μ2s)e1 + sin(μ2s)e5]

+ sin x2 [cos(μ3s)e2 + sin(μ3s)e6] ,

μ1 + μ2 + μ3 = 0, μ2
1 + μ2

2 + μ2
3 �= 0,

where e0, . . . , e6 is a standard G2-basis of the space R
7.
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Note that for a special value of λ = −1, or equivalently μ3 = −1, this example
already appeared in [14]were itwas characterised using the δ-invariants ofB.Y.Chen.
Chen’s inequality for submanifolds of real space forms relates the main intrinsic
invariants of the submanifold Mn of a real space form M̄m(c), being its sectional
curvature functionK , its scalar curvature function τ , and its main extrinsic invariant:
the mean curvature function ‖H‖ (H being the mean curvature vector field of M in
M̃). For doing so, it is convenient to define a Riemannian invariant δM of Mn by

δM(2) = τp − inf Kp,

where inf K is the function assigning to each p ∈ Mn the infimum of K(π), where π
runs over all planes in TpM and τ is defined by τ = ∑

i<j K(ei ∧ ej). The inequality
can be written as follows.

δM(2) ≤ n2(n−2)
2(n−1) ‖H‖2 + 1

2 (n + 1)(n − 2)c.

Note that later, see [12], B.Y. Chen introduced awhole series of such invariants. Note,
however, that for a three dimensional manifold δ(2) is the only nontrivial invariant.
Then, we have

Theorem 3.7 ([14])Let M be a three dimensional minimal CR-submanifold in S6(1)
realising the equality in Chen’s equality. Then, M is a totally real submanifold or
locally M is congruent with the immersion

f (t, u, v) = (cos t cos u cos v, sin t, cos t sin u cos v,

cos t cos u sin v, 0, − cos t sin u sin v, 0). (3.31)

Later in [16] it was shown that

Theorem 3.8 ([16]) Let M be a three dimensional CR- submanifold in S6(1) real-
ising the equality in Chen’s equality. Then M is minimal and therefore congruent to
the example obtained in the previous theorem.

Note that as mentioned in a previous theorem, there does not exist a proper three
dimensional totally geodesic CR-submanifold. In the previous examples and the-
orems, we have introduced some notions of H totally geodesic and H⊥ geodesic
CR-submanifolds. These conditions characterised the class of examples introduced
by Hashimoto and Mashimo.

In order to obtain yet another class of submanifolds, which can be considered to
be close to totally geodesic submanifolds, we can use the nullity distribution. This
distribution is defined by

D = {X|∀Y ∈ TM : h(X, Y) = 0}.

Note that for a totally geodesic submanifold the nullity distribution coincides with
TM.
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Proper CR-submanifolds with a nullity distribution of dimension at least one were
investigated in [15]. In that paper such submanifolds are separated into two types,
depending whether they are H geodesic (Type 1) or not (Type 2).

As far as nullity type distributions of Type 1 are concerned, the following results
were obtained:

Theorem 3.9 Let γ be a spherical curve parameterized by arc length in S6(1) such
that at every point γ′′(v), γ(v), γ′(v) and γ(v) × γ′(v) are linearly independent. Then
the map

F(t, u, v) = − sin t γ(v) − cos t sin u γ(v) × γ′(v) − cos t cos u γ′(v)

defines a proper three-dimensional CR submanifold M which admits a one-
dimensional nullity distribution of Type 1.

and

Theorem 3.10 Let α be a spherical curve parameterized by arc length which lies in
a totally geodesic S5(1) in S6(1). Denote by γ a unit normal of S5(1) in S6(1). Then
the map

F(t, u, v) = − sin t γ + cos t sin u α(v) − cos t cos u γ × α(v)

defines a proper three dimensional CR-submanifold which admits an one-dimensional
nullity distribution of Type 1.

As the examples of Hashimoto and Mashimo, the example

F(t, u, v) = − sin t γ(v) − cos t sin u γ(v) × γ′(v) − cos t cos u γ′(v)

can also be seen as an immersion of S2 × R into S6(1) by putting

(y1, y2, y3) = (− sin t,− cos t sin u,− cos t cos u).

By a straightforward computation, we get that

Ft = − cos t γ + sin t sin u γ × γ′ + sin t cos u γ′

Fu = − cos t cos u γ × γ′ + cos t sin u γ′

Fv = − sin t γ′ − cos t sin u γ × γ′′ − cos t cos u γ′′.

As γ′′ has a component which is orthogonal to γ, γ′ and γ × γ′, it is clear that F
defines an immersion for almost every value of u and t. As

F × Ft = − sin u γ′ + cos u γ × γ′ = − 1
cos tFu,
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it follows that M is a proper CR submanifold. Moreover, we get that

Ftt = −F
Ftu = − tan tFu.

As far as the invariants are concerned these last two equations imply thatH is totally
geodesic. This means that the symmetric bilinear form σ vanishes identically and
the almost contact structure satisfies ∇Xξ = 0, for X ∈ H. We also have that

Ftv = − cos t γ′ + sin t sin u γ × γ′′ + sin t cos u γ′′,
Fuv = − cos t cos u γ × γ′′ + cos t sin u γ′′.

Therefore, we get that
Ftv = − tan tFv − 1

cos t γ
′.

However, from the equations for F , Fu and Ft , we see that we can write γ′ as a
linear combination of F , Fu and Ft . Hence, Ftv does not have a component which
is normal to M but tangent to the sphere.

The geometric characteristics of the second class of examples of Type 1 can be
deduced in the following way. We write

F(t, u, v) = − sin t γ + cos t sin u α(v) − cos t cos u γ × α(v).

By a straightforward computation, we get that

Ft = − cos t γ − sin t sin u α + sin t cos u γ × α

Fu = cos t cos u α + cos t sin u γ × α

Fv = cos t sin u α′ − cos t cos u γ × α′.

As α′ has a component which is orthogonal to γ × α, it is clear that F defines an
immersion for almost every value of u and t. As

F × Ft = cos u α + sin u γ × α = 1
cos tFu,

it follows that M is a proper CR submanifold. Moreover, we get that

Ftt = −F
Ftu = − tan tFu.
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This implies again that the symmetric bilinear form σ vanishes identically and the
almost contact structure satisfies ∇Xξ = 0, for X ∈ H. Finally, we have that

Ftv = − sin t sin u α′ + sin t cos u γ × α′ = − tan tFv.

As far as the Type 2 ones are concerned, they are described by

Theorem 3.11 Let M be a proper CR-submanifold with an one dimensional nullity
distribution of Type 2. Then, there exist spherical curves γ and α and a constant H
such that M can be written as

F = − sin t
[
γ(v) × γ′(v)

]

− cos t
[
α(v) sin u − ( 2√

4+H2 α(v) × γ′(v)

+ H√
4+H2 α(v) × (γ(v) × γ′(v))) cos u

]
(3.32)

so that the frame γ, γ′, γ × γ′, α, γ × α, γ′ × α and −γ × (γ′ × α) = −α × (γ ×
γ′) describes a G2-frame and such that the curves α and γ satisfy

γ′′ = −γ + k1γ × α + k2
(

H√
4+H2 γ

′ × α + 2√
4+H2 α × (γ × γ′)

)

α′ = k1γ × γ′ + 1√
4+H2

(
H√
4+H2 γ

′ × α + 2√
4+H2 α × (γ × γ′)

)
.

Conversely, a surface as described in (3.32), with α and γ satisfying the previously
mentioned conditions is a proper CR-submanifold of Type 2.

3.3.3 Frame Equations

If we now use the previously constructed G2-frame, which is determined upto a
rotation, andwrite theGauss andCodazzi equations in terms of the previously defined
components, we obtain the following Gauss and Codazzi equations:

−E1(ω
2
21) + E2(ω

2
11) − ω2

11
2 + 2ω3

11
2 + 2ω3

12ω
3
21 + ω3

12ω
2
31 − ω2

21
2

− ω3
21ω

2
31 + 2σ11

2 + 2σ12
2 − 1 = 0 (3.33)

−E1(ω
3
21) + E2(ω

3
11) + ω3

11(ω
2
33 − 2ω2

11) − ω2
21(ω

3
12 + ω3

21)

+ ω1
33(ω

3
21 − 2ω3

12) + 2s1σ12 − 2s2σ11 + σ11 = 0 (3.34)

−E1(ω
3
11) − E2(ω

3
12) + ω2

11(ω
3
12 + ω3

21) − ω3
11(2ω

2
21 + ω1

33)

+ ω2
33(ω

3
12 − 2ω3

21) + 2s1σ11 + 2s2σ12 − σ12 = 0 (3.35)

−E1(σ12) + E2(σ11) − σ11(3ω
2
11 + ω2

33) − 2ω3
11 + 2s1(ω

3
12 − ω3

21)

+ σ12(ω
1
33 − 3ω2

21) = 0 (3.36)
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E1(σ11) + E2(σ12) − σ12(3ω
2
11 + ω2

33) + 2ω3
12(s2 − 1)

+ 3ω2
21σ11 − 2ω3

21s2 − ω1
33σ11 = 0 (3.37)

E1(ω
1
33) + E2(ω

2
33) − ω2

11ω
2
33 − 2ω3

11
2 − 2ω3

12ω
3
21 + ω3

12w3

+ ω2
21ω

1
33 − ω3

21w3 + 2s1
2 + 2(s2 − 1)s2 − 1 = 0 (3.38)

−E1(s2) + E2(s1) − 2s1(ω
2
11 + ω2

33) − 2ω3
11σ12 + σ11(ω

3
12 + ω3

21)

+ w1(ω
3
12 − ω3

21) − 2ω2
21s2

+ ω2
21 + 2ω1

33s2 + ω1
33 = 0 (3.39)

E1(s1) + E2(s2) − 2s2(ω
2
11 + ω2

33) + ω2
11 + 2ω3

11σ11 + σ12(ω
3
12 + ω3

21)

+ w2(ω
3
12 − ω3

21) + 2s1(ω
2
21 − ω1

33) + 3ω2
33 = 0 (3.40)

−E1(ω
2
31) + E3(ω

2
11) − ω2

11ω
3
11 + 2ω3

11ω
2
33 − ω2

21(ω
3
12 + ω2

31)

+ ω1
33(ω

2
31 − 2ω3

12) + 2s1σ12 − 2s2σ11 + σ11 = 0 (3.41)

−E2(ω
2
33) + E3(ω

3
11) + ω3

11
2 + ω3

12ω
3
21 − ω3

12ω
2
31

− ω1
33(ω

2
21 + ω1

33) − ω3
21ω

2
31 + ω3

21w3

+ ω2
33

2 − s1
2 − (s2 − 2)s2 − σ11w1 − σ12w2 = 0 (3.42)

−E1(ω
2
33) − E3(ω

3
12) − ω2

11ω
1
33 − 2ω3

11ω
2
31 + ω3

11w3 + 2ω1
33ω

2
33

+ s1 − σ11w2 + σ12w1 = 0 (3.43)

E2(s2) + E3(σ11) + ω3
11(σ11 + w1) + 2ω2

21s1 + ω3
21(σ12 − w2)

− σ12(3ω
2
31 + w3) − 2ω2

33(s2 − 1) = 0 (3.44)

−E2(s1) + E3(σ12) + ω3
11(σ12 + w2) + ω2

21(2s2 − 1) − ω3
21σ11 + ω3

21w1

+ 3ω2
31σ11 − ω1

33 + 2ω2
33s1 + σ11w3 = 0 (3.45)

−E1(w3) + E3(ω
2
33) − 3ω3

11ω
2
33 + ω1

33(3ω
3
12 + ω2

31 + w3)

− 2s1w2 + 2s2w1 + w1 = 0 (3.46)

−E1(w1) + E3(s1) + ω2
11w2 − 2ω3

11s1 − 2(ω3
12(s2 − 1)

+ s2(ω
2
31 + w3)) + ω2

31 − ω1
33σ11

+ ω1
33w1 − ω2

33σ12 + 2ω2
33w2 − w3 = 0 (3.47)

−E1(w2) + E3(s2) − ω2
11w1 − 2ω3

11s2 + 2s1(ω
3
12 + ω2

31 + w3)

− ω1
33σ12 + ω1

33w2 + ω2
33σ11 − 2ω2

33w1 = 0 (3.48)

−E2(ω
2
31) + E3(ω

2
21) − ω2

11ω
3
21 + ω2

11ω
2
31 + ω3

11ω
2
21 + 2ω3

11ω
1
33 + 2ω3

21ω
2
33

+ ω2
31ω

2
33 − 2s1σ11 − 2s2σ12 + σ12 = 0 (3.49)

E2(ω
1
33) + E3(ω

3
21) + 2ω3

11ω
2
31 − ω3

11w3 − ω2
21ω

2
33 − 2ω1

33ω
2
33

− s1 + σ11w2 − σ12w1 = 0 (3.50)

−E2(w3) − E3(ω
1
33) − 3ω3

11ω
1
33 + ω2

33(−3ω3
21 + ω2

31 + w3)

− 2s1w1 − 2s2w2 + 3w2 = 0 (3.51)
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E1(w2) − E2(w1) + ω2
11w1 + ω3

11(4s2 − 2) − 2s1(ω
3
12 + ω3

21)

+ ω2
21w2 − 3ω1

33w2 + 3ω2
33w1 = 0 (3.52)

−E1(w1) − E2(w2) + ω2
11w2 − 4ω3

11s1 − 2s2(ω
3
12 + ω3

21)

+ 2ω3
12 − ω2

21w1 + 3ω1
33w1 + 3ω2

33w2 − 4w3 = 0. (3.53)

Note that on p. 191 of [16], the last two equations,which can be obtained, respectively,
from the Codazzi equations of

(∇h)(E3, E2, E3) = (∇h)(E2, E3, E3),

(∇h)(E3, E1, E3) = (∇h)(E1, E3, E3)

are missing.

3.3.4 Exampleslong Based on Special Almost Contact
Manifolds

In the previous examples, we gave several examples and their characterisations of
proper three dimensional CR-submanifolds for which the second fundamental form
had special properties. Another question one can ask is whether a given three dimen-
sional manifold can be isometrically immersed as a proper CR-submanifold. As a
properCR-submanifold admits a canonical almost contact structure it is natural to ask
whether some special almost contact manifolds can be realised as CR-submanifolds.

An almost contact structure is called contact metric if the additional property

dη(X, Y) = 1
2 (X(η(Y)) − Y(η(X)) − η([X, Y ])) = g(X,ϕ(Y)) (3.54)

holds for all vector fields X and Y on M. Then the integral curves of the characteristic
vector field ξ are geodesics.

Further, if ξ is a Killing vector field with respect to g, then the manifold is K-
contact. Equivalently, it holds

∇Xξ = −ϕ(X) (3.55)

where ∇ is the Levi-Civita connection associated to g. Finally, if the Riemann cur-
vature tensor R of g satisfies

R(X, Y)ξ = ∇X∇Yξ − ∇Y∇Xξ − ∇[X,Y ]ξ = η(Y)X − η(X)Y (3.56)

for all vector fieldsX andY , then the contactmetricmanifold is Sasakian. In this case,
ξ is necessarily a Killing vector field, hence any Sasakian manifold is K-contact. In
the three dimensional case, the converse also holds.

As far as a Sasakian manifold is concerned, we recall from [16] the following:
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Theorem 3.12 Let M be a three dimensional Sasakian manifold. Then M can not
be immersed as a proper CR-submanifolds such that the induced contact structure
corresponds with the Sasakian structure.

Note, however, that there exist three dimensionalCR-submanifolds of S6(1)which
at the same time are Sasakian manifolds. More precisely, whereas the contact struc-
ture ϕ is the naturally induced contact structure by the almost complex structure on
S6(1), the corresponding metric is not the induced metric, but is a constant multiple
of the induced metric. The examples are constructed as follows.

We follow the approach by [17] and [23] and we start with an almost complex
curve in S6(1) which is superminimal in S6(1). Following the notation of [7] such a
complex curve is called ofType I.Wealso recall thatBryant [8] obtained aWeierstrass
representation for such surfaces and showed that for every genus examples do exist.

We then look at a tube around such a surface in the direction of the second normal
bundle, i.e., we define:

F : UN2 → S6(1) : v �→ cos γ f + sin γ v × α(v, v)

‖α(v, v)‖ ,

where γ is a constant, f : N2 → S6(1) is a complex curve of Type I, α denotes
the second fundamental form of the immersion f and UN2 denotes the unit tangent
bundle.

In order to determine for which value of γ the tube is a CR-submanifold, we
introduce the notation given in the Sect. 5 of [13]. Let V be an arbitrary unit tangent
vector field defined on a neighborhood of the point p. Denote by U = JV . Using the
properties of the vector cross product, we see that F1 = f , F2 = V, F3 = JV, F4 =
α(V, V )/‖α(V, V )‖, F5 = α(V, JV )/‖α(V, V )‖ = Jα(V, V )/‖α(V, V )‖ =
F1 × F4, F6 = F2 × α(V, V )/‖α(V, V )‖ andF7 = F3 × α(V, V )/‖α(V, V )‖ form
aG2-frame and hence satisfy the correspondingmultiplication table relations.Denote
also ai = 〈(∇α)(V, V, V ), Fi+3〉/‖α(V, V )‖, i ∈ {1, 2, 3, 4} and μ1 = 〈∇V V, U〉
and μ2 = 〈∇UU, V 〉.

Assuming that the surface is superminimal, we have a3 = 0 and a4 = − 1
2 . Note

that the immersion F can be parameterized by

F(t, q) = cos γf (q) + sin γ(cos tF6(q) + sin tF7(q)),

where q denotes a point of the surface. Using Lemma 5.1 of [13], we then get

DV F = cos γF2 + 1
2 sin t sin γF4 − 1

2 cos t sin γF5 − (a2 + 3μ1) sin t sin γF6

+ (a2 + 3μ1) cos t sin γF7,

DUF = cos γF3 − 1
2 cos t sin γF4 − 1

2 sin t sin γF5 − (a1 − 3μ2) sin t sin γF6

+ (a1 − 3μ2) cos t sin γF7,

D ∂
∂t

F = sin γ(− sin tF6 + cos tF7),
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and a straightforward computation shows that

F × D ∂
∂t

F = − sin γ2F + cos t cos γ sin γF6 + cos γ sin t sin γF7

is orthogonal to DV F, DUF and D ∂
∂t

F. Denoting by V1 and V2 the component of

DUF and DV F, respectively, which is orthogonal to D ∂
∂t

F, we compute

F × V1 = 1
4 (1 + 3 cos 2γ)F3 + 3

2 cos t cos γ sin γF4 + 3
2 cos γ sin t sin γF5,

V2 = cos γF3 − 1
2 cos t sin γF4 − 1

2 sin t sin γF5.

Therefore, we conclude that for the tube with radius γ = arccos 1
3 it follows

F × V1 = −V2

and consequently M is a CR submanifold.
By choosing V3 = D ∂

∂t
F, we compute

〈V1, V1〉 = 〈V2, V2〉 = 1
3 ,

〈V1, V2〉 = 0 = 〈V1, V3〉 = 〈V2, V3〉,
〈V3, V3〉 = 8

9 ,

and

∇V3 V3 = 0, ∇V1 V3 = − 2
3 V2.

In particular, taking E1, E2 and E3 to be the normalized vector fields corresponding
to V1, V2 and V3 respectively, we conclude

∇E3E3 = 0, ∇E1E3 = − 1√
2
E2,

which yields that the manifold M is Sasakian with respect to metric 1
2 〈., .〉.

The above manifolds can be seen as belonging to a larger class of manifolds,
the so-called trans-Sasakian spaces, see [6], p. 99. In the classification of Gray and
Hervella (1980) of almost Hermitian manifolds there appears a class, W4, of Her-
mitian manifolds which are closely related to locally conformally Kähler manifolds.
Start with an almost contact metric space M and consider on the product manifold
M × R the almost complex structure J(X, f d

dt )) = (ϕ(X) − f ξ, η(X) d
dt ) and product

metric. The notion of a trans-Sasakian structure is then introduced as an almost con-
tact metric structure for which associated almost Hermitian manifold belongs to the
classW4. This may be expressed by the condition that
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(∇ϕ)(X, Y) = α(〈X, Y〉ξ − η(Y)X) + β(〈ϕ(X), Y〉ξ − η(Y)ϕ(X)),

and such manifolds are also called the (α,β)-trans-Sasakian manifolds. From this it
follows in an elementary way that

∇Xξ = −αϕ(X) + β(X − η(X))ξ.

Note that in the three-dimensional case, the latter equation is sufficient in order to
determine that the almost contact manifold is a trans-Sasakian manifold.

Note that if a proper CR-submanifold is a trans-Sasakian space, the previous
formula together with the fact that

ω3
11 + ω3

22 = 0,

implies that the function β has to vanish.

Theorem 3.13 Let M be a (α,β)-trans-Sasakian manifold immersed as a proper
CR-submanifold in S6(1). If the induced contact structure coincides with the trans-
Sasakian structure then β = 0.

As in the case of the previous tube example, we have that

∇E3E3 = 0, ∇E1E3 = − 1√
2
E2,

we deduce that this tube is a ( 1√
2
, 0)-trans-Sasakian manifold.

Theorem 3.14 Let M be a (α,β)-trans-Sasakian manifold immersed as a proper
CR-submanifold in S6(1). Assume that the induced contact structure coincides with
the trans-Sasakian structure and that the mean curvature vector is a multiple of Jξ.
Then, M is congruent to a tube with radius γ = arccos 1

3 in the direction of the second
normal bundle on a superminimal almost complex surface in S6(1).

Proof As the mean curvature vector is in the direction of JE3 = Jξ, we have that
w1 = w2 = 0. Note also that if necessary by replacing ξ by −ξ we may assume that
α ≥ 0. As M is trans-Sasakian, we know that β = 0. So, we have that ω3

12 = α =
−ω3

21,ω
1
33 = ω2

33 = 0 and ω3
11 = ω3

22 = 0. By applying a rotation of E1 and E2, we
may also assume that σ12 = 0. As σ12 = 0, it follows from (3.34) and (3.35) that

E1(α) = σ11(2s2 − 1),

E2(α) = 2s1σ11.

Similarly, it follows from (3.36) and (3.37) that

E1(σ11) = −3ω2
21σ11 + 2α(1 − 2s2),

E2(σ11) = 3ω2
11σ11 − 4s1α,
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and from (3.43) and (3.50) we obtain that E3(α) = s1 = 0.
Note also that (3.38), (3.42) and (3.53) reduce to an algebraic equations, not

containing any derivatives, namely they yield

2(s2 − 1)s2 − 1 + 2α(w3 + α) = 0,

− α2 − αw3 − s22 + 2s2 = 0,

2α − 4w3 = 0.

We have that s1 = 0, w3 = 1
2α, s2 = 1

2 and α2 = 1
2 . As we assume α to be positive,

we deduce that α = 1√
2
. We have

∇E1E1 = ω2
11E2, ∇E1E2 = −ω2

11E1 + 1√
2

E3, ∇E1E3 = − 1√
2

E2,

∇E2E1 = ω2
21E2 − 1√

2
E3, ∇E2E2 = −ω2

21E1, ∇E2E3 = 1√
2

E1,

∇E3E1 = ω2
31E2, ∇E3E2 = −ω2

31E1, ∇E3E3 = 0,

and also

h(E1, E1) = σ11E5 − 1√
2

E4, h(E2, E2) = −σ11E5 − 1√
2

E4,

h(E3, E3) = 1

2
√
2

E4, h(E1, E2) = −σ11E6,

h(E1, E3) = 1

2
E6, h(E2, E3) = −1

2
E5.

From (3.45), we then obtain that either σ11 = 0 orω2
31 = − 1

2α. Now, we deal with
two subcases. First, we deal with the case that σ11 �= 0 and hence ω2

31 = − 1
2
√
2
. In

that case the remaining equations are

E3(σ11) = 0,

E3(ω
2
21) = −ω2

11α

2
,

E3(ω
2
11) = ω2

21α

2
,

E2(ω
2
11) − E1(ω

2
21) − (ω2

11)
2 − (ω2

21)
2 − 5

2
= 0.

Let us denote the immersion by f and by G : U → S6(1) a mapping of neighborhood
U of a point p, given by
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G = 1

3
f + 2

√
2

3
f × E3.

By a straightforward computation we obtain that

DE1G = 1

3
E1 + 2

√
2

3
(E1 × E3 + f × DE1E3) = E1 + √

2E5,

DE2G = 1

3
E2 + 2

√
2

3
(E2 × E3 + f × DE2E3) = E2 + √

2E6,

DE3G = 0.

Wecan take such a neighborhoodU, thatwe can identify itwith a neighborhoodW1 ×
I of the origin inR3,with coordinates (u, v, t), takingp = (0, 0, 0) andE3 = ∂

∂t . Then,
there are local functions α1 and α2 such that the vectors fields X = E1 + α1E3 and
Y = E2 + α2E3 define a basis of the space tangent toW1 at every point (u, v, 0). Since
we have G∗X = DX G = E1 + √

2E5 and G∗Y = DY G = E2 + √
2E6 it follows that

the restriction of G to W1 is an immersion.Moreover, we have that G × G∗X = G∗Y
and therefore the immersion is an almost complex one. The vector fields G∗X and
G∗Y are orthogonal and of the same length

√
3. Further we get,

DX(E1 + √
2E5) =

(
ω2
11 + α1

2
√
2

)
G∗Y + σ11(E5 − √

2E1) − 3G,

and since E5 − √
2E1 is orthogonal to G, G∗X and G∗Y , and therefore a section

of the normal bundle of the immersion, we have h(X, X) = σ11(E5 − √
2E1), and

the minimality of the almost complex immersion into S6(1) implies h(Y , Y) =
−σ11(E5 − √

2E1). Similarly,

DX(E2 + √
2E6) = −

(
ω2
11 + α2

2
√
2

)
G∗X − σ11(E6 − √

2E2),

and we obtain that h(X, Y) = −σ11(E6 − √
2E2). Now, the fact that h(X, X) and

h(X, Y) are orthogonal and of the same length
√
3|σ11| yields that the immersion is

superminimal.
Nowwe canwrite the immersion f as the union of the integral curves ofE3 through

the points (u, v, 0), i.e.,

f (u, v, t) = 1

3
f (u, v, 0) + 3

2
√
2

E4(u, v, 0)

− 2

3
cos

(√
3

2
t

)(
1√
2

E4((u, v, 0) − f (u, v, 0)

)
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+
√
2

3
sin

(√
3

2
t

)
E1(u, v, 0)

and represents a tube on the almost complex immersion.
Next we deal with the case that σ11 vanishes which then implies that we still have

the freedom of rotation in the moving frame. In that case, the remaining equations
are

E3(ω
2
21) − E2(ω

2
31) = −ω2

11(ω
2
31 + α),

E3(ω
2
11) − E1(ω

2
31) = ω2

21(ω
2
31 + α),

E2(ω
2
11) − E1(ω

2
21) − (ω2

11)
2 − (ω2

21)
2 + 2αω2

31 − 5

2
= 0.

A straightforward computation shows that the one form μ given on some neigh-
borhood of a point byμ(E1) = −ω2

11,μ(E2) = −ω2
21,μ(E3) = −ω2

31 + 5
2
√
2
is closed

and therefore exact. Let μ = dθ and denote by

Ẽ1 = cos θE1 + sin θE2,

Ẽ2 = − sin θE1 + cos θE2.

Ẽ5 = cos θE5 + sin θE6,

Ẽ6 = − sin θE5 + cos θE6.

Then, we have

∇Ẽ1
Ẽ1 = 0, ∇Ẽ1

Ẽ2 = 1√
2

E3, ∇Ẽ1
E3 = − 1√

2
Ẽ2,

∇Ẽ2
Ẽ1 = − 1√

2
E3, ∇Ẽ2

Ẽ2 = 0, ∇Ẽ2
E3 = 1√

2
Ẽ1,

∇E3 Ẽ1 = 5

2
√
2

Ẽ2, ∇E3 Ẽ2 = − 5

2
√
2

Ẽ1, ∇E3E3 = 0,

and

h(Ẽ1, Ẽ1) = − 1√
2

E4, h(Ẽ2, Ẽ2) = − 1√
2

E4, h(E3, E3) = 1

2
√
2

E4,

h(Ẽ1, Ẽ2) = 0, h(Ẽ1, E3) = 1

2
Ẽ6, h(Ẽ2, E3) = −1

2
Ẽ5.

Theorem 3.15 Let M be a ( 1√
2
, 0)-trans-Sasakian manifold immersed as a proper

CR-submanifold in S6(1). Assume that the induced contact structure coincides with
the trans-Sasakian structure. Then M is congruent to a tube with radius γ = arccos 1

3
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in the direction of the second normal bundle on a superminimal almost complex
surface in S6(1).

Proof It follows from (3.34) and (3.35) that s1σ11 = 0 and (2s2 − 1)σ11 = 0. So let
us assume first that σ11 �= 0 and therefore s1 = 0 and s2 = 1

2 . It then follows from
(3.43) that w2 = 0. From (3.39) we then deduce that w1 = 0. Therefore, we can
apply the result of the previous theorem which completes the proof. If σ11 = 0, we
recuperate once more the rotation freedom in E1 and E2. We may therefore assume
that w2 = 0. If w1 vanishes as well, we are in the case of the previous theorem
and therefore the proof is completed. Therefore, we may assume that w1 �= 0. From
(3.36) and (3.37), we get now that s1 = 0 and s2 = 1

2 .

3.4 Four Dimensional CR-Submanifolds of S6(1)

3.4.1 Construction of the Moving Frame

Now, let M be a four dimensional CR-submanifold of S6(1). Although we have
already decided to deal with proper CR-submanifolds, let us mention that in [20]
A. Gray showed that there are no four dimensional almost complex submanifolds of
the sphere S6(1). Since the dimension of the almost complex distribution is even it
follows that the dimensions of the almost complex and totally real distributions, H
and H⊥, both have to be two.

Let us show the construction of the local orthonormal moving frame of the sub-
manifoldM and its normal bundle that is particulary convenient to workwith. Denote
by ξ and η the local orthonormal vector fields spanning the T⊥M and by p the position
vector field of the submanifold. Then, the vector fields Jξ = p × ξ and Jη = p × η
belong to the totally real distribution by its definition, and since the almost com-
plex structure J is Hermitian it follows 〈Jξ, Jη〉 = 0 so Jξ, Jη span the totally real
distributionH⊥.

Further, we have

〈p, ξ × η〉 = −〈ξ, p × η〉 = −〈ξ, Jη〉 = 0,

implying that ξ × η is a vector field tangent to the sphere S6(1). Moreover, we have

〈ξ × η, ξ〉 = 0 = 〈ξ × η, η〉,

so ξ × η belongs to the tangent bundle TM, while 〈ξ × η, p × η〉 = 〈ξ, p〉 = 0 and
〈ξ × η, p × ξ〉 = −〈ξ × η, ξ × p〉 = −〈η, p〉 = 0 imply that ξ × η ∈ H.

Similarly, from (3.3) we have,

〈p × (ξ × η), ξ〉 = 〈(p × η) × ξ + 2〈p, ξ〉η − 〈p, η〉ξ − 〈ξ, η〉p, ξ〉
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= 〈(p × η) × ξ, ξ〉 = 0,

so J(ξ × η) is orthogonal to ξ and in the same manner we find that J(ξ × η) is also
orthogonal to η and obviously to p, which implies J(ξ × η) ∈ TM. Then, from

〈J(ξ × η), Jξ〉 = 〈ξ × η, ξ〉 = 0, 〈J(ξ × η), Jη〉 = 0

we conclude that J(ξ × η) ∈ H. Also, it holds 〈ξ × η, J(ξ × η)〉 = 0. Therefore, the
almost complex distributionH is spanned by ξ × η and J(ξ × η).

Also, it is clear that the frame {p, ξ, Jξ, η, Jη, ξ × η,−J(ξ × η)} is a G2-frame.
However, it is obvious that we have a certain freedom in choice of the initial

orthonormal frame {ξ, η} of the normal bundle. If {ξ̃, η̃} is another such frame then
there exists a locally defined differential function α such that it holds

ξ̃ = cosαξ + sinαη,

η̃ = ±(− sinαξ + cosαη),

and further

ξ̃ × η̃ = ±(cosαξ + sinαη) × (− sinαξ + cosαη) = ±ξ × η,

J(ξ̃ × η̃) = ±J(ξ × η),

J ξ̃ = cosαJξ + sinαJη,

J η̃ = ±(− sinαJξ + cosαJη),

so the vector field ξ × η remains invariant under rotations in the normal bundle. Let
us denote

F1 = ξ × η, F2 = J(ξ × η), F3 = Jξ, F4 = Jη.

Now we shall give the conditions that each such local frame

{F1 , . . . , F4, ξ, η}

has to satisfy. We denote by

ωk
ij = 〈DFi Fj, Fk〉, hn

ij = 〈DFi Fj, n〉, αi = 〈DFiξ, η〉,

where 1 ≤ i, j, k ≤ 4 and n ∈ {ξ, η}. The scalar products of the frame vector fields are
constant, so by taking their covariant derivatives in the directions of Fi, i = 1, . . . , 4
we get that ωk

ij = −ω
j
ik and also, that the following lemma holds.

Lemma 7 If αi, i = 1, . . . , 4 are previously defined functions, we have

∇⊥
F1

ξ = α1η, ∇⊥
F1

η = −α1ξ, ∇⊥
F2

ξ = α2η, ∇⊥
F2

η = −α2ξ,
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∇⊥
F3

ξ = α3η, ∇⊥
F3

η = −α3ξ, ∇⊥
F4

ξ = α4η, ∇⊥
F4

η = −α4ξ.

Also, the symmetry of the second fundamental form implies that hξ
ij = hξ

ji, hη
ij = hη

ji
and we also have

h(Fi, Fj) = hξ
ijξ + hη

ijη. (3.57)

Lemma 8 Let ∇ be the Levi-Civita connection of M. Then we have

∇F1F1 = (hξ
13 + hη

14)F2 − hξ
12F3 − hη

12F4,

∇F1F2 = −(hξ
13 + hη

14)F1 + hξ
11F3 + hη

11F4,

∇F1F3 = hξ
12F1 − hξ

11F2 + α1F4,

∇F1F4 = hη
12F1 − hη

11F2 − α1F3,

∇F2F1 = (hξ
23 + hη

24)F2 − hξ
22F3 − hη

22F4,

∇F2F2 = −(hξ
23 + hη

24)F1 + hξ
12F3 + hη

12F4,

∇F2F3 = hξ
22F1 − hξ

12F2 + (−1 + α2)F4,

∇F2F4 = hξ
22F1 − hη

12F2 − (−1 + α2)F3,

∇F3F1 = (hξ
33 + hη

34)F2 − hξ
23F3 − hη

23F4,

∇F3F2 = −(hξ
33 + hη

34)F1 + hξ
13F3 + (1 + hη

13)F4,

∇F3F3 = hξ
23F1 − hξ

13F2 + α3F4,

∇F3F4 = hη
23F1 − (1 + hη

13)F2 − α3F3,

∇F4F1 = (hξ
34 + hη

44)F2 − hξ
24F3 − hη

24F4,

∇F4F2 = −(hξ
34 + hη

44)F1 + (−1 + hξ
14)F3 + hη

14F4,

∇F4F3 = hξ
24F1 − (−1 + hξ

14)F2 + α4F4,

∇F4F4 = hη
24F1 − hη

14F2 − α4F3,

and
hξ
14 + 1 = hη

13, = hξ
24 = hη

23, = hξ
34 = hη

33, = hξ
44 = hη

34.

Proof Using (3.13) and (3.57) we get

DF1F2 = ∇F1F2 + hξ
12ξ + hη

12η

and using F2 = JF1 = p × F1, Lemma 1 and the multiplication table, we get

DF1F2 = DF1p × F1 + p × DF1F1

= F1 × F1 + p × [∇F1F1 + h(F1, F1) − 〈F1, F1〉p]
= −ω2

11F1 − ω3
11ξ − ω4

11η + hξ
11F3 + ω

η
11F4
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and we get
hξ
12 = −ω3

11, hη
12 = −ω4

11, hξ
11 = ω3

12, hη
11 = ω4

12.

Analogously, the other equations also hold.

Lemma 9 If Aξ, Aη are the shape operators with respect to the vector fields ξ and
η, it holds Aη(Jξ) − Aξ(Jη) = ξ × η.

Proof Since we have 〈ξ, Jη〉 = 0, we straightforwardly obtain that

〈DXξ , Jη〉 + 〈ξ , DX(p × η)〉
= 〈DXξ , Jη〉 + 〈ξ , X × η〉 + 〈ξ , p × DXη〉 = 0

implying
−〈AξX, Jη〉 + 〈AηX, Jξ〉 − 〈X, ξ × η〉 = 0

which concludes the proof.

3.4.2 Some Examples

The investigation of four dimensionalCR-submanifolds has not been aswide as itwas
for three dimensional ones. In [26] Sekigawa showed that there are no CR product
submanifolds of the sphere S6(1). In [24] were given some topological restrictions on
such submanifolds. Namely, it was shown that the first Pontrjagin class of the oriented
CR-submanifold M vanishes, and moreover, that if it is in addition compact its Euler
numberχ(M) is zero. Therefore, S4, S2 × S2 andCP2 cannot be immersed into S6(1)
as a CR-submanifold. It is also not hard to show that there are no totally geodesic
submanifolds of S6(1), regardless of the compactness condition. Also, regarding the
properties of the almost complex and totally real distribution, in the same paper, the
following theorem was proven.

Theorem 3.16 The totally real distribution H⊥ of M is not involutive. If the almost
complex distribution H is involutive then each compact leaf of H is homeomorphic
to a two dimensional torus.

The first examples of four dimensional CR-submanifolds of the sphere S6(1), which
we here present, were given in [24], see also [25].

Example 1 Denote by H the space of quaternions. Then, we can put O = H ⊕ H

and write the an octonion in the following way
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a · 1 +
6∑

i=0

aiei = a · 1 +
2∑

i=0

aiei +
(

a3 · 1 +
6∑

i=4

aiei−3

)
e3 = q1 + q2e3,

where q1, q2 ∈ H.
Letγ : I → S2 ⊂ �Hbe a regular curveparametrizedby its arclength, andS3 ⊂ H

the space of unit length quaternion. Then the immersion ψ : I × S3 → S6(1) given
by

ψ(t, q) = aγ(t) − bqe3, a, b > 0, a2 + b2 = 1

gives rise to a four dimensional CR-submanifold of S6(1). In particular, one ortho-
normal frame of the normal bundle is given by

ξ = γ′ × γ, η = bγ − aqe3.

and further, the local frame of the tangent bundle by

Jξ = −aγ′ + b(γ′ × γ)qe3,

Jη = γ × qe3,

ξ × η = −(bγ′ + a(γ′ × γ)qe3),

J(ξ × η) = −γ′qe3.

Example 2 The immersion φ : S1 × S3 → S6(1) given by

φ(θ, q) = a(qe0q) + b[(t(− sin θ + cos θe0) + s(cos θe1 + sin θe2))q]e3,

where a, b, t, s > 0, a2 + b2 = 1, t2 + s2 = 1 gives rise to a CR-submanifold of
S6(1). Note that φ is not an injection since φ(θ + π,−q) = φ(θ, q). We can denote
by

τ (θ) = t(− sin θ + cos θe0) + s(cos θe1 + sin θe2),

and write

φ(θ, q) = a(qe0q) + b(τ (θ)q)e3.

Here, one frame of the normal bundle is then given by

ξ = b(qe0q) − a(τ (θ)q)e3,

η = 1√
1 + 3a2

{b(qe1q) + 2a(τ (θ)e2q)e3} ,
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and, further we have

Jξ = (τ (θ)e0q)e3,

Jη = 1

1 + 3a2
(−3abqe2q + (1 − 3a2)τ (θ)e1qe3),

ξ × η = − 1√
1 + 3a2

((3a2 − 1)qe2q − 3abτ (θ)e2qe3),

J(ξ × η) = − 1√
1 + 3a2

(2aqe1q − bτ (θ)e2qe3).

It is also interesting to note some of the properties of these immersions

(1) immersion φ is minimal if and only if a =
√

(3 + √
57)/24, t = 1/

√
2;

(2) if a = 1/
√
3, t = 1/

√
2 then the almost complex distributionH is integrable;

(3) for arbitrary a, b, t, s the immersion φ is full in S6(1).

In [2], the following classification result was given.

Theorem 3.17 Let M be a four dimensional minimal CR-submanifold in S6(1) which
satisfies Chen’s equality. Then, M is locally congruent with the immersion

f (x1, x2, x3, x4) = (cos x4 cos x1 cos x2, sin x4 sin x1 cos x2,

sin 2x4 sin x3 cos x2 + cos 2x4 sin x2, 0, sin x4 cos x1 cos x2,

cos x4 sin x1 cos x2, cos 2x4 sin x3 cos x2 − sin 2x4). (3.58)

Namely, let us denote by

D(p) = {X ∈ TpM | (n − 1)h(X, Y) = ng(X, Y)H, for all Y ∈ TpM}, (3.59)

the distribution of a n-dimensional submanifold of a real space form.
Then, it is well known that if a submanifold M satisfies the equality sign in the

Chen’s inequality then one of the following holds:

(1) D is a (n − 2)-dimensional distribution;
(2) D = TM and M is a totally geodesic submanifold;
(3) the bundle Imh is one dimensional.

Conversely, we also have the following lemma.

Lemma 10 If M is a n-dimensional (n > 2) submanifold of a real space form such
that the dimension of D is greater or equal (n − 2) then M satisfies Chen’s equality.

Here, for a four-dimensional minimal CR submanifold of the S6(1) this distribu-
tion is given by

D = {Z ∈ TM|h(X, Z) = 0,∀X ∈ TM},
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and since submanifold satisfies Chen’s equality,D has to be at least two-dimensional.
Also, the minimality implies that

hξ
11 + hξ

22 + hξ
33 + hξ

44 = hη
11 + hη

22 + hη
33 + hη

44 = 0. (3.60)

It is interesting to note that, by using Lemma 9, straightforwardly we obtain that for
all V ∈ D it holds

〈ξ × η, V 〉 = 〈Aη(Jξ), V 〉 − 〈Aξ(Jη), V 〉
= 〈η, h(Jξ, V )〉 − 〈ξ, h(V, Jη)〉 = 0

which means that such vector field V is in the space spanned by F2, F3 and F4.
Let us find an orthonormal local frame for distribution D. Since D is two-

dimensional, there exists a V1 ∈ D which is orthogonal to F2 (i.e., V1 ∈ L(F3, F4)).
Recall that we can make a suitable choice of the basis of T⊥(M) so we may assume
that V1 = F3. Next, we take V2 ∈ D which is orthogonal to V1. Then, we can write

V2 = cosφF2 + sin φF4.

Further, since V1, V2 belong to distributionDwe obtain the following proposition.

Proposition 1 If M satisfies the Chen’s equality then there exists locally defined
differentiable function t such that following holds.

hξ
13 = hη

13 = hξ
23 = hη

23 = hξ
24 = hξ

33 = hη
33 = hξ

34 = hη
34 = hξ

44 = 0, hξ
14 = −1,

hξ
12 = t, hξ

11 = hξ
22 = 0, hη

12 = −thη
14 hη

24 = −thη
44, hη

22 = t2hη
44, (3.61)

hη
11 = −hη

22 − hη
44 = −(1 + t2)hη

44.

Also, we have

Proposition 2

α3 = 0, α1 = 0, F3(t) + 1 + t2 = 0, F3(h
η
14) = 0, α2 = 1 − 2t2, α4 = 3t,

hη
44 = 0, F1(h

η
14) = 0, F2(t) = 2tγ4(1 + t2), F2(th

η
14) = 3thη

14
2 + t(1 − 2t2),

F1(t) = 0, F4(v) = 3thη
14

2 + 3t, F4(t) = −2hη
14(t

2 + 1),

F2(h
η
14) = (1 − 2t2)(hη

14
2 + 1).

These relations follow directly from Gauss, Codazzi, and Ricci equations and
moreover, they satisfy the integrability conditions. By integrating, the immersion
(3.58) is obtained. Note that this immersion is also not linearly full in S6(1), meaning,
it is an immersion into a totally geodesic sphere S5 ⊂ S6(1). In [1] minimal, non
linearly full CR-submanifolds were investigated.
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When dealing with a nonlinearly full submanifold of the sphere S6(1), one can
observe the hyperplane through the origin of R7 that also contains the image of the
immersion and its unit normal vector. Then the unit normal vector field induced by
it in the points of the submanifold M is orthogonal to M, and to the position vector
field p, so it is tangent to the sphere S6(1). Therefore, it belongs to T⊥M = L(ξ, η),
for arbitrary local frame {ξ, η}.

Therefore, keeping in mind the freedom of rotation in the normal bundle of the
submanifold, one can assume that the unit normal vector field orthogonal to that
hyperplane is η.

Moreover, the covariant derivatives of η in the directions of Fi, i = 1, . . . , 4 are
then identically equal to zero, so, along with the minimality condition (3.60), we
have the following lemma.

Lemma 11

hη
11 = hη

12 = hη
14 = hη

22 = hη
24 = hη

33 = hη
44 = 0, hξ

11 + hξ
22 + hξ

33 = 0,

hξ
24 = hξ

34 = hξ
44 = 0, hξ

14 = −1, α1 = α2 = α3 = α4 = 0.

The Gauss, Codazzi and Ricci equations here yield the following relations.

Lemma 12

F4(h
ξ
13) = 3hξ

12, F4(h
ξ
23) = 3(hξ

11 + 2hξ
22), F4(h

ξ
12) = −3hξ

13,

F4(h
ξ
22) = −6hξ

23, F4(h
ξ
11) = 0, F1(h

ξ
22) = −3hξ

12hξ
13 + 3hξ

11hξ
23 + F2(h

ξ
12),

F2(h
ξ
11) = −3hξ

13hξ
22 + 3hξ

12hξ
23 + F1(h

ξ
12),

F1(h
ξ
11) = −3hξ

12hξ
13 + 3hξ

11hξ
23 − F3(h

ξ
13) − F1(h

ξ
22),

F2(h
ξ
22) = 3(hξ

12hξ
23 − hξ

13hξ
22) − F2(h

ξ
11) − F3(h

ξ
23),

F3(h
ξ
11) = −3(hξ

11hξ
12 + hξ

12hξ
22 + hξ

13hξ
23) + F1(h

ξ
13),

F2(h
ξ
23) = −3(hξ

11hξ
12 + hξ

12hξ
22 + hξ

13hξ
23) + F3(h

ξ
22),

F2(h
ξ
13) = F1(h

ξ
23) + 1 + (hξ

11)
2 − 2(hξ

12)
2 + (hξ

13)
2 + 4hξ

11hξ
22 + (hξ

22)
2 + (hξ

23)
2,

F1(h
ξ
23) = F3(h

ξ
12) + 1 − 2(hξ

11)
2 + (hξ

12)
2 − 2(hξ

13)
2 − 2hξ

11hξ
22 + (hξ

22)
2 + (hξ

23)
2.

These equations, along with the integrability conditions which are equivalent to
a very large system of equations, give the following result, see [1].

Theorem 3.18 Let M be a four dimensional, minimal CR-submanifold of the sphere
S6(1) contained in a totally geodesic sphere S5(1). Then, M is locally congruent
(1) to the immersion (3.58) and it satisfies Chen’s equality.
(2) to the immersion

f2(x1, x2, x3, x4) =
√
2

8
(3(cos x1 cos x2 + cos x3 sin x1) + √

2 cos(
√
3x4))e0
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+
√
6

8
(
√
2 cos(

√
3x4) − cos x1 cos x2 − cos x3 sin x1)e1

+
√
6

4
(sin x1 sin x3 − cos x1 sin x2)e2

+
√
2

8
(−3(cos x1 sin x2 + sin x1 sin x3) + √

2 sin(
√
3x4))e4

+
√
6

8
(cos x1 sin x2 + sin x1 sin x3 + √

2 sin(
√
3x4))e5

+
√
6

4
(cos x3 sin x1 − cos x1 cos x2)e6.

(3) to the immersion f3(y1, y2, y3, y4) = ∑6
i=0 aiei where

a0 = 1

4
(((1 + √

2) cos y2 + cos y3) cos(y1 − y4) + (cos y2 + cos y3 − √
2 cos y3)

· cos(y1 + y4) + sin y2 sin y3((
√
2 − 1) sin(y1 + y4) − sin(y1 − y4))),

a1 = 1

4
(((1 + √

2) cos y3 − cos y2) cos(y1 − y4) − ((
√
2 − 1) cos y2 + cos y3)

· cos(y1 + y4) + sin y2 sin y3(sin(y1 + y4) − (1 + √
2) sin(y1 − y4))),

a2 =
√
8
√
2 − 8((1 + √

2)(cos y1 cos y3 sin y2 − sin y1 sin y3) sin y4
− cos y4(cos y3 sin y1 sin y2 + cos y1 sin y3)),

a3 = 0,

a4 = (cos y2 + (1 − √
2) cos y3) sin(y1 + y4) − ((1 + √

2) cos y2 + cos y3)

· sin(y1 − y4) − (cos(y1 − y4) + (
√
2 − 1) cos(y1 + y4)) sin y2 sin y3,

a5 = −((1 + √
2) cos(y1 − y4) + cos(y1 + y4)) sin y2 sin y3

+ (cos y2 − (1 + √
2) cos y3) sin(y1 − y4)

− ((
√
2 − 1) cos y2 + cos y3) sin(y1 + y4),

a6 = −4

√√
2 + 2(cos y4(cos y1 cos y3 sin y2 − sin y1 sin y3)

+ (
√
2 − 1)(cos y3 sin y1 sin y2 + cos y1 sin y3) sin y4)).
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CR Submanifolds of Hermitian Manifolds
and the Tangential CR Equations
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4.1 Bejancu’s CR Submanifolds and CR Analysis

The purpose of this (partially expository) paper is to set the basis for the mathemat-
ical analysis of solutions to the tangential Cauchy–Riemann equations ∂Mu = 0 on
CR submanifolds M of Hermitian (e.g., Kählerian, locally conformal Kähler, etc.)
manifoldsM2N , as introduced by A. Bejancu in his celebrated work [5], in an attempt
to fill in a gap between the differential geometric side of the subject (e.g., devoted to
the geometry of the second fundamental form of M in M2N ) and the analysis prob-
lems related to the (local) properties of (weak) solutions to ∂Mu = 0 or the (local or
global) holomorphic extension of CR functions on M.
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4.1.1 CR Submanifolds

Let M2N be a Hermitian manifold, of complex dimension N , with the complex
structure J and the Hermitian metric G. Let M be a real m-dimensional manifold,
m = 2n + k < 2N , n ≥ 0, k ≥ 0, and � : M → M2N a C∞ immersion. For every
x ∈ M, the differential dx� : Tx(M) → T�(x)(M2N ) has rank m hence (by the clas-
sical rank theorem) each point x0 ∈ M admits an open neighborhood x0 ∈ U ⊂ M
such that � : U → M2n is an injective map. Therefore, through these notes, we
shall assume that � : M → M2N is an injective immersion, rather than restrict
the discussion to certain open sets (which would complicate the notation). Let
�−1T(M2N ) → M be the pullback bundle [the pullback of the tangent bundle
T(M2n) → M2n by �], i.e.,

(
�−1T(M2n)

)
x = T�(x)(M2n) for any x ∈ M. For each

tangent vector field X ∈ X(M), we denote by�∗X the section in the pullback bundle
is given by

(�∗X)(x) = (dx�)Xx ∈ T�(x)(M
2n), x ∈ M.

Let E(�) → M be the normal bundle of the given immersion, so that

T�(x)(M
2n) = [(dx�)Tx(M)] ⊕ E(�)x, x ∈ M.

Let d be the codimension of M in M2N , so that dimR E(�)x = d for any x ∈ M, and
assume that d ≥ k. Let g = �∗G be the first fundamental form of �.

Definition 1 A pair (M,D) consisting of a manifold M and a C∞ distribution D of
real rank 2n onM is aCR submanifold of type (n, k) ofM2n if (i)D is J-invariant, i.e.,
J�(x)(dx�)Dx = (dx�)Dx for any x ∈ M, and (ii) the orthogonal complementD⊥ of
D in (T(M), g) is J-anti-invariant, i.e., J�(x)(dx�)D⊥

x ⊂ E(�)x for any x ∈ M. The
integers n and k are the CR dimension and CR codimension of (M,D) respectively.
�

The notion of CR submanifold was introduced by A. Bejancu, [5], in an attempt to
unify the notions of complex, totally real, and generic submanifolds of a Hermitian
manifold.Let∇g and∇G be theLevi-Civita connections of theRiemannianmanifolds
(M, g) and (M2N , G) and let �−1∇G ≡ (∇G

)�
be the pullback connection [the

pullback of ∇G by �, a connection in the pullback bundle �−1T(M2N ) → M]. The
second fundamental form of � is

h(X, Y) = (∇G
)�

X �∗Y − �∗∇g
XY , X, Y ∈ X(M).

The main purpose of A.Bejancu’s work (cf. op. cit.) is essentially confined to the
theory of isometric immersions among Riemannian manifolds, i.e., the study of the
geometry of the second fundamental form h of �. The theory of CR manifolds is
in turn older (cf. e.g., S. Greenfield, [17]) and the interconnection between the two
theories was observed somewhat later by D.E. Blair and B-Y. Chen (cf. [11]).
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Definition 2 A complex subbundle T1,0(M) ⊂ T(M) ⊗ C of the complexified
tangent bundle, of complex rank n, is a CR structure on M if (i) T1,0(M)x ∩
T0,1(M)x = (0) for any x ∈ M, and (ii) if Z, W ∈ C∞(U, T1,0(M)) then [Z, W ] ∈
C∞(U, T1,0(M)) for any open set U ⊂ M. Here T0,1(M) = T1,0(M) and overbars
denote complex conjugation. A pair (M, T0,1(M)) consisting of a real (2n + k)-
dimensional manifold M and a CR structure T1,0(M) on M is a CR manifold. The
integers n and k are the CR dimension and CR codimension, while (n, k) is the type
of the CR manifold. �

Given two CR manifolds (M, T1,0(M)) and (N, T1,0(N)), a C∞ map φ : M → N
is a CR map if

(dxφ)T1,0(M)x ⊂ T1,0(N)φ(x), x ∈ M.

A CR isomorphism is a C∞ diffeomorphism and a CR map. CR manifolds and CR
maps form a small category (the CR category).

Let (M,D) be a CR submanifold of the Hermitian manifold M2N endowed with
the Hermitian structure (J, G). Let JM : D → D be induced by J , i.e.,

(dx�)JM,xv = J�(x)(dx�)v, v ∈ Dx, x ∈ M.

Let JC

M be the C-linear extension of JM to D ⊗ C. As J2
M = −I one has

(
JC

M

)2 = −I
hence Spec

(
JC

M

) = {±i} (with i = √−1). Next let us set T1,0(M)x = Eigen
(
JC

x ; i
)

for any x ∈ M. By a result of D.E. Blair and B-Y. Chen (cf. [11]) T1,0(M) is a CR
structure on M, of CR dimension n, so that (M, T1,0(M)) is a CR manifold, of type
(n, k). CR structures such as in Definition2 above are referred to as abstract, while
CR structures occurring (via D.E. Blair and B-Y. Chen’s result) on a CR submanifold
of a Hermitian manifold are referred to as embedded.1

4.1.2 CR Functions

CR structures, abstract or embedded, are a bundle theoretic recast of tangential
Cauchy–Riemann equations.

Definition 3 The first-order differential operator

∂M : C1(M,C) → C(T0,1(M)∗),

(∂Mu)Z = Z(u), u ∈ C1(M,C), Z ∈ T1,0(M),

is the tangential Cauchy–Riemann operator. Also

∂Mu = 0 (4.1)

1The term is often reserved for CR submanifolds of CN for some N ≥ 2.
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are the tangential Cauchy–Riemann equations and a C1 solution to (4.1) is a CR
function on M. �

Weakly CR functionsmay be introduced as follows. The divergence of aC1 vector
field X on M is defined byLX d vg = div(X) d vg whereLX is the Lie derivative at the
direction X and d vg is the volume form associated to the induced metric g = �∗G.
The formal adjoint of X is given by X∗(v) = −X(v) − v div(X) for any v ∈ C1

0(M).
A function u ∈ L1

loc(M) is said to be a weakly CR function if

∫

M
u Z

∗
(ϕ) d vg = 0 (4.2)

for any ϕ ∈ C∞
0 (M) and any Z ∈ C∞(T1,0(M)). Integration by parts shows that any

weakly CR function u ∈ C1(M,C) is also a CR function in the sense of Definition3
(a strongly CR function).

Let T 1,0(M2N ) ⊂ T(M2N ) ⊗ C be the holomorphic tangent bundle over M2N . If
(V, Z1, . . . , ZN ) is a local system of complex coordinates on M2N then T 1,0(M2N )x

is the span of
{(

∂/∂Zj
)

x : 1 ≤ j ≤ N
}
over C, for any x ∈ V . Let

∂ : C1(M2N ,C) → C(T 1,0(M2N )∗),

(∂f )Z = Z(f ), f ∈ C1(M2N ,C), Z ∈ T 1,0(M2N ),

be the Cauchy–Riemann operator on M2N . A C1 function f : M2N → C such that
∂f = 0 is holomorphic. Let f : � → C be a holomorphic function, defined on the
open subset � ⊂ M2N such that � ∩ �(M) �= ∅. Let us assume that � : M → M2N

is an embedding, i.e., for any open set� ⊂ M2N there is an open setU ⊂ M such that
� ∩ �(M) = �(U). Then u : U → C, u(x) = f (�(x)), x ∈ U, is a CR function on
U. Indeed (dx�)T1,0(M)x ⊂ T 1,0(M2N )�(x), x ∈ M, hence for any Z ∈ C∞(T1,0(M))

Z(u)x = Zx(f ◦ �) = [
(dx�)Zx

]
(f ) = 0.

A fundamental problem in complex analysis is whether CR functions extend to
holomorphic functions, at least locally. Let CR1(M) denote the space of all CR
functions u : M → C of class C1. Let u ∈ CR1(M). The problem is then, given
x0 ∈ M, whether an open set� ⊂ M2N exists such that�(x0) ∈ � ∩ �(M) and there
is a holomorphic function f ∈ O(�) such that f ◦ � = u on U [where U ⊂ M is an
open set such that �(U) = � ∩ �(M)]. Open subsets U ⊂ M of a CR manifold
are CR manifolds, so the extension problem makes sense for each u ∈ CR1(U).
The CR extension problem is however to simultaneously extend all CR functions
u ∈ CR1(M), at least locally. Let r : O(�) → CR1(U) be the restriction map, i.e.,
r(f ) = f ◦ � for any f ∈ O(�).A formal recast of theCRextension problem is, given
x0 ∈ M,whether anopen set� ⊂ M2N as above exists such that r : O(�) → CR1(U)

is surjective.
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The two decades after the publishing of [5] registered an impressive amount
of work devoted to the differential geometric properties (as understood within
Riemannian geometry) of CR submanifolds, mainly in Kählerian manifolds yet
including contact analogs (cf. [29]) such as CR submanifolds of Sasakian mani-
folds. The progress in this direction up to 1982 is reported on in [30]. Findings up to
1986 are described in [7]. With the advance of locally conformal Kähler geometry
(cf. L. Ornea et al., [13]), the study of CR submanifolds in a l.c.K. manifold (e.g.,
a complex Hopf manifold with the Boothby metric) has known a similar impetus
(cf. E. Barletta, [3], S. Dragomir, [12, 13], pp. 147–275). The CR extension prob-
lem is at least 20 years older2 and the first relevant results go back to the work by
H. Lewy, [19]. The main findings are described by A. Boggess (cf. [10]) and are
confined to CR submanifolds of CN . No tentative to study the interrelation among
the two arguments was performed, except for the mild attempt in [14] to exhibit the
relationship between pseudohermitian geometry (as built by S.M.Webster, [26]) and
contact geometry (as a segment of Riemannian geometry, cf. e.g., D.E. Blair, [8]).

4.2 Real Hypersurfaces

4.2.1 Oriented Real Hypersurfaces

LetM ⊂ M2(n+1) be a real hypersurface, i.e., the inclusion j : M → M2N is an immer-
sion of codimension d = 1. Then

T1,0(M)x = [Tx(M) ⊗R C] ∩ T 1,0(M2(n+1))x, x ∈ M, (4.3)

is a CR structure on M, of CR dimension n and CR codimension k = 1. Hence
(M, T1,0(M)) is a CR manifold of type (n, 1). Let us assume that M is orientable and
choose a unit normal field N ∈ C∞(E(j)), i.e.,

G(X, N) = 0, G(N, N) = 1, X ∈ X(M).

Let ξ = −JN . Then ξ ∈ X(M). Indeed

G(ξ, N) = −G(JN, N) = 0

as �(V, W ) = G(V, JW ) is a differential 2-form on M2(n+1). Let η ∈ �1(M) be the
real differential 1-form on M given by

η(X) = g(X, ξ), X ∈ X(M).

2The first appearance of tangential Cauchy–Riemann equations goes back to the 1907 paper by
H. Poincaré, [20]. Cf. also [27], p. 189.
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IfD = Ker(η) then (M,D) is a CR submanifold of the Hermitian manifold M2(n+1).
Indeed if X ∈ D then

G(JX, N) = −G(X, JN) = g(X, ξ) = η(X) = 0

implies that JX is tangent to M. On the other hand

η(JX) = g(JX, ξ) = −G(JX, JN) = −G(X, N) = 0

so that JX ∈ D as well. Therefore D is J-invariant. Next if D⊥ is the orthogonal
complement ofD in (T(M), g) thenD⊥ is the span of ξ hence for any Y ∈ D⊥ there
is f ∈ C∞(M) such that Y = f ξ. Finally for any V ∈ X(M)

G(JY , V ) = f G(Jξ, V ) = f G(N, V ) = 0

so that J(D⊥) ⊂ E(j). In particular, if JM : D → D is the restriction of J to D =
Ker(η), then (by D.E. Blair and B-Y. Chen’s theorem) the eigenbundle Eigen(JC

M; i)
is a CR structure on M coinciding with (4.3).

4.2.2 Boundary of Siegel Domain

For instance, let
�n+1 = {(z, w) ∈ C

n × C : Im(w) > |z|2}

be the Siegel domain in Cn+1. Its boundary ∂�n+1 is an orientable real hypersurface
in C

n+1 hence may be organized as a CR submanifold of (Cn+1, J0, G0) and as
a CR manifold of type (n, 1). Here J0 and G0 are the canonical complex and (flat)
Riemannian structures ofCn+1. Let us consider theDirichlet problem for theCauchy–
Riemann equations on the Siegel domain

∂f = 0 in �n+1, (4.4)

f = u on ∂�n+1, (4.5)

for a given function u ∈ C∞(∂�n+1, C). We shall prove the following

Theorem 4.1 Assume that the Dirichlet problem (4.4) and (4.5) admits a solution
f smooth up to the boundary, i.e., f ∈ C∞(�n+1, C). Then u is a CR function on
M = ∂�n+1, i.e., ∂Mu = 0.

Proof A complex tangent vector field of type (1, 0)

Z = λα ∂

∂zα
+ μ

∂

∂w
∈ C∞(T 1,0(Cn+1))
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is tangent toM = ∂�n+1 if Z(ρ) = 0 where ρ(z, w) = |z|2 − Im(w) [so that�n+1 =
{(z, w) ∈ C

n+1 : ρ(z, w) < 0}].HenceZ ∈ C∞(T1,0(M)) ifμ = 2i zαλα whereλα =
λα. Consequently, theCRstructureT1,0(M) is (globally) the span of {Zα : 1 ≤ α ≤ n}
where

(dxj)Zα,x =
(

∂

∂zα
+ 2i zα ∂

∂w

)

x

, 1 ≤ α ≤ n,

for any x = (z, w) ∈ M. Here j : M → C
n+1 is the inclusion. As f ∈ O(�n+1) one

has
∂f

∂zα (z, w) = 0,
∂f

∂w
(z, w) = 0, (z, w) ∈ �n+1,

hence
∂f

∂zα − 2i zα ∂f

∂w
= 0 in �n+1.

Yet f is C∞ up to the boundary which means that f and its derivatives of any order
stay bounded at the boundary. As known from calculus in several real variables, for
domains with smooth boundary such as �n+1, smoothness up to the boundary is
equivalent to the existence of an open set U ⊂ C

n+1 and of a function F ∈ C∞(U)

such that �n+1 ⊂ U and F|�n+1
= f . In particular F ◦ j = u. So

∂F

∂zα (z, w) − 2i zα ∂F

∂w
(z, w) = 0

for any (z, w) ∈ �n+1. Let (z0, w0) ∈ ∂�n+1 and let {(zν, wν)}ν≥1 be a sequence
of points in �n+1 such that (zν, wν) → (z0, w0) as ν → ∞. Then, as ∂F/∂zj and
∂F/∂w are continuous functions

0 = lim
ν→∞

[
∂F

∂zα (zν, wν) − 2i zα
ν

∂F

∂w
(zν, wν)

]

= ∂F

∂zα (z0, w0) − 2i zα
0

∂F

∂w
(z0, w0)

= [
(d(z0,w0)j)Zα,(z0,w0)

]
(F) = Zα,(z0,w0)(F ◦ j)Zα,(z0,w0)(u).

Q.e.d.

Theorem 4.2 Let M = ∂�n+1 be the boundary of the Siegel domain. The tangent
bundle T(M) is the span of {Xi, Yi, ∂/∂u : 1 ≤ i ≤ n} where

Xi = ∂

∂xi
+ 2xi

∂

∂v
, Yi = ∂

∂yi
+ 2yi

∂

∂v
, 1 ≤ i ≤ n,
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and zi = xi + √−1 yi, w = u + √−1 v. Consequently,

N = 1√
1 + 4|z|2

(
∂

∂v
− 2xi ∂

∂xi
− 2yi ∂

∂yi

)

is a unit normal vector field on M. The first fundamental form g = j∗G0, the induced
connection ∇, and the second fundamental form h of the given immersion j : M ⊂
C

n+1 are

g :
⎛

⎝
δik + 4xixk 4xiyk 0

4yixk δik + 4yiyk 0
0 0 1

⎞

⎠ ,

∇Xi Xk = ∇Yi Yk = 4δik

1 + 4|z|2
(
x�X� + y�Y�

)
, (4.6)

∇Xi Yk = ∇Yi Xk = ∇Xi

∂

∂u
= ∇Yi

∂

∂u

= ∇∂/∂uXk = ∇∂/∂uYk = ∇∂/∂u
∂

∂u
= 0, (4.7)

h(Xi, Xk) = h(Yi, Yk) = 2 δik√
1 + 4|z|2 N,

h(Xi, ∂/∂u) = h(Yi, ∂/∂u) = h(∂/∂u, ∂/∂u) = 0,

hence j is not totally geodesic. In particular, the mean curvature vector H = Trace(h)

is

H = 2√
1 + 4|z|2

[
1

1 + 4|z|2 + 2n − 1

]
N

hence j is not minimal. The Weingarten operator AN is

⎛

⎜⎜⎜⎜⎜⎝

2√
1 + 4|z|2

(
δk

i − 4xixk

1 + 4|z|2
)

− 8xiyk

(
1 + 4|z|2)3/2

0

− 8yixk

(
1 + 4|z|2)3/2

2√
1 + 4|z|2

(
δk

i − 4yiyk

1 + 4|z|2
)
0

0 0 0

⎞

⎟⎟⎟⎟⎟⎠

hence j is not totally umbilical.

Proof Taking into account the direct sum decomposition

j−1T(Cn+1) = T(M) ⊕ E(j)
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the tangent vector fields {∂/∂xi, ∂/∂yi, ∂/∂v} decompose (into tangential and nor-
mal components) as

∂

∂xi
=

(
δk

i − 4xixk

1 + 4|z|2
)

Xk − 4xiyk

1 + 4|z|2 Yk − 2xi√
1 + 4|z|2 N,

∂

∂yj
= − 4yixk

1 + 4|z|2 xk +
(

δk
i − 4yiyk

1 + 4|z|2
)

Yk − 2yi√
1 + 4|z|2 N,

∂

∂v
= 2xk

1 + 4|z|2 Xk + 2yk

1 + 4|z|2 Yk + 1√
1 + 4|z|2 N,

for any 1 ≤ i ≤ n. Let G0 be the Euclidean metric on C
n+1 = R

2n+2 and let ∇0 be
its Levi-Civita connection. The Gauss–Weingarten formulae

∇0
XY = ∇XY + h(X, Y), ∇XN = −AN X X, Y ∈ X(M),

yield Theorem4.2. Q.e.d.

Theorem4.1 exhibits CR functions (on the quadric ∂�n+1 of equation v = |z|2 in
C

n+1) as boundary values of holomorphic functions on the Siegel domain. Theo-
rem4.2 shows that an exhaustive study of the geometry of the second fundamental
form (of the isometric immersion ∂�n+1 ↪→ C

n+1) may be performed by means of
the embedding equations (here Gauss and Weingarten formulae). Can the two be
made to merge into a unifying theory?

4.3 Levi Form

4.3.1 Vector-Valued Levi Form

Let (M, T1,0(M)) be an orientable (abstract) CR manifold, of type (n, k). The Levi
distribution is

D = Re
{
T1,0(M) ⊕ T0,1(M)

}
.

It is a real rank 2n subbundle of T(M). The integrability property of T1,0(M) [cf.
Definition2] is equivalent to the requirement

X, Y ∈ D =⇒ [JMX, Y ] + [X, JMY ] ∈ D, (4.8)

[JMX, JMY ] − [X, Y ] = JM {[JMX, Y ] + [X, JMY ]} . (4.9)

For each x ∈ M, let

πx : Tx(M) ⊗R C → Tx(M) ⊗R C

Dx ⊗R C
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be the canonical projection. The Levi form is

Lx : T1,0(M)x × T0,1(M)x → Tx(M) ⊗R C

Dx ⊗R C
,

Lx(v, w) = i

2
πx

[
V, W

]
x , v, w ∈ T1,0(M)x, x ∈ M. (4.10)

Here V and W are C∞ sections in T1,0(M) on M extending v and w, i.e., Vx = v and
Wx = w. The definition of Lx(v, w) does not depend upon the choice of extensions
of v and w. The CR structure T1,0(M) is nondegenerate if L is nondegenerate, i.e.,
for any x ∈ M the knowledge that Lx(v, w) = 0 for anyw ∈ T1,0(M)x implies v = 0.
As opposed to the nondegenerate case, the CR structure T1,0(M) is Levi flat [and
(M, T1,0(M)) is a Levi-flat CR manifold] if L = 0. For any Levi-flat CR manifold,
the distribution D is involutive, by the very definition of L together with

D ⊗ C = T1,0(M) ⊕ T0,1(M).

Then (by the classical Frobenius theorem) D is completely integrable, giving rise
to a foliation F of M whose leaves are the maximal integral manifolds of D. For
each x0 ∈ M, let S ∈ M/F be the unique leaf of F (the maximal integral manifold
of D) passing through x0. Then Dx = Tx(S) for any x ∈ S so that JM descends to an
almost complex structure JS on S

JS,xv = JM,xv, v ∈ Tx(S), x ∈ S.

The integrability property of T1,0(M) [in its form (4.8) and (4.9)] implies that
NJS = 0, i.e., JS is integrable. By Newlander–Nirenberg’s theorem, S admits a
complex manifold structure inducing the almost complex structure JS . Thus F is a
foliation of M by complex n-dimensional manifolds, the Levi foliation of M. Levi
foliations are discussed at some extent in [4].

4.3.2 Scalar Levi Form

Let us assume from now on that k = 1, i.e., T1,0(M) has CR codimension 1. Let
E ⊂ T∗(M) be the conormal bundle associated to D, i.e.,

Ex = {
ω ∈ T∗

x (M) : Ker(ω) ⊇ Dx
}
, x ∈ M.

Then E → M is a real line bundle, isomorphic to the quotient T(M)/D. As M is
orientable, one may fix an orientation of M, so that its tangent bundle is an ori-
ented vector bundle. Also D is oriented by its complex structure hence the quotient
T(M)/D, and then the conormal bundle E, is an oriented bundle. Any oriented line



4 CR Submanifolds of Hermitian Manifolds and the Tangential CR Equations 101

bundle over a connected manifold is trivial, so that E ≈ M × R (a vector bundle iso-
morphism). Hence, globally defined nowhere zero sections θ ∈ C∞(E) do exist and
are referred to as pseudohermitian structures on M (by adopting a terminology due
to S.M. Webster, [26]). Cf. also [16] for an extensive treatment of pseudohermitian
geometry. Let P be the linear space of all pseudohermitian structures on M. Note
that η ∈ P . Given a pseudohermitian structure θ ∈ P , the Levi form Gθ is

Gθ(X, Y) = (dθ)(X, JMY), X, Y ∈ D.

If θ̂ ∈ P is another pseudohermitian structure, then θ̂ = λ θ for some C∞ function
λ : M → R\{0}. In particular dθ̂ = dλ ∧ θ + λ dθ hence G θ̂ = λ Gθ. In particular,
the CR structure T1,0(M) is nondegenerate if and only if Gθ is nondegenrate for some
θ ∈ P (and thus for all). If T1,0(M) is nondegenerate, then each θ ∈ P is a contact
form, i.e., θ ∧ (dθ)n is a volume form (a nowhere zero top degree form) on M. An
equivalent approach, frequently adopted in the mathematical literature devoted to
CR geometry, is to define the Levi form as

Lθ(V, W ) = −i (dθ)(V, W ), V, W ∈ T1,0(M). (4.11)

Indeed Lθ coincides with the C-linear extension of Gθ to T1,0(M) ⊗ T0,1(M). For
any fixed θ ∈ P , the bundle map

Tx(M) ⊗R C

Dx ⊗R C

�θ−→ Ex ⊗R C, �θ,x : v + Dx ⊗R C �−→ θx(v) v, x ∈ M,

is an isomorphism of complex vector bundles. Also

�θ,x (Lx(v, w)) = i

2
�θ,x

(
πx

[
V, W

]
x

) = i

2
θx

([
V, W

]
x

)
θx

= −i (dθ)x(v, w) = Lθ,x(v, w) θx

and the two approaches to the Levi form [as a vector-valued form (4.10) or as a scalar
form (4.11)] are seen to coincide (for CR codimension 1).

A CR structure T1,0(M) of CR codimension k = 1 is said to be strictly pseudo-
convex if Gθ is positive definite [i.e., Gθ,x(v, v) > 0 for any v ∈ Dx\{0} and any
x ∈ M] for some θ ∈ P . Clearly strict pseudoconvexity implies nondegeneracy. If
T1,0(M) is strictly pseudoconvex, then P admits a natural orientation P+ consisting
of all θ ∈ P such that Gθ is positive definite. A contact form θ ∈ P+ is said to be
positively oriented.

Real Hypersurfaces in Kählerian Manifolds

The Levi form is related to the second fundamental form of the given immersion,
as follows. Let M ⊂ M2(n+1) be an orientable real hypersurface in the Kählerian
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manifold M2(n+1), endowed with the complex structure J and the Kählerian metric
G. We need the Gauss and Weingarten formulae

∇G
X Y = ∇g

XY + h(X, Y), (4.12)

∇G
X V = −AV X + ∇⊥

X V, (4.13)

for any X, Y ∈ X(M) and any V ∈ C∞(E(j)). Here h and A are, respectively, the
second fundamental form and shape (or Weingarten) operator of j : M ⊂ M2(n+1),
while ∇⊥ ∈ C(E(j)) is the normal connection. For any X, Y ∈ D

2 Gη(X, Y) = 2 (dη)(X, JY) = −η([X, JY ])
= −g(ξ, [X, JY ]) = G(JN, [X, JY ]) = −G(N, J[X, JY ])

(as ∇G is torsion-free)

= −G(N, J
{∇G

X JY − ∇G
JY X

}
)

(by ∇GJ = 0 and J2 = −I)

= G(N, ∇G
X Y + ∇G

JY JX)

(by Gauss formula)

= G(N, h(X, Y)) + G(N, h(JY , JX))

yielding (as h is symmetric)

Gη(X, Y)N = 1

2
{h(X, Y) + h(JX, JY)} (4.14)

for any X, Y ∈ C∞(D). A few properties of the second fundamental form, useful
in the sequel, themselves consequences of the Kähler condition ∇GJ = 0, may be
derived as follows. Let (M,D) be a CR submanifold of the Kählerian manifold
(M2N , G, J). Assume for simplicity that the given immersion is the inclusion j :
M ⊂ M2N . We set

PX = tan(JX), F = nor(JX), tV = tan(JV ), f V = nor(JV ),

for anyX ∈ X(M) andV ∈ C∞(E(j)), where tanx : Tx(M2(n+1)) → Tx(M) and norx :
Tx(M2(n+1)) → E(j)x are the projections associated to the direct sum decomposition

Tx(M
2(n+1)) = Tx(M) ⊕ E(j)x, x ∈ M.
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Then for any X, Y ∈ C∞(D) (by Gauss formula)

∇G
X JY = ∇g

XJY + h(X, JY),

∇G
X JY = J∇G

X Y = J ∇g
XY + J h(X, Y),

hence
∇g

XJY = P ∇g
XY + t h(X, Y), (4.15)

h(X, JY) = F ∇g
XY + f h(X, Y). (4.16)

As a corollary of (4.16)

h(X, JY) − h(JX, Y) = F[X, Y ] (4.17)

for any X, Y ∈ C∞(D). For the boundary M = ∂�n+1 of the Siegel domain, the
tangent vector field ξ = −J0N is given by

ξ = 1√
1 + 4|z|2

(
∂

∂u
+ 2xk ∂

∂yk
− 2yk ∂

∂xk

)

= 1√
1 + 4|z|2

(
∂

∂u
+ 2xk Yk − 2yk Xk

)

where {Xk, Yk, ∂/∂u} is the frame in Theorem4.2. When looking at the Levi distri-
bution it is convenient to use the adapted frame {Ea, ξ : 1 ≤ a ≤ 2n} where

Zα = 1

2
(Eα + i Eα+n) , 1 ≤ α ≤ n,

are the real and imaginary parts of the Lewy operators, i.e.,

Eα = ∂

∂xα
+ 2yα ∂

∂u
+ 2xα ∂

∂v
, Eα+n = ∂

∂yα
− 2xα ∂

∂u
+ 2yα ∂

∂v
,

or

(E1, . . . , En, En+1, . . . , E2n, ξ)

= a (X1, . . . , Xn, Y1, . . . , Yn, ∂/∂u)

with a : M → GL(2n + 1,R) given by



104 E. Barletta and S. Dragomir

a =

⎛

⎜⎜⎝

In 0 2y
0 In −2x

− 2y√
1 + 4|z|2

2x√
1 + 4|z|2

1√
1 + 4|z|2

⎞

⎟⎟⎠ .

Then (by Theorem4.2)

h(Eα, Eβ) = h(Eα+n, Eβ+n) = 2δαβ√
1 + 4|z|2 N,

h(Eα, ξ) = − 4yα

1 + 4|z|2 N, h(Eα+n, ξ) = 4xα

1 + 4|z|2 N,

h(ξ, ξ) = 8|z|2
(
1 + 4|z|2)3/2

N,

so that [by (4.14) and JMEα = Eα+n]

Gη(Eα, Eβ) = Gη(Eα+n, Eβ+n) = 2δαβ√
1 + 4|z|2 (4.18)

and [by (4.17) and (4.6)–(4.7) in the proof of Theorem4.2]

Gη(Eα, Eβ+n) N = 1

2

{
h(Eα, JMEβ) − h(JMEα, Eβ)

}

= F
(
∇g

Eα
Eβ − ∇g

Eβ
Eα

)
,

∇Eα
Eβ = 4δαβ

1 + 4|z|2
(
xμXμ + yμYμ

)
,

so that
Gη(Eα, Eβ+n) = 0. (4.19)

In particular, T1,0(∂�n+1) is strictly pseudoconvex. For the choice of contact form
θ = √

1 + 4|z|2 η one then has

Gθ(Eα, Eβ) = Gθ(Eα+n, Eβ+n) = 2 δαβ, Gθ(Eα, Eβ+n) = 0.

Real Hypersurfaces in l.c.K. Manifolds

Let M be an oriented real hypersurface of the l.c.K. manifold M2(n+1), carrying the
complex structure J and the l.c.K. metric G. Let X, Y ∈ D. Then [cf. (1.8) in [13],
p. 4]
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∇G
X JY = J∇G

X Y

+ 1

2
{θ(Y)X − ω(Y)JX − g(X, Y)A − �(X, Y)B} (4.20)

where ω and θ (respectively B and A) are the Lee and anti-Lee forms (the Lee and
anti-Lee vector fields) cf., e.g., [13], p. 1–4 for basic definitions in l.c.K. geometry.
We recall that θ = ω ◦ J and A = −JB. Let us apply J to (4.20) and take the inner
product with the unit normal vector N in the resulting equation. We obtain (by Gauss
formula)

G(N, J∇G
X JY) = −G(N, h(X, Y))

− 1

2
{g(X, Y)ω(N) + �(X, Y)ω(ξ)} . (4.21)

Here one made use of

G(N, A) = −G(N, J B) = G(J N, B) = −G(ξ, B) = −ω(ξ).

Similarly,
∇G

JY JX = J∇G
JY X−

−1

2
{ω(Y)X + θ(Y)JX + �(X, Y)A − g(X, Y)B}

yields

G(N, J∇G
JY X) = G(N, h(JX, JY))−

− 1

2
{�(X, Y)ω(ξ) + g(X, Y)ω(N)} . (4.22)

Finally, for any X, Y ∈ D

2 Gη(X, Y) = −G
(
N, J

{∇G
X JY − ∇G

JY X
})

[by (4.21) and (4.22)]

= G(N, h(X, Y)) + G(N, h(JY , JX))

leading to (4.14) [as well as for a real hypersurface in a Kählerian manifold].

4.3.3 Extrinsic Levi Form

Let (M,D) be a CR submanifold of the Hermitian manifold M2N endowed with the
Hermitian structure (J, G) and let� : M → M2N be the given immersion. Let πD⊥ :
T(M) → D⊥ be the projection associated to the decomposition T(M) = D ⊕ D⊥.
It extends (by C-linearity) to a map T(M) ⊗ C → D⊥ ⊗ C denoted by the same
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symbol. Following the conventions in [10], p. 159, let us consider the map

Lx : T1,0(M)x → D⊥
x ⊗R C, x ∈ M,

Lx(v) = 1

2i
πD⊥, x

[
V , V

]
x , v ∈ T1,0(M)x,

where V ∈ C∞(T1,0(M)) is an arbitrary smooth extension of v, i.e., Vx = v. Then L
is the Levi form of the CR submanifold (M,D) and it is related to the Levi form L of
M as a CR manifold, as follows. Let � : [T(M) ⊗ C]/[D ⊗ C] → D⊥ ⊗ C be the
complex vector bundle isomorphism given by

�x : Tx(M) ⊗R C

Dx ⊗R C
→ D⊥

x ⊗R C, x ∈ M,

�x : v + Dx ⊗R C �−→ πD⊥, x(v), v ∈ Tx(M) ⊗R C.

Then � ◦ π = πD⊥ by the very definitions. Finally,

�x (Lx(v, v)) = 1

2i
�x πx

[
V , V

]
x = 1

2i
πD⊥, x

[
V , V

]
x = Lx(v)

for any v ∈ T1,0(M)x. The extrinsic Levi form of (M,D) is (cf. [10], p. 160)

L̃x : T1,0(M)x → E(�)x ⊗R C, L̃x = J�(x) ◦ (dx�) ◦ Lx, x ∈ M.

Let {ξ1, . . . , ξk} be a local g-orthonormal frame of D⊥, defined on the open set
U ⊂ M, and let us set

Nj(x) = J�(x)(dx�)ξj, x, x ∈ U, 1 ≤ j ≤ k,

so that Nj ∈ C∞(E(�)). Let us assume that the ambient metric G is Kählerian. Let
v ∈ T1,0(M)p with x ∈ U and let V ∈ C∞(U, T1,0(M)) such that Vx = v. Then

L̃x(v) = J�(x)(dx�)Lx(Vx) = 1

2i
J�(x)(dx�)πD⊥, x

[
V , V

]
x

= 1

2i

k∑

j=1

g
([

V , V
]
, ξj

)
x Nj(x)

and (as g = �∗G and ∇G is torsion-free)

g
([

V , V
]
, ξj

) = G
(
∇G

V
V − ∇G

V V , �∗ξj

)

= −G
(
∇G

V
V − ∇G

V V , JNj

)
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(as G(JX, JY) = G(X, Y) and ∇GJ = 0)

= G
(
∇G

V
JM V − ∇G

V JM V , Nj

)

(as V ∈ T1,0(M) and T1,0(M) is the eigenbundle of JC

M corresponding to the eigen-
value i)

= i G
(
∇G

V
V + ∇G

V V , Nj

)

(by Gauss formula and the symmetry of h)

= 2i G
(
h(V, V ), Nj

)
.

It should be observed that, in the preceding calculation, we used C-linear exten-
sions of various objects, such as JM , ∇G , and h (and denoted the extensions by the
same symbols). Also use was made of the C-linear extension of the Gauss formula.
Precisely, one may extend (by C-linearity) both sides of (4.12). Since (4.12) holds
for any real vector fields X and Y it will continue to hold for any complex vector
fields X and Y . As J�(x)(dx�)D⊥

x ⊂ E(�)x one may consider its G�(x)-orthogonal

complement
(
J�∗D⊥)⊥

x
in E(�)x so that

E(�)x = [
J�(x)(dx�)D⊥

x

] ⊕ (
J�∗D⊥)⊥

x , x ∈ M. (4.23)

If Z ∈ E(�)x let ZJ�∗D⊥ be the J�(x)(dx�)D⊥
x -component of Z (with respect to the

decomposition (4.23)). We may conclude that

L̃x(v) = hx(v, v)J�∗D⊥ , v ∈ T1,0(M)x,

which is the relationship between the extrinsic Levi form and the second fundamental
form of � : M → M2N (provided that M2N is Kählerian).

4.3.4 CR Extension from a Hyperplane

By Theorem4.1 the boundary values of a solution f ∈ C∞(�n+1, C) to the Dirichlet
problem (4.4) and (4.5) must be a CR function, so that the tangential Cauchy–
Riemann equations may be looked at as compatibility equations along ∂�n+1, that
the boundary data must satisfy (for a solution smooth up to the boundary to exist).
Viceversa, if u ∈ CRω(∂�n+1) is a real analytic CR function then, by a result of G.
Tomassini, [23], there is an open neighborhood U ⊂ C

n+1 of ∂�n+1 and a holomor-
phic function f ∈ O(U) such that f |∂�n+1

= u. In general, however, real analyticity
(of the given CR manifold M and of the CR functions on M) does not suffice for
simultaneously extending all CR functions from a neighborhood of a point in M.
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The geometric properties of M, as tied to the Levi form (and hence to the second
fundamental form of the given immersion) are expected to play a role, as anticipated
by the following example.

Theorem 4.3 Let M = {(z, w) ∈ C
2 : Im(w) = 0}. For any open set � ⊂ C

2 such
that � ∩ M �= ∅ there is a CR function u : U → C of class Cω on U ⊂ � ∩ M
admitting no holomorphic extension to �.

On the other hand, M is a hyperplane inC2 hence it is totally geodesic in (C2, G0)

and in particular Levi flat. The given CR structure should then possess some nonde-
genericity property, for r : O(�) → CRω(U) to be a surjective morphism.

To prove Theorem4.3, we need to recall a few notions of complex analysis in
several complex variables. An open set � ⊂ C

n is a domain of holomorphy if there
are no open sets�1 and�2 inCn such that (a)�2 ∩ � ⊃ �1 �= ∅, (b)�2 is connected
and not contained in �, (c) for every f ∈ O(�) there is a function f2 ∈ O(�2) such
that f = f2 in �1. By the principle of analytic continuation such f2 is necessarily
uniquely determined. Any convex open set in C

n is a domain of holomorphy (cf.,
e.g., Corollary2.5.6 in [18], p. 39).

At this point, we may attack the proof of Theorem4.3. The restriction to U ⊂
� ∩ M of any holomorphic function f ∈ O(�) is a real analytic CR function. We
ought to show that the restriction morphism O(�) → CRω(U) is not surjective, for
any open set � ⊂ C

n. Let p ∈ U and let r > 0 such that B(p, r) ⊂ �. Since M is
an embedded submanifold of Cn, the set Ur = B(p, r) ∩ M is open in M. For every
ε > 0, we set

�ε = {
(z, w) ∈ C

2 : (z, Re(w)) ∈ Ur, |Im(w)| < ε
}

so that Ur = ⋂
ε>0 �ε. Actually, �ε ⊂ Ur for any ε > 0 [since for any ε > 0 one

may consider δ > ε so that �ε ⊂ �δ ⊂ Ur]. Both M and the ball B(p, r) are convex
sets, so Ur is a convex set, as well. Consequently �ε is convex, for any ε > 0. Then
�ε is a domain of holomorphy so that there is a holomorphic function fε ∈ O(�ε)

which cannot be continued holomorphically beyond�ε. Let uε be the restriction of fε
to Ur . Then uε ∈ CRω(Ur) and uε admits no holomorphic extension to �. For given
g ∈ O(�) such that g|Ur

= uε it follows that

Fε = fε − f̂ε ∈ O(�ε), f̂ε ≡ g|�ε
.

Hence Fε(z, w) = 0 for any (z, w) ∈ Ur . Yet �ε is a connected neighborhood in Cn

of the real hypersurface Ur hence (by Lemma2 in [10], p. 142) Fε = 0 identically
on �ε hence g|�ε

= fε, i.e., g continues fε beyond �ε, a contradiction. Q.e.d.
Of course the title of the current section should better be “failure of CR extension

from a hyperplane”. A very general nonextendibility result is due to M.S. Baouendi
and L.P. Rothschild (cf. Theorem2 in [2], p. 46), i.e., for any submanifold M ⊂ C

N ,
for which the ambient complex structure induces a generic CR structure, and for any
non minimal point x0 ∈ M, there is u ∈ CR∞(U) defined on a neighborhood U ⊂ M
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of x0 such that u does not extend holomorphically to any wedge with edge U. No
generalizations of the quoted result, to CR submanifolds (in the sense of Definition1)
of a complex space form M2N (c), c �= 0, are known in the present day mathematical
literature.

4.4 CR Functions of Teodorescu Class B1

Let M be a CR submanifold in the Hermitian manifold M2N and let �0,1(M) =
C(M, T0,1(M)∗). Throughout C(E) denotes the space of all continuous globally
defined sections in the vector bundle E → M. Let us set

‖ωx‖ = sup
{∣∣ωx

(
Z
)∣∣ : Z ∈ T1,0(M)x, ‖Z‖ ≤ 1

}
,

‖ω‖K = sup
x∈K

‖ωx‖,

for any ω ∈ �0,1(M), any point x ∈ M, and any compact subset K ⊂ M. Here ‖Z‖ =
gx(Z, Z)1/2 and g = �∗G. Then {‖ · ‖K : K ⊂⊂ M} is a family of semi-norms on
�1,0(M) organizing it as a complex Fréchet space. By slightly adapting the proof of
Lemma1 in [15], p. 64, the tangential Cauchy–Riemann operator

∂M : C∞(M,C) ⊂ C(M,C) → �0,1(M) (4.24)

is a preclosed operator of complex Fréchet spaces, i.e., for any sequence {uν}ν≥1 ⊂
D(∂M) = C∞(M,C) such that uν → 0 and ∂Muν → ω for some ω ∈ �0,1(M),
respectively in C(M,C) and �0,1(M) as ν → ∞, it follows that ω = 0 as well.
Let then DM be the minimal closed extension of (4.24) and let us denote its domain
by B1(M) = D(DM). Here DM extends ∂M (and one writes as customary ∂M ⊂ DM),
i.e.,D(∂M) ⊂ D(DM) and DMu = ∂Mu for any u ∈ C∞(M,C). Also DM is a closed
operator, i.e., its graph is a closed subset of C(M,C) × �0,1(M) and if T : D(T) ⊂
C(M,C) → �0,1(M) is another closed extension of (4.24) then DM ⊂ T . We recall
that the domain B1(M) of DM consists of all u ∈ C(M,C) such that limν→∞ uν = u
in C(M,C) for some {uν}ν≥1 ⊂ D(∂M) such that limν→∞ ∂Muν = ω in �0,1(M),
for some ω ∈ �0,1(M). Moreover, to define DMu for u ∈ D(DM) one picks up a
sequence {uν}ν≥1 ⊂ C∞(M,C) as above and sets DMu = limν→∞ ∂Muν . A func-
tion u ∈ B1(M) is said to be of Teodorescu class B1 (cf. [22, 25]). Also an element
u ∈ Ker(DM) is a CR function of (Teodorescu) class B1 (cf. [15]). It should be
mentioned that in [15] one works with an abstract CR manifold M and then strict
pseudoconvexity ofT1,0(M) is needed (e.g., tomake sense of the semi-norms ‖ · ‖K ).
Of course this also prompts CR codimension k = 1. Our point in this section is that
the considerations above still hold true with only minor modifications (of the argu-
ments in [15]) when the Webster metric gθ (the Levi form Gθ) is replaced with the
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first fundamental form g (with the restriction of g to the invariant distribution D), a
situation which also allows for arbitrary CR codimension.

Proposition 1 Let M be a CR submanifold of a Hermitian manifold. Then any CR
function of Teodorescu class B1 on M is a weakly CR function.

Proof Let u ∈ Ker(DM) ⊂ B1(M) and let us consider a sequence {uν}ν≥1 ⊂
C∞(M,C) such that limν→∞ uν = u in C(M,C) and the sequence of (0, 1)-forms
{∂Muν}ν≥1 is convergent in �0,1(M). As u is continuous on M one has u ∈ L1

loc(M).

For any ϕ ∈ C∞
0 (M) [as Supp

[
Z

∗
(ϕ)

]
⊂ Supp(ϕ)]

∣∣∣∣
∫

M
uν Z

∗
(ϕ) d vg −

∫

M
u Z

∗
(ϕ) d vg

∣∣∣∣

≤ Vol(K) sup
K

∣∣∣Z ∗
(ϕ)

∣∣∣ ‖uν − u‖K → 0, ν → ∞,

where K = Supp(ϕ) and Vol(K) = ∫
K d vg . Also ‖v‖ = supx∈K |v(x)| for any v ∈

C(M,C). Hence, ∫

M
u Z

∗
(ϕ) d vg =

∫

M
uν Z

∗
(ϕ) d vg.

On the other hand,

∣∣∣∣
∫

M
uν Z

∗
(ϕ) d vg

∣∣∣∣ =
∣∣∣∣
∫

M
Z (uν) ϕ d vg

∣∣∣∣

≤ Vol(K) sup
K

|ϕ|
∥∥∥
(
∂Muν

)
Z
∥∥∥

K
→ 0, ν → ∞.

We may conclude that (4.2) holds, i.e., u is weakly CR. Q.e.d.
A study of (weakly) CR functions on CR submanifolds of complex space forms

M2N (c) (similar to that in [21], which is confined to real hypersurfaces inCn+1) with
c �= 0 is missing from the present day mathematics literature.

4.5 The Hans Lewy Extension Phenomenon

4.5.1 CR Submanifolds in C
N

Let M = {z ∈ C
n+1 : ρ(z) = 0} be a real hypersurface and x0 ∈ M a point. Let us set

�+ = {z ∈ C
n+1 : ρ(z) > 0} and �− = {z ∈ C

n+1 : ρ(z) < 0}. The following result
by H. Lewy (cf. [19]) is by now classical.

Theorem 4.4 (i) If L̃x0 has at least one positive eigenvalue then for each open set
x0 ∈ U ⊂ M there is an open set x0 ∈ � ⊂ C

n+1 such that for any u ∈ CR1(U) there
is a unique f ∈ O(� ∩ �+) ∩ C(� ∩ �+) such that f = u on � ∩ M.
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(ii) If L̃x0 has at least one negative eigenvalue then the conclusion in part (i) holds
with �+ replaced by �−.

(iii) If L̃x0 has eigenvalues of opposite sign then for each open set x ∈ U ⊂ M
there is an open set x0 ∈ � ⊂ C

n+1 such that for each u ∈ CR1(U) there is a unique
f ∈ O(�) such that f = u on � ∩ U.

An eigenvalue of L̃x0 is an eigenvalue of the matrix

[
∂2ρ

∂zj ∂zk
(x0) wj

α wk
β

]

1≤α,β≤n

for some local frame {Tα : 1 ≤ α ≤ n} in T1,0(M) defined on an open neighborhood
of x0 such that

Tα,x0 = wj
α

(
∂

∂zj

)

x0

, Tα(ρ) = 0, wj
α ∈ C, 1 ≤ α ≤ n, 1 ≤ j ≤ n + 1.

As to the CR codimension k ≥ 2 case, the image of the extrinsic Levi form L̃x

provides information about the second-order concavity of M near x. Indeed, for each
x ∈ M let

�x = co
[
L̃x T1,0(M)x

]

be the convex hull of

L̃x T1,0(M)x = {
hx(v, v)J�∗D⊥ : v ∈ T1,0(M)x

}

[a convex subset of E(�)x]. Then,�x is a cone, i.e., v ∈ �x and λ ≥ 0 imply λv ∈ �x.
When M2N = C

N , the cone �x is known to determine the shape and size of the
open set to which CR functions extend (holomorphically). Let Sx = {Z ∈ E(�)x :
G�(x)(Z, Z) = 1} be the unit sphere in E(�)x. Let �a be two (a ∈ {1, 2}) cones in
E(�)x. We say �1 is smaller than �2, and write �1 < �2, if �1 ∩ Sx is a compact
subset of the interior of �2 ∩ Sx. Let Bε = {Z ∈ E(�)x : G�(x)(Z, Z) < ε2} be the
ball of radius ε > 0 and origin 0x in E(�)x. By a result of A. Boggess and J.C.
Polking (cf. [9])

Theorem 4.5 Let M ⊂ C
N be a real (2N − d)-dimensional generic CR submanifold

with 1 ≤ d ≤ N − 1. Let x0 ∈ M such that �x0 has nonempty interior, with respect
to E(j)x0 . For any neighborhood U ⊂ M of x0, there exist open sets U ′ ⊂ M and
� ⊂ C

N such that
(i) x0 ∈ U ′ ⊂ � ∩ M ⊂ U,
(ii) for each open cone � < �x0 there is a connected neighborhood U� ⊂ M of

x0 and a number ε > 0 such that U� + (� ∩ Bε) ⊂ �,
(iii) for each CR function u ∈ CR1(U) there is a unique holomorphic function

f ∈ O(�) ∩ C(� ∪ U ′) such that f = u on U ′.
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Here generic means that dimR Dx = 2(N − d) for any x ∈ M (equivalently
J(D⊥) = E(j) as in [5]). Following the philosophy outlined in § 1, that is aiming
at the unification of the geometry of the second fundamental form of j : M → M2N

and the mathematical analysis of the solutions to the tangential Cauchy–Riemann
equations on M, one should seek for generalizations of A. Boggess and J.C. Polk-
ing’s result (Lewy’s result for k = 1) to CR submanifolds (M,D) of a complex
space form M2N (c) of (constant) holomorphic sectional curvature c �= 0. On the dif-
ferential geometric side of the subject, CR submanifolds of a complex space form
were studied by A. Bejancu et al. (cf. [6]). A major ingredient in the proof of Theo-
rem4.5 is the followinguniformapproximation result byM.S.Baouendi andF.Tréves
(cf. [1])

Theorem 4.6 Let M ⊂ C
N be a real (2N − d)-dimensional generic CR submanifold

and x0 ∈ M a point. Given an open neighborhood x0 ∈ U ⊂ M there is an open
neighborhood x0 ∈ V ⊂ U such that each CR function u ∈ CR1(U) can be uniformly
approximated on V by a sequence of entire functions on C

N .

Other ingredients required by CR extension theory are the Fourier transform tech-
nique (cf. [10], p. 229–250) and analytic discs (cf. [10], p. 207–228). A generalization
of Theorem4.6 to the case of vector-valued CR functions was given in [15]. Going
back to M.S. Baouendi and L.P. Rothschild’s result (cf. [2]) quoted in Sect. 3.4, we
recall that a point x0 ∈ M (on a CRmanifold M) is minimal (cf. A.E. Tumanov, [24])
if there is no CR immersion3 N ↪→ M, from some CR manifold N , such that x0 ∈ N
and dimR N < dimR M. Is the notion of minimality in complex analysis related4

to minimality as understood in Riemannian geometry? Let M ⊂ C
n+1 be a generic

submanifold, i.e., M is locally defined, near a point x0 ∈ M, by the equations ρj = 0,
1 ≤ j ≤ k, where ρj are smooth, real-valued functions such that their complex dif-
ferentials ∂ρj are linearly independent [such M is, together with the CR structure
induced by the complex structure ofCn+1, a CRmanifold of type (n, k)]. A wedge of
edge M is an open subset ofCn+1 of the formW(�, �) = {ζ ∈ � : ρ(ζ) ∈ �}where
� ⊂ C

n+1 is a neighborhoodof x0 ∈ M,� is an open cone inRk , andρ = (ρ1, . . . , ρk)

with ρj defining functions of M near x0. By a result in [24] if M ⊂ C
n+1 is a generic

submanifold and x0 ∈ M is minimal then every CR function defined on a neigh-
borhood of x0 is the boundary values of a holomorphic function defined in an open
wedge ofCn+1 of edge M. Notions such as minimality, wedges of a given edge, finite
type, etc. should be absorbed into Kählerian, or locally conformal Kähler, geometry
as a step towards extending results as Tumanov’s (cf. op. cit.) to CR functions on
Bejancu’s CR sumanifolds in Hermitian manifolds.

3A CR immersion is a C∞ immersion and a CR map.
4CR immersions areCR analogs to holomorphic immersions and any isometric holomorphic immer-
sion into a Kählerian manifold is known to be minimal (has vanishing mean curvature).
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4.5.2 CR Submanifolds in CPN

Let S2n+1 ⊂ C
n+1 be the unit sphere, thought of as a Sasakian manifold with the

standard Sasakian structure (φ, ξ, η, G), cf., e.g., [8]. A submanifold ι : M ⊂ S2n+1

is a contact CR submanifold (cf. [30], p. 48) if M is tangent to the Reeb vector
field ξ = −J0N of S2n+1, i.e., ξ ∈ X(M) and M is endowed with a distribution
D ⊂ T(M) such that i)D is φ-invariant, i.e., φx(D)x ⊂ Dx for any x ∈ M and ii) the
g-orthogonal complementD⊥ ofD in T(M) is φ-anti-invariant, i.e., φx(D⊥

x ) ⊂ E(ι)x

for any x ∈ M. HereN is a unit normal field on S2n+1 and g = ι∗G. Also E(ι) → M
is the normal bundle of the immersion ι : M → S2n+1. As ξ ∈ T(M) = D ⊕ D⊥ one
has an orthogonal decomposition

ξ = ξD + ξD⊥ , ξD ∈ D, ξD⊥ ∈ D⊥.

We shall only examine the case5 where ξD(x) �= 0 for any x ∈ M. Let H(M) be the
g-orthogonal complement of R ξD (the distribution spanned by ξD) in D so that

D = H(M) ⊕ R ξD.

Lemma 1 Let (M,D) be a contact CR submanifold of S2n+1 such that ξD(x) �= 0 for
any x ∈ M. The pair (M, H(M)) is a CR submanifold j : M ⊂ C

n+1 of type (p − 1, q)

and codimension d = 2(n + 1) − p − q, where p = dimRDx and q = dimRD⊥
x for

any x ∈ M.

Proof We recall (cf., e.g., [8]) that φX = tan (J0X) for any X ∈ X(S2n+1) where
tanx : Tx(C

n+1) → Tx(S2n+1) is the projection associated to the decomposition

Tx(C
n+1) = Tx(S

2n+1) ⊕ Tx(S
2n+1)⊥, x ∈ S2n+1.

Consequently, J0X = φX + η(X)N for each X ∈ X(S2n+1). Let X ∈ H(M). Then

η(X) = G(X, ξ) [as X ⊥R ξD]
= G(X, ξD⊥) = 0 [as X ∈ H(M) ⊂ D⊥D⊥]

yielding J0X = φX ∈ D. Moreover,

G0(J0X, ξD) = −G0 (X, J0 ξD)

[as X ∈ H(M) ⊂ T(M) and J0ξD⊥ ∈ E(ι) =⇒ G(X, J0ξD⊥) = 0]

= −G0 (X, J0 ξD) = −G0 (X, J0ξ) = −G0(X,N ) = 0

5The particular case ξD = 0 (equivalently ξ ∈ D⊥) may be treated in a similar manner.
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implying that J0X ∈ (R ξD)⊥ = H(M), i.e., H(M) is J0-invariant. Let H(M)⊥ be
the g-orthogonal complement of H(M) in T(M) so that T(M) = H(M) ⊕ H(M)⊥.
We wish to check that H(M)⊥ is J0-anti-invariant, i.e., J0H(M)⊥ ⊂ E(j), where
E(j) → M is the normal bundle of j : M ⊂ C

n+1. Let Y ∈ H(M)⊥ andX ∈ T(M). As

T(M) = H(M) ⊕ R ξD ⊕ D⊥

one has a decomposition

X = XH(M) + f ξD + XD⊥ ,

XH(M) ∈ H(M), f ∈ C∞(M), XD⊥ ∈ D⊥.

Therefore,

G0 (J0Y , X) = G0
(
J0Y , XH(M) + f ξD + XD⊥

)

= −G0
(
Y , J0XH(M)

) − f G0 (Y , J0 ξD) − G0 (Y , J0XD⊥)

and

Y ∈ H(M)⊥, J0XH(M) ∈ H(M) =⇒ g(Y , J0XH(M)) = 0,

Y ∈ T(M), J0 XD⊥ = φ XD⊥ + η(XD⊥)N ∈ E(ι) ⊕ T(S2n+1)⊥

=⇒ G0 (Y , J0XD⊥) = 0.

It follows that
G0 (J0Y , X) = −f G0 (Y , J0 ξD)

[as Y ∈ H(M) ⊂ T(M) and J0 ξD⊥ = φ(ξD⊥) + η(ξD⊥)N ∈ E(ι) ⊕ T(S2n+1)⊥
=⇒ G0(Y , J0 ξD⊥) = 0]

= −f G0 (Y , J0 ξD + J0 ξD⊥) = −f G0 (Y , J0 ξ) = −sf G0(Y ,N ) = 0

i.e., J0Y ⊥ T(M). Q.e.d.
Let CPn be the complex projective space, endowed with the standard complex

structure J and the Fubini–Study metric G. Let S1 → M → N be a principal sub-
bundle of the Hopf bundle S1 → S2n+1 π−→ CPn such that N is a CR submanifold of
CPn endowed with the (J -invariant) distributionDN . Then (cf., e.g., Proposition7.1
in [30], p. 102) M is a contact CR submanifold of S2n+1. However, the construction
of the φ-invariant distribution D (organizing M as a contact CR submanifold) isn’t
given in [30]. In the sequel, we provide the definition of D and relate CR1(M) (the
space of all CR functions of class C1 on M, as a CR submanifold j : M ⊂ C

n+1) to
CR1(N).
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The differential 1-form η is a connection 1-form on theHopf bundle (as a principal
S1-bundle). If X ∈ X(CPn) then X↑ ∈ X(S2n+1) denotes the horizontal lift of X with
respect to η, i.e.,

X↑
x ∈ Ker (ηx) , (dxπ)X↑

x = Xπ(x), x ∈ S2n+1.

Then [by (7.1) in [30], p. 100]

(J X)↑ = φ X↑, G(X, Y) ◦ π = G
(
X↑, Y↑)

, (4.25)

for any X, Y ∈ X(S2n+1).

Theorem 4.7 Let S1 → M → N be a principal subbundle of the Hopf bundle S1 →
S2n+1 π→ CPn, over a CR submanifold N ⊂ C

n. (i) The Reeb vector ξ ∈ X(S2n+1) is
tangent to M, i.e., ξ ∈ X(M). Let DN be the J -invariant distribution of N. (ii) If we
set

D = D↑
N ⊕ R ξ (4.26)

then (M, D) is a contact CR submanifold of S2n+1. In particular (iii) (M, D↑
N ) is

a CR submanifold of Cn+1 and then a CR manifold whose CR structure T1,0(M) is
given by

T1,0(M) = T1,0(N)↑. (4.27)

Consequently, (iv) vertical lifting of functions from N induces an isomorphism
CR1(N) ≈ CR1(M)S1

. (v) If N ⊂ CPn is generic then M ⊂ C
n+1 is generic. (vi) The

extrinsic Levi forms of the CR immersions N ↪→ CPn and M ↪→ C
n+1 are related

by
L̃N,p(w)↑ = L̃M,x

(
w↑) + Gp (w,w) Nx (4.28)

for any w ∈ T1,0(N)p and p ∈ N, where ↑ is the complexification of the horizontal lift,
i.e., βx : Tp(CPn) ⊗R C → Ker(ηx) ⊗R Cwith x ∈ M such that π(x) = p. AlsoN =∑2(n+1)

j=1 xj ∂/∂xj (the radial vector field) and
(
x1, . . . , x2(n+1)

)
are the Cartesian

coordinates on C
n+1 ≈ R

2(n+1).

Here CR1(M)S1
is the space of all S1-invariant CR functions u : M → C of class C1.

To prove Theorem4.7 note that
(i) M = π−1(N) (a saturated subset of S2n+1, with respect to the foliation of S2n+1

be maximal integral curves of ξ). In particular ξ is tangent to M.
(ii) Let X ∈ Tp(N) be a tangent vector. There is a smooth curve γ : (−ε, ε) → N

such that γ(0) = p and γ̇(0) = X. Let γ↑ : (−ε, ε) → S2n+1 be the unique horizontal
lift (with respect to η) such that γ↑(0) = x for some fixed x ∈ M such that π(x) = p.
Let βx : Tπ(x)(N) → Ker(ηx) be the horizontal lift isomorphism [the inverse of dxπ :
Ker(ηx) → Tp(N)]. Then

dγ↑

dt
(0) = βx (X)
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and γ↑(t) ∈ M for any |t| < ε because π ◦ γ↑ = γ and again M = π−1(N). Conse-
quently the horizontal lift X↑ = βx(X) of X is tangent to M so that

T(N)↑ ⊂ T(M). (4.29)

Precisely if ηM = ι∗η then T(N)↑ = Ker(ηM). One also has

T(M) = T(N)↑ ⊕ R ξ. (4.30)

Indeed if V ∈ T(N)↑ ∩ R ξ, then V = X↑ = f ξ for someX ∈ T(N) and f ∈ C∞(M)

hence
0 = η

(
X↑) = f η(ξ) = f

hence V = 0. Consequently, the sum T(N)↑ + R ξ is direct and [by (4.29) and
ξ ∈ T(M)] contained in T(M). Finally, dimR(M) = dimR(N) + 1 yields (4.30). Let
T(N)⊥ → N be the normal bundle of the immersion N ↪→ CPn. Then

E(ι) = [
T(N)⊥

]↑
(4.31)

where E(ι) → M is the normal bundle of ι : M ↪→ S2n+1. Indeed, let V ∈ T(N)⊥
and W ∈ T(M) so that [by (4.30)] W = X↑ + f ξ for some X ∈ T(N). Then [by
(4.25)]

G
(
V ↑, W

) = G(V, X) ◦ π + f η
(
V ↑) = 0

so that
[
T(N)⊥

]↑ ⊂ E(ι) and (4.31) follows from

codim
(
M ↪→ S2n+1

) = 2n + 1 − dim(M)

= 2n − dim(N) = codim (N ↪→ CPn) .

As D↑
N ⊂ Ker(η) it follows that D↑

N and ξ are orthogonal, hence D is well defined
[by (4.26)]. Let us show that D is φ-invariant. To this end, let V = X↑ + f ξ ∈ D
with X ∈ DN . Then [by (4.25)]

φ(V ) = (J X)↑ + f φ(ξ) = (J X)↑ ∈ D↑
N ⊂ D

asDN is J -invariant and φ(ξ) = 0. LetD⊥ be the g-orthogonal complement ofD in
T(M) [where g = ι∗G]. Let us show thatD⊥ is φ-anti-invariant. One ought to check
first that

D⊥ = (D⊥
N

)↑
. (4.32)

Indeed if Y ∈ D⊥
N and V = X↑ + f ξ ∈ D (with X ∈ DN ) then

G
(
Y↑, V

) = G(Y , X) ◦ π + f η
(
Y↑) = 0
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hence
(D⊥

N

)↑ ⊂ D⊥ so that (4.32) follows by comparing ranks. Moreover, given
W ∈ D⊥ and V ∈ T(M) one has [by (4.32) and (4.30)]

W = Y↑, V = X↑ + f ξ,

Y ∈ D⊥
N , X ∈ T(N), f ∈ C∞(M),

hence
G(φW, V ) = G(J Y , X) ◦ π + f η

(
φY↑) = 0

as JD⊥
N ⊂ T(N)⊥ and η ◦ φ = 0. We may conclude that φ(D⊥) is orthogonal to

T(M), i.e., φ(D⊥) ⊂ E(ι). We may conclude that (M, D) is a contact CR submani-
fold of the sphere S2n+1 as a Sasakian manifold.

(iii) With the notations in Lemma1 one has

H(M) = D↑
N . (4.33)

By Lemma1 (with ξD = ξ) the pair (M, H(M)) is a CR submanifold of C
n+1

(not passing through the origin, i.e., M ⊂ C
n+1\{0}). Let JM : H(M) → H(M) be

the restriction of J0 to H(M). Then (by the Blair–Chen theorem, [11]) T1,0(M) =
Eigen(JC

M; i) is a CR structure on M. Similarly, let JN : DN → DN be the restriction
of J toDN , so that T1,0(N) = Eigen(JC

N ; i) is a CR structure on N . Then [by (4.25)]

JC

M

(
W ↑) = (

JC

N W
)↑

, W ∈ D ⊗ C,

hence T1,0(N)↑ ⊂ T1,0(M) and (4.27) follows by comparing dimensions.
(iv) Let u ∈ C1(N,C) and W ∈ T1,0(M) so that [by (4.27)] W = Z↑ for some

Z ∈ T1,0(N). Then

∂M (u ◦ π) W = Z
↑
(u ◦ π) = Z(u) ◦ π =

[
(∂N u)Z

]
◦ π.

Herehorizontal liftingβ : π−1T(CPn) → Ker(η)was tacitly extendedbyC-linearity.
As β is a real vector bundle isomorphism, its C-linear extension commutes with
complex conjugation. In particular, the vertical lift of any CR function on N is a
CR function on M and conversely, i.e., for any S1-invariant CR function on M the
corresponding base function is CR.

(v) If the base manifold N is a codimension d generic CR submanifold in CPn,
i.e., dimR DN,p = d for any p ∈ N , then

dimR H(M)⊥x = 2n − d + 1 − dimR H(M)x

= 2n − d + 1 − dimR DN,π(x) = d + 1,

codim
(
M ↪→ C

n+1
) = d + 1,
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hence j : M ⊂ C
n+1 is generic, as well.

(vi) Let B, h, and hS be, respectively, the second fundamental forms of the immer-
sions N ↪→ CPn, M ↪→ C

n+1 and M ↪→ S2n+1. Then [by (7.5) in [30], p. 101]

B(V, W )↑ = hS
(
V ↑, W ↑)

, V, W ∈ X(N). (4.34)

We need the Gauss formulae

∇0
XY = ∇XY + h(X, Y), ∇S

XY = ∇XY + hS(X, Y), (4.35)

∇0
XY = ∇S

XY − G(X ,Y)N , (4.36)

with X, Y ∈ X(M) and X ,Y ∈ X(S2n+1). Here ∇0, ∇S and ∇ are the Levi-Civita
connections of (Cn+1, G0), (S2n+1, G) and (M, g). Formulae (4.35)–(4.36) yield

h(X, Y) = hS(X, Y) − G(X, Y)N , X, Y ∈ X(M). (4.37)

Therefore, [by (4.34) and (4.37)]

B(V, W )↑ = h
(
V ↑, W ↑) + [G(V, W ) ◦ π] N (4.38)

for any V, W ∈ X(N). We claim that (4.38) implies (4.28) in Theorem4.7. To prove
the claim, we need the decompositions

Lemma 2 Let H(M)⊥ be the orthogonal complement of H(M) in (T(M), g). Then

JH(M)⊥ = (JD⊥
N

)↑ ⊕ RN . (4.39)

Let
(
JH(M)⊥

)⊥
[respectively

(JD⊥
N

)⊥
]be the G0-orthogonal complement of JH(M)⊥

[respectively theG-orthogonal complement ofJD⊥
N ] in E(M ↪→ C

n+1) [respectively
in E(N ↪→ CPn) = T(N)⊥]. Then

(
JH(M)⊥

)⊥ =
[(JD⊥

N

)⊥]↑
. (4.40)

Proof We start by establishing

H(M)⊥ = (D⊥
N

)↑ ⊕ Rξ. (4.41)

First let V ∈ (D⊥
N

)↑ ∩ Rξ, i.e., V = Y↑ = f ξ for some Y ∈ D⊥
N and f ∈ C∞(M).

Then V ∈ Ker(η) + Ker(dπ) = (0) hence the sum
(D⊥

N

)↑ + Rξ is direct. Next let
Y ∈ D⊥

N and V ∈ H(M), i.e., V = X↑ for someX ∈ DN [as a consequence of (4.33)].
Then

G
(
Y↑, V

) = G(Y , X) ◦ π = 0
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so that Y↑ is orthogonal to H(M), i.e.,
(D⊥

N

)↑ ⊂ H(M)⊥. The same manner

G(ξ, V ) = G(ξ, X↑) = η(X↑) = 0

so that ξ ∈ H(M)⊥. We proved
(D⊥

N

)↑ ⊕ Rξ ⊂ H(M)⊥ and equality (4.41) follows
by comparing ranks. Decomposition (4.39) then follows by applying J to (4.41) and
using ξ = −JN . Finally, we ought to check (4.40). To this end let V ∈ JH(M)⊥ and
W ∈ (JD⊥

N

)⊥
. Then [by (4.39)]

V = (J Y)↑ + f N , Y ∈ D⊥
N , f ∈ C∞(M),

so that
G0

(
V, W ↑) = G(J Y , W ) ◦ π + f G0

(N , W ↑) = 0.

Q.e.d. Let w ∈ T1,0(N)p. Then

Bp(w, w) = L̃N,p(w) + W

for some W ∈ (JD⊥
N

)⊥
p ⊗R C, so that [by (4.38)]

L̃N,p(w)↑ + W ↑ = hx
(
w↑, w↑) + Gp (w, w) Nx

= L̃M,x
(
w↑) + V + Gp (w, w) Nx

for some V ∈ (
JH(M)⊥

)⊥
x . Let us use (4.39) and (4.40) and identify the JxH(M)⊥x -

components. We obtain (4.28). Q.e.d.

Proposition 2 Let S1 → M
π→ N be a principal subbundle of the Hopf bundle S1 →

S2n+1 π→ CPn such that N is a generic CR submanifold inCPn. Let p0 ∈ N be a point
and let0 ≤ j ≤ n such that p0 ∈ Uj. There is an open neighborhood p0 ∈ U ⊂ N ∩ Uj

such that for every u ∈ CR1(N ∩ Uj) there is a sequence of holomorphic functions
{fν}ν≥1 ⊂ O(Uj) such that fν → u as ν → ∞ uniformly on U .

Here Uj = {π0(ζ) : ζj �= 0} for any 0 ≤ j ≤ n, where π0 : Cn+1\{0} → CPn is
the projection. To prove Corollary2 let u ∈ CR1(N ∩ U0) be a CR function of class
C1 on N ∩ U0. For simplicity, let us assume that j = 0. Next let us set v = u ◦ π so
that v ∈ CR1(U) where U = π−1(N ∩ U0) ⊂ M. Let us choose a point x0 ∈ U such
that π(x0) = p0. For generic CR submanifolds such as U ⊂ C

n+1, one may apply the
Baouendi–Tréves approximation theorem (cf. Theorem4.6 in Sect. 4.1) hence there
is an open neighborhood x0 ∈ V ⊂ U and a sequence of entire functions {gν}ν≥1 ⊂
O(Cn+1) such that limν→∞ gν(ζ) = v(ζ) uniformly in ζ ∈ V . Let us consider the
holomorphic map

s0 : U0 → C
n+1, s0(π0(ζ)) =

(
1,

ζ1

ζ0
, . . . ,

ζn

ζ0

)
,
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for any ζ = (ζ0, . . . ζn) ∈ C
n+1\{0}. The map s0 is also a section in C

∗ → C
n+1\

{0} π0→ CPn (with C∗ = C\{0}) and in particular s0(N ∩ U0) ⊂ U. Finally, let us set
fν = gν ◦ s0 so that fν ∈ O(U0). Every submersion is an open map, so that π(V ) is
an open neighborhood of p0 in M and limν→∞ fν(p) = u(p) uniformly in p ∈ π(V ).
Q.e.d.

Corollary 1 Let m1, . . . , mk ∈ Z be odd positive integers and let n + 1 = ∑k
i=1 mi.

Let r1, . . . , rk ∈ R be positive numbers such that
∑k

i=1 r2i = 1. Let us consider the
CR submanifold

Nm1...mk = π (Sm1(r1) × · · · × Smk (rk)) ⊂ CPm, 2m + 1 > n + k.

Then each CR function on Nm1...mk may be uniformly approximated, in some neigh-
borhood of a point p0 ∈ Nm1...mk , by a sequence of holomorphic functions defined on
some neighborhood of p0 in CPm.

To prove Corollary1, we need to consider the immersion

Mm1...mk = Sm1 (r1) × · · · × Smk (rk) → Sn+k, n + 1 =
k∑

i=1

mi,

where m1, . . . , mk are odd and
∑k

i=1 r2i = 1. Then Mm1...mk has parallel second fun-
damental form and flat normal connection (cf., e.g., [30], p. 60). Also if 2m + 1 >

n + k then Mm1...mk is a contact CR submanifold in S2m+1. In particular Nm1...mk =
π

(
Mm1...mk

)
is a generic CR submanifold of CPm [and S1 → Mm1...mk

π→ Nm1...mk is

a principal subbundle of the Hopf bundle S1 → S2m+1 π→ CPm] hence Proposition2
applies.

Positive results on the CR extension problem, from a CR submanifold M in a
complex space form M2N (c), should depend (in view of our experience regarding
the case c = 0, cf. Theorems4.4 and 4.5 in Sect. 5.1) on the definiteness properties
of the second fundamental form. A condition similar to strict pseudoconvexity (yet
weaker) was considered by K. Yano and M. Kon (cf. [28]). Let M be a submanifold
ofCPN . The second fundamental form of� : M → CPN is said to be semidefinite if
for any V ∈ C∞(E(�)) either g(AV X, X) ≥ 0 everywhere on M for any X ∈ X(M),
or g(AV X, X) ≤ 0 everywhere on M for any X ∈ X(M). As a consequence of (4.14)
for any real hypersurface M ⊂ CPN with semidefinite second fundamental form the
Levi form Gη is semidefinite (yet may degenerate in certain directions). The second
fundamental form of a strictly pseudoconvex hypersurface is not semidefinite in
general. The main finding in [28] is

Theorem 4.8 Let Mm be a compact orientable m-dimensional generic CR sub-
manifold of CP(m+p)/2 with semidefinite second fundamental form and flat normal
connection. If

∑
a Tr A2

a ≤ (m − 1)p then p = 1 and Mm is isometric to the geodesic
hypersphere π

(
Sm(r) × S1(r)

)
in CP(m+1)/2 with r = 1/

√
2.
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Here {Va} is a parallel frame of the normal bundle and Aa = AVa . It is unknown
whether the isometry prompted byTheorem4.8 is also aCR isomorphism. If thatwere
the case, then Proposition2 would apply to any compact generic CR submanifold
Mm ↪→ CP(m+p)/2 obeying to the geometric requirements in Theorem4.8.
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Chapter 5
CR Submanifolds in (l.c.a.) Kaehler
and S-manifolds

José Luis Cabrerizo, Alfonso Carriazo and Luis M. Fernández
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5.1 Introduction

K. Yano [21] introduced in 1963 the notion of f -structure on a (2m + s)-dimensional
manifold as a tensor field f of type (1, 1) and rank 2m satisfying f 3 + f = 0. Almost
complex (s = 0) and almost contact (s = 1) structures are well-known examples of
f -structures.ARiemannianmanifold endowedwith an f -structure (s ≥ 2) compatible
with the Riemannian metric is called a metric f -manifold (for s = 0 we have almost
Hermitianmanifolds and for s = 1, metric almost contact manifolds). In this context,
D.E. Blair [5] defined K-manifolds (and particular cases of S-manifolds and C-
manifolds) as the analogue of Kaehlerian manifolds in the almost complex geometry
and of quasi-Sasakian manifolds (and particular cases of Sasakian manifolds and
cosymplectic manifolds) in the almost contact geometry.

He also showed that the curvature of S-manifolds is completely determined by
their f -sectional curvatures. Later, M. Kobayashi and S. Tsuchiya [15] got expres-
sions for the curvature tensor field of S-manifolds when their f -sectional curvature
is constant depending on such a constant. Such spaces are called S-space-forms and
they generalize complex and Sasakian space-forms. Nice examples of S-space-forms
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can be found in [5, 6, 8, 13]. In particular, it is proved in [5, 8] that certain principal
toroidal bundles over complex-space-forms are S-space-forms and a generalization
of the Hopf fibration denoted byH2m+s is introduced as a canonical example of such
manifolds playing the role of complex projective space in Kaehler geometry and the
odd-dimensional sphere in Sasakian geometry [5, 6].

When we want to study the submanifolds of a metric f -manifold, the natural first
step is to consider such submanifolds depending on their behavior with respect to
the f -structure. So, invariant and anti-invariant submanifolds (in the terminology of
the complex geometry, holomorphic and totally real submanifolds) appear if all the
tangent vector fields to the submanifold are transformed by f into tangent vector fields
or into normal vector fields. But since an hypersurface of a metric f -manifold tangent
to the structure vector fields is neither invariant nor anti-invariant, it is necessary to
introduce a wider class of submanifolds: the CR-submanifolds. This work was made
firstly by A. Bejancu and B.-Y. Chen [1, 10, 11] in the case s = 0 and by A. Bejancu
and N. Papaghiuc, M. Kobayashi and K. Yano and M. Kon in the case s = 1 (we
refer to the books [3, 22] for the background of these cases where a large list of
fundamental references can be found). For s ≥ 2, I. Mihai [16] introduced the notion
of CR-submanifold in a natural way.

Many authors have studied the geometry of submanifolds of locally conformal
almost Kaehler (l.c.a.K.) manifolds [10, 11, 14, 20], which are almost Hermitian
manifolds (M̃, J, g) such that every x ∈ M̃ has an open neighborhood U such that for
some differentiable function h : U −→ R, g̃U = e−hg|U is a (l.c.a.) Kaehler metric
on U. If one can take U = M̃, the manifold is then called globally conformal almost
Kaeler (g.c.a.K) manifold. Examples of l.c.K. manifolds are provided by the Hopf
manifolds. So, it seems interesting to study CR-submanifolds of l.c.a.K. manifolds.

On the other hand, M. Okumura [17, 18] studied normal real hypersurfaces of
Kaehlerian manifolds and obtained nice properties. For this reason, it also seems
interesting to introduce and study normal CR-submanifolds. In the cases s = 0 and
s = 1, the papers [2] and [4] can be consulted.

The aim of the present work is to briefly summarize our contributions to the study
of CR-submanifolds of l.c.a.K. manifolds, normal CR-submanifolds of S-manifolds.
To this end, we separate them into two different sections, which can be read inde-
pendently.

5.2 CR-Submanifolds of (l.c.a.) Kaehler Manifolds

Let (M̃, J, g) be an almost Hermitian manifold (dim(M̃) = 2m) with almost com-
plex structure J and Hermitian metric g and let M be a Riemannian submanifold
isometrically immersed in M̃.

A.Bejancu [1] introduced the notion of aCR-submanifold of M̃. In fact,M is aCR-
submanifold of the almost Hermitian manifold M̃ if there exists onM a differentiable
holomorphic distributionD, i.e., J(Dx) ⊆ Dx for any x ∈ M such that its orthogonal
complement D⊥ in M is totally real in M̃, i.e., J(D⊥

x ) ⊆ T⊥
x (M) for any x ∈ M,
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where T⊥
x (M) is the normal space at x. If dim(D) = 0, M is called a totally real

submanifold, and if dim(D⊥) = 0 M is a holomorphic submanifold.
We first discuss the Gauss–Weingarten equations of the submanifold with respect

to the metric g and with respect to the local conformal Kaehler metrics and then we
shall establish thereby the analytical conditions that characterize the important types
of submanifolds.

5.2.1 Preliminaries

Let (M̃, J, g) be an almost Hermitian manifold. It is easy to see [20] that (M̃, J, g)

is a l.c.(a).K. manifold if and only if there is a global closed 1-form ω on M̃ (the
Lee form) such that d� = ω ∧ � (� the fundamental form of the manifold) and
(M̃, J, g) is a g.c.(a).K. manifold if and only if ω is also exact. In case ω = 0, the
manifold is an (almost) Kaehler manifold.

Let (M̃, J, g) be a l.c.(a).K. manifold and consider the Lee vector field B [20] of
(M̃, J, g) defined by g(X, B) = ω(X). Denote by ∇̃ the Levi-Civita connection of g
and define

∇XY = ∇̃XY − 1

2
ω(X)Y − 1

2
ω(Y)X + 1

2
g(X, Y)B. (5.1)

Then ∇ is a torsionless linear connection on M̃ which is called the Weyl connection
of g. It is easy to see that ∇Xg = ω(X)g. We have

Theorem 5.1 ([20]) The almost Hermitian manifold (M̃, J, g) is a l.cK. manifold if
and only if there is a closed 1-form ω on M̃ such that the Weyl connection is almost
complex, That is, ∇J = 0.

Let (M̃, J, g) be a l.c.K. manifold and M a Riemannian manifold isometrically
immersed in M̃.We denote by g the metric tensor of M̃ as well as that induced on M,

and let ∇, ∇M be the covariant derivations on M induced by ∇̃ and ∇, respectively.
Then, the Gauss–Weingarten formulas for M with respect to ∇̃ and ∇ are given by

∇̃XY = ∇XY + σ(X, Y), ∇̃X V = −AV X + DX V, (5.2)

∇XY = ∇M
X Y + σ(X, Y), ∇X V = −AV X + DX V, (5.3)

for any vector fields X, Y tangent to M and V normal to M,where σ (respectively, σ)
is the second fundamental form of M with respect to ∇̃(∇) and D (respectively, D)
is the normal connection. The formulas (5.3) are the Gauss–Weingarten equations of
M|U in (M̃|U , e−hg|U). The second fundamental tensors AV , AV are related to σ,σ
respectively by

g(AV X, Y) = g(σ(X, Y), V ), g(AV X, Y) = g(σ(X, Y), V ). (5.4)
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For any vector X tangent to M and V normal to M write

JX = TX + NX, JV = tV + nV, (5.5)

where TX andNX (respectively, tV and nV ) are the tangential and normal component
of J(X) (respectively JV ). For the Lee field B, we have

Bx = (Bx)1 + (Bx)2, x ∈ M, (5.6)

where (Bx)1 (resp.y (Bx)2) is the tangential (resp. normal) component of Bx.

If M is a CR-submanifold of an almost Hermitian manifold (M̃, J, g) let us denote
by ν the complementary orthogonal subbundle of JD⊥ in T⊥(M). Hence we have,
T⊥(M) = JD⊥ ⊕ ν.

5.2.2 Integrability Conditions of the Basic Distributions

First we give some general identities.

Lemma 1 Let M be a CR-submanifold of a l.c.K. manifold (M̃, J, g). Then, we have

∇M
X Y = ∇XY − 1

2
ω(X)Y − 1

2
ω(Y)X + 1

2
g(X, Y)B1 (5.7)

σ(X, Y) = σ(X, Y) + 1

2
g(X, Y)B2 (5.8)

AV X = AV X + 1

2
ω(V )X (5.9)

DV X = DV X − 1

2
ω(X)V (5.10)

for any vector fields X, Y tangent to M and V normal to M.

Proof The assertions follow immediately from (5.1)–(5.3). �
The following result is well known:

Theorem 5.2 ([7]) The totally real distribution D⊥ of any CR-submanifold of a
l.c.K. manifold is integrable.

For the holomorphic distribution D, we have

Theorem 5.3 Let M be a submanifold of a l.c.K. manifold M̃ and let Dx de maximal
holomorphic subspace of Tx(M) and assume dim(Dx) is a constant. Then, the holo-
morphic distributionD is integrable if and only if the second fundamental form σ sat-
isfies σ(X, JY) = σ(JX, Y) or, equivalently, σ(X, JY) − σ(JX, Y) + �(X, Y)B2 =
0, for all vector fields X, Y ∈ D.
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If M is a CR-submanifold, the integrability condition onD in Theorem5.3 can be
replaced by a weaker condition.

Theorem 5.4 Let M be a CR-submanifold of a l.c.K. manifold M̃. The holomorphic
distribution D is integrable if and only if

g
(
σ(X, JY) − σ(JX, Y) + �(X, Y)B, JD⊥) = 0,

for all X, Y ∈ D.

Theorems5.3 and 5.4 follow easily from similar theorems in the Kaehlerian case
([7]), from (5.8) and the fact that, locally, M̃ is endowed with Kaehler metrics g̃U

whose Levi-Civita connection is ∇.

With regard to integral submanifolds ofD⊥ andD (providedD is integrable), we
have the following theorem.

Theorem 5.5 For a CR-submanifold M of a l.c.K. manifold M̃, the leaf M⊥ is totally
geodesic in M if and only if

g

(
AJW Z + 1

2
g(Z, W )JB,D

)
= 0,

that is,

g(σ(Z, X), JW ) = 1

2
g(Z, W )ω(JW ),

for any X ∈ D, Z, W ∈ D⊥.

Proof From (5.1), (5.2) and ∇J = 0, for any X ∈ D, Z, W ∈ D⊥, we obtain

g(J∇Z W, X) + 1

2
g(Z, W )g(JB, X) = −g(AJW Z, X). (5.11)

But M⊥ is totally geodesic in M if and only if ∇Z W ∈ D⊥ for all Z, W ∈ D⊥, and
then (5.11) gives the theorem. �

Theorem 5.6 Let M be a CR-submanifold of a l.c.K manifold M̃. If the holomorphic
distributionD is integrable and MT is an integral submanifold ofD, then MT is totally
geodesic if and only if

g

(
Jσ(X, Y) + 1

2
g(X, Y)JB − 1

2
�(X, Y)B,D⊥

)
= 0,

for any X, Y ∈ D.
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Proof From (5.1), (5.3), and ∇J = 0, for any X, Y ∈ D and Z ∈ D⊥, we have

g(Jσ(X, Y), Z) + 1

2
g(X, Y)g(JB, Z) = g(∇X(JY), Z) + 1

2
�(X, Y)g(B, Z).

(5.12)

But MT is totally geodesic in M if and only if ∇XY ∈ D for all X, Y ∈ D, and hence
Eq. (5.12) gives the theorem. �

5.2.3 CR-Submanifolds of l.c.K. Manifolds

First of all, we shall give some identities for later use. Let T , N t, and n be the
endomorphisms and vector-valued 1-forms defined in (5.5). The following lemma
can be easily obtained from (5.3), (5.9), and ∇J = 0.

Lemma 2 Let M be an isometrically immersed submanifold of a l.c.K. manifold M̃.

Then, we have
∇M

X (TY) − ANY X = T∇M
X Y + tσ(X, Y) (5.13)

σ(X, TY) + DX(NY) = N∇M
X Y + nσ(X, Y), (5.14)

∇M
X (tV ) − AnV X = −TAV X + tDX V, (5.15)

σ(X, tV ) + DX(nV ) = −NAV X + nDX V, (5.16)

[
AV , AV

] = [
AV , AV

]
, (5.17)

for any vector fields X, Y tangent to M and V, V normal to M.

Now, we shall study totally umbilical and totally geodesic CR-submanifolds.

Theorem 5.7 Let M be a totally umbilical CR-submanifold of a l.c.K. manifold M̃.

Then, we have

(i) Either dim(D⊥) = 1 or the component HJ(TM) of the mean curvature tensor H
in J(TM) is given by HJ(TM) = − 1

2B2.
(ii) If dim(D⊥) > 1 and M is proper (neither holomorphic nor totally real) such that

B is tangent to M, then M is totally geodesic.

Proof First, since M is totally umbilical, σ(X, Y) = g(X, Y)H for any X, Y tangent
to M, and hence

g(σ(X, X), JW ) = g(X, X)g(H, JW ). (5.18)



5 CR Submanifolds in (l.c.a.) Kaehler and S-manifolds 129

From (5.3) and (5.4) it is easy to see that

AJZ W = AJW Z (5.19)

and, then, if we take an unit vector field X = Z ∈ D⊥ orthogonal to W, (5.9), (5.18),
and (5.19) give

g(H, JW ) =g(AJW Z, Z) = g(AJZ W + 1

2
ω(JZ)W − 1

2
ω((JW )Z, Z)

= − 1

2
ω(JW ) = g(−1

2
B2, JW ),

so that (i) holds.
Now, since dim(D⊥) > 1, from (5.5) and assertion (i), we have tH = 0. Thus,

(5.15) gives tDY H = AnHY − TAHY , for any Y tangent to M. Therefore, for any Z
tangent to M, from (5.8) and (5.9) we get

g(tDY H, Z) = −g(AHY , TZ) − g(σ(Y , Z), nH) = −g(Y , TZ)g(H, H) (5.20)

and, if we take Z = TY , we have

− g(Y , T 2Y)g(H, H) = g(tDY H, TY) = g(TtDY H, Y) = 0. (5.21)

The last equation holds because Tt = 0 for any CR-submanifold of an almost
Hermitian manifold [22]. Moreover, it is easy to see [22] that T 2 = −I + tN and
then (5.21) gives

g(Y , Y)g(H, H) − g(NY , NY)g(H, H) = 0. (5.22)

Since M is proper, we can choose an unit vector field X in D. Thus, NX = 0 and
from (5.22) we have H = 0. �

Theorem 5.8 Let M be a totally geodesic CR-submanifold of a l.c.K. manifold M̃.

We have

(i) If Bx ∈ Dx, for all x ∈ M, then D is integrable and any integral submanifold MT

of D is totally geodesic in M̃.
(ii) If B is normal to M, any integral submanifold M⊥ of D⊥ is totally geodesic in

M̃. Furthermore, D is integrable if and only if Bx ∈ νx, for any x ∈ M, and in
this case any integral submanifold MT of D is totally geodesic in M̃.

Proof Firstly, since B is tangent to M, from Theorem5.7 the distribution D is inte-
grable. Let MT be an integral submanifold of D. For any vector field X tangent to
M, Y ∈ D, Z ∈ D⊥, from (5.3) and (5.4) we get g(∇M

X Z, Y) = −g(σ(X, JY), JZ).

But from (5.7) and (5.8) we find
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g(∇XZ, Y) − 1

2
ω(Z)g(X, Y) + 1

2
g(X, Z)g(B, Y) = −g(σ(X, JY), JZ) = 0.

(5.23)

IfX ∈ D, (5.23) gives g(∇XZ, Y) = 0, or, equivalently, g(∇XY , Z) = 0 and there-
fore, ∇XY ∈ D. Thus MT is totally geodesic in M and hence in M̃.

Next, ifB is normal toM, fromTheorem5.5, any integral submanifoldM⊥ ofD⊥ is
totally geodesic in M̃.The second statement follows immediately fromTheorems5.6
and 5.7. �

Corollary 1 Let M be a totally geodesic proper CR-submanifold of a l.c.K. manifold
M̃ such that Bx ∈ νx, for any x ∈ M. Then, M is locally the Riemannian product of
a Kaehler submanifold and a totally real submanifold of M̃.

Proof FromTheorem5.8,M is locally the product of a holomorphic submanifoldMT

and a totally real submanifold M⊥ of M̃. But ω = 0 on M, so that we have induced
on MT a Kaehlerian structure. Moreover, it can be easily seen that the projection map
p (resp., q) ontoD (resp.,D⊥) is parallel with respect to ∇, so that this local product
is actually a local Riemannian product. �

Next, we consider the particular case when M is either holomorphic or totally
real.

Lemma 3 Let M be a holomorphic submanifold of a l.c.K. manifold M̃. Then the
subbundles TM and T⊥(M) are holomorphic. Moreover, we have

σ(JX, Y) = σ(X, JY) = Jσ(X, Y), (5.24)

AJV = JAV = −AV J, (5.25)

DX(JV ) = JDX V, (5.26)

∇M
X (JY) = J∇M

X Y , (5.27)

for any vector fields X, Y tangent to M and V normal to M.

Proof As M̃ is locally endowed with Kaehler metrics g̃U whose Levi-Civita con-
nection is ∇, these formulas follow from similar formulas in the Kaehlerian
case. �

Theorem 5.9 Let M be a holomorphic submanifold of a l.c.K. manifold M̃. Then,
we have

(i) The mean curvature vector H of M is given by H = − 1
2B2.

(ii) M is totally umbilical if and only if the Weingarten endomorphisms are commu-
tative.
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Proof Firstly, if dim(M) = 2k > 0, let {e1, . . . , ek, Je1, . . . , Jek} be an orthonormal
basis for Tx(M), x ∈ M. Then

2kHx = (tr(σ))x =
k∑

i=1

σx(ei, ei) +
k∑

i=1

σx(Jei, Jei). (5.28)

But from (5.8) and (5.24), (5.28) gives 2kHx = −k(B2)x.

Next, let V be a vector field normal to M. From (5.17) and (5.25), we have

0 = [AV , AJV ] = [AV , AJV ] = −2J(AV )2,

Thus AV = 0 and from (5.9), we have AV = − 1
2ω(V )I �

The endomorphism n of the normal bundle T⊥M defined in (5.5) induces an f -
structure in T⊥M [22]. For any vector field X tangent to M and V normal to M, we
write

(∇̃ ′
Xn)V = DX(nV ) − nDX V,

(∇ ′
Xn)V = DX(nV ) − nDX V .

When ∇̃ ′n = 0, the f -structure n is said to be parallel [10].

Lemma 4 Let M be an r-dimensional totally real submanifold of a 2m-dimensional
l.c.K. manifold M̃. Then we have

(i) AJXY = AJY X, for any X, Y tangent to M.

(ii) If r = m, then DX(JY) = J∇M
X Y,∇M

X (JV ) = JDX V , andσ(X, JV ) = −JAV X.

(iii) ∇̃ ′n = ∇′
n.

(iv) If the f -structure n is parallel, then

AV = −1

2
ω(V )I, (5.29)

for any V ∈ ν.
(v) If the Weingarten endomorphisms are commutative, then there is an orthonor-

mal local basis {e1, . . . , er} in M such that with respect to this basis AJei is a
diagonal matrix

AJei = (0 . . . 0λi 0 . . . 0) , i = 1, . . . , r. (5.30)

Proof Assertions (i) and (ii) follow immediately from similar formulas in the
Kaehlerian case. From Eq. (5.10), we easily obtain (iii).

In order to prove (iv), we take V ∈ ν, and X ∈ T(M). Then, (iii) gives (∇′
Xn)V =

DX(nV ) − nDX V = 0. By using (5.25) and (5.26) this yields JAV X = 0. Therefore,
AV = 0 and from (5.9), we obtain (iv).



132 J.L. Cabrerizo et al.

Finally, from (5.17) we have [AV , AV ] = 0, for any V, V normal to M. Then,
we can find a local orthonormal basis {̃e1 . . . , ẽr} in M (with respect to the local
Kaehlerian metrics g̃U = e−hg|U ) such that AJei = (0 . . . μi . . . 0), i = 1, . . . , r. If
we start by using this basis, we can obtain an orthonormal (with respect to the metric
g) local basis {e1, . . . , en} in M such that (v) holds. �

Theorem 5.10 Let M be an r-dimensional totally real and minimal submanifold of
a l.c.K. manifold M̃ such that their Weingarten endomorphisms are commutative and
the f -structure n is parallel. Then, we have

(i) If r ≥ 2, M is totally geodesic if and only if the Lee vector field B is tangent to
M.

(ii) If r = 1 and B is orthogonal to ν, then M is a geodesic curve.

Proof First, since the Weingarten endomorphisms are commutative, let {e1, . . . , er}
be an orthonormal local basis as in Lemma4 (v). From Eq. (5.8), we have

0 = g(H, Jei) =1

n

n∑

j=1

g
(
σ(ej, ej), Jei

) = 1

n

n∑

j=1

g
(
AJei ej, ej

) − 1

2
ω(Jei)

=1

n
λi − 1

2
ω(Jei), i = 1, . . . , r.

Therefore,
AJei ej = δijλiej = δij

n

2
ω(Jei)ej, i = 1, . . . , r. (5.31)

Now, from (5.9) and (5.31) we obtain,

AJei ej = 1

2
(nδij − 1)ω(Jei)ej, i = 1, . . . , r. (5.32)

Thus, if r ≥ 2 and B is tangent to M, Eq. (5.32) gives AJei = 0, i = 1, . . . , r.
Moreover, from (iv) in Lemma4, AV = − 1

2ω(V )I = 0, for any V ∈ ν. Then, AV =
0, for any vector field V normal to M.

On the other hand, if there is x ∈ M such that (B2)x �= 0, from (5.32) and (iv) in
Lemma4, we can take a vector field V normal to M such that AV �= 0. This gives (i).

In order to prove (ii), let us take a unit vector field X tangent to M. We have
0 = g(H, JX) = g(σ(X, X), JX) = g(AJXX, X), and, then, AJX = 0. But, if B is
orthogonal to ν, from (iv) in Lemma4, AV = − 1

2ω(V ) = 0, for any V ∈ ν. This
means that AV = 0, for any vector field V normal to M. �

Theorem 5.11 Let M be an r-dimensional (r ≥ 2) totally real and totally umbilical
submanifold of a l.c.K. manifold M̃ such that the f -structure n is parallel. Then M is
totally geodesic if and only if B is tangent to M.

Proof Let {u1, . . . , ur} be an orthonormal local basis in U. Since M is totally umbil-
ical, for any vector field X tangent to M, by using Eqs. (5.8) and (5.9), we find
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g(AJXuj, uk) = 1

r
δjk tr(AJX). (5.33)

But from Eq. (5.9) and (iv) in Lemma4 we also have

AV = 0, (5.34)

for any V ∈ ν. On the other hand [AV , A
V
] = [AV , A

V
] = 0, for any vector fields

V , V normal to M. Therefore, from (v) in Lemma4, there is an orthonormal local
basis {e1, . . . , er} in M such that, with respect to this basis, Eq. (5.30) holds. But,
from Eq. (5.33), we also have

g(AJei ej, ej) = 1

r
λi, i.j = 1, . . . , n. (5.35)

Since r ≥ 2, we can take j �= i and then, Eqs. (5.30) and (5.35) give λi = 0, i =
1, . . . , r.Thus, we getAJei = 0, i = 1, . . . , r, which, together with (5.34) givesAV =
0, for any vector field V normal to M. Now, if B is tangent to M, Eq. (5.9) proves
that M is totally geodesic.

Conversely, if M is totally geodesic, from (5.29) we have 0 = AV = − 1
2ω(V )I ,

for any V ∈ ν. This means that B is normal to ν. Furthermore, from (v) in Lemma4,
we can find an orthonormal local basis {e1, . . . , er} in M such that AJei has a
diagonal matrixAJei = (0 . . . 0λi 0 . . . 0) = 1

2ω(Jei)I , i = 1, . . . , r. Since r ≥ 2, this
means ω(Jei) = 0, i = 1, . . . , r so that B is normal to J(T(M)). Thus, B is tangent
to M. �

5.2.4 CR-products in l.c.K. Manifolds

Let T , N, t, n be the endomorphisms and vector-valued 1-forms defined by (5.5). Let
us write

(∇̃ ′
Z T)W = ∇Z(T W ) − T∇Z W,

(∇ ′
ZT)W = ∇M

Z (T W ) − T∇M
Z W,

(5.36)

for all Z, W tangent to M. On the other hand, T is said to be parallel if ∇ T = 0.
From (5.1)–(5.3) it is easy to prove that

(∇ ′
ZT)W = (∇̃ ′

ZT)W + 1

2
ω(W )TZ − 1

2
ω(T W )Z

+ 1

2
g(Z, T W )B1 − 1

2
g(Z, W )TB1. (5.37)

But, from (5.36) we see that

(∇ ′
ZT)W = tσ(Z, W ) + ANW Z. (5.38)
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Definition 1 A CR-submanifold of a l.c.K. manifold M̃ is called a CR-product if it
is locally a Riemannian product of a holomorphic submanifold MT and a totally real
submanifold M⊥ of M̃.

Theorem 5.12 Let M be a CR-submanifold of a l.c.K. manifold M̃ such that the Lee
field B is normal to M. Then M is a CR-product if and only if T is parallel.

Proof Since B is normal to M, from Eq. (5.37), we have ∇̃ ′T = ∇ ′
T . If T is parallel,

from (5.8), (5.9), and (5.38), we find

tσ(Z, W ) + 1

2
g(Z, W )tB = −ANW Z − 1

2
ω(NW )Z. (5.39)

But for any X ∈ D, NX = 0, and the last equation gives

0 = g(ANW Z, X) + 1

2
ω(NW )g(Z, X),

or, equivalently, g(σ(Z, X), JW ) + 1
2g(JW, B)g(Z, X) = 0, for any W tangent toM.

Therefore,

σ(Z, X) = −1

2
g(Z, X)B. (5.40)

If we take Z ∈ D, the last equation gives σ(X, JY) − σ(JX, Y) = −�(X, Y)B,

and, from Theorem5.3, D is integrable. Let MT be an integral submanifold of D.

For any Z ∈ D⊥, Eq. (5.40) yields g(σ(Z, X), JZ) = − 1
2g(Z, Z)g(B, JZ) and, from

Theorem5.6, the submanifold MT is totally geodesic in M. Now, let M⊥ be an
integral submanifold od D⊥. From (5.40), if Z ∈ D⊥, then σ(Z, X) = 0 and, from
Theorem5.5, M⊥ is totally geodesic.

Conversely, assume thatM is aCR-product. First, we prove that∇M
Z X ∈ D, for any

X ∈ D andZ tangent toM.AsM is locally aRiemannian product ofMT (holomorphic
submanifold) and M⊥ (totally real submanifold), it suffices to prove that ∇M

Z X ∈ D,
for any X ∈ D and Z ∈ D⊥. In fact, from (5.3) we have

J∇M
Z X = ∇M

Z (JX) + σ(Z, JX) − Jσ(Z, X).

Thus, if W ∈ D⊥, g(J∇M
Z X, JW ) = g(σ(Z, JX), JW ). Since M⊥ is totally geo-

desic in M, from (5.8) and Theorem5.5 we have g(∇M
Z X, W ) = 0, for any W ∈ D⊥.

So, ∇M
Z X ∈ D and ∇M

Z X ∈ D, for any Z tangent to M. From ∇J = 0, we find

J∇M
Z X + Jσ(Z, X) = ∇M

Z (JX) + σ(Z, JX),

and then, J∇M
Z X = ∇M

Z (JX), Jσ(Z, X) = σ(Z, JX). Now, from (5.36) we get

(∇ ′
Z T)X = ∇M

Z (TX) − T∇M
Z X = ∇M

Z (JX) − J∇M
Z X = 0, (5.41)

for any X ∈ D and Z tangent to M.



5 CR Submanifolds in (l.c.a.) Kaehler and S-manifolds 135

In a similar way, we prove that ∇M
Z Z ∈ D⊥ for any Z ∈ D⊥ and Z tangent to M.

Since M is a CR-product, it suffices to show this for Z = X ∈ D. In fact, from (5.3),
given any Y ∈ D we find that

g(J∇M
X Z, Y) = −g(AJZX, Y) − g(Jσ(X, Z), Y) = −g(σ(X, Y), JZ) = 0,

where the last equation holds from (5.8) and Theorem5.6. Then, J∇M
X Z is orthogonal

to D. On the other hand, if W ∈ D⊥, we have

g
(∇M

X Z, W
) = −g(σ(X, W ), JZ) + g(σ(X, Z), JW ).

But, from Theorem5.5 we have g(J∇M
X Z, W ) = 0, That is, J∇M

X Z is normal to
M, so that ∇M

X Z ∈ D⊥. Therefore, we have

(∇ ′
ZT)Z = ∇M

Z (TZ) − T∇M
Z Z = 0. (5.42)

Now, from (5.37), (5.41), and (5.42), we have ∇̃ ′T = 0. �

Theorem 5.13 Let M be a CR-submanifold of a l.c.K. manifold M̃ such that Bx ∈ Dx

for each x ∈ M. If T is parallel, then M is a CR-product. The converse does not holds
unless dim(D) = 2 or B = 0 on M.

Proof Since T is parallel, Eqs. (5.37) and (5.38) give

tσ(Z, W ) + ANW Z = 1

2
ω(W )TZ − 1

2
ω(T W )Z

+ 1

2
g(Z, T W )B − 1

2
g(Z, W )TB. (5.43)

If X ∈ D, then NX = 0 and (5.43) gives

−g(Jσ(X, Z), W ) = 1

2
g(B, W )g(JZ, X) + 1

2
g(W, JB)g(Z, X)

− 1

2
g(JZ, W )g(B, X) − 1

2
g(Z, W )g(JB, X), (5.44)

for any vector field W tangent to M. From (5.8), (5.44) yields

−Jσ(X, Z) = 1

2
g(JZ, X)B + 1

2
g(Z, X)JB

− 1

2
g(B, X)JZ − 1

2
g(JB, X)Z. (5.45)

For any Z ∈ D⊥, Eq. (5.45) gives g(AJZ , Z) = 1
2ω(JX)g(Z, Z), for any Z tangent to

M and, hence, we have

AJZX = 1

2
ω(JX)Z. (5.46)
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Next, for Y ∈ D, from (5.46), we have

g(σ(X, Y), JZ) = 0, for X ∈ D, Z ∈ D⊥. (5.47)

Therefore, g(σ(X, JY) − σ(JX, Y , JD⊥) = 0 and, from Theorem5.4, the distribu-
tionD is integrable. Moreover, any integral submanifoldM⊥ odD is totally geodesic
in M because of (5.47) and Theorem5.6. Now, let M⊥ be an integral submanifold of
D⊥. For any W ∈ D⊥, Eq. (5.46) gives

g

(
AJZ + 1

2
g(Z, W )JB, X

)
= 0

and this means that M⊥ is totally geodesic in M (Theorem5.5). Thus M is a
CR-product. �

In order to prove the converse, we first give the following Lemma.

Lemma 5 If M is a CR-product in a l.c.K. manifold M̃ such that Bx ∈ Dx for any
x ∈ M, then

∇ZX ∈ D, (5.48)

∇XZ ∈ D⊥, (5.49)

J ∇ZX = ∇Z(JX), (5.50)

for any X ∈ D and Z ∈ D⊥.

Proof If X ∈ D and Z ∈ D⊥, then from (5.7) and (5.8), we obtain

J ∇ZX = 1

2
ω(X)JZ − Jσ(Z, X) + ∇Z(JX) + ∇Z(JX)

− 1

2
ω(JX)Z + σ(Z, JX). (5.51)

Now, for any W ∈ D⊥, (5.51) yields

g(J ∇ZX, JW ) = g(∇ZX, W ) = g

(
AJW Z + 1

2
g(Z, W )JB, JX

)
= 0.

The last equation holds because any leaf M⊥ of D⊥ is totally geodesic in M
(Theorem5.5). Thus ∇ZX ∈ D and this is assertion (5.48). Now, take X, Y ∈ D and
Z ∈ D⊥. From (5.1) and (5.2), we find that

g(J ∇XZ, Y) = −g(AJZ , Y) = −g(σ(X, Y), JZ) = 0 (5.52)
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The last equation holds because of Theorem5.6. If X ∈ D and Z, W ∈ D⊥, from
(5.1) and (5.2) again we have

g(J ∇XZ, W ) = g(AJW Z, X) − g(AJZ W, X).

But, from Theorem5.5 we obtain

g(AJW Z, X) − g(AJZ W, X) = −1

2
g(Z, W )g(JB, X) + 1

2
g(W, Z)g(JB, X) = 0

and, hence
g(J ∇XZ, W ) = 0. (5.53)

Now, (5.49) follows from (5.52) and (5.53). Finally, (5.48) and (5.51) give (5.50). �

Now we prove the converse of Theorem5.13. From (5.36) and (5.48), for any
X ∈ D and Z tangent to M we have

(∇̃ ′
Z , T)X = ∇Z(JX) − J(∇Z X).

On the other hand, we write Z = Y + Z , where Y ∈ D and Z ∈ D⊥. Then, from
(5.50) we have

(∇̃ ′
Z T)X = ∇Y (JX) − J ∇Y X. (5.54)

But (5.1)–(5.3) give

∇Y (JX) − J∇Y X = 1

2
ω(Y)JX − 1

2
(JY)X − 1

2
g(X, Y)JB + 1

2
g(X, JY)B. (5.55)

Now we have
(a) If dim(D) ≥ 4 and Bx �= 0 for some x ∈ M, there are X, Y ∈ D such that the

right-hand side of (5.55) does not vanish at x. Therefore, T is not parallel.
(b) If dim(D) = 2, then the right-hand side of (5.55) vanishes and, hence

(∇̃ ′
Z T)X = 0, (5.56)

for any X ∈ D and Z tangent to M. But (5.49) implies ∇ZZ ∈ D⊥, for any Z ∈ D⊥
and Z tangent to M, so that

(∇̃ ′
Z T)Z = ∇Z(TZ) − T∇Z Z = −T∇Z Z = 0. (5.57)

Then, (5.56) and (5.57) prove that T is parallel. �
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5.3 Normal CR-Submanifolds of S-manifolds

Wewant to study here the normal CR-submanifolds for general S-manifolds. In fact,
the normal CR-submanifolds become to be a very wide class of CR-submanifolds.
Actually, either totally f -umbilical submanifolds (see [19] for more details) or CR-
products (see [12]) of an S-manifold are normal CR-submanifolds. We also study
normalCR-submanifolds of an S-space-form, specially in the concrete cases ofR2m+s

(with constant f -sectional curvature c = −3s) and H2m+s (with constant f -sectional
curvature c = 4 − 3s).

5.3.1 Preliminaries

A (2m + s)-dimensional Riemannianmanifold (∧M, g) endowedwith an f -structure
f (that is, a tensor field of type (1, 1) and rank 2m satisfying f 3 + f = 0 [21]) is said
to be a metric f -manifold if, moreover, there exist s global vector fields ξ1, . . . , ξs

on ∧M (called structure vector fields) such that, if η1, . . . , ηs are the dual 1-forms of
ξ1, . . . , ξs, then

f ξα = 0; ηα ◦ f = 0; f 2 = −I +
s∑

α=1

ηα ⊗ ξα;

g(X, Y) = g(fX, fY) +
s∑

α=1

ηα(X)ηα(Y), (5.58)

for any X, Y ∈ X (∧M) and α = 1, . . . , s.
Let F be the 2-form on ∧M defined by F(X, Y) = g(X, fY), for any X, Y ∈

X (∧M). Since f is of rank 2m, then

η1 ∧ · · · ∧ ηs ∧ Fm �= 0

and, particularly, ∧M is orientable.
The f -structure f is said to be normal if

[f , f ] + 2
s∑

α=1

ξα ⊗ dηα = 0,

where [f , f ] is the Nijenhuis torsion of f .
A metric f -manifold is said to be a K-manifold [5] if it is normal and dF = 0.

A K-manifold is called an S-manifold if F = dηα, for any α. Note that, for s = 0,
a K-manifold is a Kaehlerian manifold and, for s = 1, a K-manifold is a quasi-
Sasakian manifold and an S-manifold is a Sasakianmanifold.When s ≥ 2, nontrivial
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examples can be found in [5, 13].Moreover, aK-manifold∧M is an S-manifold if and
only if

∧ ∇Xξα = −fX, (5.59)

for any X ∈ X (∧M) and any α = 1, . . . , s, where ∧∇ denotes the Levi-Civita con-
nection of g. It is easy to show that in any S-manifold

(∧∇Xf )Y =
s∑

α=1

{
g(fX, fY)ξα + ηα(Y)f 2X

}
, (5.60)

for any X, Y ∈ X (∧M). A plane section π on a metric f -manifold ∧M is said to
be an f -section if it is determined by a unit vector X, normal to the structure vector
fields and fX. The sectional curvature of π is called an f -sectional curvature. An
S-manifold is said to be an S-space-form if it has a constant f -sectional curvature
c and then, it is denoted by ∧M(c). In such case, the curvature tensor field ∧R of
∧M(c) satisfies [15]

∧ R(X, Y , Z, W )

=
∑

α,β

(g(fX, f W )ηα(Y)ηβ(Z) − g(fX, fZ)ηα(Y)ηβ(W )

+ g(fY , fZ)ηα(X)ηβ(W ) − g(fY , f W )ηα(X)ηβ(Z))

+ c + 3s

4
(g(fX, f W )g(fY , fZ) − g(fX, fZ)g(fY , f W ))

+ c − s

4
(F(X, W )F(Y , Z) − F(X, Z)F(Y , W )

− 2F(X, Y)F(Z, W )), (5.61)

for any X, Y , Z, W ∈ X (∧M). Next, let M be a isometrically immersed submanifold
of a metric f -manifold ∧M (for the general theory of submanifolds, we refer to [3,
22]).We denote byX (M) the Lie algebra of tangent vector fields toM and by T(M)⊥
the set of tangent vector fields to ∧M which are normal to M. For any vector field
X ∈ X (M), we write

fX = TX + NX, (5.62)

where TX and NX are the tangential and normal components of fX, respectively.
Then, T is an endomorphism of the tangent bundle of M and N is a normal bundle
valued 1-form on such tangent bundle. It is easy to show that if T does not vanish, it
defines an f -structure in the tangent bundle of M. The submanifold M is said to be
invariant if N is identically zero, that is, if fX is tangent to M, for any X ∈ X (M).
On the other hand, M is said to be an anti-invariant submanifold if T is identically
zero, that is, if fX is normal to M, for any X ∈ X (M). In the same way, for any
V ∈ T(M)⊥, we write

f V = tV + nV, (5.63)
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where tV and nV are the tangential and normal components of f V , respectively.
Then, t is a tangent bundle valued 1-form on the normal bundle of M and n is an
endomorphism of the normal bundle ofM. It is easy to show that if n does nor vanish,
it defines an f -structure in the normal bundle of M. From now on, we suppose that
all the structure vector fields are tangent to the submanifold M and so, dim(M) ≥ s.
Then, the distribution on M spanned by the structure vector fields is denoted by
M and its complementary orthogonal distribution is denoted by L. Consequently,
if X ∈ L, then ηα(X) = 0, for any α = 1, . . . , s and if X ∈ M, then fX = 0. In this
context, M is said to be a CR-submanifold of ∧M if there exist two differentiable
distributions D and D⊥ on M satisfying

(i) X (M) = D ⊕ D⊥ ⊕ M, whereD,D⊥ andM are mutually orthogonal to each
other;

(ii) The distribution D is invariant by f , that is, fDx = Dx, for any x ∈ M;
(iii) ThedistributionD⊥ is anti-invariant by f , that is, fD⊥

x ⊆ Tx(M)⊥, for any x ∈ M.

This definition is motivated by the following theorem.

Theorem 5.14 ([16]) Let ∧M be an S-manifold which is the bundle space of a
principal toroidal bundle over a Kaehler manifold ∧M ′, ∧π : ∧M −→ ∧M ′, M
a submanifold immersed in ∧M, tangent to the structure vector fields and M ′ a
submanifold immersed in ∧M ′ such that there exists a fibration π : M −→ M ′, the
diagram

M
i−→ ∧M

π ↓ ↓ ∧π

M ′ i′−→ ∧M ′

commutes and the immersion i is a diffeomorphism on the fibers. Then, M is a CR-
submanifold of ∧M if and only if M ′ is a CR-submanifold of ∧M ′.

We denote by 2p and q the real dimensions of D and D⊥, respectively. Then,
we see that for p = 0 we obtain an anti-invariant submanifold tangent to the struc-
ture vector fields and for q = 0 an invariant submanifold. A CR-submanifold of an
S-manifold is said to be a generic submanifold if given any V ∈ T(M)⊥, there exists
Z ∈ D⊥ such that V = fZ , a (D,D⊥)-geodesic submanifold if σ(X, Z) = 0, for any
X ∈ D and any Z ∈ D⊥ and a D⊥-geodesic submanifold if σ(Y , Z) = 0, for any
Y , Z ∈ D⊥. As an example, it is easy to show that each hypersurface of ∧M which
is tangent to the structure vector fields is a CR-submanifold. Now, we write by P
and Q the projections morphisms ofX (M) onD andD⊥, respectively. Thus, for any
X ∈ X (M), we have that

X = PX + QX +
s∑

α=1

ηα(X)ξα.

We define the tensor field v of type (1, 1) by vX = fPX and the non-null, normal
bundle valued 1-form u by uX = fQX, for any X ∈ X (M). Then, it is easy to show
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that u ◦ v = 0 and ηα ◦ u = ηα ◦ v = 0, for any α = 1, . . . , s. Moreover, a direct
computation gives

g(X, Y) = g(uX, uY) + g(vX, vY) +
s∑

α=1

ηα(X)ηα(Y), (5.64)

F(X, Y) = g(X, vY), F(X, Y) = F(vX, vY), (5.65)

for any X, Y ∈ X (M). From Gauss–Weingarten formulas and by using (5.59), for
any X ∈ X (M), V ∈ T(M)⊥, and α = 1, . . . , s, we have

∇Xξα = −vX, (5.66)

σ(X, ξα) = −uX, (5.67)

AV ξα ∈ D⊥. (5.68)

Moreover, from (5.60) and the Gauss–Weingarten formulas, if X, Y ∈ X (M), com-
paring the components in D, D⊥ and T(M)⊥ respectively, we get

P∇XvY − PAuY X = v∇XY −
s∑

α=1

ηα(Y)PX, (5.69)

Q∇XvY − QAuY X = tσ(X, Y) −
s∑

α=1

ηα(Y)QX, (5.70)

σ(X, vY) + DXuY = u∇XY + nσ(X, Y). (5.71)

From the above formulas and (5.60) we obtain

(∇Xv)Y = AuY X + tσ(X, Y) −
s∑

a=1

{ηα(Y)f 2X + g(fX, fY)ξα}, (5.72)

(∇Xu)Y = nσ(X, Y) − σ(X, vY), (5.73)

for any X, Y ∈ X (M). Also, from (5.60) and the Gauss–Weingarten formulas again,
we have

∇XZ = vAfZ X − tDXfZ, (5.74)

tDXfZ = −Q∇XZ, (5.75)

for any X ∈ X (M) and any Z ∈ D⊥. With regard to the integrability of the distrib-
utions involved in the definition of a CR-submanifold, I. Mihai [16] proved that the
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distributions D⊥ and D⊥ ⊕ M are always integrable. On the other hand, if p > 0,
the distributions D and D ⊕ D⊥ are not integrable and the distribution D ⊕ M is
integrable if and only if

σ(X, fY) = σ(fX, Y), (5.76)

for anyX, Y ∈ D. In [12],CR-products ofS-manifolds are defined asCR-submanifolds
such that the distributionD ⊕ M is integrable and locally they are Riemannian prod-
ucts M1 × M2, where M1 (resp., M2) is a leaf ofD ⊕ M (resp.,D⊥). From Theorem
3.1 and Proposition 3.2 in [12], we know that a CR-submanifold M of an S-manifold
is a CR-product if and only if one of the following assertions is satisfied:

AfD⊥ fD = 0, (5.77)

g(σ(X, Y), fZ) = 0, X ∈ D, Y ∈ X (M), Z ∈ D⊥, (5.78)

∇XY ∈ D ⊕ M, X ∈ D, Y ∈ X (M). (5.79)

5.3.2 Normal CR-Submanifolds of an S-manifold

Let M be a CR-submanifold of an S-manifold ∧M. We say that M is a normal
CR-submanifold if

Nv(X, Y) = 2tdu(X, Y) − 2
s∑

α=1

F(X, Y)ξα, (5.80)

for any X, Y ∈ X (M), where Nv is denoting the Nijenhuis torsion of v, that is

Nv(X, Y) = (∇vXv)Y − (∇vYv)X + v((∇Yv)X − (∇Xv)Y).

We notice that (5.80) is equivalent to

S∗(X, Y) = Nv(X, Y) − t((∇Xu)Y − (∇Y u)X) + 2
s∑

α=1

F(X, Y)ξα = 0,

for any X, Y ∈ X (M). Now, we can prove the following characterization theorem in
terms of the shape operator.
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Theorem 5.15 A CR-submanifold M of an S-manifold ∧M is normal if and only if

AuYvX = vAuY X, (5.81)

for any X ∈ D and any Y ∈ D⊥.

Proof A direct expansion by using (5.72) and (5.73) gives that

S∗(X, Y) = AuYvX − vAuY X − AuXvY + vAuXY , (5.82)

for any X, Y ∈ X (M). Now, if M is a normal CR-submanifold of ∧M, (5.81) fol-
lows form (5.82) since uX = 0, for any X ∈ D. Conversely, if (5.81) holds, we use
the decomposition X (M) = D ⊕ D⊥ ⊕ M. First, since uX = 0 for any X ∈ D and
vξα = 0 = uξα, for any α, we deduce from (5.81) and (5.82) that S∗(X, Y) = 0,
for any X ∈ D and any Y ∈ X (M). Moreover, if Y ∈ D⊥, from (5.68) we have
AuYξα ∈ D⊥ and so, vAuYξα = 0 dfor any α. Consequently, S∗(X, ξα) = 0, for any
X ∈ X (M). Finally, if X, Y ∈ D⊥, (5.82) becomes

S∗(X, Y) = v(AfXY − AfY X),

since vX = vY = 0 and uX = fX, uY = fY . But, from (5.60) we easily show that
AfXY = AfY X. �

Corollary 2 A CR-submanifold M of an S-manifold is normal if and only if

g(σ(X, vY) + σ(Y , vX), fZ) = 0, (5.83)

g(σ(X, Z)f W ) = 0, (5.84)

for any X, Y ∈ D and any Z, W ∈ D⊥.

Proof Since v is skew-symmetric, from (5.81) we see that M is normal if and only if

g(σ(X, vY), uZ) = −g(σ(Y , vX), uZ)m (5.85)

for any X ∈ X (M), Y ∈ D and Z ∈ D⊥. Now, if M is normal, from (5.85) we get
(5.83) taking X ∈ D and (5.84) taking X ∈ D⊥. Conversely, if (5.83) and (5.84)
are satisfied, we observe that (5.85) is satisfied too if X ∈ D and X ∈ D⊥, respec-
tively. Finally, if X ∈ M, we have vX = 0 and, by using that u ◦ v = 0 and (5.67),
σ(X, vY) = 0, for any Y ∈ D. Thus, (5.85) holds for any X ∈ X (M). �

Corollary 3 Any normal generic submanifold of an S-manifold is a (D,D⊥)-
geodesic submanifold.
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From (5.60), (5.67), (5.83), and (5.84), we have

σ(fX, Z) = f σ(X, Z), (5.86)

tσ(fX, fX) = tσ(X, X), (5.87)

AfZ X ∈ D, (5.88)

for any X ∈ and any Z ∈ D⊥. On the other hand, from (5.78) and (5.83)–(5.84), we
deduce

Proposition 1 Each CR-product in an S-manifold is a normal CR-submanifold.

For the converse we prove the following theorems.

Theorem 5.16 Let M be a normal CR-submanifold of an S-manifold. Then, M is a
CR-product if and only if the distribution D ⊕ M is integrable.

Proof The necessary condition is obvious. Conversely, let X ∈ D. If Y ∈ D⊥, then
(5.78) is (5.84). Further, ifY ∈ M, from (5.67)wegetσ(X, Y) = 0. Finally, ifY ∈ D,
from (5.76) and (5.83) we obtain (5.78). �

Theorem 5.17 Let M be a normal CR-submanifold of an S-manifold such that du =
0. Then, M is a CR-product.

Proof A straightforward computation gives, by using the hypothesis and (5.72),

g((∇Xv)Y , Z) =
s∑

α=1

{dηα(vX, Y)ηα(Z) − dηα(vZ, X)ηα(Y)}, (5.89)

for anyX, Y , Z ∈ X (M). Now, ifY ∈ D, from (5.64) and (5.65)we get dηα(vX, Y) =
F(vX, Y) = g(vX, vY) = g(X, Y). So, (5.89) becomes

(∇Xv)Y =
s∑

α=1

g(X, Y)ξα

for any X ∈ X (M) and any Y ∈ D. Comparing with (5.72) we have σ(X, Y) = 0 and
so (5.78) holds. �

We say that v is η-parallel if

(∇Xv)Y =
s∑

α=1

{g(PX, PY)ξα − ηα(Y)PX},

for any X, Y ∈ X (M). Then, from (5.64), (5.65), and (5.89), we prove
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Proposition 2 Any normal CR-submanifold of an S-manifold such that du = 0 is
η-parallel.

Given a CR-submanifold M of an S-manifold, a vector field X ∈ X (M) is said to
be D-Killing if

g(P∇ZX, PY) + g(P∇Y X, PZ) = 0, (5.90)

for any Y , Z ∈ X (M). We notice that it is possible to characterize normal CR-
submanifolds in terms of D-Killing vector fields.

Theorem 5.18 A CR-submanifold M of an S-manifold is a normal CR-submanifold
if and only if any Z ∈ D⊥ is a D-Killing vector field

Proof Given X, Y ∈ X (M) and Z ∈ D⊥, from (5.74) we get

g(∇XZ, Y) + g(∇Y Z, X) = g(vAfZ X, Y) − g(tDXfZ, Y)

+ g(vAfZ Y , X) − g(tDY fZ, X). (5.91)

But g(vAfZ Y , X) = −g(AfZvX, Y) and so, from (5.91)

g(P∇XZ, PY) + g(P∇Y Z, PX) + g(Q∇XZ, QY) + g(Q∇Y Z, QX)

+
s∑

α=1

{ηα(∇XZ)ηα(Y) + ηα(∇Y Z)ηα(X)}

= g((vAfZ − AfZv)X, Y) − g(tDXfZ, Y) − g(tDY fZ, X). (5.92)

Now, since it is easy to show that ηα(∇XZ) = 0 for anyα = 1, . . . , s, by using (5.75),
we deduce that (5.92) becomes

g(P∇XZ, PY) + g(P∇Y Z, PX) = g((vAfZ − AfZv)X, Y). (5.93)

Consequently, if Z is a D-Killing vector field, from (5.81) we obtain that M is a
normal CR-submanifold. Conversely, if X ∈ D, the right part of the equality (5.93)
vanishes by using (5.81). If X ∈ D⊥, then vX = 0 and from (5.84), AfZ X ∈ D⊥, that
is, vAfZ X = 0 and the right part of (5.93) vanishes again. Finally, if X ∈ M, vX = 0
and from (5.68), AfZX ∈ D⊥. In any case, from (5.93) we have (5.90). �

To end this section, we recall that a submanifold M of an S-manifold is said to be
totally f -umbilical [19] if there exists a normal vector field V such that

σ(X, Y) = g(fX, fY)V +
s∑

α=1

{ηa(Y)σ(X, ξα) + ηα(X)σ(Y , ξα)}, (5.94)

for any X, Y ∈ X (M). These submanifolds have been studied and classified in [9].
Since from (5.94)we easily get (5.83) and (5.84), thenwehave the following theorem.
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Theorem 5.19 Any totally f -umbilical CR-submanifold of an S-manifold is a normal
CR-submanifold.

5.3.3 Normal CR-Submanifolds of an S-space-form

Let ∧M(c) a (2m + s)-dimensional S-space-form, where c is denoting the constant
f -sectional curvature and let M be a CR-submanifold. Firstly, we can prove

Proposition 3 If M is a normal CR-submanifold, then

‖AfZ X‖2 + ‖σ(X, Z)‖2 − g(tσ(Z, Z), tσ(X, X)) = c + 3s

4
, (5.95)

for any unit vector fields X ∈ D and Z ∈ D⊥.

Proof From the Codazzi equation, we have

∧R(X, fX, Z, fZ) = g(DXσ(fX, Z) − DfXσ(X, Z), fZ)

− g(σ([X, fX], Z), fZ)

+ g(σ(X,∇fXZ) − σ(fX,∇XZ), fZ). (5.96)

Now, from (5.60), (5.84), and (5.86), a direct expansion gives

g(DXσ(fX, Z) − DfXσ(X, Z), fZ) = −2‖σ(X, Z)‖2. (5.97)

On the other hand, since X ∈ D is a unit vector field (and so, fX too), we see from
(5.59) that ηα([X, fX]) = 2 for any α and from (5.70) that Q[X, fX] = tσ(X, X) +
tσ(fX, fX). Thus, taking into account (5.67), (5.84), and (5.87), we get

g(σ([X, fX], Z), fZ) = 2g(σ(tσ(X, X), Z), fZ) − 2s. (5.98)

However, since Z ∈ D⊥, by using (5.70) it is easy to show that

g(σ(tσ(X, X), Z), fZ) = −g(tσ(X, X), tσ(Z, Z)).

Therefore, from (5.98) we have

g(σ([X, fX], Z), fZ) = −2s − 2g(tσ(X, X), tσ(Z, Z)). (5.99)

Next, since ηα(∇fXZ) = ηα(∇XZ) = 0 for any α, from (5.69), (5.83), (5.84), and
(5.88), we obtain

g(σ(X,∇fXZ) − σ(fX,∇XZ), fZ) = −2‖AfZ X‖2. (5.100)
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Finally, from (5.61) we deduce ∧R(X, fX, Z, fZ) = −(c − s)/2. Then, substituting
(5.97), (5.99), and (5.100) into (5.96), we complete the proof. �

Corollary 4 If M is a normal D⊥-geodesic CR-submanifold of an S-space-form
∧M(c), then c ≥ −3s.

Proposition 4 If M is a normal CR-submanifold of an S-space-form ∧M(c) such
the distribution D ⊕ M is integrable, then c ≥ −3s and M is a CR-product.

Proof It is clear that M is a CR-product due to Theorem5.16. Moreover, from (5.78)
we have g(σ(X, Y), fZ) = 0. for any X, Y ∈ D. Then, if X ∈ D is a unit vector field,
tσ(X, X) = 0 and, by using (5.95), c ≥ −3s. �

Now, we are going to study the concrete case of the (2m + s)-dimensional euclid-
ean S-space-form R

2m+s(−3s) (see [13] for the details of this structure). In this
context, we can prove

Theorem 5.20 If M is a normal (D,D⊥)-geodesic and D⊥-geodesic
CR-submanifold of R2m+s(−3s), then it is a CR-product.

Proof From (5.95), we have AfZ X = 0 for any X ∈ D and any Z ∈ D⊥. So, from
(5.77), M is a CR-product. �

Corollary 5 A normal D⊥-geodesic generic submanifold of R2m+s(−3s) is a CR-
product.

Another interesting example of S-space-form is H2m+s(4 − 3s), a generalization
of the Hopf fibration π : §2m+1 −→ PCm, introduced by Blair in [5] as a canonical
example of an S-manifold playing the role of the complex projective space in Kaehler
geometry and the odd-dimensional sphere in Sasakian geometry. This space is given
by (see [5, 6] for more details)

H
2m+s = {(x1, . . . , xs) ∈ §2m+1× s)· · · ×§2m+1/π(x1) = · · · = π(xs)}

and its f -sectional curvature is constant equal to 4 − 3s. Let M be a CR-submanifold
of H2m+s(4 − 3s) (we always suppose s ≥ 2). Denote by ν the orthogonal comple-
mentary distribution of fD⊥ in T(M)⊥. Then, f ν ⊆ ν. Let

{E1, . . . , E2p}, {F1, . . . , Fq}, {V1, . . . , Vr, f V1, . . . , f Vr},

be local fields of orthonormal frames on D, D⊥ and ν, respectively, where 2r is the
real dimension of ν. First, we prove

Lemma 6 If M is a CR-product in H
2m+s(4 − 3s), then

‖σ(X, Z)‖ = 1, (5.101)

for any unit vector fields X ∈ D and Z ∈ D⊥.
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Proof We know, from Proposition1, that M is a normal CR-submanifold. Since,
c = 4 − 3s, from (5.77), (5.78) and (5.95) we complete the proof. �

Lemma 7 If M is a CR-product in H
2m+s(4 − 3s), the vector field σ(Ei, Fa), i =

1, . . . , 2p and a = 1, . . . , q, are 2pq orthonormal vector fields on ν.

Proof From (5.101) and by the linearity, we get g(σ(Ei, Z),σ(Ej, Z)) = 0, for any
i, j = 1, . . . , 2p, i �= j and any unit vector field Z ∈ D⊥. Now, from (5.84), if q = 1,
we complete the proof. Ifq ≥ 2, by linearity again,wehave g(σ(Ei, Fa),σ(Ej, Fb)) +
g(σ(Ei, Fb),σ(Ej, Fa)) = 0, for any i, j = 1, . . . , 2p, i �= j, a, b = 1, . . . , q, a �= b.
Next, by using (5.79) and the Bianchi identity, we obtain R(X, Y , Z, W ) = 0, for any
X, Y ∈ D, Z, W ∈ D⊥, where R is denoting the curvature tensor field of M. But, if
i �= j and a �= b, (5.61) gives∧R(Ei, Ej, Fa, Fb) = 0. Then, from the Gauss equation
we get

g(σ(Ei, Fa),σ(Ej, Fb)) − g(σ(Ei, Fb),σ(Ej, Fa)) = 0,

for any i, j = 1, . . . , 2p, i �= j, a, b = 1, . . . , q, a �= b and this completes the
proof. �

Now, we study the normal CR-submanifolds of H2m+s(4 − 3s).

Theorem 5.21 Let M be a normal CR-submanifold of H2m+s(4 − 3s), s ≥ 2, such
that the distribution D ⊕ M is integrable. Then

(i) M is a CR-product M1 × M2.
(ii) m ≥ pq + p + q.

(iii) If n = pq + p + q, then M1 is an invariant totally geodesic submanifold
immersed in H

2m+s(4 − 3s).
(iv) ‖σ‖2 ≥ 2q(2p + s).
(v) If ‖σ‖2 = 2q(2p + s), then M1 is an S-space-form of constant f -sectional cur-

vature 4 − 3s and M2 has constant curvature 1.
(vi) If M is a minimal submanifold, then ρ ≤ 4p(p + 1) + 2p(q + s) + q(q − 1),

where ρ denotes the scalar curvature and the equality holds if and only if
‖σ‖2 = 2q(2p + s).

Proof (i) follows directly fromProposition4. Now, fromLemma7, dim(ν) = 2(m −
p) − 2q ≥ 2pq. So (ii) holds.Next, suppose thatm = pq + p + q. IfX, Y , Z ∈ D and
W ∈ D⊥, from (5.61), ∧R(X, Y , Z, W ) = 0 and, by using a similar proof to that one
of Lemma7, R(X, Y , Z, W ) = 0. So, the Gauss equation gives

g(σ(X, W ),σ(Y , Z)) − g(σ(X, Z),σ(Y , W )) = 0. (5.102)

Since from Proposition 3.2 of [12], σ(fX, Z) = f σ(X, Z), if we put Y = fX, we
have, by using (5.86), g(σ(fX, W ), (σ(X, Z)) = 0. Now, if we put Z = fY , then
g(σ(X, Y),σ(X, W )) = 0. Thus, by linearity, we get g(σ(X, W ),σ(Y , Z)) +
g(σ(X, Z),σ(Y , W )) = 0. Consequently, from (5.102)
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g(σ(X, W ),σ(Y , Z)) = 0, (5.103)

for any X, Y , Z ∈ D and W ∈ D⊥. Since now dim(ν) = 2pq, (5.103) implies that
σ(X, Y) = 0, for any X, Y ∈ D and so, (iii) holds from Theorem 2.4(ii) of [12].
Assertions (iv) and (v) follow from Theorem 4.2 of [12]. Finally, if M is a minimal
normal CR-submanifold of H2m+s(4 − 3s), a straightforward computation gives

ρ = 4p(p + 1) + 2s(p + q) + q(q − 1) + 6pq − ‖σ‖2.

Then, by using (iv), the proof is complete. �

Theorem 5.22 Let M be a normal, (D,D⊥)-geodesic and D⊥-geodesic CR-sub-
manifold of H2m+s(4 − 3s). Then,

(i) ‖AfZ X‖ = 1, for any unit vector fields X ∈ D and Z ∈ D⊥.
(ii) ‖σ‖2 ≥ 2q(p + s) and the equality hold if and only if σ(D,D) ∈ fD⊥.

Proof (i) follows immediately from (5.95). Now, considering the above-mentioned
local fields of orthonormal frames for D, D⊥, and ν, a straightforward computation
using the hypothesis gives (ii). �

Finally, from (5.84) and (5.95), we can prove

Corollary 6 Let M be a normal D⊥-geodesic generic submanifold of H2m+s(4 −
3s). Then

(i) ‖AfZ X‖ = 1, for any unit vector fields X ∈ D and Z ∈ D⊥.
(ii) ‖σ‖2 = 2q(p + s).
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Chapter 6
Lorentzian Geometry and CR-Submanifolds

Krishan L. Duggal

Mathematics Subject Classification: 53C50 · 53C55 · 83C50

6.1 Introduction

Since the second half of the twentieth century, the Riemannian and semi-Riemannian
geometries have been active areas of research in differential geometry and its appli-
cations to a variety of subjects in mathematics and physics. A survey in Marcel
Berger’s book [5] includes the major developments of Riemannian geometry, citing
the works of differential geometers of that time. Along with that, the interest also
shifted towards Lorentzian geometry, the mathematical theory used in general rel-
ativity. Since then there has been an amazing leap in the depth of the connection
between modern differential geometry and mathematical relativity, both from the
local and the global point of view.

Motivation of my this paper comes from the historical development of the gen-
eral theory of Cauchy–Riemann (CR) manifolds and their use in mathematical
physics, as follows: In the early 1930, the Riemannian geometry and the theory
of complex variables were synthesized by Kähler which developed (during 1950)
into the complex manifold theory. A Riemann surface, Cn and its projective space
CPn−1 are simple examples of the complex manifolds. This interrelation between
the above two main branches of mathematics developed into what is now known
as Kählerian and Sasakian geometry. Almost complex [35], almost contact [8] and
their complex, totally real, CR and slant submanifolds [13] are some of the most
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interesting topics of Riemannian geometry. By a CR-submanifold we mean a real
submanifoldM of an almostHermitianmanifold (M̄, ḡ, J), carrying a J-invariant dis-
tribution D (i.e., JD = D) and whose ḡ-orthogonal complement is J-anti-invariant
(i.e., JD⊥ ⊆ T(M)⊥), where T(M)⊥ → M is the normal bundle of M in M̄. The
CR-submanifolds were introduced as an umbrella of a variety (such as invariant,
anti-invariant, semi-invariant and generic) of submanifolds. Details on these may be
seen in [4, 35]. On the other hand, aCR-manifold (independent of its landing space) is
a C∞ differentiable manifold M with a holomorphic subbundle H of its complexified
tangent bundle CT(M), such that H ∩ H̄ = {0} and H is involutive (i.e., [X, Y ] ∈ H
for every X, Y ∈ H). For an update on the analysis of CR-manifolds (which is out
of the scope of this paper), we refer a recent book [6] by Barletta, Dragomir and
Duggal. Here we highlight that Blair and Chen [9] were the first to interrelate these
two concepts by proving that proper CR-submanifolds, of a Hermitian manifold,
are CR-manifolds. The study on above-mentioned variety of geometric structures
was primarily confined to Riemannian manifolds and their submanifolds, which
carry a positive-definite metric tensor, until in early 1980, when Beem–Ehrlich [3]
published a book on Global Lorentzian Geometry and a book by O’Neill [30] on
Semi-Riemannian Geometry with Applications to Relativity. Since then considerable
amount ofwork has been done on the study of semi-Riemannian geometry and itsCR-
submanifolds (see Sharma [33] and Duggal [15–18]). As a result, we know that there
are similarities and differences between the Riemannian and the semi-Riemannian
geometries, in particular, reference to Lorentzian case used in relativity.

The objective of this paper is to provide up-to-date information on the Lorentzian
geometry of CR-submanifolds, contact CR-submanifolds and globally framed
CR-submanifolds (M, g) of an indefinite semi-Riemannian manifold (M̄, ḡ). We
focus on those key results whose Lorentzian geometry is different than their corre-
sponding Riemannian geometry. Observe that, contrary to the case of Riemannian
CR-submanifolds and above-stated two other classes, the induced metric g|D, where
D is a distribution of M, has three subcases, namely, (a) g|D is spacelike or (b) g|D
is Lorentzian or (c) g|D is lightlike. For the first two subcases, D is an invariant
submanifold of M, but, the third subcase need not be invariant. We notice that the
geometry of the subcase (a) is mostly similar with the Riemannian case, but, the sub-
case (b) still remains an open problem since g|D Lorentzian is not compatible with
the required Hermitian structure of D (see explanation given in Open problem 1).
One needs to modify the Riemannian definition of CR-submanifolds in order to deal
with the subcase (b). Moreover, the geometry of subcase (c) is quite different. As
this last subcase may be quite new to the readers, we reproduce some of its physical
examples taken from [16, 20]. Also, we refer two papers of Penrose [31, 32] on
physical applications of CR-structures in relativity.
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6.2 Cauchy Riemann(CR) Structures

In general, any n-dimensional complex manifold can be considered as a 2n-
dimensional real manifold with complex coordinates zi = xi + yi for xi, yi as real
coordinates. For any complex manifold there is associated a complex (also called
holomorphic) tangent bundle of the form V = vi∂zi , as opposed to the general form
of a complex valued vector, V = vi∂z′

i
+ v ī∂zī

. Let M be a real 2n-dimensional man-
ifold, then M is said to have a CR-structure if in the tangent space Tx, at each point
x ∈ M, a 2r-real-dimensional subspace Hx of Tx is singled out, called the holomor-
phic tangent space. Hx regarded as r-dimensional complex space and spanned by the
vectors Za = Xa + iYa, for every (1 ≤ a ≤ n) provides a linear operator J satisfying
J2 = −1. Explicitly, JZa = iZa. Such a CR-structure can be realized only if one can
complete a basis for the entire Tx with a complementary set of 2n − 2r vectors. In
1957, Newlander and Nirenberg [27] proved that a real-analytic CR-structure can be
realized in above way provided following integrability relations hold:

[Za, Za′ ] = complex linear combinations of Z ′s, (1 ≤ a, a′ ≤ r)

However, in 1973, Nirenberg [29] proved (by citing some counter examples) that for
a C∞ CR-structure above relations are not sufficient and in this case a non-realizable
CR-structure may arise (for details see Penrose [31]). Here we will only present
results on realizable CR-structures for which we say that (M, J, H) is called a CR-
manifold if it admits a real distribution D of the subspaces Dx = Re(H ⊕ H̄)x such
thatD is invariant (JD = D) with respect to the structure tensor J whereH ∩ H̄ = {0}
and H is involutive, that is, ([X, Y ] ∈ H for every X, Y ∈ H). The theory of CR-
manifolds (independent of its landing space) has twomain branches, namely, analysis
and geometry of CR-manifolds for which we refer two books [14] by Dragomir and
Tomassini and [6] by Barletta et al. in which they also have discussed the interrelation
of these twobranches (also seeBoggess [10]. In this section,we focus on the geometry
branch of a CR-structure.

6.2.1 CR–Lorentzian Structures

Let (M, g, J) be a real 2n-dimensional almost complex manifold with J , its almost
complex structure tensor (J2 = −I), and g ametric tensor onM. Themetric g is either
positive-definite or indefinite (in particular Lorentzian). In order not to overlap with
the contributions of other authors in this monograph, here we assume that the metric
g of M is Lorentzian. With this assumption, we say that the pair (g, J) is an almost
Hermitian structure and M is an almost Hermitian manifold if

g(JX, JY) = g(X, Y), ∀X, Y ∈ T(M).
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Moreover, if J defines a complex structure on M, then (g, J) and M are called
Hermitian structure and Hermitian manifold, respectively. Hermitian condition is
needed to assure the existence of a holomorphic subbundle H of the complexified
tangent bundle CT(M) of M which is required to construct a CR-structure. Unfor-
tunately, in a 1976 book, Flaherty [23] was the first to show that for a real J its
almost complex structure is not Hermitian. Indeed, for a real J , satisfying J2 = −I ,
we observe that the eigenvalues of J are i = √−1 and −i each one of multiplicity
n. What we have then is 2n linearly independent null vectors in complex conjugate
pair. None of these null vectors can be real because the eigenvalues are not real. As
J is real, the only possible signatures of g are either (0, 2n) for positive-definite g
or of type (2p, 2q) with p + q = n for an indefinite g. Thus, although the use of real
J has been effective in the study of Riemannian (with above-stated restrictions for
semi-Riemannian) CR-manifolds and submanifolds, it is not suitable for the class of
Lorentzian manifolds. To explain these two negative results, we take some material
from Flaherty’s book [23] using a local complex coordinates system which has been
used in some problems of general relativity. We know that there do exist complex
Lorentz transformations whose square is minus one. Using this idea, Flaherty [23]
modified the Hermitian structure by replacing real J with a complex valued opera-
tor (we denote it J ) compatible with the Lorentzian metric which also assures the
existence of a holomorphic subbundle H for M. Following is his approach:

For simplicity, take dim(M) = 4 with the Lorentz metric g of signature (− +
++) (although the mathematical results do hold for higher dimensional Lorentzian
manifolds) and expressed in terms of a general coordinate system (xa), where (0 ≤
a ≤ 3). Suppose (ea) = {eo, e1, e2, e3} is a local orthonormal real frames field on
M. Recall the Newman–Penrose (NP) [28] null tetrad T = {�, m, m̄, k} at each point
of M such that �, k are real null vectors, m is a complex null vector and m̄ is its
conjugate complex null vector with g(�, k) = −1 and g(m, m̄) = 1 and all other
products are zero. Let {ωa} = {ω0,ω1,ω2,ω3} be its dual basis. It is always possible
to introduce a NP tetrad locally. Globally, the existence of an NP tetrad is equivalent
to the existence of a global orthonormal basis. The null tetrad T is associated with
the orthonormal basis (ea) as follows:

� = 1√
2

(eo + e1), k = 1√
2

(eo − e1),

m = 1√
2

(e2 + i e3), m̄ = 1√
2

(e2 − i e3).

Therefore, the canonical form of the matrix of g is expressed by

[g] =

⎛

⎜⎜⎝

0 −1 0 0
−1 0 0 0
0 0 0 1
0 0 1 0

⎞

⎟⎟⎠ .
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We know from above discussion that a Lorentzian metric cannot admit a Hermitian
structure defined by a real endomorphism J such that J2 = −I . For this reason, Fla-
herty [23] modified the Hermitian structure using a complex valued endomorphism
J defined by

J = i(ω0 ⊗ E0 − ω1 ⊗ E1 + ω2 ⊗ E2 − ω3 ⊗ E3),

where {Ea} = {�, k, m, m̄}. It is easy to see that J 2 = −I and (g,J ) satisfies the
condition of an almost Hermitian structure of M. Flaherty also derived the modified
integrability conditions (N = 0), where N is the Nijenhuis tensor field with respect
to the complex valued J . If the modified integrability conditions are satisfied then
the Lorentz metric g can be locally expressed as

g = A d z0 d z̄0 + B d z1 d z̄1 + C d z0 d z̄1 + D d z1 d z̄0,

for a complex coordinates system (z0, z1, z̄0, z̄1) and for some functions A, B, C
and D. Examples are vacuum spacetimes, which include Schwarzschild and Kerr
solutions (see Hawking-Ellis [24, pp. 149, 161]).

To recover CR–Lorentzian structure, we let (M, g,J ) be endowed with a mod-
ified Hermitian structure defined by (g,J ) as explained above. Suppose M has a
q-dimensional real distribution D, following are three mutual exclusive cases of the
causal character (see O’Neill [30]) of D.

(a) g|D is positive ⇒ D is spacelike.
(b) g|D is Lorentz ⇒ D is timelike.
(c) g|D is degenerate ⇒ D is lightlike.

Assume thatM has a conformal structure which is needed to preserve the causal char-
acter of D. If (a) or (b) holds then a conformal structure defines another distribution
D⊥ of (2n − q)-dimensional subspaces and

TM = D ⊕ D⊥ and D ∩ D⊥ = {0}.

The modified Hermitian structure by (g,J ) assures the existence of a holomorphic
subbundle H of CT(M) where we set D = Re(H + H̄). Then, (M, g,J , H, D) has
a Lorentzian CR–Lorentzian structure if H ∩ H̄ = {0} and H is involutive, that is,
([X, Y ] ∈ H for every X, Y ∈ H). Observe that since any almost complex manifold
is even dimensional for these two cases, the CR–Lorentzian manifold M and its
distribution D are even dimensional. In next section, we give some examples of
CR–Lorentzian structures.

If (c) holds, then we first need the following:

Proposition 1 ([30]) For a q-dimensional lightlike subspace Dx of a Lorentzian
space TxM, the following are equivalent:

(1) Dx is lightlike.
(2) Dx contains a null vector but not any timelike vector.



156 K.L. Duggal

(3) Dx ∩ ∧x = Lx − 0x, where Lx = Dx ∩ D⊥
x , the 1 -dimensional null space and

∧x is the null cone of TxM̄.

Thus, D lightlike implies that we cannot call D⊥ the orthogonal complement D
since D = D⊥ so D + D⊥ �= TM. In view of this, for lightlike D we consider D̃, the
complementary distribution of D in TM so that

T(M) = D ⊕ D̃, D ∩ D̃ = {0}.

Also D is not invariant by J which further means that we fail to get a holomorphic
distribution. Thus, using above procedure one cannot realize a CR-structure for M.
For this case we proceed as follows:

Since the lightlike D fails to recover a Hermitian structure, its dimension need not
be even. With this set up we form the following exact sequence:

0 → D → D⊥ → D⊥/L → 0, L = D ∩ D⊥,

where the fibres of quotient bundle D⊥/L are (2n − q − 1)-dimensional, well known
as spacelike screen spaces which we denote by Sx. For physical reason, here we con-
struct aCR-lightlike structure for anoriented4-dimensionalLorentzian (called space-
time)manifoldM by setting (n = 2, q = 1). Therefore,D = L and the 2-dimensional
screen Sx is an oriented plane. As Sx is Riemannian, we can work with real operator
J on Sx. Let J act as a rotation in a chosen plane through 90◦. Then, J2 = −1, and J
defines a complex structure on Sx. The complexified space C(S)x can be represented
as a direct sum S+

x ⊕ S−
x , where

S±
x = {u ∈ C(S)x : Ju = ±iu}.

Let H±
x be the subspaces of C(D)x projecting onto S±

x by a canonical map C(D)x →
C(S)x. It is easy to see that

H+
x ∩ H−

x = C(L)x, H+
x + H−

x = C(D)x.

Each H±
x is (maximal) 2-dimensional lightlike subspace of CTx(M). The fact that

a CR-structure, with a lightlike distribution D and a maximal holomorphic space,
say H+

x , can be locally realized on M, comes from the following famous Riemann
mapping theorem:

Any smooth bounded simply connected region in the Argand plane C1
x is holo-

morphically identical with a unit disc.
Note that Poincare, back in 1907, pointed out that the Riemann mapping theorem

for C1 has no analogue in higher complex dimensions. This is why, in general,
non-realizable CR-structures may exist [31] for the case of higher dimensional com-
plex manifolds. See next section for a mathematical model of 2n-dimensional CR-
manifolds with a lightlike real distribution.
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6.2.2 Contact CR–Lorentzian Structures

A (2n + 1)-dimensional differentiable manifold M is called a contact manifold if
it has a global differential 1-form η such that η ∧ (dη)n �= 0 everywhere on M.
For a given contact form η, there exists a unique global vector field ξ, called the
characteristic vector field, satisfying

η(ξ) = 1, (d η)(ξ, X) = 0, ∀ X ∈ T(M).

On a contact manifold M there exists a distribution D (called contact distribution),
given by η = 0, which is far from being integrable. It is known (see Blair [7]) that
the maximum dimension of an integral submanifold of D is n. A Riemannian metric
g is said to be an associated metric of M if there exists a tensor field φ, of type (1, 1)
such that

d η(X, Y) = g(X, φ Y), g(X, ξ) = η(X),

φ2 (X) = − X + η (X) ξ, ∀ X, Y ∈ T(M).

The structure (φ, η, ξ, g) on M is called a contact metric structure and its associated
manifold is called a contact metric manifold which is orientable and odd dimensional
with n ≥ 3. Standard examples of contact manifolds are (i) the odd dimensional
spheres, (ii) tangent or cotangent sphere bundles, (iii) the 3-dimensional Lie-groups
SU(2) and SL(2, R).

In Thermodynamics, we have an example due to Gibbs which is given by the
contact form d u − T d s + p d v (u is the energy,T is the temperature, s is the entropy,
p is the pressure and v is the volume)whose zeros define the laws of thermodynamics.
Details may be seen in Arnold [1].

Related to the focus of this subsection, we now recall that, in 1990, Duggal [17]
introduced a larger class of contact manifolds as follows. Using the same notations
of geometric objects as above, we say that a (2n + 1)-dimensional smooth manifold
(M, g) is called an (ε)-almost contact metric manifold if

φ2 = − I + η ⊗ ξ, η (ξ) = 1,

g(ξ, ξ) = ε, g(φ X, φ Y) = g(X, Y) − ε η(X) η(Y),

where ε = 1 or − 1 according as ξ is spacelike or timelike and rank(φ) = 2 n. It
is important to mention that in above definition ξ is never a lightlike (null) vector
field. If (d η) (X, Y) = g(X, Y), for every X, Y ∈ T(M), then we say that M is
an (ε)-contact metric manifold. If ε = − 1 and the contact distribution D(η = 0)
is positive-definite, then g is Lorentzian and since M is oriantable we say that the
underlying almost contact manifold M is an almost contact spacetime.

Example 1 Let (R2n+1
1 , g) be a(2n + 1)-dimensional Minkowski spacetime with

local coordinates (xi, yi, t) and i = 1, . . . , n. M being time oriented admits a global
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timelike vector field, say ξ. Define a 1-form η = 1
2 (dt − ∑n

1 yi dxi) so that ξ = 2 ∂t is
the characteristic vector field.With respect to the natural field of frames {∂xi ; ∂yi , ∂t},
define a tensor field φ of type (1, 1) by its matrix

(φ) =
⎛

⎝
0n, n In 0n, 1

− In 0n, n 0n, 1

01, n − yi 0

⎞

⎠

Define a Lorentzian metric g with line element given by

ds2 = 1

4

{
n∑

1

( (dxi)2 + (dyi)2) − η ⊗ η

}
.

Then, with respect to an orthonormal basis {Ei, En+i, ξ} such that

Ei = 2 ∂i, En+i = 2 ∂n+i,

φ Ei = 2 (∂i − yi ∂t),

φ En+i = 2 (∂i + yi ∂t),

it is easy to verify that (M, g) is an almost contact spacetime.

Physical Model. Let M̄ = (M2n, ḡ, J2 = −I) be an almost Hermitian manifold
with Hermitian structure defined by ḡ(JX̄, JȲ) = ḡ(X̄, Ȳ), for every vector field X̄,
Ȳ of M̄. Construct product manifold defined by M = (R × M̄, g = −dt2 + ḡ). Let
X = (η(X) d

dt , X̄) be a vector field on M where X̄ is tangent to M, t is a tiemlike
coordinate of R and η(X) is a smooth function on M. Set eta = dt so that xi = ( d

dt , 0)
is a timelike global vector field tangent to M. Let φ be a (1, 1) tensor field on M
defined by

φ(X) = φ

(
η(X)

d

dt
, X̄

)
= (0, JX).

Then, we obtain

φ2(X) = −X + η(X)ξ, φ(ξ) = 0, ηφ = 0, η(ξ) = 1,

g(ξ, ξ) = −1, g(φX,φY) = g(X, Y) + η(X)η(Y),

which shows that (M, g,φ) is an almost contact spacetime manifold. Following is a
physical example extensively used in general relativity: Let Sn

1 be a pseudo-Euclidean
sphere of Lorentzian signature (−1,+ · · · +) defined by

Sn
1 = {x ∈ Rn+1

1 : −x21 + x21 + · · · + x2n+1 = r2 : r > 0}.
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Topologically Sn
1 is R1 × Sn−1 and is a Lorentzian analogue of the sphere whose

curvature is −(1/r2) and it is physically known as de-Sitter spacetime. Thus, as
explained above we say that

Odd dimensional de-Sitter spacetimes can carry a contact structure.

Now we show how to recover a CR-structure for an almost contact spacetime
(M, g). For this we need the following four tensors N (1), N (2), N (3), N (4) defined by
Blair [8, Chap. 4] which will also hold for our class of almost contact spacetime
(M, g):

N (1) = [φ,φ](X, Y) + 2dη ⊗ ξ,

N (2) = (£φXη)(Y) − (£φYη)(X),

N (3) = (£ξφ)X, N (4) = (£ξη)X.

Moreover, the vanishing of N (1) implies the vanishing of other three tensors. Based
on this we say that an almost contact manifold is said to be normal if the tensor N (1)

vanishes, that is, if
[φ,φ] + 2dη ⊗ ξ = 0,

which also holds for an almost contact spacetime. Since φξ = 0 and φ2 = − I +
η ⊗ ξ, the eigenvalues of φ are 0 and ±i, ±i each having multiplicity n. As D is
Riemannian, (φ, g/D) defines an almost complex structure on the distribution D.
Thus the complexification of D in CT(M) can be decomposed at a point x ∈ M
into say H ′

x ⊕ H ′′
x where H ′

x = {X − iφX : X ∈ Dx} and H ′′
x = {X + iφX : X ∈ Dx}.

Then the following result (proved by Ianus [25] for Riemannian contact manifolds)
will also hold for the contact spacetime since the distribution D for both cases is
Riemannian. We reproduce the proof as given in [7].

Theorem 6.1 Let (M, g) be a (2n + 1)-dimensional normal almost contact space-
time whose characteristic vector field ξ is timelike. Then, (M, g, H ′) is a CR-manifold,
where H ′ is a holomorphic subbundle of CT(M)

Proof Since H̄ ′
x = H ′

x and H ′
x ∩ H ′′

x = {0}, it is sufficient to show that for any
X, Y ∈ D, [X − iφX, Y − iφY ] ∈ H ′. Now for anyX, Y ∈ D theNormality condition
[φ,φ](X, Y) + 2dη(X, Y)ξ = 0 becomes

−[X, Y ] + [φX,φY ] − φ[φX, Y ] − φ[X,φy] = 0.

Also from the second normality condition N2 = 0, it is easy to see that

η([φX, Y ] − [φY , X]) = 0.
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Using all this and denoting L(X) = X − φX,∀X ∈ D we obtain

[L(X), L(Y)] = [X, Y ] − [φX,φY ] − i[φX, Y ] − i[φY , X]
= −φ[φX, Y ] − φ[X,φY ] + iφ2[φX, Y ] − iη([φX, Y ])ξ

+ iφ2[X,φY ] − iη([X,φY ]ξ
= −φ([φX, Y ] − iφ[φX, Y ]) − φ([X,φY ] − iφ[X,φY ]) ∈ H ′,

which completes the proof.

Example 2 Recall from previous example the construction of an almost contact met-
ric structure (φ, ξ, η, g) on aMinkowski spacetime (R2n+1

1 , g)with local coordinates
(xi, yi, t) and i = 1, . . . , n, where M admits a global timelike vector field ξ and the
1-form η = 1

2 (dt − ∑n
1 yi dxi). From the matrix expression of φ, one can easily

verify that this almost contact spacetime satisfies the normality condition. Follow-
ing the proof of above theorem, it is straightforward to show that (R2n+1

1 , g) is a
CR-manifold.

Openproblem1. If ξ is spacelike, then, the contact distributionDmust be timelike
for the almost contact spacetime (M, g). This case was not discussed by Duggal in
[17] and, to the best of our knowledge, this is still an open problem. Observe that
due to timelike contact distribution D, as explained in the case of CR–Lorentzian
structures, the real φ cannot act as an almost complex structure operator on D unless
dim(D) = 2. Also, for this reason Ianus’s theorem will not hold for a real φ. Thus,
to define a complex structure (needed to have a holomorphic subspace) and then
to recover a CR-structure for this class, one must either use Flaherty’s method of
replacing real φ with a complex valued operator and follow as explained in previous
subsection or try some other way to show the existence of CR-structure.

6.3 CR–Lorentzian Submanifolds

In differential geometry, CR-structures have a key role in submanifolds theory pri-
marily developed by Chen [11] (1973), Bejancu [4] (1986), Yano [35] (1983) and for
physical applications, Duggal [15] introduced, in 1986, the concept of Lorentzian
CR-submanifolds and established its fruitful interplay with general relativity (see
[16, 17, 19]). Also see two books [20, 21] on the geometry of lightlike (also called
null) submanifolds, including CR-submanifolds. In this section, we use some results
of the works of these researchers as applicable to the Lorentzian CR-submanifolds
of indefinite Hermitian and Kähler manifolds by focusing on those results which are
different than the large number of known results on CR–Riemannian submanifolds,
update on the main results of [16, 19] and propose some open problems.

Indefinite Hermitian andKählermanifolds. Let (M̄, ḡ, J̄) be a 2m-dimensional
semi-Riemannian manifold (m > 1) with an almost Hermitian structure. It is known
that every almost complex manifold with a Riemannian metric admits a Hermitian
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metric, but as we explained in previous section, for real J̄ the signature of ḡ must
be of the type (2p, 2q) with p + q = m for an indefinite metric ḡ, which we now
assume. We highlight that this restriction on the metric of a semi-Riemannian almost
Hermitian manifold (which, unfortunately, is either ignored or not explicitly stated
in some research papers) is an essential requirement. Also note that, in particular, ḡ
Lorentzian is ruled out for real J̄ . An almost Hermitian M̄ is called Hermitian if the
Nijenhuis tensor N of J̄ vanishes i.e.,

N(X, Y) = [J̄X, J̄Y ] − [X, Y ] − J̄[X, J̄Y ] − J̄[J̄X, Y ] = 0,

for all X, Y ∈ T(M̄). The 2-form � of the Hermitian M̄ is defined by �(X, Y) =
ḡ(X, J̄Y). We say that M̄ is a Kählar manifold if � is closed, i.e., d(�) = 0. It is
easy to show that a Hermitian manifold is a Kählar manifold if ∇̄ J̄ = 0, where we
denote by ∇̄ the Levi-Civita connection on M̄. Simple example is complex man-
ifold Cn. Soon we will explain the important use of Kähler structure. Finally, an
indefinite complex space form is a connected indefinite Kähler manifold of constant
holomorphic sectional curvature c denoted by M̄(c) whose curvature tensor field is
given by

R̄(X, Y) = c

4
{ḡ(Y , Z)X − ḡ(X, Z)Y + ḡ(J̄Y , Z)J̄X

− ḡ(J̄X, Z)J̄Y + 2ḡ(X, J̄Y)J̄Z},

for all X, Y , Z ∈ TM̄). Barros and Romero [2] constructed Cm
q , CPm

q (c) and
CHm

q (c), as representative examples of simply connected indefinite complex space
forms according as c = 0, c > 0 and c < 0, respectively.

Let (M, g)be ann-dimensional submanifold of a 2m = (n + r)-dimensional semi-
Riemannian manifold (M̄, ḡ), where g is the non-degenerate metric of M induced
from the metric ḡ of M̄. Then

TM̄ = TM ⊥ TM⊥, TM ∩ TM⊥ = {0}.

Let ∇ be the induced Levi-Civita connection on M. Then there exists a uniquely
defined unit normal vector field, sayn ∈ �(TM̄) and theGauss–Weingarten formulas
are

∇̄XY = ∇XY + B(X, Y)n,

∇̄Xn = −ε An X,

and g(n,n) = ε ∈ {±1}. Assume that (M, g) is Lorentzian and (M̄, ḡ, J̄) is an indef-
inite almost Hermitian manifold. Suppose M has a q-dimensional real distribution
D. As explained in previous section, D is either spacelike or timelike or lightlike. We
discuss these three subcases. If D is spacelike, then following definition of Bejancu
[4] for Riemannian case will also hold for our Lorentzian submanifold (M, g):
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Definition 1 Let (M, g, J) be a Lorentzian submanifold of an indefinite almost Her-
mitian manifold (M̄, ḡ, J̄) such that M admits a spacelike distribution D. Then M is
called a CR–Lorentzian submanifold of M̄ if

(1) D : x → Dx ⊂ Tx(M) is invariant (holomorphic), i.e., J(D) = D.
(2) The complementary orthogonal distribution

D⊥ : x → D⊥ ⊂ Tx(M) is anti-invariant (real), i.e., JD⊥ ⊂ T(M)⊥.

It is important tomention that in previous twopapers [16, 19], above definitionwas
used without stating that for a real J it is valid only if the distribution D is spacelike.
Indeed, if D is timelike, then, as explained in previous section, it cannot be endowed
with an induced Hermitian structure with respect to real J so the condition (1) of
above definition will not hold. We highlight this correction, for this reason we need
an amended definition of CR–Lorentzian submanifolds with a timelike D. Later on
we discuss this case as an open problem.

Example 3 ([16]) Let (M, g) be a 4-dimensional spacetime embedded in a 6-
dimensional Hermitian manifold (M̄, ḡ, J) with the metric ḡ of signature (3, 3) and
J its almost complex structure tensor. Then for a local coordinate system (xr; yr) of
M̄, (r = 1, 2, 3), there exists an orthonormal basis (∂xr ; ∂yr ) such that J∂xr = ∂yr and
J∂r

y = −∂xr , J2 = −I . Let {ea} = (m, m̄, �, k) a null tetrad at each point of M such
that m, m̄ are conjugate complex null vectors and (�, k) are real null vectors with
� · k = −1 and {wa} their dual basis. Construct the embedding of M in such a way
that {ξa} = (∂x1 , ∂x2 , ∂x3 , ∂y1 ) is an orthonormal basis of Tx(M) with its dual {ηa}.
Then,

√
2ξ1 = m + M̄,

√
2ξ2 = i(m̄ − m),

√
2ξ3 = k − �,

√
2ξ4 = k + �,

η1 = w1 + w2, η2 = i(w2 − w1), η3 = w4 − w3, η4 = w3 + w4,

where g(ξa, X) = ηi(X) for i = 1, 2, 3 and g(ξ4, X) = −η4(X) and

g(X, Y) = ηi(X)ηi(Y) − η4(X)η4(Y).

Then, the complexified space CTx(M) is generated by (∂z1 , ∂z̄1 , ∂z2 , ∂z̄2)where ∂z1 =
m and ∂z2 = k(1 − i) − �(1 + i). Therefore, CTx(M) has a holomorphic space H =
{m, m̄}. This,M is a CR–Lorentzian submanifold of M̄ with real (invariant) spacelike
distribution D = {ξ1, ξ2} and D⊥ = {ξ3, ξ4} is timelike.

There is an interesting relation of above example with an important class of the
Einstein–Maxwell theory. For details we refer [16].

It iswell known that for aRiemannian M̄ there exist two subcases, namely invariant
(totally holomorphic) and non-invariant (totally real) CR-submanifolds according as
dim(D⊥) = 0 and dim(D) = 0, respectively. Contrary to this, it was proved in [19]
that “There exists no totally holomorphic CR–Lorentzian submanifold of an indefinite
almost Hermitian manifold”. We also make a correction for the same reason and
say that above result holds only if the distribution D is spacelike because D = TM
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is not possible for a Lorentzian M. We also know that for a Riemennian case, a
CR-submanifold is called proper(nontrivial) if D �= 0 and D �= T(M). Recalling the
notion of a CR-manifold as explained in previous section, Blair–Chen [9] has proved
the following result.

Theorem 6.2 Let M be a CR-submanifold of a Hermitian manifold M̄. If M is
nontrivial (D �= 0 and D �= T(M)), then M is a CR-manifold.

For a proper CR–Lorentzian submanifold with a spacelike invariant distribution
D, the condition D �= 0 is sufficient as D = T(M) is ruled out. Therefore, for this
class of CR–Lorentzian submanifolds, it is sufficient to say that Blair–Chen’s above
result will hold if the spacelike D �= 0. Also, just like a Riemannian case, each real
Lorentzian hypersurface M of M̄ is a proper CR-submanifold.

Now we assume that the Hermitian structure of (M̄, ḡ) is also Kählerian. Before
proceeding further, we first explain why one needs to impose a Kähler structure.
Flaherty [23] has shown that a Hermitian M̄ is Kählerian if and only if, with respect
to a complex coordinate system the Hermitian metric ḡ is locally derivable from a
real scalar potential K. This means that

ḡab̄ = ∂2K/∂za∂z̄b,

where za = xa + iya are complex coordinates (≥ 1a, b ≤ m). The same is true for
the Ricci tensor, i.e.,

Rab = ∂2

∂za∂z̄b
[ln det(ḡcd̄)].

Thus, the computation of the curvature quantities is much simplified using Kähler
structure on M̄.

Definition 2 A CR–submanifold of an almost Hermitian manifold M̄ is called a
CR-product if its both distributions D and D⊥ are integrable and their respective
leaves S1 and S2 are totally geodesic in M.

This definition will also hold for any CR–Lorentzian submanifold, with non-null
distributions D and D⊥, of an indefinite almost Hermitian manifold M̄. We call its
product a CR–Lorentzian product. For the Riemannian–CR-product case, in 1981,
Chen proved following characterization theorem:

Chen [12]: Let M̄ be a Kähler manifold with negative holomorphic bisectional
curvature. Then every CR-product in M̄ is either holomorphic submanifold or totally
real submanifold.

It follows from above discussion that Chen’s above theorem will not hold for a
spacelike invariant distribution D as D �= T(M). Thus, for the spacelike case there
does not exist any totally holomorphic CR–Lorentzian product submanifold. We
leave it as an exercise to verify that several other results of CR–Lorentzian submani-
folds, with spacelike invariant distributions will be different than their corresponding
Riemannian CR-submanifolds.



164 K.L. Duggal

Two Physical Models of CR–Lorentzian Products
Model 1. A product manifold (M = M1 × M2, g = g1 ⊕ g2) is called locally decom-
posable manifold if there exists a local coordinate xi = (xa, xA) in terms of which
the line element of the metric g has the form:

ds2 = gab(x
c)dxadxb + g(AB)(xC)dxAdxB,

where (1 ≤ i, j, k ≤ n); (1 ≤ a, b, c ≤ p) and (p + 1 ≤ A, B, C ≤ n). A 4
-dimensional decomposable spacetime is either the product of a (1, 3)-dimensional
spaces or a product of (2, 2)-dimensional spaces. If (M, g) is aCR–Lorentzian product
spacetime, then, since its non-null invariant distributionD must be even dimensional,
(M, g)must be a product of (2, 2)-spaces. Such spacetimes are candidates of a physi-
cal model of CR–Lorentzian products. Following are two specific examples of (2, 2)
spacetimes taken from Kramer et al. [26]

The only Einstein–Maxwell field which is homogeneous and has a homogeneous
non-singular Maxwell field is the Bertotti–Robinson solution

ds2 = A2(d θ2 + sin2 θ d φ2 + d x2 + sinh2 x dt2)

where (t, x, θ,φ) and A are local coordinates and an arbitrary constant, respectively.
This solution has two families of orthogonal 2-surfaces having equal and opposite
curvatures. Following is second example:

The only conformally flat spacetimes, with non-null electromagnetic field, are
embedding class two (i.e., co-dimension 2) decomposable spacetimes of the prod-
uct of two-dimensional spaces of constant curvature. Both the curvature tensor and
electromagnetic tensor field are constant.

Model 2. A spacetime (M, g) is said to be globally hyperbolic if there exists a
spacelike hypersurface � such that every endless causal curve intersects � once
and only once. Such a hypersurface (if it exists) is called a Cauchy surface. If M
is globally hyperbolic, then (a) M is homeomorphic to a product manifold R × �,
where � is a hypersurface of M, and for each t, {t} × � is a Cauchy surface, (b) if
�′ is any compact hypersurface without boundary, of M, then �′ must be a Cauchy
surface. A simple example is Minkowski spacetime. It has been shown in the works
of Beem–Ehrlich [3] that the globally hyperbolic spacetimes are physically important
spacetimes. Theyhave constructed a product space of a globally hyperbolic spacetime
and a Riemannin manifolds as follows:

Let (M1, g1) and (M2, g2) be Lorentz and Riemannian manifolds, respectively.
Let h : M1 → (0,∞) be a C∞ function and π : M1 × M2 → M1, σ : M1 × M2 →
M2 the projection maps given by π(x, y) = x and σ(x, y) = y for every (x, y) ∈
M1 × M2. Then, define the metric g given by

g(X, Y) = g1(π�X, π�Y) + h(π(x, y)) g2(σ� X, σ� Y), ∀ X, Y ∈ �(TM)

where π� and σ� are, respectively, tangent maps. Now we quote:
Beem–Ehrlich [3] Let (M1, g1) and (M2, g2) be Lorentzian and Riemannian

manifolds, respectively. Then, the Lorentzian warped product manifold (M = M1 ×h
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M2, g = g1 ⊕h g2) is globally hyperbolic if and only if both the following conditions
hold:

(1) (M1, g1)is globally hyperbolic.
(2) (M2, g2) is a complete Riemannian manifold.

Physical examples of warped product spacetimes are: Robertson–Walker,
Schwarzschild and Reissner–Nordström spacetimes. For details on these spacetimes
and their significant physical use in general relativity we refer [3]. Subject to the con-
ditions for a CR-product space, we leave it as an exercise to show that a Lorentzian
warped product manifold is a physical model of CR–Lorentzian submanifolds.

Open problem 2. If the invariant distributionD of CR–Lorentzian submanifold is
timelike, then, using the information of Sect. 2, there is a need tomodify theHermitian
structure as Bejancu’s definition of CR–submanifolds will not hold for real J since
it is not compatible with the Lorentzian metric g|D if D is timelike. This case was
not discussed in [16, 19] and, to the best of our knowledge, this is still an unsolved
problem. To define a complex structure (needed to have a holomorphic subspace) and
then to recover a CR–Lorentzian structure for the timelike class one may either use
Flaherty’s method of replacing real J with a complex valued operator and follow as
explained in Sect. 6.2.1 or try some other suitable way to modify Bejancu’s definition
of CR-submanifolds.

Nowwe construct a mathematical model of a CR–Lorentzian submanifold having
a q-dimensional lightlike distribution.

Theorem 6.3 Let (M, g) be an oriented n-dimensional Lorentzian submanifold of
a 2m-dimensional almost Hermitian manifold (M̄, ḡ, J). Suppose there exists a q-
dimensional lightlike distribution D on TM. Then, (M, g) is a CR–Lorentzian sub-
manifold of (M̄, ḡ, J) with an invariant lightlike distribution D such that

(A) dim(M) ≥ 4, dim(D) = dim(M) − dim(D) − 1 ≥ 2, dim(D̃) ≥ 2,

where D = Re(H + H̄) and D̃ is a complementary distribution to D of TM and
H is the associated holomorphic subbundle of CT(M). Moreover, if the dim(H) is
constant on M, then, M is a CR-manifold.

Proof Following as explained in the 4-dimensional case (see Sect. 2), for a q-
dimensional lightlike distribution D there exist D⊥ and L = D ∩ D⊥ which are n − q
and one-dimensional lightlike distributions on TM. The fibres of the quotient bundle
D⊥/L are (n − q − 1)-dimensional Riemannian screen subspaces denoted by Sx at
each x ∈ M. Then,

(B) : TM = D ⊕orth S ⊕orth L̃, D ∩ D̃ = {0},

where ⊕orth stands for orthogonal direct sum, L̃ is complementary to L in D and
S denote the quotient subbundle of M.Since S is Riemannian, we endow it with a
natural canonical automorphism J , satisfying J2 = −IS . This provides a complex
structure J on S such that
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C(S) = S+ ⊕ S−, S± = {z ∈ C(S) : Jz = ±iz},

whereC(S) denotes the complexified space of S. LetH± be the subbundles ofC(D⊥)

projecting onto C(S±) by a canonical map C(D)⊥ → C(S). It is easy to see that

H+ ∩ H− = C(D), H+
x + H−

x = C(D⊥).

Using the projection C(H±) → C(S±), one can show that each H± is a degenerate
holomorphic subbundle of C(TM) with the induced complex structure J . Indeed,
since J is an isometry, the square of z is equal to that of Jz = ±iz for any z ∈ H±.
The latter square is opposite to that of z; thus the square of z is zero for any z ∈ H±.
Single out a holomorphic subbundle (say H+ = H) and a real J-invariant lightlike
distribution

D = Re(H + H̄), H = {X − iJX : X ∈ D}.

Then, using (B) and the projection C(H±) → C(S±), one can show that each H± is
a degenerate holomorphic subbundle of C(TM) with the induced complex structure
J . Indeed, since J is an isometry, the square of z is equal to that of Jz = ±iz for
any z ∈ H±. The latter square is opposite to that of z; thus the square of z is zero
for any z ∈ H±. Now using hypothesis, we choose the dimension of dim(D) such
that dim(H) is constant on M. Based on this and a paper by Wells [34], we say that
M is a CR–Lorentzian submanifold of M̄, with a real lightlike distribution D. Also
dim(D) ≥ 2 It follows from the relation (B) we say that (A) holds which completes
the proof.

Also recall from [34] that for a CR-submanifold M of M̄ it is well known that
max(n − m, 0) ≤ dim(H) ≤ n

2 . If dim(H) = max(n − m, 0) at each x ∈ M, then M
is called a generic submanifold. Furthermore, note that above proof is much simple
and easy to read that the one given in an earlier paper [19] of Sect. 3 (Singular
CR-structures).

Now we show that some of the key results of the Riemannian CR-submanifolds
will not hold forCR–Lorentzian submanifolds having a lightlike distribution. Firstwe
recall that a submanifold (M, g) is said to be totally umbilical if B(X, Y) = μg(X, Y)

for any vector fields X, Y of M. Moreover, M is totally geodesic if and only if B
vanishes, whereB denotes the second fundamental formofM. Examine the following
two well known Theorems

Bejancu ([35, p. 96]). Any totally umbilical proper CR-submanifold of a Kähler
manifold M̄, with dim(D⊥) > 1, is totally geodesic in M̄.

Blair–Chen ([35, p. 98]). Any totally umbilical proper CR-submanifolds of a
Kähler manifold M̄, with the dim(D⊥) > 1, is locally a direct product of totally
geodesic invariant and anti-invariant submanifolds of M̄.

Above results will also hold for a totally umbilical CR–Lorentzian submanifold
with non-null distribution D for which we quote the following result

Duggal-Sharma [22]. Let (M, g) be a totally umbilical CR–Lorentzian submani-
fold of a Kähler manifold M̄. If dim(D⊥) > 1, then, M is totally geodesic in M̄ if both
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the distributions D and D⊥ are non-null. M is then locally a product of the leaves of
D and D⊥, i.e., M is a CR–Lorentzian product manifold.
The case of lightlike distribution D is different for which we quote:

Duggal [15]. Let M be a totally umbilical proper CR–Lorentzian submanifold
of a Kähler manifold M̄, with a lightlike distribution D. Then, M is not necessarily
totally geodesic in M̄.

Finally, we refer [16, 19] for some physical examples of CR–Lorentzian subman-
ifolds with spacelike and lightlike distributions.

Open problems 3. (a) As Bejancu’s above result is the root of several other
results on the totally umbilical CR-submanifolds, as a chain reaction there may be
more results whichwill not hold for the CR–Lorentzian submanifolds with a lightlike
distribution. We leave this as an open problem.
(b) We propose the following fundamental problem:
Characterize all totally umbilical (respectively, geodesic) Lorentzian submanifolds
of an indefinite Kähler manifold.
For information on a similar problem proposed and worked by Chen we cite [12]
and some other references therein.
(c) The integrability conditions for the existence of non-degenerate distributions D
and D⊥ of a CR–Lorentzian submanifolds follow from the results of Bejancu [4] on
the CR–Riemannian submanifolds. However, the case of lightlike distributions still
remains as an open problem.

6.4 Contact CR–Lorentzian Submanifolds

As explained in previous section, let (M̄, ḡ,φ, ξ, η) be a real (2n + 1)-dimensional
(ε)-almost contact metric manifold whose metric ḡ is semi-Riemannian. Denote by
{ξ} the 1-dimensional distribution spanned by ξ which is either timelike or spacelike
according as ε = −1 or +1, respectively, and ξ is never null. The rank(φ) = 2 n.
The index q of g is odd or even number according as ξ is timelike or spacelike.
This holds since on M̄ one can consider an orthonormal field of frame {E1, . . . , En,
φE1, . . . ,φEn, ξ} with Ei ∈ �(D̄) and ḡ(Ei, Ei) = ḡ(φEi,φEi), where D̄(η = 0)
denotes the contact distribution.

Unfortunately, contrary to the Riemannian case (ε = 1, q = 0) for which there
always exists a Riemannian metric satisfying the structure equations of M̄, there is
no such guarantee for the existence of a non-degenerate metric for a proper semi-
Riemannian manifold M̄. At best the following is known.

Duggal-Bejancu [20]. Let (φ, ξ, η) be an almost contact structure and h0 a metric
on a semi-Riemannian manifold M̄ such that ξ is non-null. Then there exists on M̄ a
(1, 2) type symmetric tensor field ḡ satisfying its almost contact structure equations.

However, on the brighter side, aswe have discussed in previous section onContact
CR–Lorentzian structures, there always exists a Lorentzianmetric ḡ on a M̄ satisfying
its almost contact structure equations if ξ is timelike.
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Moreover, there are restrictions on the signature of ḡ as follows. For an almost
contactmetricmanifold M̄, its 2n-dimensional contact distribution D̄ has an indefinite
Hermitian structure, defined by J = φ/D̄, i.e., we have

ḡ(JX, JY) = ḡ(X, Y),∀ X, Y ∈ T(D̄).

For the endomorphism J , satisfying J2 = − I on D̄, as explained in previous section,
the only possible signatures of ḡ/D̄ are (2p, 2s) with p + s = n. In particular,
(D̄, ḡ/D̄, J) satisfying above condition, cannot carry a Lorentz metric, if J is real.
Subject to these restrictions on ḡ, we have the following two classes of (ε)-almost
contact metric manifolds.

(1) ε = 1, q = 2r. M̄ is spacelike almost contact metric manifold.
(2) ε = −1, q = 2r + 1. M̄ is timelike almost contact metric manifold.

The fundamental 2-form � is defined by

�(X, Y) = ḡ(X, φ Y), ∀ X, Y ∈ TM̄).

Since � also satisfies η ∧ �n �= 0, this (ε)-almost contact metric manifold M̄ is
orientable. Then, M̄ is called a contact manifold if there exists a 1−form η on M̄
such that η ∧ (dη)n �= 0 everywhere. The (ε)-almost contact structure (φ, ξ, η) on
M̄ is said to be normal if

Nφ + 2 d η ⊗ ξ = 0,

whereNφ = [φ,φ] is theNijenhuis tensorfield ofφ.Anormal M̄ is called an indefinite
Sasakian manifold. Moreover, we say that an (ε)-almost contact metric manifold M̄
is an indefinite Sasakian manifold if only if

(∇̄X φ) Y = g (X, Y) ξ − ε η(Y)X, ∀X, Y ∈ TM̄.

By replacing Y by ξ in above we get

∇̄Xξ = −εφX, ∀X ∈ TM̄,

which implies that ∇ξξ = 0, i.e., the characteristic vector field ξ on an indefinite
Sasakian manifold is a Killing vector field.

Finally, we present the following examples of (ε)-Sasakian structures on a semi-
Euclidean manifold R2n+1

q of index q, taken from [21, p. 309]:
Weneed the followingnotations: 0p,k = p × k nullmatrix; Ik = k × k unitmatrix.

For any nonnegative integer s ≤ n we put

εa =
{−1 for a ∈ {1, . . . , s}

1 for a ∈ {s + 1, . . . , n},
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in case s �= 0 and εa = 1 in case s = 0. Consider (xi, yi, z) as Cartesian coordinates
on R2n+1

q and define with respect to the natural field of frames {∂xi , ∂yi , ∂z} a (1, 1)
tensor field φ by its matrix

(φ) =
⎛

⎝
0n, n In 0n, 1

− In 0n, n 0n, 1

01, n εaya 0

⎞

⎠ .

The 1-form η is defined by

η = ε

2

(
dz +

s∑

i=1

yidxi −
n∑

i′=r+1

yi′ dxi′
)

, if s �= 0

and η = ε
2

(
dz − ∑n

1 yi dxi
)
, if s = o. The characteristic vector field is ξ = 2ε∂z. It

is easy to check that (φ, ξ, η) is an (ε)-almost contact structure on R2n+1
q for each s.

Define a semi-Riemannian metric ḡ by the matrix

(ḡ) = ε

4

⎛

⎜⎜⎜⎜⎝

−δij + yiyj −yiyj′ 0s,s Os,n−s yi

−yiyj′ δi′j′ + yi′yj′ 0n−s,s On−s,n−s − yi′

Os,s Os,n−s −Is Os,n−s Os,1

0n−s,s On−s,n−s 0n−s,s In−s On−s,1

yi −yi′ O1,s O1,n−s I

⎞

⎟⎟⎟⎟⎠

for s �= 0, and for s = 0 we get

(ḡ) = ε

4

⎛

⎝
−δij + yiyj 0n,n yi

On,n In On,1

yi O1,n I

⎞

⎠ .

An orthonormal field of frames with respect to above metric is

⎧
⎨

⎩

Ei = 2 ∂yi , Ei′ = 2 ∂yi′ ,

φ Ei = 2 (∂xi − yi ∂z),

φ Ei′ = 2 (∂xi + yi ∂z), ξ

⎫
⎬

⎭ .

It is easy to check that above data provides an (ε)-Sasakian structure on R2n+1
q for

any s ∈ {0, . . . , n}. In case s = 0 and ε = 1 we get the classical Sasakian structure on
R2n+1. If s �= 0, then, we either get a spacelike Sasakian structure onR2n+1

2s for ε = 1
or a timelike Sasakian structure on R2n+1

2(n−s)+1 for ε = −1. In particular, for s = n and
ε = −1 we get Lorentzian Sasakian structure.

Definition 3 Let (M, g) be a real (n + 1)-dimensional Lorentzian submanifold of
M̄ such that M is tangent to the structure tensor ξ. We say that M is a contact CR–
Lorentzian submanifold of M̄ if there exist two differentiable distributions D and D̃
on M satisfying
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(1) TM = D ⊕ (D̃ ⊕ {ξ}) where (D̃ ⊕ {ξ}) is complement to D in TM.
(2) D is invariant with respect to φ, i.e., φ(D) = D.
(3) D̃ is anti-invariant with respect to φ, i.e., φ(D̃) ⊂ T(M)⊥.

Following are three mutual exclusive cases of the causal character of D.

(a) g|D is positive ⇒ D is spacelike and ξ is timelike.
(b) g|D is Lorentz ⇒ D is timelike and ξ is spacelike.
(c) g|D is degenerate ⇒ D is lightlike and ξ is spacelike.

Assume that M has a conformal structure which is needed to preserve the causal
character of D. If (a) or (b) holds then D, D̃ = D⊥ and {ξ} are mutually orthog-
onal to each other and above definition agrees with Bejancu’s [4, p. 100] concept
of “semi-invariant submanifolds” and Yano-Kon’s [35] definition of “contact CR-
submanifolds, both of a Riemannian M̄. Here we are considering a larger class to
accommodate the indefinite metric. We discuss these three cases separately.

Class (a) Denote by 2p and h the real dimensions of Dx and D̃x = D⊥, respectively,
x ∈ M and let codim M = 2m − n = q. Then, just like the Riemannian case, we say
that M is invariant or anti-invariant (totally real) submanifold of M̄ according as
h = 0 or p = 0, respectively. If q = h, then M is called a generic submanifold of M̄.
If p and h are both nonzero, then M is said to be nontrivial (proper).

Example 4 [16] Let π : (M, g) → (M̄, ḡ) be a Lorentzian hypersurface of a (2m +
2)-dimensional almost Hermitian manifold (M̄, ḡ, J). Choose a unit timelike vector
field t normal to M so that Jt is tangent to M. Then, there exists a vector field ξ on M
such that Jt = π�ξ. Define a tensor field φ of type (1, 1) and a 1-form η on M such
that

Jπ�X = π�φX + η(X)t.

Then operating above relation with J we get

−π�X = π�φ
2X + η(φX)t − η(X)π�ξ

and, therefore, the following will hold

φ2 = −I + η ⊗ ξ, ηφ = 0, φξ = 0, η(ξ) = 1.

Thus, (M,φ, η, ξ) has an almost contact structure such that its induced metric
g(X, Y) = ḡ(π�X,π�Y) is compatible with Lorentzian contact structure, with ξ its
timelike characteristic vector field. Indeed, we have

g(X, Y) = ḡ(π�X,π�Y) = g(φX,φY) − η(X)η(Y)

where we have used g(ξ, X) = −η(X). Moreover, φ acts as an almost complex struc-
ture on the Riemannian distribution C defined by (φ, g/C, η = 0). Thus the com-
plexification of C in CT(M) can be decomposed at a point x ∈ M into say H ′

x ⊕ H ′′
x
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where H ′
x = {X − iφX : X ∈ Cp} and H ′′

x = {X + iφX : X ∈ Cx}. Assume M is nor-
nal. Then, following a result of Ianus [25] (see proof of Theorem 3 in Sect. 2.2) we
say that M a contact spacetime manifold.

One can verify that the geometric results of class (a) contact CR–Lorentzian
submanifolds will be similar with the Riemannian case since for this class both the
distributions D and D⊥ are spacelike. For example, the integrability results of the
triplet (D, D⊥, ξ) (as discussd in [4] for theRiemannian case)will be same.Moreover,
following results (taken fromYano-Kon’s [35] book) on the totally umbilical or totally
geodesic submanifolds will also hold for the contact CR–Lorentzian submanifolds.

(1) Let M be a submanifold, tangent to the structure tensor field ξ, of a Sasakian
manifold M̄. If M is totally umbilical, then M is totally geodesic and invariant sub-
manifold of M̄.

(2) If M is anti-invariant submanifold, tangent to the structure tensor field ξ, of a
Sasakian manifold M̄, then, M is not totally umbilical in M̄
Along with the geometry of totally umbilical or totally geodesic submanifolds, for
contact CR-submanifolds there is another related concept defined as follows: A
contact CR-submanifold M is said to be totally contact umbilical if there exists a
normal vector field H such that

B(X, Y) − g(φX,φY)H + ηXB(Y , ξ) + η(Y)B(X, ξ)

for any vector fields X, Y tangent to M, where we denote B the second fundamental
form. In particular,M is totally contact geodesic ifH = 0 in above relation. Following
main result on totally contact umbilical submanifolds will also hold for this class of
contact Lorentzian submanifolds:

Bejancu [4].Any proper totally contact umbilical contact CR-submanifold M of a
Sasakian manifold M̄ is a totally contact geodesic submanifold of M̄ if dim(D⊥) > 1.
M is then, locally, a product M1 × M2, where M1 (resp. M2) is totally geodesic
invariant (resp. anti-invariant) submanifold of M and ξ is normal to M2.

The new information is use of some results on contact CR–Lorentzian subman-
ifolds in other branches of mathematical physics where the metric is indefinite,
in particular, general relativity. For example, above result of Bejancu serves as a
link between a class of decomposable Lorentzian manifolds with the contact CR–
Lorentzian submanifolds of dimension ≥ 5.

Open problem 4. If the invariant distribution D of contact CR–Lorentzian sub-
manifold is timelike, then, using the information of Sect. 2, there is a need to modify
the induced Hermitian structure of g|D as the Riemannian definition of contact CR-
submanifolds will not hold for real φ since it is not compatible with the induced
Lorentzian metric on timelike D. This case was not discussed in [16] and, to the
best of our knowledge, is still an unsolved problem. To define a complex structure
(needed to have a holomorphic subspace) for recovering a contact CR–Lorentzian
structure for this class (b) one may either use Flaherty’s method of replacing real φ
with a complex valued operator and follow as explained in Sect. 2 or try some other
suitable way to modify the definition of contact CR-submanifolds.
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Now we deal with class (c) of a contact CR–Lorentzian submanifold for which
g|D is lightlike. The following theorem will hold (proof is common with the proof of
Theorem 3).

Theorem 6.4 Let (M, g) be an orientable Lorentzian submanifold of an almost con-
tact manifold (M̄, ḡ,φ), with its structure vector field ξ tangent to M. Suppose there
exists a lightlike distribution D on TM. Then, (M, g) is a a contact CR–Lorentzian
submanifold of (M̄, ḡ, J) with an invariant lightlike distribution D such that

(A) : dim(M) ≥ 4, dim(D) = dim(M) − dim(D) − 1 ≥ 2, dim(D̃) ≥ 1,

where D = Re(H + H̄), (D̃ + {ξ}) is complementary distribution to D of TM, H is
the associated holomorphic subbundle of CT(M) and ξ is spacelike.

Example 5 Let (M, g) be a 4-dimensional Lorentzian manifold embedded in a
5-dimensional Minkowski space R5

1. With respect to a local coordinate system
(x, s, y, z, t) on R5

1, we construct an almost contact structure (φ, η, ξ) with η =
dz − ydx − t and ξ = ∂z and ∂t timelike. Thus, there exists an orthonormal φ-basis
(X1, X2, Y1, Y2, ξ) for R5

1 such that

X1 = ∂y, X2 = ∂t, Y1 = ∂x + y∂z, Y2 = ∂s + t∂z.

Then, the restriction J of φ to the contact distribution D (defined by η = 0) generates
a Riemannian almost complex structure onD such that JXi = Yi and JYi = −Xi, (i =
1, 2). Now we construct the embedding so that, with respect to a quasi-orthonormal
basis (k, X, ξ, �) of Tx(M), the following holds

√
2X = X1 + Y1,

√
2k = ∂t − Y2,

√
2� = ∂t + Y2, ξ = ∂z,

where k and � are real null vectors of M. Then M can be realized as a contact CR–
Lorentzian submanifold of R5

1 with a real lightlike distribution D = {k, X}. Indeed,
D is lightlike as it has a null vector k and no timelike vector (see Proposition 1) with
spacelike ξ.

As we noticed in previous subsection, the local geometry of the lightlike case is
quite different from the Riemannian case. Indeed, observe that it is obvious from
above theorem that there exists no invariant (resp. anti-invariant) contact Lorentzian
CR-submanifolds of an indefinite almost contact manifold, with a lightlike distribu-
tion. Therefore, these submanifolds are a subclass of CR-manifolds. Moreover, we
refer [16] for two results on the non-existence of totally umbilical or totally geodesic
submanifolds with lightlike ditribution.
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6.4.1 Lorentz Framed CR-manifolds

A real (2n + q)-dimensional smooth manifold M admits an f -structure [35] if there
exists a non-null smooth (1,1) tensor field φ, of the tangent bundle TM, satisfying

φ3 + φ = 0, rank (φ) = 2n.

An f -structure is a generalization of almost complex (q = 0) and an orientable almost
contact (q = 1) structure. Corresponding to two projection operatorsP andQ applied
to TM, defined by

(i) P = −φ2, (ii) Q = φ2 + I,

where I is the identity operator, there exist two complementary distributions D and
D̃ such that dim(D) = 2n and dim(D̃) = q. The following relations hold

φP = Pφ = φ, φQ = Qφ = 0, φ2P = − P, φ2Q = 0.

Thus, we have an almost complex distribution (D, J = φ/D, J2 = −I) and φ acts
on D̃ as a null operator. Assume that D̃x is spanned by q globally defined orthonormal
vectors {Ua} at each point x ∈ M, (1 ≤ a, b, . . . ≤ q), with its dual set {ua}. Then

φ2 = − I + ua ⊗ Ua.

In the above case, M is called a globally framed (or simply a framed) manifold and
we denote its framed structure by (M,φ, Ua). The following holds

φUa = 0, ua ◦ φ = 0, ua(Ub) = δa
b .

A framed structure (M,φ, Ua) is said to be normal if the torsion tensor Sφ of φ is
zero, i.e., if

Sφ ≡ Nφ + d ua ⊗ Ua = 0,

where Nφ is the Nijenhuis tensor field of φ. Now consider a semi-Riemannian metric
g of index 0 < v < 2m + n, on M with an f -structure. We say that the pair (φ, g)

has an indefinite metric structure if

g(φX,φY) = ḡ(X, Y) − εa ua(X)u
a(Y),

g(X, Ua) = εa ua(X),

where εa = + 1 or− 1 or 0 according as the correspondingUa is spacelike or timelike
or null, respectively. In the above case, we say thatM is a metric framedmanifold and
its associated structurewill be denoted by (M,φ, g, Ua). Now, the question iswhether
there exists an arbitrary semi-Riemannian metric g for a framed M with above metric
condition. Unfortunately, contrary to the case of Riemannian framed manifolds (cf.
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Blair [8]), the answer to the above question is negative. For details on this see [20, pp.
213–215]. On the brighter side, in the same reference it has been proved that a metric
framed manifold (M,φ, g, Ua) can carry a Lorentzian metric, which we assume.
Following the terminology introduced by Duggal [18], we say that (M,φ, g, Ua) is a
Lorentz framed structure and M a Lorentz framed spacetime if g is Lorentzian. Also,
on a metric framed manifold M, its 2n-dimensional distribution (D, g/D, J|φ) has
indefinite Hermitian structure. Since J is real, as discussed before, the only possible
signatures of g/D are are either (0, 2m) or (2p, 2q) with p + q = m. In particular,
(D, g/D, J) satisfying Hermitian condition cannot carry a Lorentz metric unless
dim(D) = 2.

We list the following results taken from [18].
(A) For a metric framed manifold (M,φ, g, Ua) with exactly one Ua tiemlike, the

following are equivalent:
(1) M is Lorentz framed manifold.
(2)D and D̃ = D⊥ are spacelike and timelike, respectively, exceptwhendim(D) =

2, then D timelike and D⊥ is possible.
(B) For a metric framed manifold (M,φ, g, Ua) with exactly one null Ua, the

following are equivalent:
(1) M is Lorentz framed manifold with dim(D̃) ≥ 2.
(2)D and D̃ �= D⊥ are both lightlike, i.e., they each contain exactly one null vector

and no timelike vector.
Finally, we quote the following result as a characterization of CR-submanifolds in
terms of framed structures:

Theorem 6.5 [35, p. 87] In order for a submanifold M of a Kählerian manifold M̄
to be a CR-submanifold, it is necessary and sufficient that M and the normal bundle
of M, both, have a framed structure

This result will also hold for a CR–Lorentzian or contact CR–Lorentzian M of an
indefinite Kählerian or Sasakian manifold, respectively.

Following the terminology introduced by Blair [8], we say that a normal Lorentz
framed manifold is a K-manifold if its 2-form �̄ is closed (i.e., d�̄ = 0). Since
u 1 ∧ · · · ∧ un ∧ �̄m �= 0, a K-manifold is orientable. Furthermore, we say that a
K-manifold is a C-manifold if each dua = 0.

Physical applications: For this purpose- we need the following results on
Riemannian framed manifolds which will also hold for a lorentz framed mani-
fold(details on their proofs may be seen in [8]).

• On a K-manifold, the vector fields U1, . . . , Un are Killing.
• A (2m + n)-dimensional C-manifold M is locally decomposable manifold of

the product M = N2m × Ln, where N2m is a Kaehler manifold and Ln is an Abelian
group manifold (i.e., n one-dimensional manifolds).

Observe that above two results also hold for a Lorentz framed manifold (proofs
are common). Also note that for a Lorentz framed M, the Abelian group manifold Ln

will have a Minkowski metric with n ≥ 2. It follows from above two results that a C-
manifold admits an n-parameter Abelian isometry group structure, generated by its
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n Killing vector fields U1, . . . , Un. Physically, such a symmetry has been extremely
useful in several aspects of general relativity theory. For example, since the Einstein’s
field equations are a complicated set of nonlinear partial differential equations, most
explicit solutions have been found by assuming one or more Killing vector fields. In
particular, the existence of Killing symmetry has been in the study of null(lightlike)
hypersurface which may be models of a Killing horizon.

Now we let (M, g) belong to a class of Einstein–Maxwell spacetimes for which
the electromagnetic field Fab is non-singular, which is a skew-symmetric (2-form)
tensor of type (0, 2). Consider the following three complex functions, calledMaxwell
scalar fields (see details in [18]):

φ0 = 2Fab�
amb, φ1 = Fab(�

akb + m̄amb), φ2 = 2Fabm̄amb,

Then, the general form of Fab is given by

Fab = −2Reφ1�[akb] + 2iImφ1m[am̄b] + φ2�[amb]
+ φ̄2�[am̄b] − φ0k[am̄b] − φ̄0k[amb].

For this class we know from [18] that φ1 is the only surviving Maxwell scalar. We
are interested in a simple Fab and, therefore, φ1 is either real or pure imaginary. For
this subcase, it follows from the general expresion of F that its canonical form is
given by

Fab = −2Re(φ1) �[anb] or 2 i Im(φ1) m[am̄b], det(Fab) = 0.

Consider a homogeneous spacetimes for which φ1 is constant. Set |φ1
2| = 1 for both

the real or pure imaginary cases. Now define a (1, 1) tensor field f ≡ (f a
b ), on the

tangent space Tp(M), at each point p ∈ M, such that f a
b = gac Fcb, i.e., F(X, Y) =

g(X, fY), for any vector fields X, Y of M. It follows from the well known Cayley–
Hamilton theorem, that f satisfies its own minimum characteristic polynomial equa-
tion: f 3 ± f = 0, where the sign ± depends on the choice of Im(φ) or Re(φ). We
choose

f 3 + f = 0, rank(f ) = 2.

Thus M admits a Lorentz framed structure (g, f ). It is important to mention that a
homogeneous spacetime (M, g), with simple F, inherits a metric f -structure without
imposing any geometric condition. Finally we quote the following result

Theorem 6.6 (Duggal [18]) Let (M, g) be a homogeneous spacetime with a simple
electromagnetic field F and a normal f -structure (g, f , Nf ). Then, M admits a 2-
parameter group of Killing vector fields

As a final remark we say that, based on Theorem 6.5 and above Theorem 6.6, there is
link between a class of homogeneous spacetimeswith a non-singular electromagnetic
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field F and CR–Lorentzian submanifolds and the existence of a 2-parameter group
of Killing vector fields.
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Chapter 7
Submanifold Theory in Holomorphic
Statistical Manifolds
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7.1 Introduction

In 1980s, the history of statistical manifolds has started from investigations of geo-
metric structures on sets of certain probability distributions to be applied to the theory
of statistical inference as information geometry. Let us consider the set of all normal
distributions, for example. This set can be identified as the upper half plane, because it
is parametrized by the mean and variance of each element. What geometric structure
is useful for statistics on this set? An answer is given as a pair of a Riemannian metric
called the Fisher information metric and an affine connection called the Chentsov–
Amari connection. Roughly speaking, we may consider that such a pair in this case
gives rise to the Poincaré metric and the standard flat connection of this upper half
plane. By generalizing important relations, we have reached the notion of a statistical
manifold, that is, a manifold with a statistical structure (Definition 1). The point is
that we equip a Riemannian manifold with an affine connection besides the Levi–
Civita connection. In this case, we naturally get another affine connection called
the dual connection, from which various dualistic geometric objects arise. Hence
this establishes a new aspect of geometry. We remark that geometry of statistical
manifolds should be reduced to one of the Riemannian manifolds if the attached
connection coincides with the Levi–Civita connection.
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Beyond expectations, statistical manifolds are familiar to geometers because they
have appearedwith alternate names in various research fields in differential geometry,
for example, in the submanifold theory and in Hessian geometry (see [13, 18] and
references therein). For geometers, it is natural to try to build the submanifold theory
and the complex manifold theory of statistical manifolds. In fact, we have several
researches concerning on statistical submanifolds, for example, [2, 8, 9, 21], and on
“complex” statistical manifolds, for example, [16, 19].

Let us treat here a holomorphic statistical manifold (Definition5). By definition,
it can be considered as a generalization of a special Kähler manifold (see [1]). We
will define the holomorphic sectional curvature for holomorphic statistical structures
(Definition 6). It is an interesting and important problem to classify the holomorphic
statistical manifolds of constant holomorphic sectional curvature. Although it has
not been sufficiently studied, we will proceed to their submanifold theory here. The
goal of this article is to give the basics for statistical submanifolds in holomorphic
statistical manifolds apart from information geometry.

The study on CR-submanifolds in Kähler manifolds has long history (see Bejancu
[3]). We can find many theorems in the textbook [22], for example. In this article, we
generalize such classical theorems to our setting. In this direction, Milijević obtained
several results [14, 15]. Let us now glance one of our theorems (see Theorem 7.6 for
a precise statement). We consider a Lagrangian submanifold in a holomorphic sta-
tistical manifold of constant holomorphic sectional curvature. If the shape operator
and the dual shape operator commute, then the submanifold is of constant sec-
tional curvature. If the attached affine connection of the ambient space is the Levi–
Civita connection, then the dual shape operator coincides with the original one, and
Theorem 7.6 is reduced to a well-known property for a Lagrangian submanifold
in a complex space form. The readers will find that it can be proved just like the
classical case, and that many theorems can be modified to our setting. This article is
written for beginners at the CR-submanifold theory. If the readers are familiar with
it, they can reconsider their favorite theorems in our statistical submanifold setting.
By contrast we would like to remark here that it is important to proceed to the study
on properties of statistical submanifolds which cannot be obtained by modifications
of the classical setting.

7.2 Statistical Manifolds

Throughout this paper, M denotes a smooth manifold of dimension n ≥ 2, and all
the objects are assumed to be smooth. �(E) denotes the set of sections of a vector
bundle E → M. For example, �(TM(p,q)) means the set of all the tensor fields on M
of type (p, q).

In this section, we review the intrinsic theory of statistical manifolds. Espe-
cially, we give a definition of the sectional curvature for a statistical manifold.
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Definition 1 Let ∇ be an affine connection of M, and g a Riemannian metric on M.
(1) The affine connection ∇∗ of M defined by

Xg(Y , Z) = g(∇XY , Z) + g(Y ,∇∗
XZ), X, Y , Z ∈ �(TM), (7.1)

is called the dual connection of ∇ with respect to g.
(2) The triplet (M,∇, g) is called a statistical manifold if the torsion tensor field

of ∇ vanishes and ∇g ∈ �(TM(0,3)) is symmetric.

If (M,∇, g) is a statistical manifold, so is (M,∇∗, g).

Example 1 (1) Let (M, g) be a Riemannian manifold, and denote the Levi–Civita
connection of g by ∇g or ∇̂. Then (M, ∇̂, g) is a statistical manifold. We have
(∇̂)∗ = ∇̂.

(2) Let M ↪→ R
n+1 be a locally convex hypersurface in the (n + 1)-dimensional

Euclidean space, and g, h the first and second fundamental forms, respectively. Then
(M,∇g, h) is a statistical manifold. In fact, h is a Riemannian metric on M, and the
Codazzi equation (∇g

Xh)(Y , Z) = (∇g
Y h)(X, Z) holds.

Example 2 The triple ((R+)n, D, g0) defined below is a statistical manifold.

(R+)n := {y = t(y1, . . . , yn) ∈ R
n | y1 > 0, · · · , yn > 0},

g0 :=
n∑

j=1

(dyj)2 = (the Euclidean metric)|(R+)n ,

D : D∂i ∂j = −δij(y
j)−1∂j,

where ∂i := ∂/∂yi.

Example 3 For x ∈ � := {1, . . . , n + 1} ⊂ Z and

η ∈ �n :=
{

η = t(η1, . . . , ηn) ∈ R
n

∣∣∣∣ ηi > 0,
n∑

l=1

ηl < 1

}
,

we set

p(x, η) :=

⎧
⎪⎨

⎪⎩

ηi, x = i ∈ {1, . . . , n} ⊂ Z,

1 −
n∑

l=1

ηl, x = n + 1,

which is a positive probability density function on � parametrized by η. Thus �n

can be considered as the parameter space of the family of all the positive probability
densities on the finite set �.

The Fisher information metric gF for �n � η 	→ p(·, η) is defined as
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gF
η(∂i, ∂j) =

∑

x∈�

{∂i log p(x, η)}{∂j log p(x, η)}p(x, η)

= (ηi)−1δij +
(
1 −

n∑

l=1

ηl

)−1

,

where ∂i := ∂/∂ηi. The exponential connection ∇(e) (the Chentsov–Amari connec-
tion) for �n � η 	→ p(·, η) is defined by

gF
η (∇(e)

∂i
∂j, ∂k) =

∑

x∈�

{∂i∂j log p(x, η)}{∂k log p(x, η)}p(x, η)

= −(ηi)−2δijδjk −
(
1 −

n∑

l=1

ηl

)−2

.

Then (�n,∇(e), gF) is a statistical manifold.

For an affine connection ∇, we set

R∇(X, Y)Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z

for X, Y , Z ∈ �(TM), and denote R∇ by R, R∇∗
by R∗ for short. We denote g by 〈 , 〉

if there is no danger of confusion.
A statistical manifold is called a Hessian manifold if∇ is flat, that is, the curvature

tensor field R identically vanishes. We remark that the statistical manifolds given in
Examples 2 and 3 are Hessian manifolds.

Lemma 1 For a statistical manifold (M,∇, g), the following hold for X, Y , Z, W ∈
�(TM):

〈R(W, Z)Y , X〉 = −〈R(Z, W )Y , X〉, (7.2)

〈R∗(W, Z)Y , X〉 = −〈R∗(Z, W )Y , X〉, (7.3)

〈R(Z, W )X, Y〉 = −〈R∗(Z, W )Y , X〉, (7.4)

R(Z, W )Y + R(W, Y)Z + R(Y , Z)W = 0, (7.5)

R∗(Z, W )Y + R∗(W, Y)Z + R∗(Y , Z)W = 0. (7.6)

Proof The formulas (7.2) and (7.3) followdirectly from thedefinition of the curvature
tensor field, and (7.4) from (7.1). The first Bianchi identity implies the formulas (7.5)
and (7.6) because ∇ and ∇∗ are of torsion free. �

Definition 2 For a statistical manifold (M,∇, g), we define

S(∇,g)(X, Y)Z = 1

2
{R∇(X, Y)Z + R∇∗

(X, Y)Z}
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for X, Y , Z ∈ �(TM), and denote S(∇,g) by S for short. We temporarily call S ∈
�(TM(1.3)) the statistical curvature tensor field of (M,∇, g).

Then the following formulas hold:

〈S(W, Z)Y , X〉 = −〈S(Z, W )Y , X〉, (7.7)

〈S(Z, W )X, Y〉 = −〈S(Z, W )Y , X〉, (7.8)

S(Z, W )Y + S(W, Y)Z + S(Y , Z)W = 0, (7.9)

〈S(X, Y)W, Z〉 = 〈S(Z, W )Y , X〉. (7.10)

Proof Lemma 1 implies the formulas (7.7)–(7.9), fromwhich (7.10) follows because
the same argument for Riemannian connections works (see [11, Vol.1]). �

Definition 3 Let (M,∇, g) be a statistical manifold. For x ∈ M and a two-
dimensional subspace � = spanR{v,w} of TxM,

〈Sx(v,w)w, v〉
〈v, v〉〈w,w〉 − 〈v,w〉2

is called the sectional curvature of (M,∇, g) for �. A statistical manifold (M,∇, g)

is said to be of constant sectional curvature k(∈ R) if it is constant k for x and �.

The proof of the well-definedness is similar to the Riemannian geometric case,
because it is given in linear algebra and the conditions (7.7)–(7.10) are the same as
the ones for Riemannian case.

Remark 1 (1) The sectional curvature of a statistical manifold (M,∇, g) is constant
k if and only if

S(X, Y)Z = k{〈Y , Z〉X − 〈X, Z〉Y}

for X, Y , Z ∈ �(TM).
(2) If (M,∇, g) is of constant curvature k in Kurose’s sense (see [12]), that is,

R(X, Y)Z = k{〈Y , Z〉X − 〈X, Z〉Y}, X, Y , Z ∈ �(TM),

then the sectional curvature is constant k. In fact, by (7.4) if it is of constant curvature
k, so is the dual statistical manifold (M,∇∗, g).

(3) If ∇ is the Levi–Civita connection of g, the definition of sectional curvature
coincides with the standard one.

Definition 4 Let (M,∇, g) be an n-dimensional statistical manifold and S ∈ �

(TM(1,3)) the statistical curvature tensor field. We define L ∈ �(TM(0,2)) and ρ ∈
C∞(M) by
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L(Y , Z) = tr{X 	→ S(X, Y)Z} =
n∑

i=1

〈S(ei, Y)Z, ei〉,

ρ = trgL =
n∑

i=1

L(ei, ei)

for any Y , Z ∈ �(TM), where {e1, . . . , en} is a local orthonormal frame on M. Fur-
thermore, we write

‖S‖2 =
n∑

k,j,i,h=1

〈S(ek, ej)ei, eh〉2, ‖L‖2 =
n∑

j,i=1

(L(ej, ei))
2.

Remark 2 For ann-dimensional statisticalmanifold (M,∇, g) the following inequal-
ities hold:

‖L‖2 ≥ 1

n
ρ2, ‖S‖2 ≥ 2

n(n − 1)
ρ2.

In the first inequality, the equality holds if and only if L(X, Y) = ρ
n 〈X, Y〉 for any

X, Y ∈ �(TM). In the second inequality, the equality holds if and only if S(X, Y)Z =
ρ

n(n−1) {〈Y , Z〉X − 〈X, Z〉Y} for any X, Y , Z ∈ �(TM).

In fact, the vector space Mn(R) of all n × n-matrices over R can be identified n2-
dimensional Euclidean space (Rn2 , 〈·, ·〉). For E = (

δji
)
, L = (

L(ej, ei)
) ∈ Mn(R)

we have

ρ2 = 〈E, L〉2 ≤ ‖E‖2‖L‖2 = n‖L‖2.

Similarly, for F = (
δjiδkh − δkiδjh

)
, S = (〈S(ek, ej)ei, eh〉

) ∈ Mn2(R), we obtain

(2ρ)2 = 〈F, S〉2 ≤ ‖F‖2‖S‖2 = 2n(n − 1)‖S‖2,

which completes the proof.
Remark that even if we know S(X, Y)Z = ρ

n(n−1) {〈Y , Z〉X − 〈X, Z〉Y}, we cannot
conclude that it is of constant sectional curvature. In fact, we can construct coun-
terexamples from Hessian manifolds of constant Hessian curvature by using (7.17).

7.3 Holomorphic Statistical Manifolds

We continue to study the intrinsic properties of statistical manifolds. In this section,
we proceed to their complex geometry.
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Definition 5 Let M be an almost complex manifold with almost complex structure
J ∈ �(TM(1,1)). A quadruplet (M,∇, g, J) is called a holomorphic statistical mani-
fold if (1) (∇, g) is a statistical structure on M, and (2) ω is a ∇-parallel 2-form on
M, where ω is defined by ω(X, Y) = g(X, JY).

A holomorphic statistical manifold is considered as a Kähler manifold with a
certain connection. In fact, the skew-symmetricity ofω means that (g, J) is an almost
Hermitian structure, and the condition ∇ω = 0 implies that ω is closed since ∇ is of
torsion free.

A holomorphic statistical manifold (M,∇, g, J) is nothing but a special Kähler
manifold if ∇ is flat. See [1] for example.

Lemma 2 The following hold for a holomorphic statistical manifold (M,∇, g, J):

∇J = ∇∗, where ∇J
XY = J−1∇X(JY), (7.11)

∇X(JY) = J∇∗
XY , (7.12)

R(X, Y)JZ = JR∗(X, Y)Z. (7.13)

Proof The formula (7.11) is given in [8], for example. The properties (7.12) and
(7.13) follow directly from (7.11). �

Lemma 3 Let (M,∇, g, J) be a holomorphic statistical manifold. The following
holds for X, Y , Z, W ∈ �(TM):

〈S(Z, W )JY , JX〉 = 〈S(JZ, JW )Y , X〉 = 〈S(Z, W )Y , X〉. (7.14)

Proof The formula (7.13) implies (7.14) by (7.10) immediately. �

Definition 6 A holomorphic statistical manifold (M,∇, g, J) is said to be of con-
stant holomorphic sectional curvature k(∈ R) if the sectional curvature of (∇, g) is
constant k for any x ∈ M and for any J-invariant 2-dimensional subspace � of TxM.

Then, the formula

S(X, Y)Z = k

4
{g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX − g(JX, Z)JY

+ 2g(X, JY)JZ} (7.15)

holds for X, Y , Z ∈ �(TM).

If ∇ is the Levi–Civita connection of g, the notion of holomorphic sectional
curvature coincides with the standard one in Kähler geometry.

Lemma 4 Let (M,∇, g, J) be a holomorphic statistical manifold, and ϕ a function
on M. Define an affine connection ∇ϕ = ∇ + ϕK, where K ∈ �(TM(1,2)) is given
as ∇ − ∇̂.
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(1) (M,∇ϕ, g, J) is also a holomorphic statistical manifold.
(2) The following hold:

R∇ϕ

(X, Y)Z = R(X, Y)Z + ϕ{(∇XK)(Y , Z) − (∇Y K)(X, Z)}
+ϕ2[KX , KY ]Z + (Xϕ)KY Z − (Yϕ)KXZ, (7.16)

S(∇ϕ,g)(X, Y)Z = S(X, Y)Z + (ϕ2 + 2ϕ)[KX , KY ]Z
= (ϕ + 1)2S(X, Y)Z − ϕ(ϕ + 2)̂R(X, Y)Z, (7.17)

where R̂ is the curvature tensor field of the Lev–Civita connection ∇̂.

This is obtained by direct calculation. Remark that the formula R̂(X, Y)Z =
S(X, Y)Z − [KX , KY ]Z holds for X, Y , Z ∈ �(TM). We also remark that there is
a misprint in the formula corresponding to (7.16) in [8, Remark 2.7].

Example 4 For k ∈ R, let I be an interval in {t > 0 | 1 − 2kt3 > 0}, and set a domain
� = I × R in the (u1, u2)-plane R2. J denotes the standard complex structure on �,

determined by J∂1 = ∂2, where ∂j = ∂

∂uj
. Define a Riemannian metric g and an

affine connection ∇̃ on � by

g = u1{(du1)2 + (du2)2},
∇̃∂1∂1 = −1

2
ϕ(u1)−1∂1,

(7.18)

∇̃∂1∂2 = ∇̃∂2∂1 = (u1)−1

(
1 + 1

2
ϕ(u1)

)
∂2,

∇̃∂2∂2 = 1

2
ϕ(u1)−1∂2,

(7.19)

where
ϕ(t) = −1 ±

√
1 − 2kt3. (7.20)

Then (�, ∇̃, g, J) is a holomorphic statistical manifold of constant holomorphic
sectional curvature k.

We obtain the above example as follows: As the first step, we construct a special
Kähler domain (�(= (0,∞) × R),∇, g), using Cortés and his collaborators’ idea
(see [6], for example). Take a complex coordinate z = u1 + √−1u2, and a holo-
morphic function F(z) =

√−1
6 z3. Then a Riemannian metric g = ImFzzdzdz and an

affine connection ∇ such that x = u1 and y = ReFz become affine coordinates give
a special Kähler structure. Namely, we calculate g as in (7.18) and ∇ as

∇∂1∂1 = ∇∂2∂2 = 0,

∇∂1∂2 = ∇∂2∂1 = (u1)−1∂2. (7.21)



7 Submanifold Theory in Holomorphic Statistical Manifolds 187

Remark that it is a holomorphic statistical manifold with S = 0. Due to Lemma 4,
(�,∇ϕ, g) for a function ϕ is still a holomorphic statistical manifold. As the second
step, for given K = ∇ − ∇̂ and k, find ϕ such that (7.15) and (7.17) hold. Thus we
obtain ∇̃ = ∇ϕ in (7.19) and (7.20).

According to the sign in (7.20), we have two holomorphic statistical structures,
which are corresponding to the pair of one and its dual. Since (�, ∇̃, g) is of complex
one dimension, it is of constant sectional curvature k in the sense of Definition 3.
However, we remark that it is not of constant curvature in Kurose’s sense.

7.4 Statistical Submanifolds

In this section, we study the extrinsic theory of statistical manifolds. We give funda-
mental equations for statistical submanifolds.

Let (M̃, ∇̃, g̃) be a statistical manifold. Let M be a submanifold of M̃ and g the
induced metric on M. We define an affine connection ∇ on M by

∇XY = (∇̃XY)�,

where ( )� denotes the orthogonal projection of ( ) on the tangent space of M with
respect to g̃, that is, 〈∇XY , Z〉 = 〈∇̃XY , Z〉 for X, Y , Z ∈ �(TM). Then (M,∇, g)

becomes a statistical manifold, and this (∇, g) is called the induced statistical struc-
ture on M. We say that (M,∇, g) is a statistical submanifold in (M̃, ∇̃, g̃) if (∇, g)

is the induced statistical structure on M.

In this paper, we basically follow the notation of [22]. Let T⊥M be the normal
bundle of M in M̃, and ( )⊥ the orthogonal projection of ( ) on the normal space of
M with respect to g̃. We define the second fundamental form of M for ∇̃ by

B(X, Y) = (∇̃XY)⊥

for X, Y ∈ �(TM). Since ∇̃ is of torsion free, B ∈ �(T⊥M ⊗ TM(0,2)) is symmetric.
We define the shape operator and the normal connection for ∇̃, respectively, by

AξX = −(∇̃Xξ)�, DXξ = (∇̃Xξ)⊥

for ξ ∈ �(T⊥M) and X ∈ �(TM). As in the Riemannian submanifold theory, A ∈
�((T⊥M)∗ ⊗ TM(1,1)) and D is a connection of a vector bundle T⊥M. In the same
fashion, we define these objects for the dual connection ∇̃∗. Summing up, we have

Proposition 1 Let (M,∇, g) be a statistical submanifold in (M̃, ∇̃, g̃).
(1) The Gauss and Weingarten formulas are written by

∇̃XY = ∇XY + B(X, Y), ∇̃Xξ = −AξX + DXξ, (7.22)

∇̃∗
XY = ∇∗

XY + B∗(X, Y), ∇̃∗
Xξ = −A∗

ξX + D∗
Xξ (7.23)
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for X, Y ∈ �(TM) and ξ ∈ �(T⊥M).
(2) The following hold for X, Y , Z ∈ �(TM) and ξ, η ∈ �(T⊥M):

X〈Y , Z〉 = 〈∇XY , Z〉 + 〈Y ,∇∗
XZ〉, (7.24)

〈B(X, Y), ξ〉 = 〈A∗
ξX, Y〉, 〈B∗(X, Y), ξ〉 = 〈AξX, Y〉, (7.25)

X〈ξ, η〉 = 〈DXξ, η〉 + 〈ξ, D∗
Xη〉. (7.26)

Let us prove (7.25) in order to check the difference from the Riemannian sub-
manifold theory; 0 = X〈Y , ξ〉 = 〈∇̃XY , ξ〉 + 〈Y , ∇̃∗

Xξ〉 = 〈B(X, Y), ξ〉 − 〈Y , A∗
ξX〉.

Definition 7 Let (M,∇, g) be a statistical submanifold of dimension n in (M̃, ∇̃, g̃).
We define the mean curvature vector field of M for ∇̃ by

H = 1

n
trgB,

where trg is the trace with respect to g. M is said to be totally geodesic with respect
to ∇̃ if the second fundamental form B of M for ∇̃ vanishes identically. M is said to
be totally umbilical with respect to ∇̃ if B = H ⊗ g holds.

Proposition 2 Let (M,∇, g)be a statistical submanifold in (M̃, ∇̃, g̃). The following
equations of Gauss, Codazzi, and Ricci hold for X, Y , Z ∈ �(TM) and ξ ∈ �(T⊥M):

(̃R(X, Y)Z)� = R(X, Y)Z − AB(Y ,Z)X + AB(X,Z)Y , (7.27)

(̃R(X, Y)Z)⊥ = (∇XB)(Y , Z) − (∇Y B)(X, Z), (7.28)

(̃R(X, Y)ξ)� = (∇Y A)ξX − (∇XA)ξY , (7.29)

(̃R(X, Y)ξ)⊥ = R⊥(X, Y)ξ − B(X, AξY) + B(Y , AξX), (7.30)

where

(∇XB)(Y , Z) := DXB(Y , Z) − B(∇XY , Z) − B(Y ,∇XZ), (7.31)

(∇XA)ξY := ∇X(AξY) − ADXξY − Aξ∇XY ,

and R⊥ is the curvature tensor field with respect to the normal connection D for ∇̃.

Remark 3 In the same setting in Proposition 2, we have equations for the dual con-
nection ∇̃∗, using the Gauss andWeingarten formulas (7.23). For example, Eq. (7.27)
of Gauss for ∇̃∗ is given as

(̃R∗(X, Y)Z)� = R∗(X, Y)Z − A∗
B∗(Y ,Z)X + A∗

B∗(X,Z)Y .

We refer to this equation as (7.27)∗ for short if there is no danger of confusion.

Proposition 3 For a statistical submanifold (M,∇, g) in (M̃, ∇̃, g̃), we have
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2(̃S(X, Y)Z)� = 2S(X, Y)Z − AB(Y ,Z)X + AB(X,Z)Y

−A∗
B∗(Y ,Z)X + A∗

B∗(X,Z)Y , (7.32)

2(̃S(X, Y)Z)⊥ = (∇XB)(Y , Z) − (∇Y B)(X, Z)

+(∇∗
XB∗)(Y , Z) − (∇∗

Y B∗)(X, Z), (7.33)

2(̃S(X, Y)ξ)� = (∇Y A)ξX − (∇XA)ξY

+(∇∗
Y A∗)ξX − (∇∗

XA∗)ξY , (7.34)

2(̃S(X, Y)ξ)⊥ = 2S⊥(X, Y)ξ − B(X, AξY) + B(Y , AξX)

−B∗(X, A∗
ξY) + B∗(Y , A∗

ξX) (7.35)

for X, Y , Z ∈ �(TM) and ξ ∈ �(T⊥M), where

S⊥(X, Y)ξ = 1

2
{R⊥(X, Y)ξ + R⊥∗

(X, Y)ξ}

and R⊥∗
is the curvature tensor field of D∗.

Example 5 Let ((R+)n+1, D, g0) and (�n,∇(e), gF)be statisticalmanifolds inExam-
ples 2 and 3. Define ι : �n → (R+)n+1 by

�n � η 	→

⎡

⎢⎢⎢⎣

2
√

p(1, η)
...

2
√

p(n, η)

2
√

p(n + 1, η)

⎤

⎥⎥⎥⎦ ∈ (R+)n+1.

Then,

(1) ι(�n) = Sn(2) ∩ (R+)n+1 = {y ∈ R
n+1 | yα > 0,

∑n+1

α=1
(yα)2 = 4}.

(2) The induced statistical structure by ι from ((R+)n+1, D, g0) coincides with
(∇(e), gF). In fact, the following hold:

ι∗g0 = gF,

{
DXY = ∇(e)

X Y − gF(X, Y)ξ,
DXξ = 0,

ξ = 1

2
ι.

7.5 CR-Submanifolds in Holomorphic Statistical Manifolds

In this section, we would like to build the statistical submanifold theory in holomor-
phic statistical manifolds. In the first place, we briefly review the submanifold theory
in Kähler manifolds for later use following [22].

Let (M̃, g̃, J) be a Kähler manifold, and M a submanifold in M̃. Define P ∈
�(TM(1,1)), F ∈ �(T⊥M ⊗ TM(0,1)), t ∈ �(TM ⊗ (T⊥M)∗), and f ∈ �

(End(T⊥M)) by
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PX = (JX)�, FX = (JX)⊥, X ∈ �(TM),

tξ = (Jξ)�, f ξ = (Jξ)⊥, ξ ∈ �(T⊥M), i.e.,

JX = PX + FX, Jξ = tξ + f ξ.

It is easy to have

〈PX, Y〉 = −〈X, PY〉, 〈f ξ, η〉 = −〈ξ, f η〉,
〈FX, ξ〉 = −〈X, tξ〉,
P2 = −I − tF, FP + fF = 0, (7.36)

Pt + tf = 0, f 2 = −I − Ft (7.37)

for X, Y ∈ �(TM) and ξ, η ∈ �(T⊥M).
A Riemannian submanifold M is called a CR-submanifold in (M̃, g̃, J) if there

exists a differentiable distribution D : M � x 	−→ Dx ⊂ TxM on M satisfying the
following two conditions:

(i) D is holomorphic, i.e., JDx = Dx ⊂ TxM for each x ∈ M,
(ii) the orthogonal complementary distribution D⊥ is totally real, i.e., JD⊥

x ⊂
T⊥

x M for each x ∈ M.
In this case, D is called the holomorphic distribution and D⊥ the totally real

distribution of CR-submanifold M in M̃. Let N be a subbundle of T⊥M defined as
Nx = {ξ ∈ T⊥

x M | ξ ⊥ JD⊥
x } for each x ∈ M. Accordingly, we have decompositions

as vector bundles as follows:

TM̃ = TM ⊕ T⊥M = (D ⊕ D⊥) ⊕ (JD⊥ ⊕ N).

We then get

FP = 0, fF = 0, tf = 0, Pt = 0,

P3 = −P, f 3 = −f ,
(7.38)

and that CR-submanifolds are characterized by the condition FP = 0
(see [22, p. 87]).

The class of CR-submanifolds contains various well-known classes of submani-
folds. In fact, if D = TM, M is a holomorphic submanifold (F = 0 and t = 0), and
if D⊥ = TM, M is a totally real submanifold (P = 0). If JD⊥ = T⊥M and D �= 0,
thenM is called a generic submanifold (f = 0). IfD⊥ = TM and JD⊥ = T⊥M, then
M is called a Lagrangian submanifold (P = 0 and f = 0). If D �= 0 and D⊥ �= 0,
then M is said to be proper.

We remark that the totally real distribution D⊥ of a proper CR-submanifold in a
Kähler manifold is completely integrable. In fact, we calculate 0 = dω(X, V, W ) =
−g([V, W ], JX) for X ∈ D and V, W ∈ D⊥, where ω = g(·, J·). For short we
denoted X ∈ �(TM) such that Xx ∈ Dx for each x ∈ M by X ∈ D.
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Now let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold of dimension 2m ≥ 4.
We say that (M,∇, g) is a CR-statistical submanifold in M̃ if (M,∇, g) a statistical
submanifold in (M̃, ∇̃, g̃) and (M, g) is a CR-submanifold in (M̃, g̃, J). We call it
just a CR-submanifold for short if there is no danger of confusion.

Lemma 5 Let (M,∇, g) be a statistical submanifold in M̃. We have

∇X(PY) − AFY X = P∇∗
XY + tB∗(X, Y), (7.39)

B(X, PY) + DX(FY) = fB∗(X, Y) + F∇∗
XY , (7.40)

∇X(tξ) − Af ξX = −PA∗
ξX + tD∗

Xξ, (7.41)

B(X, tξ) + DX(f ξ) = −FA∗
ξX + fD∗

Xξ (7.42)

for X, Y ∈ �(TM) and ξ ∈ �(T⊥M).

Proof For X, Y ∈ �(TM), we have

∇̃X(JY) = ∇̃X(PY) + ∇̃X(FY)

= ∇X(PY) + B(X, PY) − AFY X + DX(FY), (7.43)

J∇̃∗
XY = J(∇∗

XY + B∗(X, Y))

= P∇∗
XY + F∇∗

XY + tB∗(X, Y) + fB∗(X, Y). (7.44)

Comparing the tangent components of (7.43) and (7.44), we have (7.39). Comparing
the normal components of (7.43) and (7.44), we have (7.40). In the same way,
calculate ∇̃X(Jξ) = J∇̃∗

Xξ to get (7.41) and (7.42). �

Remark 4 Let (M,∇, g) be a holomorphic statistical submanifold in M̃. From
Lemma 5 we have

∇X(JY) = J∇∗
XY , (7.45)

B(X, JY) = JB∗(X, Y), (7.46)

AJξX = JA∗
ξX,

DX(Jξ) = JD∗
Xξ

for X, Y ∈ �(TM) and ξ ∈ �(T⊥M). In particular, (7.45) implies that (M,∇, g, J)

is a holomorphic statistical manifold, and (7.46) implies that

B(X, JY) = B(JX, Y), B∗(X, JY) = B∗(JX, Y). (7.47)

Accordingly, the mean curvature vector fields for ∇̃ and ∇̃∗ vanish.

Lemma 6 Let (M,∇, g) be a CR-submanifold in M̃. We have

AJV W = AJW V and A∗
JV W = A∗

JW V for V, W ∈ D⊥.
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Proof For V, W ∈ D⊥, (7.39) implies

−AJW V = P∇∗
V W + tB∗(V, W ),

from which

AJV W − AJW V = P(∇∗
V W − ∇∗

W V ) = P[V, W ] = 0,

since ∇∗ is of torsion free and D⊥ is completely integrable. �

Example 6 Let us consider the following holomorphic statistical manifold, which is
constructed as the product of the special Kähler domains given in (7.21):

M̃ = {t(u1, . . . , u2n) ∈ R
2n | u1 > 0, · · · , un > 0},

g̃ =
n∑

i=1

ui{(dui)2 + (dun+i)2},

∇̃∂i∂n+i = ∇̃∂n+i∂i = (ui)−1∂n+i, and otherwise, ∇̃∂α
∂β = 0,

J∂i = ∂n+i, J∂n+i = −∂i,

where the indices α,β run from 1 to 2n, the index i from 1 to n, and ∂α = ∂/∂uα.
We can check that (M̃, ∇̃, g̃, J) is a special Kähler manifold. For positive constants
r1, . . . , rn, we set a statistical submanifold by

ι : M � t(x1, . . . , xn) 	→ t(r1 cos x1, . . . , rn cos xn, r1 sin x1, . . . , rn sin xn) ∈ M̃,

where M = (−π
2 , π

2 )n. Then M is a Lagrangian submanifold in M̃ and the statistical
structure induced by ι is given as

g =
n∑

i=1

r3i cos xi(dxi)2,

∇ ∂

∂xi

∂

∂xj
= −δij sin(2xj)

∂

∂xj
.

We remark that∇ is also flat. A basis of the normal space is given as {ξj = Jι∗
∂

∂xj
=

−rj(cos xj∂j + sin xj∂n+j) | j = 1, . . . , n}, and the statistical shape operators are cal-
culated as

Aξj

∂

∂xi
= 2δij cos

2 xi ∂

∂xi
,

A∗
ξj

∂

∂xi
= δij(1 + 2 sin2 xi)

∂

∂xi
.
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Theorem 7.1 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a generic submanifold in M̃ of codimension grater than one. If M is totally umbilical
with respect to ∇̃, then M is totally geodesic with respect to ∇̃.

This theorem is a statistical submanifold version of [5, Theorem 7.2]. Since
T⊥M = JD⊥, the following lemma implies the theorem.

Lemma 7 Let (M,∇, g) be a CR-submanifold in M̃. If M is totally umbilical with
respect to ∇̃ and dimD⊥ ≥ 2, then the mean curvature vector field H for ∇̃ is
perpendicular to JD⊥.

Proof For any V ∈ D⊥, there exists a unit vector W ∈ D⊥ which is perpendicular
to V . Therefore, using Lemma 6, we obtain

〈H, JV 〉 = 〈B(W, W ), JV 〉 = 〈A∗
JV W, W 〉 = 〈A∗

JW V, W 〉 = 〈B(V, W ), JW 〉
= 〈V, W 〉〈H, JW 〉 = 0. �

Corollary 1 Let M̃ (̃c) be a holomorphic statistical manifold (M̃, ∇̃, g̃, J) of
constant holomorphic sectional curvature c̃ and (M,∇, g) a generic submanifold
in M̃ (̃c). If M is totally umbilical with respect to ∇̃ and ∇̃∗, then c̃ = 0.

Proof In the case that M is a hypersurface, the proof will be given in Theorem 7.4.
When M is not a hypersurface, Theorem 7.1 implies B = B∗ = 0. Using Eq. (7.34)
of Codazzi, we obtain

0 = (̃S(X, Y)JV )� = c̃

2
〈JX, Y〉V

for any X, Y ∈ D and V ∈ D⊥. �

Hereafter, we will use the symbol M̃ (̃c) for a 2m(≥ 4)-dimensional holomorphic
statistical manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c̃ for
short as in the previous corollary. At present we have little information about such
spaces. It is very important to construct their standard models and to get a kind of
uniformization for such spaces.

Proposition 4 Let (M,∇, g) be a statistical submanifold in M̃ (̃c). Suppose that
c̃ �= 0. Then M is a proper CR-submanifold in M̃ (̃c) if and only if the maximal
holomorphic subspaceDx = TxM ∩ JTxM, x ∈ M, defines a nontrivial differentiable
distribution D on M such that

〈̃S(X, Y)V, W 〉 = 0 for X, Y ∈ D, V, W ∈ D⊥,

where D⊥ denotes the orthogonal complementary distribution of D in M.
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Proof From (7.15) we have

〈̃S(X, Y)V, W 〉 = c̃

2
〈X, JY〉〈JV, W 〉

for X, Y ∈ D, V, W ∈ D⊥. If M is a CR-submanifold, 〈JV, W 〉 = 0. Conversely,
suppose that 〈X, JY〉〈JV, W 〉 = 0 for X, Y ∈ D, V, W ∈ D⊥. By setting Y = JX( �=
0), we can get 〈JV, Z〉 = 0 for Z ∈ �(TM). �

The following is a statistical submanifold version of [5, Theorem 7.3].

Theorem 7.2 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a proper CR-submanifold in M̃. If M is totally umbilical with respect to ∇̃ and ∇̃∗,
then the sectional curvature of M̃ for a CR-section of M vanishes, where a plane
section X ∧ V with X ∈ D and V ∈ D⊥ is called a CR-section of M.

Proof Since M is totally umbilical with respect to ∇̃, it follows that

(∇̄XB)(Y , Z) = (∇Xg)(Y , Z)H + 〈Y , Z〉DXH, X, Y , Z ∈ �(TM).

Using Eq. (7.28) of Codazzi, we have

(̃R(X, Y)Z)⊥ = {(∇Xg)(Y , Z) − (∇Yg)(X, Z)}H + 〈Y , Z〉DXH − 〈X, Z〉DY H

= 〈Y , Z〉DXH − 〈X, Z〉DY H

for any X, Y , Z ∈ �(TM), from which we see

〈̃R(X, V )JX, JV 〉 = 0

for any X ∈ D and V ∈ D⊥. Similarly, we have

〈̃R∗(X, V )JX, JV 〉 = 0

and therefore

〈̃S(X, V )V, X〉 = −〈̃S(X, V )X, V 〉 = −〈JS̃(X, V )X, JV 〉
= −〈̃S(X, V )JX, JV 〉 = 0

for any X ∈ D and V ∈ D⊥. �

Definition 8 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g) a
CR-submanifold in M̃.M is said to be mixed totally geodesic with respect to ∇̃ (resp.
∇̃∗) if B(X, V ) = 0 (resp. B∗(X, V ) = 0) for X ∈ D and V ∈ D⊥. M is said to be
D-totally geodesic with respect to ∇̃ (resp. ∇̃∗) if B(X, Y) = 0 (resp. B∗(X, Y) = 0)
for all X, Y ∈ D.
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Proposition 5 Let (M,∇, g) be a CR-submanifold in M̃.
(1) If M is mixed totally geodesic with respect to ∇̃ (resp. ∇̃∗), then each leaf of

D⊥ is totally geodesic in M with respect to ∇ (resp. ∇∗).
(2) Suppose that (M,∇, g) is a generic submanifold in M̃. Then M is mixed

totally geodesic with respect to ∇̃ (resp. ∇̃∗) if and only if each leaf of D⊥ is totally
geodesic in M with respect to ∇ (resp. ∇∗).

(3) If M is D-totally geodesic with respect to ∇̃ (resp. ∇̃∗), then D is completely
integrable and each leaf of D is totally geodesic in M with respect to ∇∗ (resp. ∇).

These are direct conclusions from the following lemma:

Lemma 8 Let (M,∇, g) be a proper CR-submanifold in M̃.
(1) An integral manifold L of D⊥ is totally geodesic in M with respect to ∇ (resp.

∇∗) if and only if

B(X, V ) ∈ �(N) (resp. B∗(X, V ) ∈ �(N)) for X ∈ D, V ∈ D⊥.

(2) D is completely integrable and each leaf of D is totally geodesic in M with
respect to ∇∗ (resp. ∇) if

B(X, Y) ∈ �(N) (resp. B∗(X, Y) ∈ �(N)) for X, Y ∈ D.

Proof For any X, Y ∈ D and V, W ∈ D⊥, we obtain

〈B(X, V ), JW 〉 = 〈A∗
JW V, X〉 = −〈∇̃∗

V JW, X〉
= −〈J∇̃V W, X〉 = 〈∇̃V W, JX〉
= 〈∇V W, JX〉, (7.48)

〈B(X, JY), JW 〉 = 〈∇̃XJY , JW 〉 − 〈B∗(X, Y), W 〉
= 〈J(∇̃∗

XY − B∗(X, Y)), JW 〉 = 〈J∇∗
XY , JW 〉

= 〈∇∗
XY , W 〉. (7.49)

The formulas (7.48) and (7.49) imply (1) and (2), respectively. �

Concerning on the integrability of the holomorphic distribution D for a CR-
statistical submanifold, we have the following:

Lemma 9 Let (M,∇, g) be a CR-submanifold in M̃. Then the following conditions
(1), (2), (2)∗, (3), (3)∗, (4), (4)∗ are equivalent:

(1) D is completely integrable.
(2) 〈B(JX, Y), JV 〉 = 〈B(X, JY), JV 〉 for X, Y ∈ D, V ∈ D⊥.
(3) 〈JAJV X, Y〉 = −〈AJV JX, Y〉 for X, Y ∈ D, V ∈ D⊥.
(4) B(JX, Y) = B(X, JY) for X, Y ∈ D.

Asmentioned in Remark 3, for example, (2)∗ means the dual formula for (2), that
is, 〈B∗(JX, Y), JV 〉 = 〈B∗(X, JY), JV 〉 for X, Y ∈ D, V ∈ D⊥.
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Proof From (7.49), we have

〈B(X, JY) − B(JX, Y), JV 〉 = 〈∇∗
XY − ∇∗

Y X, V 〉 = 〈[X, Y ], V 〉,

which implies (1) and (2) are equivalent, as well as (1) and (2)∗. It is easy to check
that the conditions (2) and (3)∗, (3) and (2)∗ are equivalent, respectively.

Toprove that (1) implies (4),we should remark (7.47) and that an integralmanifold
of D is a holomorphic submanifold in M̃. �

Definition 9 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a CR-submanifold in M̃. M is said to be mixed foliate with respect to ∇̃ (resp. ∇̃∗)
if M is mixed totally geodesic with respect to ∇̃ (resp. ∇̃∗) and D is completely
integrable.

Lemma 10 Let (M,∇, g) be a CR-submanifold in M̃. If M is mixed foliate with
respect to ∇̃ (resp. ∇̃∗), then we have

PA∗
ξ = −A∗

ξP (resp. PAξ = −AξP)

for any ξ ∈ Γ (T⊥M).

Proof Since M is mixed totally geodesic with respect to ∇̃, we have

〈PA∗
ξ(X + V ) + A∗

ξP(X + V ), Y + W 〉 = 〈B(X, JY) + B(JX, Y), ξ〉

for X, Y ∈ D, V, W ∈ D⊥ and ξ ∈ �(T⊥M). �

The following is a statistical submanifold version of [4, Proposition 3].

Theorem 7.3 Let M̃ (̃c) denote a holomorphic statistical manifold (M̃, ∇̃, g̃, J) of
constant holomorphic sectional curvature c̃ and (M,∇, g) a proper CR-submanifold
in M̃ (̃c). If M is mixed foliate with respect to ∇̃ and ∇̃∗, then c̃ ≤ 0.

Proof For X ∈ D and V ∈ D⊥, using Lemma 10, we have

∇X V = (∇̃X V )� = −(J∇̃∗
XJV )� = PA∗

JV X − t D∗
XJV

= −A∗
JV JX − t D∗

XJV (7.50)

and similarly,
∇∗

X V = −AJV JX − t DXJV . (7.51)

For X, Y ∈ D and V ∈ D⊥, using Eq. (7.33) of Codazzi, (7.50) and (7.51), we have

c̃〈X, JY〉JV = 2̃S(X, Y)V = 2(̃S(X, Y)V )⊥

= (∇̄X B)(Y , V ) − (∇̄Y B)(X, V ) + (∇̄∗
X B∗)(Y , V ) − (∇̄∗

Y B∗)(X, V )

= −B(Y ,∇X V ) + B(X,∇Y V ) − B∗(Y ,∇∗
X V ) + B∗(X,∇∗

Y V )

= B(Y , A∗
JV JX) − B(X, A∗

JV JY) + B∗(Y , AJV JX) − B∗(X, AJV JY).
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Putting X = JY in this equation, we see that

c̃‖Y‖2‖V ‖2 = −〈B(Y , A∗
JV Y), JV 〉 − B(JY , A∗

JV JY), JV 〉
−〈B∗(Y , AJV Y), JV 〉 − 〈B∗(JY , AJV JY), JV 〉

= − (‖A∗
JV Y‖2 + ‖A∗

JV JY‖2 + ‖AJV Y‖2 + ‖AJV JY‖2) .

This proves our assertion. �

Corollary 2 Let M̃ (̃c)be a holomorphic statistical manifold (M̃, ∇̃, g̃, J)of constant
holomorphic sectional curvature c̃ > 0 and (M,∇, g) a CR-submanifold in M̃ (̃c). If
M is mixed foliate with respect to ∇̃ and ∇̃∗, then M is a holomorphic submanifold
or a totally real submanifold in M̃ (̃c).

7.6 Statistical Real Hypersurfaces

Real hypersurfaces in aKählermanifold forman important class ofCR-submanifolds.
In this section, we study statistical real hypersurfaces. Let (M̃, ∇̃, g̃, J) be a holo-
morphic statistical manifold of dimension 2m ≥ 4 and (M,∇, g) a statistical real
hypersurface (for simplicity, statistical hypersurface) with unit normal vector field ξ
in M̃.

We define

U := −Jξ ∈ �(TM),

and u ∈ �(TM(0,1)) by
u(X) := 〈U, X〉.

We set h, h∗ ∈ �(TM(0,2)) by

h(X, Y) := 〈B(X, Y), ξ〉, h∗(X, Y) := 〈B∗(X, Y), ξ〉,

and
A := Aξ, A∗ := A∗

ξ ∈ �(TM(1,1)),

and set τ , τ ∗ ∈ �(TM(0,1)) by

τ (X) := 〈DXξ, ξ〉, τ ∗(X) := 〈D∗
Xξ, ξ〉.

That is, we have
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D⊥ = span{U}, N = 0,

FX = u(X)ξ, tξ = −U, f = 0,

∇̃XY = ∇XY + h(X, Y)ξ, ∇̃Xξ = −AX + τ (X)ξ.

We should remark that the definition of A and τ is different from the one in [8].

Lemma 11 Let (M,∇, g) be a statistical hypersurface in M̃. The following formulas
hold for X, Y ∈ �(TM):

‖U‖ = 1, PU = 0, u ◦ P = 0, (7.52)

P2X = −X + u(X)U, 〈PX, PY〉 = 〈X, Y〉 − u(X)u(Y), (7.53)

τ (X) = u(∇∗
XU), τ ∗(X) = −τ (X), (7.54)

h(X, Y) = 〈A∗X, Y〉, (7.55)

∇∗
XY = −P∇X(PY) + u(Y)PAX + u(∇∗

XY)U, (7.56)

A∗X = −P∇XU + u(A∗X)U, (7.57)

∇XU = PA∗X − τ (X)U. (7.58)

Proof The formulas (7.52) and (7.53) are obtained easily from (7.36) and (7.37).
Equations (7.54) and (7.55) follow from (7.25) and (7.26).We get (7.56) from (7.39),
(7.57) from (7.39)∗, and (7.58) from (7.41). �

As in the previous section, let M̃ (̃c) denote a 2m(≥4)-dimensional holomorphic
statistical manifold (M̃, ∇̃, g̃, J) of constant holomorphic sectional curvature c̃. Let
(M,∇, g) be a statistical hypersurface in M̃ (̃c). In this case, equations ofGauss (7.32)
and Codazzi (7.34) are written as follows:

Lemma 12 Let (M,∇, g) a statistical hypersurface in M̃ (̃c). The following hold for
X, Y , Z ∈ �(TM):

c̃

2
{〈Y , Z〉X − 〈X, Z〉Y + 〈PY , Z〉PX − 〈PX, Z〉PY + 2〈X, PY〉PZ}
= 2(̃S(X, Y)Z)� = 2S(X, Y)Z − 〈A∗Y , Z〉AX + 〈A∗X, Z〉AY

− 〈AY , Z〉A∗X + 〈AX, Z〉A∗Y , (7.59)

c̃

2
{u(Y)PX − u(X)PY + 2〈PX, Y〉U}
= 2(̃S(X, Y)ξ)� = −(∇XA)Y + (∇Y A)X − (∇∗

XA∗)Y
+ (∇∗

Y A∗)X − τ (X)(A∗ − A)Y + τ (Y)(A∗ − A)X. (7.60)

Theorem 7.4 Let M̃ (̃c) denote a holomorphic statistical manifold (M̃, ∇̃, g̃, J) of
constant holomorphic sectional curvature c̃ and (M,∇, g) a statistical hypersurface
in M̃ (̃c). If M is totally umbilical with respect to ∇̃ and ∇̃∗, then
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c̃ = 0, (7.61)

and

X(λ + λ∗) = (λ − λ∗)τ (X), (7.62)

S(X, Y)Z = λλ∗{〈Y , Z〉X − 〈X, Z〉Y} (7.63)

for any X, Y , Z ∈ �(TM), where λ and λ∗ denote the eigenvalue of A and A∗, respec-
tively.

Moreover, if λ = λ∗, then λ is constant and M is of constant sectional curvature
λ2.

Proof For any X, Y ∈ �(TM), we have (∇Y A)X = (Yλ)X and (∇Y A∗)X = (Yλ∗)X.
Using Eq. (7.60) of Codazzi, we have

c̃

2
{u(Y)PX − u(X)PY + 2〈PX, Y〉U} = {Y(λ + λ∗) − (λ − λ∗)τ (Y)}X

− {X(λ + λ∗) − (λ − λ∗)τ (X)}Y .

Putting Y = U, we get by (7.52) that

c̃

2
PX = {U(λ + λ∗) − (λ − λ∗)τ (U)}X − {X(λ + λ∗) − (λ − λ∗)τ (X)}U. (7.64)

There exists a nonzero X ∈ �(TM) such that X ⊥ U because dim M ≥ 3. Since
X, PX = JX, U are linearly independent, we obtain (7.61) and (7.62) from (7.64).
The conclusion (7.63) is driven from (7.61) and Eq. (7.59) of Gauss. �

This is a statistical submanifold version of the Tashiro and Tachibana theorem [20,
Theorem 3], which shows that if a complex space form admits a totally umbilical
real hypersurface, then its holomorphic sectional curvature vanishes. See Milijević
[15] for a generalization of Theorem 7.4.

Lemma 13 Let (M,∇, g) be a statistical hypersurface in M̃ (̃c). If U is an eigen-
vector of A and A∗, then it follows that

c̃〈PX, Y〉 = Y(λ + λ∗)u(X) − X(λ + λ∗)u(Y) + λ〈X, (PA + AP)Y〉
+ λ∗〈X, (PA∗ + A∗P)Y〉 − 2〈X, (APA + A∗PA∗)Y〉
+ (λ − λ∗){τ (X)u(Y) − τ (Y)u(X)}

for any X, Y ∈ �(TM), where λ := u(AU) and λ∗ := u(A∗U).

Proof From AU = λU and (7.58)∗, we have

〈(∇XA)Y , U〉 = X〈AY , U〉 − 〈AY ,∇∗
XU〉 − 〈AU,∇XY〉

= (Xλ)u(Y) − λ〈X, APY〉 + 〈X, APAY〉,
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and similarly,

〈(∇∗
XA∗)Y , U〉 = (Xλ∗)u(Y) − λ∗〈X, A∗PY〉 + 〈X, A∗PA∗Y〉

for any X, Y ∈ �(TM). The assertion is driven from Eq. (7.60) of Codazzi. �

Proposition 6 Let (M,∇, g) be a statistical hypersurface in M̃ (̃c). If M satisfies
PA + AP = PA∗ + A∗P = 0, then c̃ ≤ 0. Furthermore, if c̃ = 0, then rank A ≤ 1
and rank A∗ ≤ 1 at each point in M.

Proof SincePA + AP = 0, the formulas (7.52) and (7.53) implyPAU = 0 and hence
AU = λU where λ := u(AU). Similarly, we have A∗U = λ∗U. Then, using Lemma
13, we have

c̃‖X‖2 = −2(‖APX‖2 + ‖A∗PX‖2) ≤ 0

for any X ∈ �(TM) perpendicular to U.
If c̃ = 0, we have ‖APX‖ = ‖A∗PX‖ = 0. Therefore, we obtain AX = λ u(X)U

andA∗X = λ∗ u(X)U for anyX ∈ �(TM). Thus we have rank A ≤ 1 and rank A∗ ≤ 1
at each point in M. �

Proposition 7 Let (M,∇, g) be a statistical hypersurface in M̃ (̃c). Suppose that
c̃ > 0. If M satisfies AU = λU, A∗U = λ∗U and τ (X) = 0 for any X ∈ �(TM) per-
pendicular to U, then λ + λ∗ is constant.

Proof Since τ (Y) = 0 for any Y ∈ �(TM) perpendicular to U, we have τ (Y) =
τ (U)u(Y) for any Y ∈ �(TM). Putting X = U in the formula of Lemma 13, we
get Y(λ + λ∗) = (U(λ + λ∗))u(Y). Thus we have grad (λ + λ∗) = γU, where γ :=
U(λ + λ∗), from which (7.58) implies

∇Xgrad (λ + λ∗) = (Xγ)U + γ(PA∗X − τ (X)U).

Using this equation, we obtain

0 = X(Y(λ + λ∗)) − Y(X(λ + λ∗)) − [X, Y ](λ + λ∗)
= X〈Y , grad (λ + λ∗)〉 − Y〈X, grad (λ + λ∗)〉 − (∇∗

XY − ∇∗
Y X)(λ + λ∗)

= 〈Y ,∇Xgrad (λ + λ∗)〉 − 〈X,∇Ygrad (λ + λ∗)〉
= (Xγ)u(Y) + γ〈PA∗X, Y〉 − (Yγ)u(X) − γ〈PA∗Y , X〉.

PuttingY = U, we getXγ = (Uγ)u(X), and henceγ(PA∗ + A∗P) = 0. Similarly,we
have γ(PA + AP) = 0. Therefore, using Proposition 6, we obtain γ = 0 and hence
we have the conclusion. �

Definition 10 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a statistical hypersurface in M̃. M is said to be totally η-umbilical with respect to ∇̃
(resp. ∇̃∗), if
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AX = μX + (λ − μ) u(X)U (resp. A∗X = μ∗X + (λ∗ − μ∗) u(X)U)

for some scalar functions λ and μ (resp. λ∗ and μ∗) on M.

In this case we have

AP = μP = PA, AU = λ U

andλ = u(AU) (resp.A∗P = μ∗P = PA∗, A∗U = λ∗ U andλ∗ = u(A∗U)). Ifλ = μ,
then M is totally umbilical with respect to ∇̃. If μ = 0, then AX = λ u(X)U for any
X ∈ �(TM), and therefore AX = 0 for any X perpendicular to U. If λ = 0, then
AX = μ(X − u(X)U) for any X ∈ �(TM).

Proposition 8 Let (M,∇, g) be a statistical hypersurface in M̃ (̃c). If M is totally
η-umbilical with respect ∇̃ and ∇̃∗ with λ = λ∗ = 0, then c̃ ≥ 0. Furthermore, if
c̃ = 0, then M is totally geodesic with respect to ∇̃ and ∇̃∗.

It follows directly from the following:

Lemma 14 Let (M,∇, g) be a statistical hypersurface in M̃ (̃c). If M is totally η-
umbilical with respect to ∇̃ and ∇̃∗, then it follows that

c̃ = 2(μ2 + μ∗2 − μλ − μ∗λ∗) = 2(2μμ∗ − μλ∗ − μ∗λ), (7.65)

U(μ + μ∗) = (μ − μ∗)τ (U) and (7.66)

X(λ + λ∗) − U(λ + λ∗)u(X) = (λ − λ∗) (τ (X) − τ (U)u(X)) (7.67)

for any X ∈ �(TM).

Proof By Lemma 13, we have

c̃〈PX, Y〉 = ZY(λ + λ∗)u(X) − X(λ + λ∗)u(Y) − 2(μ2 + μ∗2 − μλ − μ∗λ∗)〈X, PY〉
+(λ − λ∗){τ (X)u(Y) − τ (Y)u(X)},

from which we get (7.65)1 by taking Y = PX so that X ⊥ U and ‖X‖ = 1.
Using (7.58) and (7.58)∗, we calculate

(∇X A)Y = ∇X {μY + (λ − μ)〈U, Y〉U} + {μ∇X Y + (λ − μ)u(∇X Y)U}
= (Xμ)(Y − u(Y)U) + (Xλ)u(Y)U + (λ − μ){μ∗u(Y)PX + μ〈JX, Y〉U}

for any X, Y ∈ �(TM), from which

(∇XA)U = (Xλ)U + μ∗(λ − μ)PX,

(∇UA)X = (Uμ)(X − u(X)U) + (Uλ)u(X)U

for any X ∈ �(TM). Similarly, we get
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(∇∗
XA∗)U = (Xλ∗)U + μ(λ∗ − μ∗)PX,

(∇∗
UA∗)X = (Uμ∗)(X − u(X)U) + (Uλ∗)u(X)U

for any X ∈ �(TM). Substituting these equations in (7.60), we obtain

c̃

2
PX = 2(̃S(X, U)ξ)�

= (2μμ∗ − μλ∗ − μ∗λ)PX + {U(μ + μ∗) − (μ − μ∗)τ (U)}X
−{X(λ + λ∗) − U(λ + λ∗)u(X) − (λ − λ∗) (τ (X) − τ (U)u(X))

+ (
U(μ + μ∗) − (μ − μ∗)τ (U)

)
u(X)}U

for any X ∈ �(TM). Comparing the coefficients of PX, we have (7.65)2. The X-
component and the U-component imply (7.66) and (7.67), respectively. �

7.7 CR-Statistical Submanifolds of Maximal
CR-Dimension

As an appendix of the previous section, we briefly treat CR-submanifolds ofmaximal
CR-dimension, which are generalizations of real hypersurfaces. Following [7], we
will first remind you the definition. Let M be an n(≥3)-dimensional submanifold in
a 2m-dimensional Kähler manifold M̃. If the maximal holomorphic subspace Dx =
TxM ∩ JTxM, x ∈ M, defines an (n − 1)-dimensional differentiable distribution D,
then JD⊥

x ⊂ T⊥
x M, where D⊥ denotes the orthogonal complementary distribution

of D in M. Therefore, M is a CR-submanifold in M̃. We call such an M a CR-
submanifold of maximal CR-dimension. For U ∈ D⊥ such that ‖U‖ = 1, we set
ξ := JU and call it the distinguished normal for M. A real hypersurface is a typical
CR-submanifold of maximal CR-dimension.

Hereafter in this section, let (M,∇, g) be an n(≥3)-dimensional CR-submanifold
of maximal CR-dimension with distinguished normal ξ in a 2m-dimensional holo-
morphic statistical manifold (M̃, ∇̃, g̃, J). For the normal space of M, we take
a local orthonormal frame {ξ, ξ1, . . . , ξ2q} = {ξ, ξ1, . . . , ξq, ξ1̄, . . . , ξq̄} such that
ξq+a = ξā = Jξa where 2q + 1 = 2m − n, and the indices α,β run from 1 to 2q,
and a, b from 1 to q. We then put u ∈ �(TM(0,1)) by u(X) := 〈U, X〉. We set A :=
Aξ, A∗ := A∗

ξ , Aα := Aξα
, and A∗

α := A∗
ξα

∈ �(TM(1,1)). We define τ , τα, τ ∗
α, ταβ

∈ �(TM(0,1)) by τ (X) := 〈DXξ, ξ〉, τα(X) := 〈DXξ, ξα〉, τ ∗
α(X) := 〈D∗

Xξ, ξα〉, ταβ

(X) := 〈DXξα, ξβ〉 for any X ∈ �(TM). Summing up, we have

D⊥ = span{U}, N = span{ξ1, . . . , ξ2q},
FX = u(X)ξ, tξ = −U, tξα = 0, f ξ = 0, f ξa = ξā,
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∇̃Xξ = −AX + DXξ, DXξ = τ (X)ξ +
2q∑

α=1

τα(X)ξα,

∇̃∗
Xξ = −A∗X + D∗

Xξ, D∗
Xξ = −τ (X)ξ +

2q∑

α=1

τ ∗
α(X)ξα,

∇̃Xξα = −AαX + DXξα, DXξα = −τ ∗
α(X)ξ +

2q∑

β=1

ταβ(X)ξβ,

∇̃∗
Xξα = −A∗

αX + D∗
Xξα, D∗

Xξα = −τα(X)ξ −
2q∑

β=1

τβα(X)ξβ

for any X ∈ �(TM).

Lemma 15 Let (M,∇, g) be a CR-submanifold of maximal CR-dimension in M̃.
The formulas (7.52)–(7.58) and the following hold:

τab = −τb̄ā, τab̄ = τbā, τāb = τb̄a, (7.68)

τa(X) = −u(AāX), τā(X) = u(AaX), X ∈ �(TM), (7.69)

PAaX = A∗
āX + τ ∗

a (X)U, (7.70)

PAāX = −A∗
aX + τ ∗

ā (X)U, X ∈ �(TM),

〈AαX, X〉 + 〈AαJX, JX〉 = 0, X ∈ D. (7.71)

Proof The formula (7.68)1 is obtained by

0 = X〈ξa, ξb〉 = 〈DXξa, ξb〉 + 〈Jξa, JD∗
Xξb〉

= 〈DXξa, ξb〉 + 〈Jξa, DXJξb〉
= 〈DXξa, ξb〉 + 〈ξā, DXξb̄〉.

We can get the others in (7.68) and the formulas (7.69) in the sameway. The formulas
(7.70) follow from (7.41). By (7.70), we have that 〈AaX, X〉 = 〈A∗

āX, PX〉 forX ∈ D,
which implies (7.71). �

Now we shall generalize Theorem 7.4 for this setting.

Lemma 16 Let (M,∇, g) be a CR-submanifold of maximal CR-dimension with
distinguished normal ξ in M̃ (̃c). If there exist functions λ and λ∗ on M satisfying
AξX = λX and A∗

ξX = λ∗X for any X ∈ �(TM), then the following hold:
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c̃

2
‖PX‖2 = 2

2q∑

α=1

τα(X)τ ∗
α(X)

+
q∑

a=1

{τa(U)〈A∗
āX, X〉 + τ ∗

a (U)〈AāX, X〉

− τā(U)〈A∗
aX, X〉 − τ ∗

ā (U)〈AaX, X〉}, (7.72)

X(λ + λ∗) − (λ − λ∗)τ (X) = 2
q∑

a=1

{τa(X)τā(U) + τ ∗
a (X)τ ∗

ā (U)

− τa(U)τā(X) − τ ∗
a (U)τ ∗

ā (X)} (7.73)

for any X ∈ �(TM), and

c̃‖X‖2 = 2
2q∑

α=1

{
τα(X)τ ∗

α(X) + τα(JX)τ ∗
α(JX)

}
(7.74)

for any X ∈ D.

Proof Using (7.69), (7.69)∗, (7.70), and (7.70)∗, we have

2q∑

α=1

τα(U)〈AαX, PX〉 = −
q∑

a=1

{τa(U)〈A∗
āX, X〉 − τā(U)〈A∗

aX, X〉}

− u(X)

2q∑

α=1

τα(U)τ ∗
α(X), (7.75)

2q∑

α=1

τα(X)〈AαU, PX〉 =
2q∑

α=1

τα(X)τ ∗
α(X) − u(X)

2q∑

α=1

τα(X)τ ∗
α(U). (7.76)

Equation (7.34) of Codazzi implies

c̃

2
{u(Y)PX − u(X)PY + 2〈PX, Y〉U}
= (∇Y A)X − (∇XA)Y + (∇∗

Y A∗)X − (∇∗
XA∗)Y

− τ (Y)(AX − A∗X) + τ (X)(AY − A∗Y)

−
2q∑

α=1

{
τα(Y)AαX − τα(X)AαY + τ ∗

α(Y)A∗
αX − τ ∗

α(X)A∗
αY

}
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= {
Y(λ + λ∗) − (λ − λ∗)τ (Y)

}
X − {

X(λ + λ∗) − (λ − λ∗)τ (X)
}

Y

−
2q∑

α=1

{
τα(Y)AαX − τα(X)AαY + τ ∗

α(Y)A∗
αX − τ ∗

α(X)A∗
αY

}

for any X, Y ∈ �(TM). Putting Y = U in this equation, we get

c̃

2
PX = {

U(λ + λ∗) − (λ − λ∗)τ (U)
}

X − {
X(λ + λ∗) − (λ − λ∗)τ (X)

}
U

−
2q∑

α=1

{
τα(U)AαX − τα(X)AαU + τ ∗

α(U)A∗
αX − τ ∗

α(X)A∗
αU

}
(7.77)

for any X ∈ �(TM). Since 〈PX, X〉 = 〈PX, U〉 = 0, we have

c̃

2
‖PX‖2 =

2q∑

α=1

{−τα(U)〈AαX, PX〉 + τα(X)〈AαU, PX〉

−τ ∗
α(U)〈A∗

αX, PX〉 + τ ∗
α(X)〈A∗

αU, PX〉 }

and by (7.75), (7.76) and their duals, we get (7.72).
Since c̃‖X‖2 = c̃

2 (‖PX‖2 + ‖X‖2) for any X ∈ D, using (7.72) and (7.71), we
calculate (7.74).

On the other hand, since 〈PX, X〉 = 0 again with (7.77), we have for any X ∈ D,

{
U(λ + λ∗) − (λ − λ∗)τ (U)

} ‖X‖2

=
2q∑

α=1

{
τα(U)〈AαX, X〉 + τ ∗

α(U)〈A∗
αX, X〉} ,

fromwhich the similar calculation with (7.71) implies that the right-hand side of this
equation vanishes, and that

U(λ + λ∗) = (λ − λ∗)τ (U).

Substituting this equation in (7.77), we have

c̃

2
PX = − {

X(λ + λ∗) − (λ − λ∗)τ (X)
}

U

−
2q∑

α=1

{
τα(U)AαX − τα(X)AαU + τ ∗

α(U)A∗
αX − τ ∗

α(X)A∗
αU

}

for any X ∈ �(TM), from which we have (7.73) by (7.69) and (7.69)∗. �
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The formulas in Lemma 16 directly imply the following:

Theorem 7.5 Let M̃ (̃c) denote a holomorphic statistical manifold (M̃, ∇̃, g̃, J) of
constant holomorphic sectional curvature c̃, and (M,∇, g) an n(≥3)-dimensional
CR-submanifold of maximal CR-dimension with distinguished normal ξ in M̃ (̃c).
Suppose that there exist functions λ and λ∗ on M satisfying AX = λX and A∗X = λ∗X
for any X ∈ �(TM).

(1) If there exists x ∈ M such that DXξ = τ (X)ξ for any X ∈ Dx, then c̃ = 0.
(2) If λ = λ∗ and DUξ = −D∗

Uξ = τ (U)ξ, then λ(= λ∗) is constant.

Lemma 16 will give various observations in addition. For example, we have the
following under the same setting. If there exists x ∈ M such that DXξ − D∗

Xξ =
2τ (X)ξ for any X ∈ Dx, then c̃ ≥ 0. If DUξ = τ (U)ξ and D∗

Xξ = 0 for any X ∈ D,
then λ + λ∗ is constant.

We will proceed to properties for CR-submanifold of maximal CR-dimension
corresponding to Propositions 6 and 7. The following lemma is a generalization of
Lemma 13, which is obtained in the similar fashion.

Lemma 17 Let (M,∇, g) be a CR-submanifold of maximal CR-dimension with dis-
tinguished normal ξ in M̃ (̃c). If U = −Jξ is an eigenvector of A := Aξ and A∗ := A∗

ξ ,
then it follows that

c̃〈PX, Y〉 = Y(λ + λ∗)u(X) − X(λ + λ∗)u(Y)

+ λ〈X, (PA + AP)Y〉 + λ∗〈X, (PA∗ + A∗P)Y〉
− 2〈X, (APA + A∗PA∗)Y〉 + (λ − λ∗){τ (X)u(Y) − τ (Y)u(X)}

+ 2
q∑

a=1

{τa(X)τā(Y) − τā(X)τa(Y) + τ ∗
a (X)τ ∗

ā (Y) − τ ∗
ā (X)τ ∗

a (Y)}

for any X, Y ∈ Γ (TM), where λ := u(AU) and λ∗ := u(A∗U).

Proposition 9 Let (M,∇, g) be a CR-submanifold of maximal CR-dimension with
distinguished normal ξ in M̃ (̃c). If M satisfies PAξ + AξP = PA∗

ξ + A∗
ξP = 0 and if

there exist x ∈ M and X ∈ Dx such that DXξ = −D∗
Xξ = τ (X)ξ, then c̃ ≤ 0.

Proposition 10 Let (M,∇, g) be a CR-submanifold of maximal CR-dimension with
distinguished normal ξ in M̃ (̃c). Suppose that there exist functions λ and λ∗ on M
satisfying AξU = λU and A∗

ξU = λ∗U. If c̃ > 0 and DXξ = D∗
Xξ = 0 for any X ∈ D,

then λ + λ∗ is constant.

7.8 Totally Real Statistical Submanifolds

We finally proceed to generalizations of the totally real submanifold theory. Let
(M̃, ∇̃, g̃, J) be a 2m-dimensional holomorphic statistical manifold and (M,∇, g)

an n-dimensional statistical submanifold in M̃.
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Lemma 18 (1) Let (M,∇, g) be a totally real statistical submanifold in M̃. Then
we have the following fundamental formulas:

P = 0, D = 0, D⊥ = TM,

AJXY = AJY X, (7.78)

AJY X = −tB∗(X, Y), (7.79)

DX(JY) = J∇∗
XY + fB∗(X, Y), (7.80)

∇XY = −t D∗
X(JY), (7.81)

B(X, Y) = JA∗
JXY − fD∗

X(JY), (7.82)

AJζX = −t D∗
Xζ, (7.83)

DX(f ζ) = −JA∗
ζX + f D∗

Xζ (7.84)

for any X, Y ∈ �(TM) and ζ ∈ �(N).
(2) Furthermore, let (M,∇, g) be a Lagrangian submanifold in M̃. Then we have

the following fundamental formulas:

f = 0, N = 0,

DX(JY) = J∇∗
XY , (7.85)

R⊥(X, Y)JZ = JR∗(X, Y)Z, S⊥(X, Y)JZ = JS(X, Y)Z, (7.86)

B(X, Y) = JA∗
JXY (7.87)

for each X, Y , Z ∈ �(TM).

Proof (1) The formula (7.78) follows from Lemma 6. The formulas (7.39), (7.40),
(7.41), and (7.42) imply (7.79), (7.80), (7.81), and (7.82), respectively. We get (7.83)
and (7.84) by ∇̃X(Jζ) = J∇̃∗

Xζ. (2) The formula (7.80) implies (7.85), from which
(7.86) follows. The formula (7.82) directly implies (7.87). �

Proposition 11 Let (M,∇, g) be a totally real submanifold in M̃ (̃c). Suppose that
the mean curvature vector field H for ∇̃ is parallel with respect to D and M is totally
umbilical with respect to ∇̃ and ∇̃∗. Then M is of constant sectional curvature.

It immediately follows from the following:

Lemma 19 Let (M,∇, g) be a totally real submanifold in M̃ (̃c). If M is totally
umbilical with respect to ∇̃ and ∇̃∗, then

S(X, Y)Z =
(

c̃

4
+ 〈H, H∗〉

)
{〈Y , Z〉X − 〈X, Z〉Y} (7.88)

for any X, Y , Z ∈ �(TM), and

DXH + D∗
XH∗ = 0, (7.89)

where H and H∗ denote the mean curvature vector fields for ∇̃ and ∇̃∗, respectively.
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Proof Since B(X, Y) = 〈X, Y〉H, AξX = 〈H, ξ〉X and their duals hold, Eq. (7.32) of
Gauss drives (7.88). Furthermore, we have

(∇̄XB)(Y , Z) = 〈Y , Z〉DXH + 〈∇∗
XY − ∇XY , Z〉H, X, Y , Z ∈ �(TM),

from which

(∇̄XB)(Y , Z) − (∇̄Y B)(X, Z) = 〈Y , Z〉DXH − 〈X, Z〉DY H.

Using Eq. (7.33) of Codazzi, we obtain

0 = 〈Y , Z〉(DXH + D∗
XH∗) − 〈X, Z〉(DY H + D∗

Y H∗). (7.90)

For any X ∈ Γ (TM), putting nonzero Y = Z ∈ �(TM) perpendicular to X in (7.90),
we have (7.89). �

Proposition 12 Let (M,∇, g) be a totally real submanifold in M̃ (̃c). Suppose that
M is totally umbilical with respect to ∇̃ and ∇̃∗. If H = H∗, then ‖H‖ is constant

and M is of constant sectional curvature
c̃

4
+ ‖H‖2.

Proof Using Lemma 19, we have

X‖H‖2 = X〈H, H∗〉 = 〈DXH + D∗
XH∗, H〉 = 0

for any X ∈ �(TM). �

Theorem 7.6 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a Lagrangian submanifold in M̃. If AJXA∗
JY = A∗

JY AJX for each X, Y ∈ �(TM),
then (̃S(X, Y)Z)� = S(X, Y)Z for each X, Y , Z ∈ �(TM). In particular, if (M̃, ∇̃,

g̃, J) is of constant holomorphic sectional curvature c̃ additionally, then M is
of constant sectional curvature c̃/4.

Proof For X, Y ∈ �(TM), using (7.78) and (7.87), we obtain

AB(Y ,Z)X = AJA∗
JY ZX = AJXA∗

JY Z.

Similarly, we have
A∗

B∗(Y ,Z)X = A∗
JXAJY Z,

from which, using Eq. (7.32) of Gauss, we get

2S(X, Y)Z − 2(̃S(X, Y)Z)� = AB(Y ,Z)X − AB(X,Z)Y + A∗
B∗(Y ,Z)X − A∗

B∗(X,Z)Y

= AJX A∗
JY Z − AJY A∗

JX Z + A∗
JX AJY Z − A∗

JY AJX Z

= 0.
�
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We remark that the shape operators and their duals of the Lagrangian submanifold
in Example 6 commute and the induced statistical structure is of constant sectional
curvature zero.

For a normal bundle valued (0, 2)-tensor field σ on M, we denote

R(X, Y) · σ := ∇X∇Yσ − ∇Y∇Xσ − ∇[X,Y ]σ, X, Y ∈ �(TM),

where ∇ is defined as in (7.31) for ∇̃. Then we have

(R(X, Y) · σ)(Z, W ) = R⊥(X, Y)σ(Z, W ) − σ(R(X, Y)Z, W )

− σ(Z, R(X, Y)W ),

from which we obtain

(S(X, Y) · σ)(Z, W ) := 1

2
{(R(X, Y) · σ)(Z, W ) + (R

∗
(X, Y) · σ)(Z, W )}

= S⊥(X, Y)σ(Z, W ) − σ(S(X, Y)Z, W ) − σ(Z, S(X, Y)W ) (7.91)

for any X, Y , Z, W ∈ �(TM).

Proposition 13 Let (M,∇, g) be a Lagrangian submanifold of constant sectional
curvature c in M̃. If M satisfies S⊥(X, Y)H = 0 (resp. S⊥(X, Y)H∗ = 0), then either
c = 0 or H = 0 (resp. H∗ = 0).

Proof Using (7.86), we have

0 = S⊥(X, Y)H = −J(S(X, Y)JH)

= c{〈X, JH〉JY − 〈Y , JH〉JX}

for any X, Y ∈ �(TM). Putting X = JH and 0 �= Y ⊥ JH in this equation, we have
the conclusion. �

Proposition 14 Let (M,∇, g) be a Lagrangian submanifold of constant sectional
curvature c in M̃. If M satisfies S(X, Y) · B = 0 (resp. S(X, Y) · B∗ = 0), then either
c = 0 or B = 0 (resp. B∗ = 0).

Proof Using (7.91), we have

S⊥(X, Y)B(Z, W ) = B(S(X, Y)Z, W ) + B(Z, S(X, Y)W )

= c{〈Y , Z〉B(X, W ) − 〈X, Z〉B(Y , W )

+ 〈Y , W 〉B(X, Z) − 〈X, W 〉B(Y , Z)}, (7.92)
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from which

n S⊥(X, Y)H = S⊥(X, Y)

n∑

i=1

B(ei, ei) = 2
n∑

i=1

B(S(X, Y)ei, ei) = 0,

where {e1, . . . , en} denotes a local orthonormal frame on M. Therefore, using Propo-
sition 13, we have either c = 0 or H = 0.

On the other hand, using (7.87), (7.86)2, we have

S⊥(X, Y)B(Z, W ) = c{〈B(Y , W ), JZ〉JX − 〈B(X, W ), JZ〉JY},

which implies with (7.92) that

c{(n + 1)B(Y , Z) − n〈Y , Z〉H − n〈H, JZ〉JY} = 0.

Therefore, if c �= 0, we have B = 0. �

Theorem 7.7 Let (M̃, ∇̃, g̃, J) be a holomorphic statistical manifold and (M,∇, g)

a totally real submanifold in M̃. Suppose that
(1) DX(Jζ) = JD∗

Xζ for any X ∈ �(TM), ζ ∈ �(N),
(2) S(X, Y) · B = 0 (resp. S(X, Y) · B∗ = 0) for any X, Y ∈ �(TM), and
(3) M is of constant sectional curvature c.

Then either c = 0 or B = 0 (resp. B∗ = 0).

Since the condition (1) in the theorem holds whenM is a Lagrangian submanifold,
Theorem 7.7 is a generalization of Proposition 14.

Proof We will prove as Lemmas 20 and 21 that the condition (1) derives formulas
(7.85), (7.85)∗ (7.86), (7.86)∗ (7.87), and (7.87)∗. It shows that the proof of Propo-
sition 14 works in this case as well. �

Lemma 20 Let (M,∇, g) be a totally real submanifold in M̃. Then the formulas
(7.85)∗, (7.87) and the following four conditions are equivalent to each other:

A∗
ζ = 0, (7.93)

DX(f ζ) = fD∗
Xζ, (7.94)

fB(X, Y) = 0, (7.95)

fD∗
X(JY) = 0, (7.96)

where X, Y ∈ �(TM) and ζ ∈ �(N).
Moreover, these conditions imply that (7.86)∗ holds and JH ∈ �(TM).

Proof The formula (7.93) implies (7.94) by (7.84). The formula (7.94) implies
(7.87) by (7.82). The formula (7.87) implies (7.95) because −A∗

JXY = JB(X, Y) =
tB(X, Y) + fB(X, Y). The formula (7.95) implies (7.85)∗ by (7.80)∗. The formula
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(7.85)∗ implies (7.96) by (7.38). The formula (7.96) implies (7.93) by 〈A∗
ζX, Y〉 =

〈B(X, Y), ζ〉 = 〈JA∗
JXY − fD∗

X(JY), ζ〉 = 0. �

Lemma 21 Let (M,∇, g) be a totally real submanifold in M̃. Then the condition
(1) of Theorem 7.7 is equivalent to that Aζ = A∗

ζ = 0 for ζ ∈ �(N).

Proof We have

DX(Jζ) − JD∗
Xζ = ∇̃X(Jζ) + AJζX − JD∗

Xζ = J∇̃∗
Xζ + AJζX − JD∗

Xζ

= −JA∗
ζX + AJζX. �

These kinds of properties for totally real submanifolds in Kähler manifolds are
obtained by Kassabov [10]. A generalization for the case that the ambient space is
a holomorphic statistical manifold is due to Milijević [14], in which she used the
notion of constant curvature in Kurose’s sense.

Let M be an n-dimensional totally real submanifold in a holomorphic statistical
manifold M̃. We set functions on M by

σ1 = 1

4

n∑

h,k,j,i=1

〈[Ak, A∗
j ]ei − [Aj, A∗

k ]ei, eh〉2 (7.97)

=
n∑

j,i=1

tr
(
(Ai)

2(A∗
j )

2 − (AiA
∗
j )

2 + AiA
∗
i AjA

∗
j − AiAjA

∗
i A∗

j

)
, (7.98)

σ2 = 1

4

n∑

j,i=1

{tr (AjA
∗
i + AiA

∗
j )}2 (7.99)

= 1

2

n∑

j,i=1

tr (AiA
∗
i AjA

∗
j + AiAjA

∗
j A∗

i ), (7.100)

where Ai := AJei , A∗
i := A∗

Jei
, and {e1, . . . , en} is a local orthonormal frame on M.

To obtain (7.98) from (7.97) and (7.100) from (7.99), respectively, we need (7.78)
and easy long calculation.

Lemma 22 Let (M,∇, g) be an n-dimensional totally real submanifold in M̃ (̃c). If
H = H∗ = 0 and DX(Jζ) = JD∗

Xζ for any X ∈ �(TM), ζ ∈ �(N), then

σ1 ≥ 2

n(n − 1)

(
n∑

i=1

tr (AiA
∗
i )

)2

and σ2 ≥ 1

n

(
n∑

i=1

tr (AiA
∗
i )

)2

.

In the first inequality, the equality holds if and only if S(X, Y)Z = ρ
n(n−1) {〈Y , Z〉

X − 〈X, Z〉Y} for any X, Y , Z ∈ �(TM). In the second inequality, the equality holds
if and only if L(X, Y) = ρ

n 〈X, Y〉 for any X, Y ∈ �(TM).
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Proof Since DX(Jζ) = JD∗
Xζ for any X ∈ �(TM), ζ ∈ �(N), by Lemmas 20 and

21, we have (7.87) and (7.87)∗. Using them with (7.15) and (7.32), we have

S(X, Y)Z = c̃

4
{〈Y , Z〉X − 〈X, Z〉Y} + 1

2
([AJX , A∗

JY ]Z − [AJY , A∗
JX ]Z) (7.101)

for any X, Y , Z ∈ �(TM). The condition H = H∗ = 0 implies that
∑n

i=1 A∗
i ei =∑n

i=1 Aiei = 0. Therefore, L and ρ are given by

L(X, Y) = 1

4
(n − 1)̃c〈X, Y〉 − 1

2
tr (AJXA∗

JY + AJY A∗
JX), (7.102)

ρ = 1

4
n(n − 1)̃c −

n∑

i=1

tr (AiA
∗
i ). (7.103)

From (7.101), (7.102), and (7.103), we have

‖S‖2 = 1

8
n(n − 1)̃c2 − c̃

n∑

i=1

tr (AiA
∗
i ) + 1

4

n∑

k,j,i=1

‖([Ak, A∗
j ] − [Aj, A∗

k ])ei‖2

= 1

8
n(n − 1)̃c2 − c̃

n∑

i=1

tr (AiA
∗
i ) + σ1

= 2

n(n − 1)
ρ2 + σ1 − 2

n(n − 1)

(
n∑

i=1

tr (AiA
∗
i )

)2

,

and

‖L‖2 = 1

16
n(n − 1)2c̃2 − 1

2
(n − 1)̃c

n∑

i=1

tr (AiA
∗
i )

+1

4

n∑

j,i=1

{tr (AjA
∗
i ) + tr (AiA

∗
j )}2

= 1

16
n(n − 1)2c̃2 − 1

2
(n − 1)̃c

n∑

i=1

tr (AiA
∗
i ) + σ2

= 1

n
ρ2 + σ2 − 1

n

(
n∑

i=1

tr (AiA
∗
i )

)2

.

Using Remark 2, we have the conclusion. �

Theorem 7.8 Let M̃ (̃c) be a holomorphic statistical manifold (M̃, ∇̃, g̃, J) of con-
stant holomorphic sectional curvature c̃, and (M,∇, g) an n-dimensional totally real
submanifold in M̃ (̃c). Suppose that
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(1) DX(Jζ) = JD∗
Xζ for any X ∈ �(TM), ζ ∈ �(N),

(2) S(X, Y) · B = 0 for any X, Y ∈ �(TM) and
(3) H = H∗ = 0.

Then

ρ

n∑

i=1

tr (AiA
∗
i ) ≥ 0. (7.104)

Moreover, the left-hand side of (7.104) vanishes if and only if

S(X, Y)Z = ρ

n(n − 1)
{〈Y , Z〉X − 〈X, Z〉Y}

holds for any X, Y , Z ∈ �(TM). Especially, ρ = 0 if and only if S = 0.

Proof By the condition (1) and Lemma 20, we have (7.86) and (7.87). Using these
with the condition (2), we calculate

0 = 〈−J(S(X, Y) · B)(Z, W1), W2〉
= 〈S(X, Y)A∗

JZ W1 − A∗
JW1

S(X, Y)Z − A∗
JZ S(X, Y)W1, W2〉

and putting W1 = AJU V and W2 = W , by (7.101) we obtain

0 = 1

4
c̃
{〈Y , A∗

JZ AJU V 〉〈X, W 〉 − 〈X, A∗
JZ AJU V 〉〈Y , W 〉

−〈Y , AJU V 〉〈A∗
JZ X, W 〉 + 〈X, AJU V 〉〈A∗

JZ Y , W 〉
−〈Y , Z〉〈A∗

JXAJU V, W 〉 + 〈X, Z〉〈A∗
JY AJU V, W 〉}

+1

2

{〈([AJX , A∗
JY ] − [AJY , A∗

JX ])A∗
JZAJU V, W 〉

−〈([AJX , A∗
JY ] − [AJY , A∗

JX ])AJU V, A∗
JZ W 〉

−〈([AJX , A∗
JY ] − [AJY , A∗

JX ])Z, A∗
JW AJU V 〉}

for anyU, V, W, X, Y , Z ∈ �(TM). Putting X = W = ei, Y = U = ej, Z = V = ek

and summing up i, j, k from 1 to n in this equation, we have

0 = 1

4
(n + 1)̃c

n∑

i=1

tr (AiA
∗
i ) − (σ1 + σ2) .

We remark that the condition (3) implies (7.103). Therefore, using it with the above
equation, we get

n + 1

n(n − 1)
ρ

n∑

i=1

tr (AiA
∗
i ) = 1

4
(n + 1)̃c

n∑

i=1

tr (AiA
∗
i ) − n + 1

n(n − 1)

(
n∑

i=1

tr (AiA
∗
i )

)2
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=
⎧
⎨

⎩σ1 − 2

n(n − 1)

(
n∑

i=1

tr (AiA
∗
i )

)2
⎫
⎬

⎭

+
⎧
⎨

⎩σ2 − 1

n

(
n∑

i=1

tr (AiA
∗
i )

)2
⎫
⎬

⎭ ,

from which Lemma 22 implies the conclusion. �

Acknowledgments This work was supported by JSPS KAKENHI 26400058.

References

1. Alekseevsky, D.V., Cortés, V., Devchand, C.: Special complex manifolds. J. Geom. Phys. 42,
85–105 (2002)

2. Aydin, M.E., Mihai, A., Mihai, I.: Some inequalities on submanifolds in statistical manifolds
of constant curvature. Filomat 29, 465–477 (2015)

3. Bejancu, A.: CR submanifolds of a Kaehler manifold I. Proc. Am. Math. Soc. 69, 135–142
(1978)

4. Bejancu, A., Kon, M., Yano, K.: CR-submanifolds of a complex space form. J. Differ. Geom.
34, 137–145 (1981)

5. Blair, D., Chen, B.Y.: On CR-submanifolds of Hermitian manifolds. Isr. J. Math. 34, 353–363
(1979)

6. Cortés, V.: A holomorphic representation formula for parabolic hyperspheres. Banach Center
Publ. 57, 11–16 (2002)
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8.1 Introduction

In Riemannian geometry the manifolds endowed with certain endomorphisms of
their tangent bundles play an important role. Among these, the most important are
the almost complex structures (on even-dimensional manifolds) and almost contact
structures (on odd-dimensional manifolds). In particular the Kähler manifolds and
the Sasakian manifolds, respectively, are the most studied such manifolds, because
they have the most interesting properties and applications.

In order to have the highest degree of homogeneity (i.e., the group of isometries
has the maximum dimension), the spaces of constant sectional curvatures are the
most investigated. It is known that a Kähler manifold with constant sectional cur-
vature is flat. For this reason the notion of complex space form (a Kähler manifold
with constant holomorphic sectional curvature) was introduced. Analogously, the
Sasakian space forms were defined.
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On the other hand, starting from the classical theory of curves and surfaces in
Euclidean spaces, the theory of submanifolds is an important field of research in
Riemannian geometry.

There are certain important specific classes of submanifolds in Kähler mani-
folds and Sasakian manifolds, respectively. For example, complex and Lagrangian
submanifolds in Kähler manifolds and invariant and Legendrian submanifolds in
Sasakian manifolds. A notion which generalizes the above-mentioned submanifolds
is the class of CR-submanifolds in a Kähler manifold and, respectively, the contact
CR-submanifolds in Sasakian manifolds.

The purpose of this chapter is to present recent topics of research and recent
results onCR-submanifolds in complex space forms and contactCR-submanifolds in
Sasakian space forms, respectively. First, we recall basic results on Kähler manifolds
and Sasakian manifolds and their submanifolds. In particular, the CR-submanifolds
in Kähler manifolds and contact CR-submanifolds in Sasakian manifold are defined.
The next section is devoted to CR-submanifolds in complex space forms. The Ricci
curvature and the k-Ricci curvature of such submanifolds are estimated in terms of
the squared mean curvature. The generalized Wintgen inequality conjecture, also
known as the DDVV conjecture, was recently solved in its general settings, i.e., for
submanifolds in Riemannian space forms of arbitrary dimensions and codimensions.
Wemention some contributions of the present authors in this respect. AWintgen-type
inequality for totally real surfaces in complex space forms is proved. The equality
case holds identically if and only if the ellipse of curvature is a circle at every point
of the surface. An interesting example of a totally real surface in C2 satisfying the
equality case identically is given. Afterwards, a generalized Wintgen inequality for
Legendrian submanifolds in complex space forms was established. A Wintgen-type
inequality for CR-submanifolds in complex space forms is stated. The warped prod-
uct manifolds play an important role in Riemannian geometry as well as in physics.
Recently B.Y. Chen investigated warped product submanifolds in Riemannian space
forms. Also he introduced and studied the notion of a CR-warped product in a Kähler
manifold. After recalling some important results of B.Y. Chen, we present some con-
tributions of one of the present authors. A geometric inequality for warped product
manifolds satisfying a certain condition (in particular CR-warped product subman-
ifolds) in complex space forms is proved, the equality case is characterized and
examples of the equality case are given. Also some obstructions to the minimality of
warped product CR-submanifolds in complex space forms are derived. Finally, the
scalar curvature of such submanifolds is estimated and classifications of submani-
folds in complex space forms satisfying the equality case, identically, are given. The
last section deals with certain results on contact CR-submanifolds in Sasakian space
forms. We state geometric inequalities for the Ricci curvature and k-Ricci curvature
of contact CR-submanifolds in Sasakian space forms. Recently, one of the present
authors proved a generalized Wintgen inequality for C-totally real submanifolds in
Sasakian space forms. We extend this result to contact CR-submanifolds in Sasakian
space forms. The last subsection contains certain results on contactCR-warped prod-
ucts in Sasakian space forms.
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8.2 Submanifolds in Kähler and Sasakian Manifolds

8.2.1 Submanifolds in Kähler Manifolds

Let M̃ be a complex manifold of dimension m and J its standard almost complex
structure. A Hermitian metric on M̃ is a Riemannian metric g invariant with respect
to J , i.e.,

g(J X, JY ) = g(X, Y ), ∀X, Y ∈ �(T M̃).

The pairing (M̃, g) is called a Hermitian manifold.
Any complex manifold admits a Hermitian metric.
A Hermitian metric g on a complex manifold M̃ defines a nondegenerate 2-

form ω(X, Y ) = g(J X, Y ), X, Y ∈ �(T M̃), which is called the fundamental 2-
form. Clearly, ω(J X, JY ) = ω(X, Y ).

Definition A Hermitian manifold is called a Kähler manifold if the fundamental
2-form ω is closed.

Necessary and sufficient conditions for a Hermitian manifold to be a Kähler
manifold are given by the following:

Theorem 8.2.1.1 Let (M̃, g) be an m-dimensional Hermitian manifold and ∇̃ the
Levi-Civita connection associated to g. The following statements are equivalent to
each others:

(i) M is a Kähler manifold;
(ii) the standard almost complex structure J on M̃ is parallel with respect to ∇̃,

i.e., ∇̃ J = 0;
(iii) For any z0 ∈ M̃, there exists a holomorphic coordinate system in a neighbor-

hood of z0 such that
g = (δk j + hk j )dzkdz̄ j ,

where hk j (z0) = ∂hk j

∂zl (z0) = 0, for any k, j, l = 1, . . . , m;
(iv) locally, there exists a real differentiable function F such that the fundamental

2-form is given by ω = i∂∂̄F, where the exterior differentiation d is decomposed in
dα = ∂α + ∂̄α.

Remark If locally the fundamental 2-form is given by

ω = i∂∂̄F = i
∂2F

∂z j∂ z̄k
dz j ∧ dz̄k,
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then the Hermitian metric can be expressed by

g = ∂2F

∂z j∂ z̄k
dz j d z̄k .

Examples of Kähler Manifolds [35]

1. Cn with the Euclidean metric g = ∑n
k=1 dzkdz̄k .

The fundamental 2-form is given by ω = i
∑n

k=1 dzk ∧ dz̄k .

2. The complex torus T n = Cn/G with the Hermitian structure induced by the
Euclidean metric of Cn .

3. The complex projective space Pn(C).

Let (z0j , . . . , z j−1
j , z j+1

j , . . . , zn
j ) be the local coordinates on U j ⊂ Pn(C). One

defines f j (z) = ∑n
k=0 |zk

j |2, where z j
j = 1.

On U j ∩ Uk , we have fk(z) = |z j
k |2 f j (z).

The 2-form ω defined on U j by ω = i∂∂̄ ln f j , is globally defined on Pn(C).
For j = 0, f0 = 1 +∑n

k=1 |zk |2 and

ω = i
(1 + zs z̄s)dzk ∧ dz̄k − z̄kdzk ∧ z j d z̄ j

(1 + zs z̄s)2
.

The Hermitian metric g has the coefficients:

g j k̄ = (1 + zs z̄s)δ jk − zk z̄ j

(1 + zs z̄s)2
.

This metric is called the Fubini–Study metric.

4. The complex Grassmann manifold G p(Cp+q).

Wewill define aKählerianmetric onG p(Cp+q). Let M∗(p + q, p,C)be the space
of (p + q, p)-matriceswith complex coefficients, of rank p. The canonical projection
M∗(p + q, p,C) → G p(Cp+q) defines a principal fiber bundlewith structural group
GL(p,C).

An element Z ∈ M∗(p + q, p,C) can be written as Z =t (Z0, Z1), where Z0 is
a quadratic matrix of order p and Z1 a matrix of order (q, p).

We consider the open subset of G p(Cp+q) defined by det Z0 
= 0 and
denoted by T = Z1Z−1

0 . A Kählerian structure is defined by the 2-form
ω = i∂∂̄ log det(I +t T̄ T ).

The associated Kählerian metric is called the generalized Fubini–Study metric on
G p(Cp+q).

5. Let Dn = Int S2n−1 be theunit disk inCn , i.e., Dn =
{

z ∈ Cn | ∑n
j=1 |z j |2 < 1

}
.

We put ω = −i∂∂̄ ln(1 −∑n
j=1 |z j |2). The associated Hermitian metric has the

coefficients
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g j k̄ = (1 − zs z̄s)δ jk + z̄ j zk

(1 − zs z̄s)2
.

This metric is called the Bergman metric.

6. Any orientable surface is a Kähler manifold.

We state obstructions to the existence of Kählerian metrics on a compact complex
manifold (see [25, 35, 38]).

Theorem 8.2.1.2 On a compact Kähler manifold the Betti numbers of even order
are nonzero.

As an application, we see that the Calabi manifolds S2m+1 × S2n+1 do not admit
any Kähler metric if (m, n) 
= (0, 0). In particular, Hopf manifolds are not Kähler
manifolds.

Theorem 8.2.1.3 On a compact Kähler manifold the Betti numbers of odd order
are even.

We can construct an almost Kähler manifold which does not admit any Kählerian
metric.

Let H ⊂ GL(3,R) be the Heisenberg group, i.e.,

H =
⎧
⎨

⎩

⎛

⎝
1 x z
0 1 y
0 0 1

⎞

⎠ ; x, y, z ∈ R

⎫
⎬

⎭ .

Let � be the maximal discrete subgroup of H , defined as the set of matrices of H
with integer components. Because � is closed, it follows that H/� is a homogeneous
space.

Let S1 = {e2πi t |t ∈ R} be the unit circle.
We consider the compact homogeneous space M = H/� × S1.
A basis in the Lie algebra of H is given by

X1 = ∂

∂x
, X2 = ∂

∂y
+ x

∂

∂z
, X3 = ∂

∂z
.

These fields are invariant under the action of �, inducing the fields e1, e2, e3
linearly independent on H/�. We denote by e4 the standard vector field d

dt on S1.
The dual 1-forms of the vector fields X1, X2, X3 are

θ1 = dx, θ2 = dy, θ3 = dz − xdy.

They together with dt induce 1-forms α1,α2,α3,α4 linearly independent on M .
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We define the 2-form ω of maximum rank on M , by ω = α4 ∧ α1 + α2 ∧ α3. It
is closed.

We consider the invariant Riemannian metric g̃ on H × S1, defined by g̃ = dx2 +
dy2 + (dz − xdy)2 + dt2. The metric g induced on M is g = α2

1 + α2
2 + α2

3 + α2
4.

An almost complex structure J on M is defined by Je j = (−1) j e5− j , j ∈
{1, 2, 3, 4}.

Then ω is the fundamental 2-form associated to the almost Hermitian manifold
(M, J, g). Since ω is closed, M is an almost Kähler manifold.

But M does not admit Kählerian metrics, because the following result holds good.

Proposition 8.2.1.4 ([38]) The first Betti number β1(M) = 3.

We recall the geometric interpretation of the sectional curvature determinated
by the linearly independent vectors u, v ∈ Tp M̃ , p ∈ M̃ . It represents the Gauss
curvature of the surface

(λ,μ) �→ expp(λu + μv).

If a Kähler manifold of dimension n > 1 has constant sectional curvature, then it
is flat (see [49]). It follows that the notion of constant sectional curvature for a Käh-
ler manifold is not significant. One introduces the notion of holomorphic sectional
curvature and one states a Schur-like theorem.

Let M̃ be a Kähler manifold and J its standard almost complex structure.
The sectional curvature of M̃ in direction of an invariant 2-plane section by J is

called the holomorphic sectional curvature of M̃ .

For the 2-plane section π invariant by J , we take an orthonormal basis
{X, J X}, with unit X . Then the holomorphic sectional curvature is given by
K (π) = R̃(X, J X, X, J X).

The curvature tensor of a Kähler manifold satisfies:

(i) R̃(X, Y, Z , W ) = −R̃(Y, X, Z , W ) = −R̃(X, Y, W, Z);
(ii) R̃(X, Y, Z , W ) = R̃(Z , W, X, Y );
(iii) R̃(X, Y, Z , W ) + R̃(X, Z , W, Y ) + R̃(X, W, Y, Z) = 0;
(iv) R̃(J X, JY, Z , W ) = R̃(X, Y, J Z , J W ) = R̃(X, Y, Z , W ),

for any vector fields X, Y, Z , W on M̃ .

Definition Let M̃ be a Kähler manifold. If the function holomorphic sectional cur-
vature K is constant for all 2-plane sections π of Tp M̃ invariant by J for any p ∈ M̃ ,
then M̃ is called a space with constant holomorphic sectional curvature (or complex
space form).
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Using the above properties, the following Schur-like theorem can be proved.

Theorem ([49])Let M̃ be a connected Kähler manifold of complex dimension n ≥ 2.
If the holomorphic sectional curvature depends only on p ∈ M̃ (and does not depend
of the 2-plane sections π of Tp M̃ invariant by J ), then M̃ is a complex space form.

It follows that the curvature tensor of a complex space form of constant holomor-
phic sectional curvature 4c, denoted by M̃(4c), has the expression

R̃(X, Y, Z , W ) = c[g(X, Z)g(Y, W ) − g(X, W )g(Y, Z)

+ g(X, J Z)g(Y, J W ) − g(X, J W )g(Y, J Z)

+ 2g(X, JY )g(Z , J W )].

Recall that the Riemannian manifold (M, g) is an Einstein manifold if the Ricci
tensor S is proportional to the Riemannian metric g, i.e., S = λg, where λ is a real
number.

Corollary 8.2.1.5 Each complex space form is an Einstein manifold.

Examples of Complex Space Forms

1. Cn with the Euclidean metric is a flat complex space form.
2. Pn(C)with the Fubini–Studymetric has holomorphic sectional curvature equal

to 4.
3. Dn with the Bergman metric has holomorphic sectional curvature equal to −4.

Conversely, the following result holds good [25].

Theorem 8.2.1.6 Let M̃ be a connected, simply connected, and complete complex
space form. Then M̃ is isometric either to Cn, Pn(C) or Dn.

Let (M̃, J, g) be an m-dimensional Kähler manifold and M an n-dimensional
submanifold of M̃ . The induced Riemannian metric on M is also denoted by g. We
denote by ∇̃ and∇ the Levi-Civita connections on M̃ and M , respectively. We recall
the fundamental formulae and equations for a submanifold.

Let h be the second fundamental form of the submanifold M . Then the Gauss
formula is written as

∇̃X Y = ∇X Y + h(X, Y ),

for any X, Y ∈ �(T M).

Denoting by∇⊥ the connection in the normal bundle and by A the shape operator,
one has the Weingarten formula
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∇̃Xξ = −Aξ X + ∇⊥
X ξ,

for any X ∈ �(T M) and ξ ∈ �(T ⊥M).

Let R̃, R, and R⊥ be the curvature tensors with respect to ∇̃, ∇, and ∇⊥, respec-
tively.

For any X, Y, Z , W ∈ �(T M), the Gauss equation is expressed by

R̃(X, Y, Z , W ) = R(X, Y, Z , W ) − g(h(X, Z), h(Y, W )) + g(h(X, W ), h(Y, Z)).

We put

(∇X h)(Y, Z) = ∇⊥
X h(Y, Z) − h(∇X Y, Z) − h(X,∇Y Z);

then the normal component of R̃(X, Y )Z is given by

(R̃(X, Y )Z)⊥ = (∇X h)(Y, Z) − (∇Y h)(X, Z).

The above relation represents the Codazzi equation.

Using the Weingarten formula, one obtains the Ricci equation.

R̃(X, Y, ξ, η) = R⊥(X, Y, ξ, η) − g(AηAξ X, Y ) + g(Aξ AηX, Y )

= R⊥(X, Y, ξ, η) + g([Aξ, Aη]X, Y ),

for any X, Y ∈ �(T M) and ξ, η ∈ �(T ⊥M).

If the second fundamental form h vanishes identically, M is a totally geodesic
submanifold.

Let {e1, . . . , en} be an orthonormal basis of the tangent space Tp M , p ∈ M , and
H be the mean curvature vector, i.e.,

H(p) = 1

n

n∑

i=1

h(ei , ei ).

The submanifold M is said to be minimal if H(p) = 0,∀p ∈ M.

There are no compact minimal submanifolds of Rm .

For a normal section V on M , if AV is everywhere proportional to the identity
transformation I , i.e., AV = aI, for some function a, then V is called an umbilical
section on M , or M is said to be umbilical with respect to V . If the submanifold M
is umbilical with respect to every local normal section of M , then M is said to be
totally umbilical.

An equivalent definition is the following: M is totally umbilical if h(X, Y ) =
g(X, Y )H, for any vector fields X, Y tangent to M .
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Any submanifold M which is both minimal and totally umbilical is totally geo-
desic.

If the second fundamental form and the mean curvature of M in M̃ satisfy
g(h(X, Y ), H) = f g(X, Y ) for some function f on M , then M is called pseudo-
umbilical.

The submanifold M is a parallel submanifold if the second fundamental form h
is parallel, that is ∇h = 0, identically.

We denote also by

hr
i j = g(h(ei , e j ), er ), i, j = 1, . . . , n; r = n + 1, . . . , 2m,

where {en+1, . . . , e2m} is an orthonormal basis of T ⊥
p M , the components of the second

fundamental form, and by

‖h‖2 =
n∑

i, j=1

g(h(ei , e j ), h(ei , e j )).

According to the behavior of the tangent spaces of a submanifold M under the
action of the almost complex structure J of the ambient space M̃ , we distinguish two
special classes of submanifolds:

(i) Complex submanifolds, if J (Tp M) = Tp M,∀p ∈ M .
(ii) Totally real submanifolds, if J (Tp M) ⊂ T ⊥

p M,∀p ∈ M .

Any complex submanifold of a Kähler manifold is a Kähler manifold and a min-
imal submanifold.

If the real dimension of the totally real submanifold M is equal to the complex
dimension of the Kähler manifold M̃, then M is called a Lagrangian submanifold.
In other words, a Lagrangian submanifold is a totally real submanifold of maximum
dimension.

The notion of a generic submanifold of a Kähler manifold was introduced by B.Y.
Chen [4]. It is a natural generalization of both complex and totally real submanifolds.

Let M̃ be a Kähler manifold with complex structure J and Kähler metric g. Let
M be a real submanifold of M̃ . For each point p ∈ M , denote by Dp the maximal
holomorphic subspace of the tangent space Tp M , i.e., Dp = Tp M ∩ J (Tp M).

Definition ([4]) If the dimension of Dp is constant along M and Dp defines a dif-
ferentiable distribution D over M , then M is called a generic submanifold of M̃ .

The distribution D is called the holomorphic distribution of the generic subman-
ifold M .

For each point p ∈ M , denote byD⊥
p the orthogonal complementary subspace of

Dp in Tp M . On a generic submanifold,D⊥
p (p ∈ M) define a differentiable distribu-

tionD⊥ over M , called the purely real distribution. M is said to be a proper generic
submanifold if both D and D⊥ are nontrivial.
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Remark It is known (see [4]) that every submanifold of M̃ is the closure of the union
of some open generic submanifolds of M̃ .

Let M be a generic submanifold of the Kähler manifold M̃ . For a vector field X
tangent to M , we put J X = P X + F X , where P X and F X are the tangential and
normal components of J X , respectively. Then P is an endomorphism of T M and F
is a normal bundle-valued 1-form on T M .

Put α = dimC D, β = dimR D⊥. Then we have dim M = 2α + β.
A CR-submanifold is a particular case of a generic submanifold.

Definition A generic submanifold M of a Kähler manifold M̃ is said to be a
CR-submanifold if its purely real distribution D⊥ is totally real, i.e.,
J (D⊥

p ) ⊂ T ⊥
p M, p ∈ M .

The CR-submanifolds were studied by B.Y. Chen [5], A. Bejancu [1], K. Yano
and M. Kon [48], etc. Both complex and totally real submanifolds are improper
CR-submanifolds. It is easily seen that a real hypersurface of a Kähler manifold is a
proper CR-submanifold. The first main result on CR-submanifolds was obtained by
B.Y. Chen.

Theorem 8.2.1.7 ([5]) The totally real distribution D⊥ on a CR-submanifold M of
a Kähler manifold M̃ is completely integrable.

For a differentiable distribution H on a Riemannian manifold M , we set
h0(X, Y ) = (∇X Y )⊥, for any vector fields X, Y in H, where (∇X Y )⊥ denotes the
component of ∇X Y in the complementary orthogonal subbundle H⊥ to H in
T M . Let {e1, . . . , er } be an orthonormal basis of H, r = dimH. If we put H 0 =
1
r

∑r
i=1 h0(ei , ei ), then H 0 is a well-defined H⊥-valued vector field on M . It is

called the mean curvature vector field of the distribution H. A distribution H on a
Riemannian manifold M is said to be minimal if its mean curvature vector vanishes
identically. For the holomorphic distribution D on a CR-submanifold, the following
general result was proved (see [4]).

Theorem 8.2.1.8 The holomorphic distribution D on a CR-submanifold M of a
Kähler manifold M̃ is a minimal distribution.

The integrability of the holomorphic distribution D is characterized as follows:

Theorem 8.2.1.9 Let M be a CR-submanifold of a Kähler manifold M̃. Then the
holomorphic distribution D is completely integrable if and only if

h(X, JY ) = h(J X, Y ), ∀X, Y ∈ �(D).
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In contrast with the integrability of D⊥ and the minimality of D on a CR-
submanifold, we have the following:

Theorem 8.2.1.10 ([4]) Let M be a compact CR-submanifold of a Kaehler manifold
M̃. If its de Rham cohomology group H 2k(M;R) = 0, for some k ≤ dimC D, then
either D is not integrable or D⊥ is not minimal.

In order to justify the denomination of a CR-submanifold, D.E. Blair and B.Y.
Chen proved the following result (in [3]).

Theorem 8.2.1.11 Each CR-submanifold of a Kähler manifold is a Cauchy–Riemann
(abbreviated as CR-) manifold in the sense of S. Greenfield.

We recall the definition of a CR-structure on a differentiable manifold following
S. Greenfield (see [1]). Let M be a differentiable manifold and TCM = T M ⊗R C its
complexified tangent bundle. A subbundle of TCM is called a complex distribution
on M .

Definition A differentiable manifold is said to have a CR-structure if it admits a
complex distribution B satisfying the following conditions:

(i) B ∩ B̄ = {0}, where B̄ means the complex conjugated distribution of B;
(ii) B is involutive, i.e., for any A, B ∈ �(B), their Lie bracket [A, B] belongs to

�(B).

Each CR-submanifold of a complex manifold M̃ is endowed with a CR-structure,
defined by B = {X − i J X |X ∈ �(D)}.

8.2.2 Sasakian Manifolds and Their Submanifolds

Roughly speaking, a Sasakian manifold is the odd-dimensional correspondent of a
Kähler manifold. A (2m + 1)-dimensional Riemannian manifold (M̃, g) is said to
be a Sasakian manifold if it admits an endomorphism φ of its tangent bundle T M̃ , a
vector field ξ, and a 1-form η, satisfying

⎧
⎪⎨

⎪⎩

φ2 = −Id + η ⊗ ξ, η(ξ) = 1, φξ = 0, η ◦ φ = 0,

g(φX,φY ) = g(X, Y ) − η(X)η(Y ), η(X) = g(X, ξ),

(∇̃Xφ)Y = −g(X, Y )ξ + η(Y )X, ∇̃Xξ = φX,

for any vector fields X, Y on M̃ , where ∇̃ denotes the Riemannian connection with
respect to g.

A plane section π in Tp M̃ is called a φ-section if it is spanned by X and φX , where
X is a unit tangent vector orthogonal to ξ. The sectional curvature of a φ-section
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is called a φ-sectional curvature. A Sasakian manifold with constant φ-sectional
curvature c is said to be a Sasakian space form and is denoted by M̃(c).

The curvature tensor of R̃ of a Sasakian space form M̃(c) is given by [49]

R̃(X, Y )Z = c + 3

4
{g(Y, Z)X − g(X, Z)Y }

+ c − 1

4
{η(X)η(Z)Y − η(Y )η(Z)X + g(X, Z)η(Y )ξ − g(Y, Z)η(X)ξ

+ g(φY, Z)φX − g(φX, Z)φY − 2g(φX, Y )φZ}, (8.2.2.1)

for any tangent vector fields X, Y, Z on M̃(c).
As examples of Sasakian space formswementionR2m+1 and S2m+1, with standard

Sasakian structures (see [2, 49]).
Let M be an n-dimensional submanifold in a Sasakian manifold M̃ . We denote

by ∇ and h the Riemannian connection of M and the second fundamental form,
respectively. Let R be the Riemann curvature tensor of M .

Then the equation of Gauss is given by

R̃(X, Y, Z , W ) = R(X, Y, Z , W ) − g(h(X, Z), h(Y, W )) + g(h(X, W ), h(Y, Z)),

(8.2.2.2)
for any vectors X, Y, Z , W tangent to M .

By analogy with the submanifolds of a Kähler manifold, we distinguish special
classes of submanifolds of Sasakian manifolds.

A submanifold M normal to ξ in a Sasakian manifold M̃ is said to be a C-totally
real submanifold. In this case, it follows that φ maps any tangent space of M into
the normal space, that is, φ(Tp M) ⊂ T ⊥

p M , for every p ∈ M .
In particular, if dim M̃ = 2 dim M + 1, then M is called a Legendrian submani-

fold.

For submanifolds tangent to the structure vector field ξ, there are different classes
of submanifolds. We mention the following:

(i) A submanifold M tangent to ξ is called an invariant submanifold if φ preserves
any tangent space of M , that is, φ(Tp M) ⊂ Tp M , for every p ∈ M .

(ii) A submanifold M tangent to ξ is called an anti-invariant submanifold if φ
maps any tangent space of M into the normal space, that is, φ(Tp M) ⊂ T ⊥

p M , for
every p ∈ M .

An important class of submanifolds tangent to ξ in Sasakian manifolds are the
contactCR-submanifolds. Both invariant and anti-invariant submanifolds are contact
CR-submanifolds.

Definition A submanifold M tangent to ξ is called a contact CR-submanifold if it
admits an invariant differentiable distribution D with respect to φ whose orthogonal
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complementary orthogonal distributionD⊥ is anti-invariant, that is, T M = D ⊕ D⊥,
with φ(Dp) ⊂ Dp and φ(D⊥

p ) ⊂ T ⊥
p M , for every p ∈ M .

If, in particular, φ(D⊥
p ) = T ⊥

p M , for every p ∈ M , then M is called an anti-φ-
holomorphic contact CR-submanifold.

The integrability of structure distributions is characterized by the following:

Theorem 8.2.2.1 ([49]) Let M be an (n + 1)-dimensional contact CR-submanifold
of a (2m + 1)-dimensional Sasakian manifold M̃. Then the distributionD⊥ is always
completely integrable and its maximal integral submanifold is either a C-totally real
submanifolds of M̃ or an anti-invariant submanifold tangent to ξ.

Theorem 8.2.2.2 ([49]) Let M be an (n + 1)-dimensional contact CR-submanifold
of a (2m + 1)-dimensional Sasakian manifold M̃. The distribution D is completely
integrable if and only if its second fundamental form h satisfies

h(P X, Y ) = h(X, PY ),

for any vector fields X, Y ∈ �(D), where P X is the tangential component of φX.
Moreover, the maximal integral submanifold of D is an invariant submanifold tangent
to ξ.

Next we provide an example ([49]) of a contact CR-submanifold.
Let S2m+1 be a (2m + 1)-dimensional unit sphere with standard Sasakian struc-

ture. We denote by Sk(r) a k-dimensional sphere with radius r . We consider the
following immersion:

M = Sk1(r1) × · · · × Skq (rq) → Sn+q ⊂ S2m+1, n + 1 =
q∑

i=1

ki ,

where k1, . . . , kq are odd numbers, r21 + · · · + r2q = 1 and n + q is also odd.
Then M is an anti-φ-holomorphic contact CR-submanifold of Sn+q and a contact

CR-submanifold of S2m+1.

If ri = ( ki
n+1

)1/2
, for any i ∈ {1, . . . , q}, then M is a minimal submanifold both

in Sn+q and S2m+1.
Moreover, if all ki = 1, then M is a Legendrian submanifold in Sn+q and a C-

totally real submanifold in S2m+1.
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8.3 CR-Submanifolds in Complex Space Forms

8.3.1 Ricci and k-Ricci Curvatures of CR-Submanifolds in
Complex Space Forms

Let M be an n-dimensional submanifold of an m-dimensional complex space form
M̃(4c) of constant holomorphic sectional curvature 4c.

For any p ∈ M and any unit vector X tangent to M at p, we consider an ortho-
normal basis {e1 = X, e2, . . . , en} of Tp M . Then the Ricci curvature of X is defined
by

Ric(X) =
n∑

i=2

K (X ∧ ei ),

where K (X ∧ ei ) is the sectional curvature of the 2-plane section spanned by X and
ei , i = 2, . . . , n.

If J is the standard almost complex structure on M̃(4c), we put J X = P X + F X ,
where P X and F X are the tangential and normal components, respectively, of J X .

B.Y. Chen established a sharp relationship between Ricci and k-Ricci curvatures,
respectively, and the squared mean curvature for submanifolds in real space forms
(see [8]).

In [27], we proved a similar inequality for an n-dimensional Riemannian subman-
ifold M of an m-dimensional complex space form M̃(4c) of constant holomorphic
sectional curvature 4c (see also [30]).

Theorem 8.3.1.1 Let M be an n-dimensional submanifold in an m-dimensional
complex space form M̃(4c) with constant holomorphic sectional curvature 4c. Then

(i) For each unit vector X ∈ Tp M, we have

Ric(X) ≤ n2

4
‖H‖2 + (n − 1)c + 3

2
c ‖P X‖2 . (8.3.1.1)

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of
(8.3.1.1) if and only if X ∈ ker h p.

(iii) The equality case of (8.3.1.1) holds identically for all unit tangent vectors
at p if and only if either p is a totally geodesic point or n = 2 and p is a totally
umbilical point.

Proof Let X ∈ Tp M be a unit tangent vector X at p.We choose an orthonormal basis
e1, . . . , en, en+1, . . . , e2m such that e1, . . . , en are tangent to M at p, with e1 = X .

Then, from the equation of Gauss, we have

n2 ‖H‖2 = 2τ + ‖h‖2 − [n(n − 1) + 3 ‖P‖2]c. (8.3.1.2)
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From (8.3.1.2), we get

n2 ‖H‖2 = 2τ +
2m∑

r=n+1

⎡

⎣(hr
11)

2 + (hr
22 + · · · + hr

nn)
2 + 2

∑

i< j

(hr
i j )

2

⎤

⎦

− 2
2m∑

r=n+1

∑

2≤i< j≤n

hr
ii h

r
j j − [n(n − 1) + 3 ‖P‖2]c

= 2τ + 1

2

2m∑

r=n+1

[
(hr

11 + hr
22 + · · · + hr

nn)
2 + (hr

11 − hr
22 − · · · − hr

nn)
2
]

+ 2
2m∑

r=n+1

∑

i< j

(hr
i j )

2 − 2
2m∑

r=n+1

∑

2≤i< j≤n

hr
ii h

r
j j − [n(n − 1) + 3 ‖P‖2]c.

(8.3.1.3)

From the equation of Gauss, we find

K (ei ∧ e j ) =
2m∑

r=n+1

[hr
ii h

r
j j − (hr

i j )
2] + [1 + 3g2(ei , Je j )]c, 2 ≤ i < j ≤ n,

(8.3.1.4)
and consequently

∑

2≤i< j≤n

K (ei ∧ e j ) =
2m∑

r=n+1

∑

2≤i< j≤n

[hr
ii h

r
j j − (hr

i j )
2] + (n − 1)(n − 2)

2
c

+ (‖P‖2 − ‖Pe1‖2)3c

2
. (8.3.1.5)

Substituting (8.3.1.5) in (8.3.1.3), one gets

n2 ‖H‖2 ≥ 2τ + 1

2
n2 ‖H‖2 + 2

2m∑

r=n+1

n∑

j=2

(hr
1 j )

2 − 2
∑

2≤i< j≤n

K (ei ∧ e j )

+ [(n − 1)(n − 2) − n(n − 1)]c − 3 ‖Pe1‖2 c. (8.3.1.6)

Therefore,

1

2
n2 ‖H‖2 ≥ 2Ric(X) − 2(n − 1)c − 3 ‖P X‖2 c, (8.3.1.7)

or equivalently (8.3.1.1).
(i) Assume H(p) = 0. Equality holds in (8.3.1.1) if and only if
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{
hr
12 = · · · = hr

1n = 0,

hr
11 = hr

22 + · · · + hr
nn, r ∈ {n + 1, . . . , 2m}. (8.3.1.8)

Then hr
1 j = 0,∀ j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}, i.e., X ∈ ker h p.

(ii) The equality case of (8.3.1.1) holds for all unit tangent vectors at p if and only
if
{

hr
i j = 0, i 
= j, r ∈ {n + 1, . . . , 2m},

hr
11 + · · · + hr

nn − 2hr
ii = 0, i ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}. (8.3.1.9)

We distinguish two cases:
(a) n 
= 2; then p is a totally geodesic point;
(b) n = 2; it follows that p is a totally umbilical point.
The converse is trivial.

In particular, for CR-submanifolds in complex space forms we have

Corollary 8.3.1.2 Let M be an n-dimensional CR-submanifold of an m-dimensional
complex space form M̃(4c). Then

(i) For any unit vector X ∈ Dp,

Ric(X) ≤ n2

4
‖H‖2 +

(
n + 1

2

)
c.

(ii) For any unit vector X ∈ D⊥
p ,

Ric(X) ≤ n2

4
‖H‖2 + (n − 1)c.

Next we prove a relationship between the k-Ricci curvature and the squared mean
curvature for submanifolds in complex space forms.

First, we state a relationship between the sectional curvature and the squaredmean
curvature.

Theorem 8.3.1.3 Let M be an n-dimensional submanifold in a complex space form
M̃(4c) of constant holomorphic sectional curvature 4c. Then we have

‖H‖2 ≥ 2τ

n(n − 1)
− c − 3c ‖P‖2

n(n − 1)
.

Proof Let p ∈ M and {e1, . . . , en} an orthonormal basis of Tp M .
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From the equation of Gauss for X = Z = ei , Y = W = e j , by summing, we
obtain

n2 ‖H‖2 = 2τ + ‖h‖2 − [n(n − 1) + 3 ‖P‖2]c. (8.3.1.10)

We choose an orthonormal basis {e1, . . . , en, en+1, . . . , e2m} at p such that en+1 is
parallel to the mean curvature vector H(p) and e1, . . . , en diagonalize the shape
operator An+1. Then the shape operators take the forms

An+1 =

⎛

⎜⎜⎜⎝

a1 0 . . . 0
0 a2 . . . 0
...

...
. . .

...

0 0 . . . an

⎞

⎟⎟⎟⎠ (8.3.1.11)

Ar = (hr
i j ), i, j = 1, . . . , n; r = n + 2, . . . , 2m, trace Ar = 0.

From (8.3.1.11), we get

n2 ‖H‖2 = 2τ +
n∑

i=1

a2
i +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2 − [n(n − 1) + 3 ‖P‖2]c. (8.3.1.12)

On the other hand, since

0 ≤
∑

i< j

(ai − a j )
2 = (n − 1)

∑

i

a2
i − 2

∑

i< j

ai a j ,

we obtain

n2 ‖H‖2 =
(

n∑

i=1

ai

)2

=
n∑

i=1

a2
i + 2

∑

i< j

ai a j ≤ n
n∑

i=1

a2
i , (8.3.1.13)

which implies
n∑

i=1

a2
i ≥ n ‖H‖2 .

We have from (8.3.1.12)

n2 ‖H‖2 ≥ 2τ + n ‖H‖2 − [n(n − 1) + 3 ‖P‖2]c, (8.3.1.14)

or, equivalently,

‖H‖2 ≥ 2τ

n(n − 1)
− c − 3c ‖P‖2

n(n − 1)
,

which represents the inequality to prove.
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We recall the definitions of the k-Ricci curvature and sectional curvature of a
k-plane section, respectively ([8]).

Let p ∈ M , L a k-plane section at p, 2 ≤ k ≤ n, and X ∈ L a unit vector. Take
an orthonormal basis {X = v1, v2, . . . , vk} of L . Then the Ricci curvature RicL(X)

of L at X is given by
RicL(X) =

∑

2≤r≤k

K (X ∧ vr ).

We simply call it a k-Ricci curvature.
The scalar curvature of L is τ (L) = ∑

1≤i< j≤k K (vi ∧ v j ).

The Riemannian invariant �k is defined by

�k(p) = 1

k − 1
inf
L ,X

RicL(X),

where L runs over all k-plane sections in Tp M and X runs over all unit vectors in L .
Using Theorem 8.3.1.3, we obtain the following:

Theorem 8.3.1.4 ([30]) Let M be an n-dimensional submanifold in a complex space
form M̃(4c) of constant holomorphic sectional curvature 4c. Then, for any integer
k, 2 ≤ k ≤ n, and any point p ∈ M, we have

‖H‖2 (p) ≥ �k(p) − c − 3c ‖P‖2
n(n − 1)

. (8.3.1.15)

Proof Let {e1, . . . , en} be an orthonormal basis of Tp M . Denote by Li1...ik the k-plane
section spanned by ei1 , . . . , eik . By the definitions, one has

τ (Li1...ik ) = 1

2

∑

i∈{i1,...,ik }
RicLi1 ...ik

(ei ),

τ (p) = 1

Ck−2
n−2

∑

1≤i1<···<ik≤n

τ (Li1...ik ).

From the above equations, one derives

τ (p) ≥ n(n − 1)

2
�k(p),

which implies (8.3.1.15).
Finally, on a CR-submanifold of a complex space form, we establish a corre-

sponding inequality.
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Corollary 8.3.1.5 Let M be an n-dimensional CR-submanifold in a complex space
form M̃(4c) of constant holomorphic sectional curvature 4c. Then, for any integer
k, 2 ≤ k ≤ n, and any point p ∈ M, we have

‖H‖2 (p) ≥ �k(p) − c − 6αc

n(n − 1)
,

where 2α = dimD.

8.3.2 Wintgen-Type Inequalities for CR-Submanifolds
in Complex Space Forms

For surfaces M in theEuclidean spaceE3, the Euler inequality K ≤ ||H ||2 is fulfilled,
where K is the (intrinsic) Gauss curvature of M and ||H ||2 is the (extrinsic) squared
mean curvature.

Furthermore, K = ||H ||2 everywhere on M if and only if M is totally umbilical,
or still, by a theorem of Meusnier, if and only if M is an open portion of a plane E2

or it is an open portion of a round sphere S2 in E3.
In 1979, P. Wintgen [47] proved that the Gauss curvature K , the squared mean

curvature ‖H‖2, and the normal curvature K ⊥ of any surface M2 inE4 always satisfy
the inequality

K ≤ ‖H‖2 − |K ⊥|;

the equality holds if and only if the ellipse of curvature of M2 in E4 is a circle.

The Whitney 2-sphere satisfies the equality case of the Wintgen inequality iden-
tically.

A survey containing recent results on surfaces satisfying identically the equality
case of Wintgen inequality can be read in [16].

Later, the Wintgen inequality was extended by B. Rouxel [44] and by I.V.
Guadalupe and L. Rodriguez [23] independently, for surfaces M of arbitrary codi-
mension in real space forms M̃(c); namely

K ≤ ‖H‖2 − |K ⊥| + c.

The equality case was also investigated.
A corresponding inequality for totally real surfaces in n-dimensional complex

space forms was obtained by one of the present authors in [28]. The equality case
was studied and a nontrivial example of a totally real surface satisfying the equality
case identically was given.

More recently, Wintgen-type inequalities for affine surfaces in R
4 and R

5 were
discussed in [33].
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Let M be a totally real surface of the complex space form M̃(4c) of constant
holomorphic sectional curvature 4c and of complex dimension m. Recall that the
curvature tensor R̃ is given by

R̃(X, Y, Z , W ) = c[g(X, Z)g(Y, W ) − g(X, W )g(Y, Z) + g(J X, Z)g(JY, W )

− g(J X, W )g(JY, Z) + 2g(X, JY )g(Z , J W )]. (8.3.2.1)

For a point p ∈ M , let {e1, e2} be an orthonormal basis of the tangent plane Tp M
and {e3, . . . , e2m} an orthonormal basis of the normal space T ⊥

p M .
The ellipse of curvature at a point p ∈ M is the subspace E p of the normal space

given by
E p = {h p(X, X) | X ∈ Tp M, ‖X‖ = 1}.

For any vector X = (cos θ)e1 + (sin θ)e2, θ ∈ [0, 2π), we have

h p(X, X) = H(p) + 1

2
(cos 2θ)(h11 − h22) + (sin 2θ)h12,

where hi j = h(ei , e j ), for i, j = 1, 2.
The following result [23] holds good.

Proposition 8.3.2.1 If the ellipse of curvature is nondegenerated, then the vectors
h11 − h22 and h12 are linearly independent.

Using a similar method as in [23] and the above proposition, we can define a
2-plane subbundle P of the normal bundle, with the induced connection.

Then we will define the scalar normal curvature by the formula

KN = −g([Ae3 , Ae4 ]e1, e2),

where {e1, e2}, {e3, e4} are orthonormal-oriented bases of Tp M and Pp, respectively,
and A is the shape operator.

Remark This definition of the scalar normal curvature coincides with the definition
of the normal curvature (used byWintgen [47] and also byGuadalupe and Rodriguez
[23] by the formula K ⊥ = g(R⊥(e1, e2)e4, e3)), if the ambient space M̃(c) is a real
space form.

We can choose {e1, e2} such that the vectors u = 1
2 (h11 − h22) and v = h12 are

perpendicular, in which case they coincide with the half-axes of the ellipse. Then we
will take e3 = u

‖u‖ and e4 = ± v
‖v‖ .

From the equation of Ricci and the definition of KN , we have

|KN | = ‖h11 − h22‖ · ‖h12‖ . (8.3.2.2)
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Also, from the Gauss equation we obtain the formula of the Gauss curvature K
of the totally real surface M of the complex space form M̃(c):

K = g(h11, h22) − ‖h12‖2 + c. (8.3.2.3)

By the definition of the mean curvature vector, (8.3.2.3) and the relation ‖h‖2 =
‖h11‖2 + ‖h22‖2 + 2 ‖h12‖2, we have

4 ‖H‖2 = ‖h‖2 + 2(K − c). (8.3.2.4)

Then

0 ≤ (‖h11 − h22‖ − 2 ‖h12‖)2 = ‖h‖2 − 2(K − c) − 4|KN |
= 4 ‖H‖2 − 4(K − c) − 4|KN |, (8.3.2.5)

which is equivalent to
‖H‖2 ≥ K + |KN | − c. (8.3.2.6)

The equality sign is realized if and only if ‖h11 − h22‖ = 2 ‖h12‖, i.e., ‖u‖ = ‖v‖,
so the ellipse of curvature is a circle.

Thus, we proved the following Wintgen-type inequality (see [28]).

Theorem 8.3.2.2 Let M be a totally real surface of the complex space form M̃(4c)
of constant holomorphic sectional curvature 4c and of complex dimension m. Then,
at any point p ∈ M we have

‖H‖2 ≥ K + |KN | − c.

Moreover, the equality sign is realized if and only if the ellipse of curvature is a
circle.

We will give an example of a Lagrangian surface in C2 with the standard almost
complex structure J0, for which the equality sign is realized (which we call an ideal
surface).

Let M be the rotation surface of Vrănceanu [46], given by

X (u, v) = r(u)(cos u cos v, cos u sin v, sin u cos v, sin u sin v),

where r is a positive C∞-differentiable function.
Let {e1, e2} be an orthonormal basis of the tangent plane and {e3, e4} an orthonor-

mal basis of the normal plane such that {e1, e1, e3, e4} is positively oriented.
Then it is easy to find the following expressions for ei , i ∈ {1, 2, 3, 4} (see also

[45]):
e1 = (− cos u sin v, cos u cos v,− sin u sin v, sin u cos v),
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e2 = 1

A
(B cos v, B sin v, C cos v, C sin v),

e3 = 1

A
(−C cos v,−C sin v, B cos v, B sin v),

e4 = (− sin u sin v, sin u cos v, cos u sin v,− cos u cos v),

where A = [r2 + (r ′)2] 1
2 , B = r ′ cos u − r sin u, C = r ′ sin u + r cos u.

Also, after technical calculations, we find

h3
11 = 1

[r2 + (r ′)2] 1
2

, h3
12 = 0, h3

22 = −rr ′′ + 2(r ′)2 + r2

[r2 + (r ′)2] 3
2

,

h4
11 = 0, h4

12 = − 1

[r2 + (r ′)2] 1
2

, h4
22 = 0.

M is a totally real surface of maximum dimension, so is a Lagrangian surface of
C2. Also, M verifies the equality sign of the inequality in Theorem 8.3.2.2 (it is an
ideal surface) if and only if

r(u) = 1

(|cos 2u|) 1
2

(the ellipse of curvature at every point of M is a circle).
Moreover, M is a minimal surface (see [41]) and X = c1 ⊗ c2 is the tensor prod-

uct immersion of c1(u) = 1

(|cos 2u|) 1
2

(cos u, cos v) (an orthogonal hyperbola) and

c2(u) = (cos v, sin v) (a circle centered at the origin).

In 1999, P.J. De Smet et al. [18] formulated the conjecture on Wintgen inequality
for submanifolds of real space forms, which is also known as the DDVV conjecture.

Let M be an n-dimensional submanifold of a real space form M̃(c). We denote
by K and R⊥ the sectional curvature function and the normal curvature tensor on
M , respectively.

Then the normalized scalar curvature is given by

ρ = 2τ

n(n − 1)
= 2

n(n − 1)

∑

1≤i< j≤n

K (ei ∧ e j ),

where τ is the scalar curvature, and the normalized normal scalar curvature by

ρ⊥ = 2τ⊥

n(n − 1)
= 2

n(n − 1)

√ ∑

1≤i< j≤n

∑

1≤α<β≤m

(R⊥(ei , e j , ξα, ξβ))2,
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where {e1, . . . , en} and {ξ1, . . . , ξm} are orthonormal frames tangent and normal to
M , respectively.

DDDV Conjecture. Let f : M → M̃(c) be an isometric immersion, where M̃(c)
is a real space form of constant sectional curvature c and M an n-dimensional
submanifold of codimension m. Then

ρ ≤ ‖H‖2 − ρ⊥ + c.

This conjecture was proven by the authors for submanifolds M of arbitrary
dimension n ≥ 2 and codimension 2 in real space forms M̃(c) of constant sectional
curvature c.

Also, a detailed characterization of the equality case in termsof the shape operators
of M in M̃(c) was given.

T. Choi and Z. Lu [17] proved that this conjecture is true for all 3-dimensional
submanifolds M of arbitrary codimension m ≥ 2 in M̃(c). The characterization of
the equality case gives the specific forms of shape operators of M in M̃(c).

For normallyflat submanifolds, i.e., R⊥ = 0, the normal scalar curvature vanishes;
B.Y. Chen [7] established the inequality

ρ ≤ ‖H‖2 + c.

Hence, the conjecture is true for hypersurfaces of real space forms.

Other extensions of Wintgen inequality have been studied by P.J. De Smet, F.
Dillen, J. Fastenakels, J. Van der Veken, L. Verstraelen, L. Vrancken and the present
authors for certain submanifolds in Kähler, nearly Kähler, and Sasakian spaces (see
[20, 21, 31, 39], etc.).

Recently, the DDVV conjecture was finally settled for the general case by Z. Lu
[26] and independently by J. Ge and Z. Tang [22].

Theorem 8.3.2.3 The generalized Wintgen inequality

ρ ≤ ‖H‖2 − ρ⊥ + c,

holds for every submanifold M in any real space form M̃(c) (dim M = n ≥ 2, codim
M = m ≥ 2).

The equality case holds identically if and only if, with respect to suitable ortho-
normal frames {ei |i = �, n} and {ξα|α = �, m}, the shape operators of M in M̃(c)
take the forms

Aξ1 =

⎛

⎜⎜⎜⎜⎜⎝

λ1 μ 0 · · · 0
μ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

⎞

⎟⎟⎟⎟⎟⎠
,
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Aξ2 =

⎛

⎜⎜⎜⎜⎜⎝

λ2 + μ 0 0 · · · 0
0 λ2 − μ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

⎞

⎟⎟⎟⎟⎟⎠
,

Aξ3 =

⎛

⎜⎜⎜⎜⎜⎝

λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3

⎞

⎟⎟⎟⎟⎟⎠
,

where λ1,λ2,λ3, and μ are real functions on M,

Aξ4 = · · · = Aξm = 0.

Recently, one of the present authors [39] proved a generalizedWintgen inequality
for Lagrangian submanifolds in complex space forms.

Theorem 8.3.2.4 Let M be an n-dimensional Lagrangian submanifold of a complex
space form M̃(4c). Then

(ρ⊥)2 ≤ (‖H‖2 − ρ + c)2 + 4

n(n − 1)
(ρ − c)c + 2c2

n(n − 1)
.

Corollary 8.3.2.5 Let M be a minimal Lagrangian submanifold of Cn. Then

ρ ≤ −ρ⊥.

Remark (i) The inequality in the above theorem for n = 3 was established by A.
Mihai [31].

(ii) The inequality in the above corollary for n = 3, 4 was given by F. Dillen et al.
[21].

Another Wintgen-type inequality for totally real submanifolds in complex space
forms was established in [39].

Let M be an n-dimensional totally real submanifold of anm-dimensional complex
space form M̃(4c) and {e1, . . . , en} and {en+1, . . . , e2m} orthonormal frames on M
tangent and normal to M , respectively.

By analogy with the two-dimensional case we introduced a scalar normal curva-
ture KN defined by
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KN = 1

2

∑

1≤r<s≤n

(Trace[Ar , As])2 =
∑

1≤r<s≤n

∑

1≤i< j≤n

(g([Ar , As]ei , e j )
2.

The normalized scalar normal curvature is

ρN = 2

n(n − 1)

√
KN .

For this extrinsic invariant we proved the following inequality.

Proposition 8.3.2.6 Let M be an n-dimensional totally real submanifold of an m-
dimensional complex space form M̃(4c). Then we have

‖H‖2 ≥ ρ + ρN − c.

We can generalize the above inequality to CR-submanifolds in complex space
forms.

Let M be an n-dimensional CR-submanifold of an m-dimensional complex space
form M̃(4c). If {e1, . . . , en} and {ξ1, . . . , ξ2m−n} are orthonormal frames tangent and
normal to M , respectively, we denote as usual by hr

i j = g(h(ei , e j ), ξr ), 1 ≤ i, j ≤ n,
1 ≤ r ≤ 2m − n, the components of the second fundamental form.

As in [39], we can prove that

2m−n∑

r=1

∑

1≤i< j≤n

(hr
ii − hr

j j )
2 + 2n

2m−n∑

r=1

∑

1≤i< j≤n

(hr
i j )

2

≥ 2n

⎡

⎣
∑

1≤r<s≤2m−n

∑

1≤i< j≤n

(
n∑

k=1

(hr
jkhs

ik − hr
ikhs

jk)

)2
⎤

⎦

1
2

. (8.3.2.7)

We use Gauss equation, which implies

τ =
∑

1≤i< j≤n

R(ei , e j , ei , e j ) = n(n − 1)

2
c + 3αc +

2m−n∑

r=1

∑

1≤i< j≤n

[
hr

ii h
r
j j − (hr

i j )
2
]
,

where 2α = dimD.
By substituting the last equation in (8.3.2.7), we obtain the following:

Theorem 8.3.2.7 ([34]) Let M be an n-dimensional CR-submanifold of an m-
dimensional complex space form M̃(4c). Then, we have

||H ||2 ≥ ρ + ρN − c − 6αc

n(n − 1)
.
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8.3.3 General Inequalities for CR-Warped Products
in Complex Space Forms

The notion of warped product plays some important role in differential geometry as
well as in Physics [12]. For instance, the best relativistic model of the Schwarzschild
spacetime that describes the out space around a massive star or a black hole is given
as a warped product [43].

One of the most fundamental problems in the theory of submanifolds is the
immersibility (or nonimmersibility) of a Riemannian manifold in a Euclidean space
(or, more generally, in a space form). According to a well-known theorem on Nash,
every Riemannianmanifold can be isometrically immersed in someEuclidean spaces
with sufficiently high codimension.

Nash’s theorem implies, in particular, that every warped product M1 × f M2 can
be immersed as a Riemannian submanifold in some Euclidean space. Moreover,
many important submanifolds in real and complex space forms are expressed as a
warped product submanifold.

Isometric immersions of warped products were studied by Nölker [42]. Every
Riemannian manifold of constant curvature c can be locally expressed as a warped
product whose warping function satisfies � f = c f . For example,

(i) Sn(1) is locally isometric to (0,π) ×cos t Sn−1(1),
(ii) En is locally isometric to (0,∞) ×x Sn−1(1),
(iii) H n(−1) is locally isometric to R ×ex En−1

(see [12]).

Let (M1, g1) and (M2, g2) be two Riemannian manifolds and f a positive dif-
ferentiable function on M1. The warped product of M1 and M2 is the Riemannian
manifold

M1 × f M2 = (M1 × M2, g),

where g = g1 + f 2g2.
Let ∇, ∇1, and ∇2 be the Levi-Civita connections on M1 × f M2, M1, and M2,

respectively.
We recall the following formulae for ∇ on a warped product manifold.

(i) ∇X Y = ∇1
X Y, ∀X, Y ∈ �(T M1);

(ii) ∇X Z = ∇Z X = (X ln f )Z , ∀X ∈ �(T M1), Z ∈ �(T M2);

(iii) ∇Z W = ∇2
Z W − 1

f g(Z , W )∇ f, ∀Z , W ∈ �(T M2).

The sectional curvature K of a warped product can be determined in terms of the
sectional curvatures K1 and K2 of its factors. We have

(a) K (X ∧ Y ) = K1(X ∧ Y ), ∀X, Y ∈ �(T M1) linearly independent;

(b) K (X ∧ Z) = 1
f [−X2 f + (∇X X) f ], ∀X ∈ �(T M1), Z ∈ �(T M2) unit vec-

tor fields;
(c) K (Z ∧ W ) = 1

f 2 [K2(Z ∧ W ) − ||∇ f ||2], ∀Z , W ∈ �(T M2) orthonormal
vector fields.
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B.Y. Chen [11] established a sharp inequality for the warping function of a warped
product submanifold in a Riemannian space form in terms of the squared mean
curvature.

Theorem 8.3.3.1 Let φ : M1 × f M2 → M̃(c) be an isometric immersion of a
warped product into a Riemannian m-manifold of constant sectional curvature c.
Then we have

� f

f
≤ (n1 + n2)

2

4n2
||H ||2 + n1c,

where ni = dim Mi , i = 1, 2, ||H ||2 is the squared mean curvature of M1 × f M2

and � is the Laplacian operator of M1.
The equality sign holds identically if and only if φ is mixed totally geodesic and

trace h1 = trace h2.

As applications, the author derived obstructions to theminimality of warped prod-
uct submanifolds in Riemannian space forms.

Later, in [13], the same author studied warped product submanifolds in complex
hyperbolic spaces.

We recall in this section some results given by B.Y. Chen in [14], more precisely
a general inequality for a CR-warped product M1 × f M2 in a complex space form
M̃(4c)of constant holomorphic sectional curvature 4c and the complete classification
of CR-warped products in complex space forms satisfying the equality case of the
inequality.

We point out that in [9, 10] it was proved that there do not exist warped products of
the form M2 × f M1 in a Kähler manifold beside CR-products, with M2 a totally real
submanifold and M1 a complex submanifold. There exist many CR-submanifolds
which are warped products of the form M1 × f M2, by reversing the two factors,
called CR-warped products.

In [9, 10] B.Y. Chen proved that every CR-warped product M1 × f M2 in a Kähler
manifold M̃ satisfies the inequality

‖h‖2 ≥ 2p ‖∇ ln f ‖2 , (8.3.3.1)

where h is the second fundamental form, ∇ ln f is the gradient of ln f and
p = dim M2. In the same articles classifications of CR-warped products in complex
space forms satisfying the equality case of the inequality (8.3.3.1) was given.

In [14] another stronger general inequality has been proved.

‖h‖2 ≥ 2p[‖∇ ln f ‖2 + �(ln f )] + 4qpc, (8.3.3.2)

where � is the Laplacian operator on M1, q = dimC M1, p = dim M2.

We would like to point out that an interesting map was defined in Chen’s paper,
playing a central role. More precisely, let Cq

∗ = Cq − {0} and j : S p → Ep+1 be the
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inclusion of the unit hypersphere S p centered at the origin into Ep+1. For a natural
number α ≤ q and a vector X tangent to Cα∗ at a point z ∈ Cα∗ , one decomposes
X = X ||

z + X⊥
z , where X ||

z is parallel to z and X⊥
z is perpendicular to z.

For any given three natural numbers q, p, α satisfying α ≤ q, the map
φqp

α : Cq
∗ × S p → Cαp+q is defined by

φqp
α (z, w) = (w0z1, . . . , wpz1, . . . , w0zα, . . . , wpzα, zα+1, . . . , zq), (8.3.3.3)

for z = (z1, . . . , zq) ∈ Cq
∗ andw = (w0, . . . , wp) ∈ S p ⊂ Ep+1 with

∑p
i=0 w2

i = 1.

Theorem 8.3.3.2 ([14]) For 1 ≤ α ≤ q and p ≥ 1, the map
φqp:

α : Cq
∗ × S p → Cαp+q defined by (8.3.3.3) satisfies the following properties:

(i) φqp
α : Cq

∗ × S p → Cαp+q is an isometric immersion with warping function

f =
√∑α

j=1 z j z j .

(ii) φqp
α is a CR-warped product.

(iii) The second fundamental form h of φqp
α satisfies the equality

‖h‖2 = 2p[‖∇ ln f ‖2 + �(ln f )]. (8.3.3.4)

The equality case of the inequality (8.3.3.2) is studied, when the ambient space
is the complex Euclidean space, complex projective space, and complex hyperbolic
space, respectively.

In this section we recall only the result for complex Euclidean space, the other
cases being similar, with adequate constructions of the isometric immersions of the
CR-warped products, by composing them with projections.

Theorem 8.3.3.3 ([14]) Let φ : M1 × f M2 → Cm be a CR-warped product in com-
plex Euclidean space Cm . Then we have

(i) The squared norm of the second fundamental form h of φ satisfies

‖h‖2 ≥ 2p[‖∇ ln f ‖2 + �(ln f )]. (8.3.3.5)

(ii) If the CR-warped product satisfies the equality case of (8.3.3.5), then we have
(ii.a) M1 is an open portion of Cq

∗ .
(ii.b) M2 is an open portion of S p;
(ii.c) There exists a natural number α ≤ q and a complex coordinate system

{z1, . . . , zq} on Cq
∗ such that the warping function is given by f =

√∑α
j=1 z j z j ;

(ii.d) Up to rigid motions of Cm, the immersion φ is given by φqp
α in a natural

way; namely, we have

φ(z, w) = (w0z1, . . . , wpz1, . . . , w0zα, . . . , wpzα, zα+1, . . . , zq , 0, . . . , 0),
(8.3.3.6)

for z = (z1, . . . , zq) ∈ Cq
∗ and w = (w0, . . . , wp) ∈ S p ⊂ Ep+1 with

∑p
i=0 w2

i = 1.
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8.3.4 Warped Product Submanifolds in Complex Space
Forms

In the present subsection, we establish an inequality between the warping function
f (intrinsic structure), the squared mean curvature ‖H‖2, and the holomorphic sec-
tional curvature 4c (extrinsic structures) forwarped product submanifolds M1 × f M2

with JD1 ⊥ D2 (in particular,CR-warpedproduct submanifolds andCR-Riemannian
products) in any complex space form M̃(4c). Examples of such submanifolds which
satisfy the equality case are given.

Let M be an n-dimensional submanifold in a complex space form M̃(4c) of
constant holomorphic sectional curvature 4c, endowed with the almost complex
structure J . We denote by K (π) the sectional curvature of M associated with a plane
section π ⊂ Tp M, p ∈ M , and ∇ the Riemannian connection of M , respectively.
Also, let h be the second fundamental form and R the Riemann curvature tensor of
M .

Recall that the equation of Gauss is given by

R̃(X, Y, Z , W ) = R(X, Y, Z , W ) + g(h(X, W ), h(Y, Z)) − g(h(X, Z), h(Y, W )),

for any vectors X, Y, Z , W tangent to M .
Let p ∈ M and {e1, . . . , en, en+1, . . . , e2m} an orthonormal basis of the tangent

space Tp M̃(c), such that e1, . . . , en are tangent to M at p. We denote by H the mean
curvature vector, that is,

H(p) = 1

n

n∑

i=1

h(ei , ei ).

Also, we set

hr
i j = g(h(ei , e j ), er ), i, j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , 2m}.

and

‖h‖2 =
n∑

i, j=1

g(h(ei , e j ), h(ei , e j )).

For any tangent vector field X tangent to M , we put J X = P X + F X , where P X
and F X are the tangential and normal components of J X , respectively. We denote
by

‖P‖2 =
n∑

i, j=1

g2(Pei , e j ).

If M is a Riemannian n-manifold, {e1, . . . , en} an orthonormal frame field on M
and f a differentiable function on M , the Laplacian � f of f is defined by



246 A. Mihai and I. Mihai

� f =
n∑

j=1

[(∇e j e j ) f − e j e j f ].

Let x : M1 × f M2 → M̃(4c) be an isometric immersion of a warped product
M1 × f M2 into a complex space form M̃(4c). We denote by Hi = 1

ni
trace hi the

partial mean curvatures, where trace hi is the trace of h restricted to Mi and ni =
dim Mi (i = 1, 2).

For a warped product M1 × f M2, we denote byD1 andD2 the distributions given
by the vectors tangent to leaves and fibers, respectively. Thus, D1 is obtained from
the tangent vectors of M1 via the horizontal lift andD2 by tangent vectors of M2 via
the vertical lift.

In this section, we investigate warped product submanifolds with JD1 ⊥ D2 in a
complex space form M̃(4c). We mention that CR-submanifolds have this property.

As applications we will give some nonimmersion theorems [29].
We recall an algebraic lemma of Chen.

Lemma ([6]) Let n ≥ 2 and a1, . . . , an, b real numbers such that

(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = · · · = an.

Using it, we can prove the following:

Theorem 8.3.4.1 Let x : M1 × f M2 → M̃(4c) be an isometric immersion of an n-
dimensional warped product with JD1 ⊥ D2 into a 2m-dimensional complex space
form M̃(4c). Then

� f

f
≤ n2

4n2
‖H‖2 + n1c, (8.3.4.1)

where ni = dim Mi , i = 1, 2, and � is the Laplacian operator of M1.
Moreover, the equality case of (8.3.4.1) holds identically if and only if x is a mixed

totally geodesic immersion and n1H1 = n2H2, where Hi , i = 1, 2, are the partial
mean curvature vectors.

Proof Let M1 × f M2 be a warped product submanifold into a complex space form
M̃(4c) of constant holomorphic sectional curvature 4c.

Since M1 × f M2 is a warped product, from the formula of the Riemannian con-
nection ∇ it follows that
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∇X Z = ∇Z X = 1

f
(X f )Z , (8.3.4.2)

for any vector fields X, Z tangent to M1, M2, respectively.
Then, if X and Z are unit vector fields, the sectional curvature K (X ∧ Z) of the

plane section spanned by X and Z is given by

K (X ∧ Z) = g(∇Z∇X X − ∇X∇Z X, Z) = 1

f
[(∇X X) f − X2 f ]. (8.3.4.3)

We choose a local orthonormal frame {e1, . . . , en, en+1, . . . , e2m}, such that
e1, . . . , en1 are tangent to M1, en1+1, . . . , en are tangent to M2, en+1 is parallel to
the mean curvature vector H .

Then, using (8.3.4.3), we get

� f

f
=

n1∑

j=1

K (e j ∧ es), (8.3.4.4)

for each s ∈ {n1 + 1, . . . , n}.
From the equation of Gauss, we have

n2‖H‖2 = 2τ + ‖h‖2 − n(n − 1)c − 3c‖P‖2. (8.3.4.5)

We set

δ = 2τ − n(n − 1)c − 3‖P‖2c − n2

2
‖H‖2. (8.3.4.6)

Then (8.3.4.5) can be written as

n2‖H‖2 = 2(δ + ‖h‖2). (8.3.4.7)

With respect to the above orthonormal frame, (8.3.4.7) takes the following form:

(
n∑

i=1

hn+1
i i

)2

= 2

⎧
⎨

⎩δ +
n∑

i=1

(hn+1
i i )2 +

∑

i 
= j

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2

⎫
⎬

⎭ .
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If we put a1 = hn+1
11 , a2 = ∑n1

i=2 hn+1
i i and a3 = ∑n

t=n1+1 hn+1
t t , the above equation

becomes

(
3∑

i=1

ai

)2

= 2

⎧
⎨

⎩δ +
3∑

i=1

a2
i +

∑

1≤i 
= j≤n

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2

−
∑

2≤ j 
=k≤n1

hn+1
j j hn+1

kk −
∑

n1+1≤s 
=t≤n

hn+1
ss hn+1

t t

⎫
⎬

⎭ .

Thus a1, a2, a3 satisfy the Lemma of Chen (for n = 3), i.e.,

(
3∑

i=1

ai

)2

= 2

(
b +

3∑

i=1

a2
i

)
.

Then 2a1a2 ≥ b, with equality holding if and only if a1 + a2 = a3.
In the case under consideration, this means

∑

1≤ j<k≤n1

hn+1
j j hn+1

kk +
∑

n1+1≤s<t≤n

hn+1
ss hn+1

t t

≥ δ

2
+

∑

1≤α<β≤n

(hn+1
αβ )2 + 1

2

2m∑

r=n+2

n∑

α,β=1

(hr
αβ)2. (8.3.4.8)

Equality holds if and only if

n1∑

i=1

hn+1
i i =

n∑

t=n1+1

hn+1
t t . (8.3.4.9)

Using again the Gauss equation, we have

n2
� f

f
= τ −

∑

1≤ j<k≤n1

K (e j ∧ ek) −
∑

n1+1≤s<t≤n

K (es ∧ et )

= τ − n1(n1 − 1)c

2
−

2m∑

r=n+1

∑

1≤ j<k≤n1

[hr
j j h

r
kk − (hr

jk)
2] − 3c

∑

1≤ j<k≤n1

g2(Je j , ek)

− n2(n2 − 1)c

2
−

2m∑

r=n+1

∑

n1+1≤s<t≤n

[hr
ss hr

tt − (hr
st )

2] − 3c
∑

n1+1≤s<t≤n

g2(Jes , et ).

(8.3.4.10)
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Combining (8.3.4.8) and (8.3.4.9) and taking account of (8.3.4.4), we obtain

n2
� f

f
≤ τ − n(n − 1)c

2
+ n1n2c − δ

2
− 3c

∑

1≤ j<k≤n1

g2(Je j , ek)

− 3c
∑

n1+1≤s<t≤n

g2(Jes , et ) −
∑

1≤ j≤n1;n1+1≤t≤n

(hn+1
j t )2 − 1

2

2m∑

r=n+2

n∑

α,β=1

(hr
αβ)2

+
2m∑

r=n+2

∑

1≤ j<k≤n1

[(hr
jk)

2 − hr
j j h

r
kk ] +

2m∑

r=n+2

∑

n1+1≤s<t≤n

[(hr
st )

2 − hr
ss hr

tt ]

= τ − n(n − 1)c

2
+ n1n2c − δ

2
−

2m∑

r=n+1

∑

1≤ j≤n1;n1+1≤t≤n

(hr
jt )

2 − 3c
∑

1≤ j<k≤n1

g2(Je j , ek)

− 3c
∑

n1+1≤s<t≤n

g2(Jes , et ) − 1

2

2m∑

r=n+2

⎛

⎝
n1∑

j=1

hr
j j

⎞

⎠
2

− 1

2

2m∑

r=n+2

⎛

⎝
n∑

t=n1+1

hr
tt

⎞

⎠
2

≤ τ − n(n − 1)c

2
+ n1n2c − δ

2
− 3c

∑

1≤ j<k≤n1

g2(Je j , ek) − 3c
∑

n1+1≤s<t≤n

g2(Jes , et ).

(8.3.4.11)

Since we assume that JD1 ⊥ D2, the last relation implies the inequality (8.3.4.1).
We see that the equality sign of (8.3.4.11) holds if and only if

hr
jt = 0, 1 ≤ j ≤ n1, n1 + 1 ≤ t ≤ n, n + 1 ≤ r ≤ 2m, (8.3.4.12)

and
n1∑

i=1

hr
ii =

n∑

t=n1+1

hr
tt = 0, n + 2 ≤ r ≤ 2m. (8.3.4.13)

Obviously (8.3.4.12) is equivalent to the mixed totally geodesic of the warped
product M1 × f M2 (i.e., h(X, Z) = 0, for any X in D1 and Z in D2) and (8.3.4.9)
and (8.3.4.13) imply n1H1 = n2H2.

The converse statement is straightforward.

Remark For c ≤ 0 the inequality is true without the condition JD1 ⊥ D2 (see [13]).

As applications, we derive certain obstructions to the existence ofminimal warped
product submanifolds in complex hyperbolic spaces.

Let x : M1 × f M2 → M̃(4c) be a minimal isometric immersion. Then the above
theorem implies

� f

f
≤ n1c.

Thus, if c < 0, f cannot be a harmonic function or an eigenfunction of Laplacian
with positive eigenvalue.
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We resume this remark into the following:

Proposition 8.3.4.2 ([13]) If f is a harmonic function, then M1 × f M2 does not
admit any isometric minimal immersion into a complex hyperbolic space.

Proposition 8.3.4.3 ([13]) If f is an eigenfunction of Laplacian on M1 with corre-
sponding eigenvalue λ > 0, then M1 × f M2 does not admit any isometric minimal
immersion into a complex hyperbolic space or a complex Euclidean space.

Next, wewill give some exampleswhich satisfy the equality case of the inequality
(8.3.4.1).

Recall that the Hopf submersion is the canonical projection of Cn+1 − {0} →
Pn(C), restricted to S2n+1 (where S2n+1 is regarded as the set
{z ∈ Cn+1;∑n+1

j=1 |z j |2 = 1}).
Examples

1. Let us consider the immersion ψ : M → S7, where M = (−π/2,π/2)
×cos t N 2, with N 2 is a minimal C-totally real submanifold in S7, defined by
ψ(t, p) = (cos t)p + (sin t)v, where v is a vector tangent to S7, but normal to S5.

Let π : S7 → P3(C) be the Hopf submersion. Then

π ◦ ψ : M → P3(C)

is a Lagrangian minimal immersion which satisfies the equality case.

2. Let ψ : Sn → S2n+1 be an immersion defined by

ψ(x1, . . . , xn+1) = (x1, 0, x2, 0, . . . , xn+1, 0),

and π : S2n+1 → Pn(C) the Hopf submersion.
Then π ◦ ψ : Sn → Pn(C) satisfies the equality case.

3. On Sn1+n2 let us consider the spherical coordinates u1, . . . , un1+n2 and on Sn1

the function f (u1, . . . un) = cos u1 . . . cos un1 ( f is an eigenfunction of �).
Then Sn1+n2 = Sn1 × f Sn2 .
Let i : Sn1+n2 → S2(n1+n2)+1 be the standard immersion and π : S2(n1+n2)+1 →

Pn1+n2(C) the Hopf submersion.
Then π ◦ i : Sn1+n2 → Pn1+n2(C) satisfies the equality case.
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Moreover, the examples given by B.Y. Chen in [11] for c = 0 in the real case are
true in the complex case too, for c = 0.

8.3.5 Scalar Curvature of Warped Product Submanifolds
in Complex Space Forms

Let M1 × f M2 be a warped product submanifold into a complex space form M̃(4c)
of constant holomorphic sectional curvature 4c.

Since M1 × f M2 is a warped product, it is known that

∇X Z = ∇Z X = 1

f
(X f )Z , (8.3.5.1)

for any vector fields X, Z tangent to M1 and M2, respectively.
Let X and Z be unit vector fields tangent to M1 and M2, respectively. It follows

that the sectional curvature K (X ∧ Z) of the plane section spanned by X and Z is
given by

K (X ∧ Z) = g(∇Z∇X X − ∇X∇Z X, Z) = 1

f
[(∇X X) f − X2 f ]. (8.3.5.2)

We choose a local orthonormal frame {e1, . . . , en, en+1, . . . , e2m}, such that e1 =
X , e2, . . . , en1 are tangent to M1, en1+1 = Z , en1+2, . . . , en are tangent to M2 and
en+1 is parallel to the mean curvature vector H .

Then, using (8.3.5.2), we get

� f

f
=

n1∑

j=1

K (e j ∧ es), (8.3.5.3)

for each s ∈ {n1 + 1, . . . , n}.
From the equation of Gauss, we have

n2‖H‖2 = 2τ + ‖h‖2 − n(n − 1)c − 3‖P‖2c. (8.3.5.4)

We set

δ = 2τ − [n(n − 1) + 3‖P‖2−2]c − n2(n − 2)

n − 1
‖H‖2. (8.3.5.5)

Combining the above formulae, we obtain

n2‖H‖2 = (n − 1)(‖h‖2 + δ − 2c). (8.3.5.6)
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With respect to the above orthonormal frame, (8.3.5.6) takes the following form:

(
n∑

i=1

hn+1
i i

)2

= (n − 1)

⎧
⎨

⎩δ − 2c +
n∑

i=1

(hn+1
i i )2 +

∑

i 
= j

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2

⎫
⎬

⎭ .

If we put a1 = hn+1
11 , a2 = hn+1

22 ,…, an = hn+1
nn ,

b =
∑

1≤i 
= j≤n

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2 + δ − 2c,

the above equation becomes

(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)
.

Thus a1, a2, . . . , an, b satisfy the Lemma of Chen. Then 2a1a2 ≥ b, with equality
holding if and only if a1 + a2 = a3 = · · · = an .

In the case under consideration, this means

2hn+1
11 hn+1

(n1+1)(n1+1) ≥
∑

1≤i 
= j≤n

(hn+1
i j )2 +

2m∑

r=n+2

n∑

i, j=1

(hr
i j )

2 + δ − 2c. (8.3.5.7)

Applying the Gauss equation, it follows that

K (X ∧ Z) = K (e1 ∧ en1+1) = R(e1, en1+1, e1, en1+1)

= [1 + 3g2(Je1, en1+1)]c +
2m∑

r=n+1

[(hr
11hr

(n1+1)(n1+1) − (hr
1(n1+1))

2]

≥ 3cg2(Je1, en1+1) + 1

2

2m∑

r=n+1

∑

j∈�1(n1+1)

[(hr
1 j )

2 + (hr
(n1+1) j )

2]

+ 1

2

2m∑

r=n+2

∑

i, j∈�1(n1+1)

(hr
i j )

2 + 1

2

2m∑

r=n+2

(hr
11 + hr

(n1+1)(n1+1))
2 + δ

2

≥ 3cg2(Je1, en1+1) + δ

2
, (8.3.5.8)

where �1(n1+1) = {1, . . . , n} \ {1, n1 + 1}.
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From (8.3.5.8), using (8.3.5.2) and (8.3.5.5), one obtains

1

f
{(∇e1e1) f − e21 f } ≥ 3cg2(Je1, en1+1) + τ

− [n(n − 1) + 3‖P‖2−2] c

2
− n2(n − 2)

2(n − 1)
‖H‖2. (8.3.5.9)

Then

τ ≤ 1

f
[(∇e1e1) f − e21 f ] + n2(n − 2)

2(n − 1)
‖H‖2

+ [n(n − 1) + 3‖P‖2−2 − 6g2(Je1, en1+1)] c

2
. (8.3.5.10)

The equality sign in (8.3.5.10) holds if and only if

An+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a 0 . . . . . 0
0 μ 0 . . . . 0
0 . . 0 . . . 0
0 . 0 μ 0 . . 0
0 . . 0 b 0 . 0
0 . . . 0 μ . 0
0 . . . . . . 0
0 . . . . . 0 μ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

with a + b = μ, and

Ar =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

hr
11 0 . 0 hr

1(n1+1) 0 . 0
0 . . . . . . 0
. . . . . . . .

0 . . . 0 . . 0
hr
1(n1+1) 0 . 0 −hr

11 0 . 0
0 . . . 0 . . 0
. . . . . . . .

0 . . . . . . 0

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

for r = n + 2, . . . , 2m.

For X = e2, e3, . . . , en1 , respectively, summing in (8.3.5.10), we obtain

n1τ ≤ � f

f
+ n1

n2(n − 2)

2(n − 1)
‖H‖2

+ {n1[n(n − 1) + 3‖P‖2−2] − 6
n∑

j=1

g2(Je j , en1+1)} c

2
. (8.3.5.11)
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The equality sign holds good in (8.3.5.11) if and only if the shape operators have
the following form:

An+1 =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 . . . . . 0
0 μ 0 . . . . 0
0 . . 0 . . . 0
0 . 0 μ 0 . . 0
0 . . 0 μ 0 . 0
0 . . . 0 μ . 0
0 . . . . . . 0
0 . . . . . 0 μ

⎞

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(8.3.5.12)

and Ar = 0, for any r = n + 2, . . . , 2m.

Summing up, we proved the following:

Theorem 8.3.5.1 [32]Let M1 × f M2 be a warped product submanifold ofCm . Then

n1τ ≤ � f

f
+ n1

n2(n − 2)

2(n − 1)
‖H‖2,

with equality holding if and only if the shape operator An+1 is given by (8.3.5.12)
and Ar = 0, for any r = n + 2, . . . , 2m.

Theorem 8.3.5.2 [32] Let M1 × f M2 be a warped product submanifold into a com-
plex space form M̃(4c) with c > 0. Then

n1τ ≤ � f

f
+ n1

n2(n − 2)

2(n − 1)
‖H‖2 + n1[(n + 1)(n − 2) + 3‖P‖2] c

2
,

with equality holding if and only if the shape operator An+1 is given by (8.3.5.12)
and Ar = 0, for any r = n + 2, . . . , 2m and J (TM1) is orthogonal to TM2.

Theorem 8.3.5.3 [32] Let M1 × f M2 be a warped product submanifold into a com-
plex space form M̃(4c) with c < 0 and J (TM1) orthogonal to TM2. Then

n1τ ≤ � f

f
+ n1

n2(n − 2)

2(n − 1)
‖H‖2 + n1(n + 1)(n − 2)

c

2
,

with equality holding if and only if the shape operator An+1 is given by (8.3.5.12)
and Ar = 0, for any r = n + 2, . . . , 2m.

There are two cases:
(I) Ifμ = 0, then M1 × f M2 is totally geodesic and, byGauss equation, thewarped

product submanifold can be either a complex space form M(4c) or a real space form
M(c).

(II) If μ 
= 0, then, by reference to Chen [15] and Dillen [19], M1 × f M2 is a
rotational hypersurface with a geodesic as a profile curve, i.e., I × N n−1(δ), where
I is a real interval and N n−1(δ) a real space form, and � f = 4c f.
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8.4 Contact CR-Submanifolds in Sasakian Manifolds

8.4.1 Ricci and k-Ricci Curvatures of Contact
CR-Submanifolds in Sasakian Space Forms

B.Y. Chen [8] established a sharp relationship between the Ricci curvature and the
squared mean curvature for submanifolds in real space forms. We proved (see [36])
such inequalities for certain submanifolds of a Sasakian space form.

Theorem 8.4.1.1 Let M be an n-dimensional C-totally real submanifold of a
(2m + 1)-dimensional Sasakian space form M̃(c). Then

(i) For each unit vector X ∈ Tp M, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + n2||H ||2]. (8.4.1.1)

(ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case of
(8.4.1.1) if and only if X ∈ ker h p.

(iii) The equality case of (8.4.1.1) holds identically for all unit tangent vectors
at p if and only if either p is a totally geodesic point or n = 2 and p is a totally
umbilical point.

Theorem 8.4.1.2 Let M̃(c) be a (2m + 1)-dimensional Sasakian space form and
M an n-dimensional submanifold tangent to ξ. Then

(i) For each unit vector X ∈ Tp M orthogonal to ξ, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + (3||P X ||2 − 2)(c − 1)/2 + n2||H ||2], (8.4.1.2)

where P X is the tangential component of φX.
(ii) If H(p) = 0, then a unit tangent vector X ∈ Tp M orthogonal to ξ satisfies

the equality case of (8.4.1.2) if and only if ∈ ker h p.
(iii) The equality case of (8.4.1.2) holds identically for all unit tangent vectors

orthogonal to ξ at p if and only if p is a totally geodesic point.

In particular, for contact CR-submanifolds in Sasakian space forms, we derive the
following:

Corollary 8.4.1.3 Let M be an n-dimensional contact CR-submanifold of a Sasakian
space form M̃(c). Then

(i) For each unit vector X ∈ Dp orthogonal to ξ, we have

Ric(X) ≤ 1

4
[(n − 1)(c + 3) + (c − 1)/2 + n2||H ||2].

(ii) For each unit vector X ∈ D⊥
p , we have
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Ric(X) ≤ 1

4
[(n − 1)(c + 3) − c + 1 + n2||H ||2].

We also state an inequality for the k-Ricci curvature of a contact CR-submanifold
in a Sasakian space form.

Proposition 8.4.1.4 ([36]) Let M be an n-dimensional contact CR-submanifold of
a Sasakian space form M̃(c). Then, for any integer k, 2 < k < n, and any point
p ∈ M, we have

||H(p)||2 ≥ �k(p) − c + 3

4
+ (3α − n + 1)(c − 1)

2n(n − 1)
,

where 2α = dim Tp M ∩ φ(Tp M).

8.4.2 A Generalized Wintgen Inequality for Contact
CR-Submanifolds in Sasakian Space Forms

Recently, in [40], we established certain generalized Wintgen inequalities for C-
totally real submanifolds, in particular Legendrian submanifolds, in Sasakian space
forms. We use the notations from Sect. 8.3.2.

First, we state an inequality involving the normalized scalar curvature ρ, the
normalized scalar normal curvature ρN , and the squared mean curvature ||H ||2 for
C-totally real submanifolds in Sasakian space forms.

Proposition 8.4.2.1 Let M be an n-dimensional C-totally real submanifold of a
(2m + 1)-dimensional Sasakian space form M̃(c). Then we have

||H ||2 + c + 3

4
≥ ρ + ρN .

The equality case holds identically if and only if, with respect to suitable ortho-
normal frames {e1, . . . , en} and {en+1, . . . , e2m, e2m+1 = ξ}, the shape operators of
Mn in M̃2m+1(c) take the forms

Aen+1 =

⎛

⎜⎜⎜⎜⎜⎝

λ1 μ 0 · · · 0
μ λ1 0 · · · 0
0 0 λ1 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ1

⎞

⎟⎟⎟⎟⎟⎠
,
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Aen+2 =

⎛

⎜⎜⎜⎜⎜⎝

λ2 + μ 0 0 · · · 0
0 λ2 − μ 0 · · · 0
0 0 λ2 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ2

⎞

⎟⎟⎟⎟⎟⎠
,

Aen+3 =

⎛

⎜⎜⎜⎜⎜⎝

λ3 0 0 · · · 0
0 λ3 0 · · · 0
0 0 λ3 · · · 0
...

...
...

. . .
...

0 0 0 · · · λ3

⎞

⎟⎟⎟⎟⎟⎠
,

where λ1,λ2,λ3 and μ are real functions on Mn,

Aen+4 = · · · = Ae2m = Ae2m+1 = 0.

Next we are able to derive a generalized Wintgen inequality for Legendrian sub-
manifolds in Sasakian space forms.

Theorem 8.4.2.2 Let M be an n-dimensional Legendrian submanifold of a Sasakian
space form M̃(c). Then

(ρ⊥)2 ≤
(

‖H‖2 − ρ + c + 3

4

)2

+ 4

n(n − 1)

(
ρ − c + 3

4

)
· c − 1

4
+ (c − 1)2

8n(n − 1)
.

Corollary 8.4.2.3 Let M be a minimal Legendrian submanifold of S2n+1. Then

ρ ≤ 1 − ρ⊥.

Using similar methods we can state a generalized Wintgen inequality for contact
CR-submanifolds in Sasakian space forms.

Let M be an (n + 1)-dimensional contact CR-submanifold of an (2m + 1)-
dimensional Sasakian space form M̃(c).

The difference is made by the Gauss equation. It implies

τ = n + n(n − 1)(c + 3)

8
+ 3α(c − 1)

4
+

2m−n∑

r=1

∑

1≤i< j≤n

[hr
ii h

r
j j − (hr

i j )
2].

Finally, we obtain the following:
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Theorem 8.4.2.4 [34] Let M be an (n + 1)-dimensional contact CR-submanifold
of a Sasakian space form M̃(c). Then one has

ρ + ρN ≤ ||H ||2 + c + 3

4
− 2

n − 1
+ 3α(c − 1)

2n(n − 1)
.

8.4.3 Geometric Inequalities for Contact CR-Warped Product
Submanifolds in Sasakian Space Forms

B.Y. Chen established a sharp relationship between the warping function f of
a warped product CR-submanifold M1 × f M2 of a Kaehler manifold M̃ and the
squared norm of the second fundamental form ‖h‖2 (see [9]).

In [24] we proved a similar inequality for contact CR-warped product submani-
folds in a Sasakian manifold.

In this subsection, we investigate warped products M = M1 × f M2 which are
contact CR-submanifolds of a Sasakian manifold M̃ . Such submanifolds are always
tangent to the structure vector field ξ.

We distinguish two cases:
(a) ξ is tangent to M1;
(b) ξ is tangent to M2.

In case (a), one has two subcases:
(1) M1 is an anti-invariant submanifold and M2 is an invariant submanifold of M̃ ;
(2) M1 is an invariant submanifold and M2 is an anti-invariant submanifold of M̃ .

We start with the subcase (1).

Theorem 8.4.3.1 Let M̃ be a (2m + 1)-dimensional Sasakian manifold. Then there
do not exist warped product submanifolds M = M1 × f M2 such that M1 is an anti-
invariant submanifold tangent to ξ and M2 an invariant submanifold of M̃.

Proof Assume M = M1 × f M2 is awarped product submanifold of a Sasakianman-
ifold M̃ , such that M1 is an anti-invariant submanifold tangent to ξ and M2 an invariant
submanifold of M̃ .

Gauss formula is given by

∇̃X Y = ∇X Y + h(X, Y ),∀X, Y ∈ �(T M). (8.4.3.1)

Recall that we have

∇X Z = ∇Z X = (Z ln f )X, (8.4.3.2)
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for any vector fields Z and X tangent to M1 and M2, respectively.
In particular, for Z = ξ, we derive ξ f = 0.
Using the last structure equation of a Sasakian manifold, (8.4.3.1) and (8.4.3.2),

it follows that

φX = ∇̃Xξ = ∇Xξ = (ξ ln f )X = 0. (8.4.3.3)

Thus M2 cannot exist, which achieves the proof.
Consider now the subcase (2).

Theorem 8.4.3.2 Let M̃ be a (2m + 1)-dimensional Sasakian manifold and
M = M1 × f M2 an n-dimensional warped product submanifold, such that M1 is
a (2α + 1)-dimensional invariant submanifold tangent to ξ and M2 a β-dimensional
C-totally real submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 2β[‖∇(ln f )‖2 + 1], (8.4.3.4)

where ∇(ln f ) is the gradient of ln f .
(ii) If the equality sign of (8.4.3.4) holds identically, then M1 is a totally geodesic

submanifold and M2 is a totally umbilical submanifold of M̃. Moreover, M is a
minimal submanifold of M̃.

Proof Let M = M1 × f M2 be awarped product submanifold of a Sasakianmanifold
M̃ , such that M1 is an invariant submanifold tangent to ξ and M2 a C-totally real
submanifold of M̃ .

For any unit vector fields X tangent to M1 and Z , W tangent to M2, respectively,
we have

g(h(φX, Z),φZ) = g(∇̃ZφX,φZ) = g(φ∇̃Z X,φZ)

= g(∇̃Z X, Z) = g(∇Z X, Z) = X ln f. (8.4.3.5)

On the other hand, since the ambient manifold M̃ is Sasakian, it is easily seen that

h(ξ, Z) = φZ . (8.4.3.6)

Therefore, by (8.4.3.5) and (8.4.3.6) the inequality (8.4.3.4) follows immediately.
Denote by h′′ the second fundamental form of M2 in M . Then, we get

g(h′′(Z , W ), X) = g(∇Z W, X) = −(X ln f )g(Z , W ),



260 A. Mihai and I. Mihai

or equivalently

h′′(Z , W ) = −g(Z , W )∇(ln f ). (8.4.3.7)

If the equality sign of (8.4.3.4) holds identically, then we obtain

h(D,D) = 0, h(D⊥,D⊥) = 0, h(D,D⊥) ⊂ φD⊥. (8.4.3.8)

The first condition (8.4.3.8) implies that M1 is totally geodesic in M . On the other
hand, one has

g(h(X,φY ),φZ) = g(∇̃XφY,φZ) = g(∇X Y, Z) = 0.

Thus M1 is totally geodesic in M̃ .
The second condition (8.4.3.8) and (8.4.3.7) implies that M2 is totally umbilical

in M̃ . Moreover, by (8.4.3.8), it follows that M is a minimal submanifold of M̃ .

Corollary 8.4.3.3 Let M̃(c) be a (2m + 1)-dimensional Sasakian space form of
constant φ-sectional curvature c and M = M1 × f M2 an n-dimensional nontriv-
ial warped product submanifold, such that M1 is a (2α + 1)-dimensional invariant
submanifold tangent to ξ and M2 a β-dimensional C-totally real submanifold of M̃
satisfying

‖h‖2 = 2β[‖∇(ln f )‖2 + 1].

Then, we have
(i) M1 is a totally geodesic invariant submanifold of M̃(c). Hence M1 is a Sasakian

space form of constant φ-sectional curvature c.
(ii) M2 is a totally umbilical C-totally real submanifold of M̃(c). Hence M2 is a

real space form of sectional curvature ε > c+3
4 .

(iii) If β > 1, then the warping function f satisfies ‖∇ f ‖2 = (ε − c+3
4 ) f 2.

Proof See [24].

Assume now that M1 × f M2 is a warped product submanifold of a Sasakian
manifold M̃ such that ξ is tangent to M2.

If we put Z = ξ in (8.4.3.2), it follows that X f = 0, for all vector fields X tangent
to M1. Thus f is constant and the warped product becomes a Riemannian product.
Also, it follows that M1 is a C-totally real submanifold of M̃(c).

Proposition 8.4.3.4 Any warped product submanifold M1 × f M2 of a Sasakian
manifold M̃ such that ξ is tangent to M2 is a Riemannian product. Moreover, M1 is
a C-totally real submanifold.
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Theorem 8.4.3.1 and Proposition 8.4.3.4 show that the only warped products with
nonconstantwarping functionwhich are contactCR-submanifolds in aSasakianman-
ifold M̃ have the form M = M1 × f M2, with M1 an invariant submanifold tangent
to ξ and M2 a C-totally real submanifold of M̃ . We simply call such submanifolds
contact CR-warped products.

Inspired by [14], we determined the minimum codimension of a contact CR-
warped product in an odd-dimensional sphere endowed with the standard Sasakian
structure.

Theorem 8.4.3.5 ([24]) Let M = M1 × f M2 be a contact CR-warped product in
the (2m + 1)-dimensional sphere S2m+1. If M1 is compact, then we have

m ≥ α + β + αβ,

where dim M1 = 2α + 1 and dim M2 = β.

Proof Let M = M1 × f M2 be a warped product submanifold of the (2m + 1)-
dimensional sphere S2m+1, such that M1 is an invariant submanifold tangent to ξ
and M2 a C-totally real submanifold of S2m+1.

We denote by ν the normal subbundle orthogonal to φD⊥. Obviously, we have

T ⊥M = φD⊥ ⊕ ν, φν = ν.

For any vector fields X tangent to M1 and orthogonal to ξ and Z tangent to M2,
(8.2.2.1) gives

R̃(X,φX, Z ,φZ) = 0.

On the other hand, by Codazzi equation, we have

R̃(X,φX, Z ,φZ) = −g(∇⊥
X h(φX, Z) − h(∇XφX, Z) − h(φX,∇X Z),φZ)

+ g(∇⊥
φX h(X, Z) − h(∇φX X, Z) − h(X,∇φX Z),φZ).

(8.4.3.9)

Using (8.4.3.2) and structure equations of a Sasakian manifold, we get

g(∇⊥
X h(φX, Z),φZ) = Xg(h(φX, Z),φZ) − g(h(φX, Z),∇⊥

X φZ)

= Xg(∇Z X, Z) − g(h(φX, Z),φ∇̃X Z)

= X ((X ln f )g(Z , Z)) − (X ln f )g(h(φX, Z),φZ)

− g(h(φX, Z),φhν(X, Z))

= (X2 ln f )g(Z , Z) + (X ln f )2g(Z , Z) − ‖hν(X, Z)‖2,
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where we denote by hν(X, Z) the ν-component of h(X, Z).
Also, we have

g(h(∇XφX, Z),φZ) = g(∇̃Z∇XφX,φZ)

= g(∇̃Z ∇̃XφX ,φZ) − g(∇̃Z h(X,φX),φZ)

= −g(X, X)g(Z , Z) + ((∇X X) ln f )g(Z , Z),

g(h(φX,∇X Z),φZ) = (X ln f )g(h(φX, Z),φZ) = (X ln f )2g(Z , Z).

Substituting the above relations in (8.4.3.9), we find

R̃(X, φX, Z , φZ) = ‖hν(X, Z)‖2 − (X2 ln f )g(Z , Z) − (X ln f )2g(Z , Z)

+ ((∇X X) ln f )g(Z , Z) − g(X, X)g(Z , Z) + (X ln f )2g(Z , Z)

+ ‖hν(X, Z)‖2 − ((φX)2 ln f )g(Z , Z) − ((φX) ln f )2g(Z , Z)

+ ((∇φX φX) ln f )g(Z , Z) − g(X, X)g(Z , Z) + ((φX) ln f )2g(Z , Z).

(8.4.3.10)

We recall that the Hessian of f is defined by H f (X, Y ) = XY f − (∇X Y ) f .
Then (8.4.3.10) becomes

‖hν(X, Z)‖2 = [g(X, X) + 1

2
(H ln f (X, X) + H ln f (φX,φX))]g(Z , Z).

(8.4.3.11)
Let {X0 = ξ, X1, . . . , X2α, Z1, . . . , Zβ} be a local orthonormal frame on M such

that X0, . . . , X2α are tangent to M1 and Z1, . . . , Zβ are tangent to M2.
Since the Hessian and the second fundamental form are bilinear, by polarization

we obtain

g(hν(Xi , Zs), hν(X j , Zt ))

= [1 + 1

2
(H ln f (Xi , X j ) + H ln f (φXi ,φX j ))]δi jδst , (8.4.3.12)

which implies that {hν(Xi , Zt )|i = 1, . . . , 2α; t = 1, . . . ,β} are mutually orthogo-
nal vector fields.

Let us assume that M1 is compact. Then the function ln f has an absoluteminimum
at some point u ∈ M1. At this critical point, the Hessian H ln f is nonnegative definite.
Then, by (8.4.3.4), each hν(Xi , Zt ) 
= 0. Therefore, the rank of ν is at least 2αβ.

It follows that m ≥ α + β + αβ.

Remark Same result holds for contact CR-warped products in Sasakian space forms
M̃(c), with c > −3.
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In this case, we have

‖hν(X, Z)‖2 =
[

c + 3

4
g(X, X) + 1

2
(H ln f (X, X) + H ln f (φX,φX))

]
g(Z , Z).

(8.4.3.13)
Then, using similar arguments as in the proof of Theorem 8.4.3.5, we obtain the

same result.

Corollary 8.4.3.6 Let M̃(c) be a Sasakian space form, with c < −3. Then there
do not exist contact CR-warped products M1 × f M2, with M1 a compact invariant
submanifold tangent to ξ and M2 a C-totally real submanifold of M̃(c).

Proof Assume there exists a contact CR-warped product M1 × f M2 in a Sasakian
space form M̃(c), with c < −3, such that M1 is compact. Then the function ln f has
an absolute maximum at some point u ∈ M1. At this critical point, the Hessian H ln f

is nonpositive definite. Thus (8.4.3.13) leads to a contradiction.

In [37] we have improved the Theorem 8.4.3.2 for contact CR-warped product
submanifolds in Sasakian space forms.

Theorem 8.4.3.7 Let M̃ be a (2m + 1)-dimensional Sasakian manifold and M =
M1 × f M2 an n-dimensional warped product submanifold, such that M1 is a (2α +
1)-dimensional invariant submanifold tangent to ξ and M2 a β-dimensional C-totally
real submanifold of M̃. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 2β[‖∇(ln f )‖2 − �(ln f ) + 1] + αβ(c + 3), (8.4.3.14)

where � is the Laplacian operator on M1.
(ii) The equality sign of (8.4.3.14) holds identically if and only if we have
(a) M1 is a totally geodesic submanifold of M̃(c). Hence M1 is a Sasakian space

form of constant φ-sectional curvature c.
(b) M2 is a totally umbilical submanifold of M̃. Hence M2 is a real space form

of constant sectional curvature ε ≥ c+3
4 .

If M1 is compact, by integrating the above inequality we obtain the following:

Corollary 8.4.3.8 Let M = M1 × f M2 be an n-dimensional contact CR-warped
product submanifold with compact M1 in the unit sphere S2m+1. Then for any q ∈ M2,
we have
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∫

M1×{q}
||h||2dvol1 ≥ 2β(2α + 1)vol(M1),

where dvol1 and vol(M1) are the volume element and the volume of M1, respectively.
The equality sign holds identically if and only if we have
(i) The warping function f is constant.
(ii) (M1, g1) is isometric to S2α+1 and it is isometrically immersed in S2m+1 as a

totally geodesic invariant submanifold.
(iii) (M2, f 2g2) is isometric to an open portion of the sphere Sβ of constant

sectional curvature 1 and it is isometrically immersed in S2m+1 as a totally geodesic
C-totally real submanifold.

If the warping function f is nonconstant, we can improve the above inequality.

Corollary 8.4.3.9 ([37]) Let M = M1 × f M2 be an n-dimensional contact CR-
warped product submanifold, with compact M1 and nonconstant warping function
f , in the unit sphere S2m+1. Then for any q ∈ M2, we have

∫

M1×{q}
||h||2dvol1 ≥ 2βλ1

∫

M1×{q}
(ln f )2dvol1 + 2β(2α + 1)vol(M1),

where λ1 is the first positive eigenvalue of the Laplacian � on M1.
The equality sign holds identically if and only if we have
(i) The warping function is an eigenfunction of � corresponding to the eigenvalue

λ1 of �.
(ii) The contact CR-warped product M1 × f M2 is both M1-totally geodesic and

M2-totally geodesic.

In [37]we completely classified the contactCR-warped products in the unit sphere
S2m+1 which satisfy identically the equality case of the inequality (8.4.3.14).

Theorem 8.4.3.10 Let x : M = M1 × f M2 → S2m+1 be an isometric immersion
of an n-dimensional contact CR-warped product such that M1 is a (2α + 1)-
dimensional invariant submanifold tangent to ξ and M2 a β-dimensional C-totally
real submanifold into the unit sphere S2m+1. Then

(i) The squared norm of the second fundamental form of M satisfies

‖h‖2 ≥ 2β[‖∇(ln f )‖2 − �(ln f ) + 1] + 4αβ, (8.4.3.15)

where � is the Laplacian operator on M1.
(ii) The contact warped product M satisfies the sign of (8.4.3.15) identically if and

only if
(a) M1 is an open portion of the unit sphere S2α+1.
(b) M2 is an open portion of the unit sphere Sβ .
(c) There exists a natural number h ≤ α such that, up to rigid motions, x is

given by
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x(z, w) = (w0z0, . . . , w0zh, . . . , wβz0, . . . , wβzh, zh+1, . . . , zα, 0, . . . , 0),

where z = (z0, . . . , zα) ∈ S2α+1 ⊂ Cα+1, w = (w0, . . . , wβ) ∈ Sβ ∈ Eβ+1.
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Chapter 9
CR-Doubly Warped Product Submanifolds

Andreea Olteanu

2010 Mathematics Subject Classification: 53C25 · 53C40

9.1 Introduction

In 1978, A. Bejancu introduced the notion of a CR-submanifold which is a gen-
eralization of holomorphic and totally real submanifolds in an almost Hermitian
manifold [4].

Afterwards many papers and books were written in this field. The first main
result on CR-submanifolds was obtained by Chen [13]: any CR-submanifold of a
Kähler manifold is foliated by totally real submanifolds. As nontrivial examples of
CR-submanifolds, we can mention the (real) hypersurfaces of Hermitian manifolds.

In [15], Chen introduced the notion of a CR-warped product submanifold in a
Kähler manifold and proved a lot of interesting results on these submanifolds. In
particular, he established a sharp relationship between the warping function f of a
warped product CR-submanifold M1× f M2 of a Kähler manifold M̃ and the squared
norm of the second fundamental form ||h||2.

Later, I. Hasegawa and I. Mihai established a sharp inequality for the squared
norm of the second fundamental form (an extrinsec invariant) in terms of the warp-
ing function for contact CR-warped products isometrically immersed in Sasakian
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manifolds in [20]. Moreover, I. Mihai [25] improved the same inequality for con-
tact CR-warped products in Sasakian space forms and he gave some applications. A
classification of contact CR-warped products in spheres, which satisfy the equality
case, identically, was also given.

Furthermore, in [2], K. Arslan, R. Ezentaş, I. Mihai, and C. Murathan considered
contactCR-warpedproduct submanifolds inKenmotsu space forms and theyobtained
sharp estimates for the squared norm of the second fundamental form in terms of
the warping function for contact CR-warped products isometrically immersed in
Kenmotsu space forms.

In [1], R. Al-Ghefari, F. Al-Solamy and M.H. Shahid studied contact CR-warped
product submanifolds in generalized Sasakian space forms.

Recently, in [3], M. Atçeken studied contact CR-warped product submanifolds
of a cosymplectic space form and obtained a necessary and sufficient condition for
such a submanifold to be a contact CR-product.

In [37], S. Sular and C. Özgür considered contact CR-warped product submani-
folds of a trans-Sasakian generalized Sasakian space forms and obtained a necessary
and sufficient condition for a contact CR-warped product submanifold of a trans-
Sasakian generalized Sasakian space form to be a contact CR-product.

Singly warped products or simply warped products were first defined by Bishop
and O’Neill in [6]. They used this concept to construct Riemannian manifolds with
negative sectional curvature. In general, doubly warped products can be considered
as a generalization of singly warped products.

In [27], M.I. Munteanu and then in [23] (see, also, [11]), K. Matsumoto and V.
Bonanzinga studied doubly warped product CR-submanifolds in locally conformal
Kähler manifolds.

In [29], the author established general inequalities forCR-doublywarped products
isometrically immersed in Sasakian space forms. Later, in [30], the author obtained
sharp estimates for the squared norm of the second fundamental form (an extrin-
sic invariant) in terms of the warping functions (intrinsic invariants) for contact
CR-doubly warped products isometrically immersed in Kenmotsu space forms. The
equality case is considered. Some applications are derived.

The paper presents the results obtained by the author on CR-doubly warped prod-
ucts and is organized as follows:

In Sect. 9.2 we give a brief introduction to submanifolds, providing some basic
notations, formulas and definitions for later use.

Section9.3 contains some necessary background on doubly warped products.
In Sect. 9.4 we survey results from [29, 32] for CR-doubly warped product sub-

manifolds in Sasakian space forms.
Then, in Sect. 9.5 we survey results from [30, 32] for CR-doubly warped product

submanifolds in Kenmotsu space forms.
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9.2 Preliminaries

9.2.1 Basic Notations and Formulas

In this section, we recall some definitions and basic formulas which we will use later.
Let M̃ be an m-dimensional Riemannian manifold and p ∈ M . Denote by K (π)

or K (u, v) the sectional curvature of M̃ associated with a plane section π ⊂ Tp M̃ ,
where {u, v} is an orthonormal basis ofπ. For anyn-dimensional subspace L ⊆ Tp M̃ ,
2 ≤ n ≤ m, its scalar curvature τ (L) is given by

τ (L) =
∑

1≤i< j≤n

K (ei ∧ e j ), (9.1)

where {e1, . . . , en} is any orthonormal basis of L . If L = Tp M̃ , then τ (L) is just the
scalar curvature τ (p) of M̃ at p.

For an n-dimensional submanifold M in a Riemannian m-manifold M̃ , we denote
by ∇ and ∇̃ the Levi-Civita connections of M and M̃ , respectively. The Gauss and
Weingarten formulas are:

∇̃X Y = ∇X Y + h (X, Y ) and ∇̃Xξ = −Aξ X + ∇⊥
X ξ, (9.2)

respectively, for vector fields X , Y tangent to M and ξ normal to M , where h denotes
the second fundamental form, ∇⊥ the normal connection and A the shape operator
of M [12]. Denote by R̃, R, R⊥, the curvature tensors with respect to ∇̃, ∇ and ∇⊥,
respectively. Then the Gauss equation is expressed by

R̃ (X, Y, Z , W ) = R (X, Y, Z , W )

− g (h (X, Z) , h (Y, W )) + g (h (X, W ) , h (Y, Z)) , (9.3)

for all vector fields X , Y , Z , W tangent to M [12]. We put

(∇X h) (Y, Z) = ∇⊥
X h (Y, Z) − h (∇X Y, Z) − h (X,∇Y Z) ; (9.4)

then the normal component of R̃ (X, Y ) Z is given by

(
R̃ (X, Y ) Z

)⊥ = (∇X h) (Y, Z) − (∇Y h) (X, Z) . (9.5)

The above relation represents the Codazzi equation. Using the Weingarten formula,
one obtains the Ricci equation

R̃ (X, Y, ξ, η) = R⊥ (X, Y, ξ, η)

− g
(

Aη Aξ X, Y
) + g

(
Aξ Aη X, Y

)
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= R⊥ (X, Y, ξ, η) + g
([Aξ, Aη]X, Y

)
, (9.6)

for vector fields X , Y tangent to M and ξ, η normal to M . If the second fundamental
form h vanishes identically, M is a totally geodesic submanifold.

Let {e1, . . . , en} be an orthonormal basis of the tangent space Tp M , p ∈ M . Let
H be the mean curvature vector, i.e.,

H = 1

n

n∑

i=1

h (ei , ei ) . (9.7)

The submanifold M is said to be minimal if H = 0. We denote by

hr
i j = g

(
h

(
ei , e j

)
, er

)
, i, j ∈ {1, . . . , n}, r ∈ {n + 1, . . . , m}

the coefficients of the second fundamental form h with respect to {e1, . . . , en,

en+1, . . . , em}, and
||h||2 =

n∑

i, j=1

g
(
h

(
ei , e j

)
, h

(
ei , e j

))
. (9.8)

Let M be an n-dimensional Riemannian manifold and {e1, . . . , en} be a local ortho-
normal frame on M . For a differentiable function f on M , the Laplacian � f of f
is defined by

� f =
n∑

j=1

{(∇e j e j
)

f − e j e j f
}
. (9.9)

We recall the following result of Chen for later use.

Lemma 1 [14] Let n ≥ 2 and a1, a2, . . . , an, b real numbers such that

(
n∑

i=1

ai

)2

= (n − 1)

(
n∑

i=1

a2
i + b

)
.

Then 2a1a2 ≥ b, with equality holding if and only if

a1 + a2 = a3 = · · · = an.

9.2.2 Almost Contact Metric Manifolds

A (2m + 1)-dimensional Riemannianmanifold
(
M̃, g

)
is said to be an almost contact

metric manifold if it admits an endomorphism φ, a vector field ξ (called the structure
vector field or Reeb vector field), a 1-form η and a Riemannian metric g satisfying
the following properties:
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φ2 = −I d + η ⊗ ξ, η (ξ) = 1, φξ = 0, η ◦ φ = 0, (9.10)

g (φX,φY ) = g (X, Y ) − η (X) η (Y ) , η (X) = g (X, ξ) , (9.11)

g (X,φY ) = −g (φX, Y ) (9.12)

for any vector fields X , Y on M̃ .
An almost contact metric manifold

(
M̃,φ, ξ, η, g

)
is said to be a contact metric

manifold if dη = �, where

�(X, Y ) = g (φX, Y ) (9.13)

is called the fundamental 2-form of M̃ .
If, in addition, ξ is aKilling vector field, then M̃ is said to be a K -contact manifold.

It is well known that a contact metric manifold is a K -contact manifold if and only
if ∇̃Xξ = −φX , for any vector field X on M̃ , where ∇̃ denotes the Riemannian
connection with respect to g. In a K -contact manifold, we have

(∇̃Xφ
)

Y = R̃(X, ξ)Y, (9.14)

for any vector fields X , Y .
On the other hand, the almost contact metric structure of M̃ is said to be

normal if

[φ,φ] (X, Y ) = −2dη (X, Y ) ξ, (9.15)

for any X , Y , where [φ,φ] denotes the Nijenhuis torsion of φ, given by

[φ,φ] (X, Y ) = φ2 [X, Y ] + [φX,φY ] − φ [φX, Y ] − φ [X,φY ] . (9.16)

A Sasakian manifold is a normal contact metric manifold.
It can be proved that an almost contact metric manifold is Sasakian if and only if

the Riemann curvature tensor R̃ satisfies

R̃ (X, Y ) ξ = η (Y ) X − η (X) Y, (9.17)

for any vector fields X , Y on M̃ .
An almost contact metric manifold

(
M̃,φ, ξ, η, g

)
is called Kenmotsu

manifold if

(∇̃Xφ
)

Y = −g (X,φY ) ξ − η (Y ) φX, (9.18)

∇̃Xξ = X − η (X) ξ, (9.19)
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for any vector fields X , Y on M̃ , where ∇̃ denotes the Riemannian connection with
respect to g.

In this case, it is well known that

R̃ (X, Y ) ξ = η (X) Y − η (Y ) X. (9.20)

Remark 1 A Kenmotsu manifold is normal, but not Sasakian.

Given an almost contact metric manifold
(
M̃,φ, ξ, η, g

)
, a φ-section of M̃ at

p ∈ M̃ is a section π ⊆ Tp M̃ spanned by X p and φX p, where X p is a unit tangent
vector orthogonal to ξp. The sectional curvature of a φ-section is called a φ-sectional
curvature.ASasakian (resp.Kenmotsu)manifoldwith constantφ-sectional curvature
is a Sasakian (resp. Kenmotsu) space form and is denoted by M̃ (c). As examples
of Sasakian space forms, we mention R2m+1 and S2m+1 with standard Sasakian
structures (see [7]). For a Sasakian space form the Riemann curvature tensor is given
by [7]

R̃ (X, Y ) Z = c + 3

4
{g (Y, Z) X − g(X, Z)Y }

+ c − 1

4
{g(X,φZ)φY − g(Y,φZ)φX + 2g(X,φY )φZ}

+ c − 1

4
{η (X) η (Z) Y − η (Y ) η (Z) X + g (X, Z) η (Y ) ξ − g (Y, Z) η (X) ξ},

(9.21)

for any vector fields X , Y , Z on M̃ (c). The Riemann curvature tensor R̃ of a
Kenmotsu space form is given by [21]

R̃ (X, Y ) Z = c − 3

4
{g (Y, Z) X − g(X, Z)Y }

+ c + 1

4
{[η (X) Y − η (Y ) X ] η (Z) + [g (X, Z) η (Y ) − g (Y, Z) η (X)] ξ

+ω (Y, Z) φX − ω (X, Z) φY − 2ω (X, Y ) φZ} . (9.22)

9.2.3 Submanifolds of Almost Contact Metric Manifolds

Let
(
M̃,φ, ξ, η, g

)
be an almost contact manifold. A submanifold M normal to ξ in

M̃ is said to be aC -totally real submanifold. If M̃ is a K -contact manifold, it follows
that φmaps any tangent space of M into the normal space, that is, φ

(
Tp M

) ⊂ T ⊥
p M ,

for every p ∈ M . For submanifolds tangent to the structure vector field ξ, there are
different classes of submanifolds. We mention the following:
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(1) A submanifold M tangent to ξ is said to be invariant submanifold if φ preserves
any tangent space of M , that is φ

(
Tp M

) ⊂ Tp M , ∀p ∈ M .
(2) A submanifold M tangent to ξ is said to be anti-invariant submanifold if φ

maps any tangent space of M into the normal space, that is, φ
(
Tp M

) ⊂ T ⊥
p M ,

∀p ∈ M .
(3) A submanifold M tangent to ξ is called a contact CR-submanifold if there exists

a pair of orthogonal differentiable distributions D and D⊥ on M , such that:

(a) TM = D ⊕ D⊥ ⊕ {ξ}, where {ξ} is the 1-dimensional distribution spanned
by ξ;

(b) D is invariant by φ, i.e., φ
(Dp

) = Dp, ∀p ∈ M ;
(c) D⊥ is invariant by φ, i.e., φ

(D⊥
p

) ⊂ D⊥
p , ∀p ∈ M .

In particular, if D⊥ = {0} (resp. D ={0}), M is an invariant (resp. anti-
invariant) submanifold.

9.3 Doubly Warped Products

Doubly warped products can be considered as a generalization of singly warped
products.

Definition 1 Let (M1, g1) and (M2, g2) be two Riemannian manifolds and let σ1 :
M1 → (0,∞) and σ2 : M2 → (0,∞) be differentiable functions.

The doubly warped product M = σ2 M1 ×σ1 M2 is the product manifold M1 × M2

endowed with the metric
g = σ2

2g1 + σ2
1g2. (9.23)

More precisely, if π1 : M1 × M2 → M1 and π2 : M1 × M2 → M2 are natural
projections, the metric g is defined by

g = (σ2 ◦ π2)
2 π∗

1g1 + (σ1 ◦ π1)
2 π∗

2g2. (9.24)

The functions σ1 and σ2 are called warping functions.

Remark 2 If either σ1 ≡ 1 or σ2 ≡ 1, but not both, then we obtain a warped product.
If both σ1 ≡ 1 and σ2 ≡ 1, then we have a Riemannian product manifold. If neither
σ1 nor σ2 is constant, then we have a nontrivial doubly warped product.

Examples ([19])

(1) Assume that M1 (dim M1 ≥ 2) is an open subset of Rr\{(0, . . . , 0)}, g1,ab = δab,
a, b ∈ {1, . . . , r},

σ1 = σ1
(
x1, . . . , xr

) = B

2

(
r∑

a=1

(
xa

)2
)

,
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and M2 (dim M2 ≥ 2) is an open subset of Rn−r\{(0, . . . , 0)}, g2,αβ = δαβ ,
α,β ∈ {r + 1, . . . , n},

σ2 = σ2
(
xr+1, . . . , xn

) = A

2

(
n∑

α=r+1

(xα)
2

)
,

with positive constants A and B. Thus, σ2 M1×σ1 M2 is a doubly warped product.
(2) Let M1 = {(x, y) ∈ R

2| y > 0} with the metric tensor g1 defined by

g1

(
∂

∂x
,

∂

∂x

)
= uv, g1

(
∂

∂y
,

∂

∂y

)
= 1

v
, g1

(
∂

∂x
,

∂

∂y

)
= 0,

where u = u (x), v = v (y) are smooth functions not vanishing at any point on
M1. Next let σ1 = σ1 (y) = y and M2 = {(z, t) ∈ R

2|t > 0} with g2 defined by

g2

(
∂

∂z
,

∂

∂z

)
= pq, g2

(
∂

∂t
,

∂

∂t

)
= 1

q
, g2

(
∂

∂z
,

∂

∂t

)
= 0,

where p = p (z), q = q (t) are smooth functions not vanishing at any point on
M2, and σ2 = σ2 (t) = t .
σ2 M1 ×σ1 M2 is also a doubly warped product.

(3) Let M1 (dim M1 = 2) and σ1 be as in Example2, and M2 (dim M2 = n −2 ≥ 2)
and σ2 be as in Example1. Then, σ2 M1 ×σ1 M2 is a doubly warped product.

In a doubly warped product σ2 M1 ×σ1 M2 we have

⎧
⎪⎨

⎪⎩

∇X Y = ∇1
X Y − σ2

2

σ2
1
g1 (X, Y ) ∇2 (ln σ2) ,

∇X Z = Z (ln σ2) X + X (ln σ1) Z ,

(9.25)

for any vector fields X, Z tangent to M1 and M2, respectively, where ∇1 and ∇2 are
the Levi-Civita connections of the Riemannian metrics g1 and g2, respectively (see
[22, 38]). Here,∇2 (ln σ2) denotes the gradient of ln σ2 with respect to the metric g2.

If X and Z are unit vector fields, the sectional curvature K (X ∧ Z) of the plane
section spanned by X and Z is given by

K (X ∧ Z) = 1

σ1

{(∇1
X X

)
σ1 − X2σ1

} + 1

σ2

{(∇2
Z Z

)
σ2 − Z2σ2

}
, (9.26)

where ∇1 and ∇2 are the Riemannian connections of the Riemannian metrics g1 and
g2, respectively.

http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_1
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9.4 CR-doubly Warped Products in Sasakian Space Forms

9.4.1 A General Inequality

In this section, we present the following results from [29, 32] for contact CR-doubly
warped product submanifolds in Sasakian space forms.

First, we investigat doubly warped products M =σ2 M1 ×σ1 M2 which are CR-
submanifolds of a Sasakian manifold M̃ . Such manifolds are always tangent to the
structure vector field ξ. We distinguish 2 cases

(1) ξ is tangent to M1;
(2) ξ is tangent to M2.

In case 1, one has two subcases:

(a) M1 is an anti-invariant submanifold and M2 is an invariant submanifold of M̃ ;

(b) M1 is an invariant submanifold and M2 is an anti-invariant submanifold of M̃ .

We start with the subcase (a).

Theorem 9.1 Let M̃ be a (2m + 1)-dimensional Sasakian manifold. Then there do
not exist doubly warped product submanifolds M =σ2 M1 ×σ1 M2 such that M1 is an
anti-invariant submanifold tangent to ξ and M2 is an invariant submanifold of M̃.

Proof Assume M =σ2 M1 ×σ1 M2 is a doubly warped product submanifold of a
Sasakian manifold M̃ , such that M1 is an anti-invariant submanifold tangent to ξ and
M2 is an invariant submanifold of M̃ .

By Eq. (9.25), we have

∇X Z = ∇Z X = Z (ln σ2) X + X (ln σ1) Z , (9.27)

for any vector fields X and Z tangent to M1 and M2, respectively.
In particular, for X = ξ, we derive ξσ1 = 0.
Using the last structure equation of a Sasakianmanifold, Gauss formula and (9.27)

we get
φZ = ∇̃Zξ = (Z ln σ2) ξ + (ξ ln σ1) Z . (9.28)

It follows that Z ln σ2 = 0 for any vector field Z tangent to M2.
Thus σ2 is a constant and the doubly warped product becomes a warped product.
So, there do not exist doubly warped product submanifolds M =σ2 M1 ×σ1 M2

such that M1 is an anti-invariant submanifold tangent to ξ and M2 is an invariant
submanifold of M̃ .
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Consider now the subcase (b).

Theorem 9.2 Let M̃ be a (2m + 1)-dimensional Sasakian manifold and M =σ2

M1 ×σ1 M2 an n-dimensional doubly warped product such that M1 is a (2α + 1) -
dimensional invariant submanifold tangent to ξ and M2 is a β-dimensional C-totally
real submanifold of M̃.Then:

(i) The squared norm of the second fundamental form of M satisfies:

||h||2 ≥ 2β
[||∇ (ln σ1) ||2 + 1

]
, (9.29)

where ∇ (ln σ1) is the gradient of ln σ1.
(ii) If the equality sign of (9.29) holds identically, then both M1 and M2 are totally

umbilical submanifolds of M̃. Moreover, M is a minimal submanifold of M̃.

Proof Let M =σ2 M1×σ1 M2 be a doublywarped product submanifold of a Sasakian
manifold M̃ , such that M1 is an invariant submanifold tangent to ξ and M2 is a C-
totally real submanifold of M̃ .

For any unit vector fields X tangent to M1 and Z , W tangent to M2, respectively,
we have:

g (h (φX, Z) ,φZ) = g
(∇̃ZφX,φZ

) = g
(
φ∇̃Z X,φZ

)

= g
(∇̃Z X, Z

) = g (∇Z X, Z) = X ln σ1. (9.30)

On the other hand, since the ambient manifold M̃ is Sasakian, it is easily seen that

h (ξ, Z) = φZ . (9.31)

Therefore, by (9.30) and (9.31) the inequality (9.29) is immediately obtained.
Denote by h′′ the second fundamental form of M2 in M . Then we get

g
(
h′′ (Z , W ) , X

) = g (∇Z W, X) = − (X ln σ1) g(Z , W,)

or equivalently
h′′ (Z , W ) = −g (Z , W ) ∇ (ln σ1) . (9.32)

If the equality sign of (9.29) holds identically, then we obtain

h (D,D) = 0, h
(D⊥,D⊥) = 0, h

(D,D⊥) ⊂ φD⊥. (9.33)

The first condition (9.33) implies that M1 is totally geodesic in M . On the other
hand, one has

g (h (X,φY ) ,φZ) = g
(∇̃XφY,φZ

) = g (∇X Y, Z) = −Z(ln σ2)g(X, Y ).

Thus M1 is totally umbilical in M̃ .
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The second condition (9.33) and (9.32) imply that M2 is totally umbilical sub-
manifold in M̃ .

Moreover, by (9.33), it follows that M is a minimal submanifold of M̃ .

Corollary 1 Let M̃ (c) be a (2m +1)-dimensional Sasakian space form of constant
φ-sectional curvature c and M =σ2 M1 ×σ1 M2 an n-dimensional nontrivial dou-
bly warped product submanifold, such that M1 is a (2α + 1)-dimensional invariant
submanifold tangent to ξ and M2 is a β-dimensional C-totally real submanifold of
M̃ (c) satisfying

||h||2 = 2β
[||∇ (ln σ1) ||2 + 1

]
.

Then we have
(a) M1 is a totally umbilical invariant submanifold of M̃ (c). Hence M1 is a

Sasakian space form of constant φ-sectional curvature < c.
(b) M2 is a totally umbilical C-totally real submanifold of M̃ (c). Hence M2 is a

real space form of sectional curvature ε > c+3
4 .

Proof Statement (a) follows from Theorem9.2 and the Gauss equation.
Also, we know that M2 is a totally umbilical C-totally real submanifold of M̃ (c).

Gauss equation implies that M2 is a real space form of sectional curvature ε ≥ c+3
4 .

Moreover, by (9.25), we see that ε = c+3
4 if and only if the warping function σ1

is constant.

Assume now that σ2 M1 ×σ1 M2 is a doubly warped product submanifold of a
Sasakian manifold M̃ such that ξ is tangent to M2 (case 2).

Proposition 1 Any doubly warped product submanifold σ2 M1 ×σ1 M2 of a Sasakian
manifold M̃ such that ξ is tangent to M2 is a warped product. Moreover, M1 is a C
-totally real submanifold.

Proof Let σ2 M1 ×σ1 M2 be a doubly warped product submanifold of a Sasakian
manifold M̃ such that ξ is tangent to M2.

If we put Z = ξ in (9.25), we get

∇Xξ = ξ(ln σ2)X + X (ln σ1)ξ.

It follows that X ln σ1 = 0, for any vector field X tangent to M1. Thus σ1 is
constant and the doubly warped product becomes a warped product.

Also, it follows that M1 is a C-totally real submanifold of M̃ .

Theorem9.2 and Proposition1 show that the only nontrivial doubly warped prod-
ucts which are contact CR-submanifolds in a Sasakian manifold M̃ have the form
M =σ2 M1 ×σ1 M2, with M1 is an invariant submanifold tangent to ξ and M2 a
C-totally real submanifold submanifold of M̃ . We simply call such submanifolds as
contact CR-doubly warped products.
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9.4.2 Another Inequality

Next we improve the inequality (9.29) from Theorem9.2.

Theorem 9.3 ([29]) Let M̃ (c) be a (2m + 1)-dimensional Sasakian space form of
constant φ-sectional curvature c and M =σ2 M1 ×σ1 M2 an n-dimensional contact
CR-doubly warped product submanifold, such that M1 is a (2α + 1)-dimensional
invariant submanifold tangent to ξ and M2 is a β-dimensional C-totally real sub-
manifold of M̃ (c). Then:

(i) The squared norm of the second fundamental form of M satisfies

||h||2 ≥ 2β
[||∇ (ln σ1) ||2 − �1(ln σ1) + 1

] + αβ (c + 3) , (9.34)

where �1 denotes the Laplace operator on M1.
(ii) The equality sign of (9.34) holds identically if and only if we have:

(a) M1 is a totally umbilical invariant submanifold of M̃ (c). Hence M1 is a
Sasakian space form of constant φ-sectional curvature < c.

(b) M2 is a totally umbilical C-totally real submanifold of M̃ (c). Hence M2

is a real space form of sectional curvature ε > c+3
4 .

Proof Let M =σ2 M1 ×σ1 M2 be a contact CR-doubly warped submanifold in a
Sasakian space form M̃ (c), such that dim M1 = 2α + 1 and dim M2 = β.

Let
{

X0 = ξ, X1, . . . , Xα, Xα+1 = φX1, . . . , X2α = φXα, Z1, . . . , Zβ

}
be a

local orthonormal frame on M such that X0, . . . , X2α are tangent to M1 and
Z1, . . . , Zβ are tangent to M2.

For any unit vector fields X tangent to M1 and Z , W tangent to M2, respectively,
we have:

g (h (φX, Z) ,φZ) = g
(∇̃ZφX,φZ

) = g
(
φ∇̃Z X,φZ

)

= g
(∇̃Z X, Z

) = g (∇Z X, Z) = X ln σ1. (9.35)

On the other hand, since the ambient manifold M̃ is Sasakian, it is easily seen that

h (ξ, Z) = φZ . (9.36)

We denote by hφD⊥ (X, Z) the component of h (X, Z) in φD⊥. Therefore, by
(9.35) and (9.36), it follows that

2α∑

i=0

β∑

t=1

||hφD⊥ (Xi , Zt ) ||2 = β
[||∇ (ln σ1) ||2 + 1

]
. (9.37)

Let ν be the normal subbundle orthogonal to φD⊥ . Obviously, we have

T ⊥M = φD⊥ ⊕ ν, φν = ν.
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For any unit vector fields X tangent to M1 and orthogonal to ξ and Z tangent to
M2, Eq. (9.21) gives

R̃ (X,φX, Z ,φZ) = c − 1

2
.

On the other hand, by Codazzi equation (9.5), we have

R̃ (X,φX, Z ,φZ) = −g
(∇⊥

X h (φX, Z) − h (∇XφX, Z) − h (φX,∇X Z) ,φZ
)

+ g
(∇⊥

φX h (X, Z) − h
(∇φX X, Z

) − h
(
φX,∇φX Z

)
,φZ

)
.

(9.38)

Using Eq. (9.25) and structure equations of a Sasakian manifold, we get

g
(
∇⊥

X h (φX, Z) , φZ
)

= Xg (h (φX, Z) ,φZ) − g
(

h (φX, Z) , ∇⊥
X φZ

)

= Xg (∇Z X, Z) − g
(
h (φX, Z) , φ∇̃X Z

)

= X ((X ln σ1) g (Z , Z)) − (X ln σ1) g (h (φX, Z) ,φZ)

− g (h (φX, Z) , φhν (X, Z))

=
(

X2 ln σ1

)
g (Z , Z) + (X ln σ1)

2 g (Z , Z) − ||hν (X, Z) ||2,

where we denote by hν (X, Z) the ν-component of h (X, Z). Also, we have

g (h (∇XφX, Z) ,φZ) = g
(∇̃Z∇XφX,φZ

)

= g
(∇̃Z ∇̃XφX,φZ

) − g
(∇̃Z h (X,φX) ,φZ

)

= −g (X, X) g (Z , Z) + ((∇X X) ln σ1) g (Z , Z) ,

g (h (φX,∇X Z) ,φZ)

= (X ln σ1)g (h (φX, Z) ,φZ) = (X ln σ1)
2 g (Z , Z) .

Substituting the above relations in (9.38), we find

R̃ (X,φX, Z ,φZ)

= 2||hν (X, Z) ||2 − (
X2 ln σ1

)
g (Z , Z)

+ ((∇X X) ln σ1) g (Z , Z) − 2g (X, X) g (Z , Z)

− (
(φX)2 ln σ1

)
g (Z , Z) + ((∇φXφX

)
ln σ1

)
g (Z , Z) . (9.39)

By summing the Eq. (9.39), one finds

2α∑

i=0

β∑

t=1

||hν (Xi , Zt ) ||2 = c + 3

2
αβ − β�1(ln σ1). (9.40)

Combining (9.37) and (9.40), we obtain the inequality (9.34). Denote by h′′ the
second fundamental form of M2 in M . Then we get
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g
(
h′′ (Z , W ) , X

) = g (∇Z W, X) = − (X ln σ1) g(Z , W )

or equivalently

h′′ (Z , W ) = −g (Z , W ) ∇ (ln σ1) . (9.41)

If the equality sign of (9.34) holds identically, then we obtain

h (D,D) = 0, h
(D⊥,D⊥) = 0. (9.42)

The first condition (9.42) implies that M1 is totally geodesic in M . On the other hand,
one has

g (h (X,φY ) ,φZ) = g
(∇̃XφY,φZ

)

= g (∇X Y, Z) = −Z(ln σ2)g(X, Y ).

Thus M1 is totally umbilical in M̃ (c), and hence is a Sasakian space form with
constant φ-sectional curvature < c. The second condition (9.42) and (9.41) imply
that M2 is totally umbilical submanifold in M̃ (c). Moreover, by (9.42), it follows
that M is a minimal submanifold of M̃ (c). Gauss equation (9.3) implies that M2 is
a real space form of sectional curvature ε ≥ c+3

4 . Moreover, by ( 9.25), we see that
ε = c+3

4 if and only if the warping function σ1 is constant.

9.4.3 Minimum Codimension of a Contact CR-doubly
Warped Product

Nowwe determine the minimum codimension of a contact CR-doubly warped prod-
uct in a Sasakian space form M̃ (c) with c > −3.

Theorem 9.4 Let M =σ2 M1 ×σ1 M2 be a contact CR-doubly warped product into
a (2m + 1)-dimensional Sasakian space form M̃ (c) with c > −3. If M1 is compact,
then we have

m ≥ α + β + αβ, (9.43)

where dim M1 = 2α + 1 and dim M2 = β.

Proof Let M =σ2 M1×σ1 M2 be a doublywarped product submanifold of a (2m+1)-
dimensional Sasakian space form M̃ (c) with c > −3, such that M1 is an invariant
submanifold tangent to ξ and M2 a C-totally real submanifold of M̃(c). We denote
by ν the normal subbundle orthogonal to φD⊥. Obviously, we have

T ⊥M = φD⊥ ⊕ ν, φν = ν.
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For any unit vector fields X tangent to M1 and orthogonal to ξ and Z tangent to M2,
Eq. (9.21) gives

R̃ (X,φX, Z ,φZ) = c − 1

2
.

On the other hand, by Codazzi equation (9.5), we have

R̃ (X, φX, Z , φZ) = −g
(
∇⊥

X h (φX, Z) − h (∇X φX, Z) − h (φX,∇X Z) , φZ
)

+ g
(
∇⊥

φX h (X, Z) − h
(∇φX X, Z

) − h
(
φX, ∇φX Z

)
, φZ

)
. (9.44)

Using the second equation from (9.25) and structure equations of a Sasakian mani-
fold, we get

g
(
∇⊥

X h (φX, Z) , φZ
)

= Xg (h (φX, Z) ,φZ) − g
(

h (φX, Z) , ∇⊥
X φZ

)

= Xg (∇Z X, Z) − g
(
h (φX, Z) , φ∇̃X Z

)

= X ((X ln σ1) g (Z , Z)) − (X ln σ1) g (h (φX, Z) ,φZ)

− g (h (φX, Z) , φhν (X, Z))

=
(

X2 ln σ1

)
g (Z , Z) + (X ln σ1)

2 g (Z , Z) − ||hν (X, Z) ||2,

where we denote by hν (X, Z) the ν-component of h (X, Z). Also, we have

g (h (∇XφX, Z) ,φZ) = g
(∇̃Z∇XφX,φZ

)

= g
(∇̃Z ∇̃XφX,φZ

) − g
(∇̃Z h (X,φX) ,φZ

)

= −g (X, X) g (Z , Z) + ((∇X X) ln σ1) g (Z , Z) ,

g (h (φX,∇X Z) ,φZ)

= (X ln σ1)g (h (φX, Z) ,φZ) = (X ln σ1)
2 g (Z , Z) .

Substituting the above relations in (9.44), we find

R̃ (X,φX, Z ,φZ)

= ||hν (X, Z) ||2 − (
X2 ln σ1

)
g (Z , Z) − (X ln σ1)

2 g (Z , Z)

+ ((∇X X) ln σ1) g (Z , Z) − g (X, X) g (Z , Z) + (X ln σ1)
2 g (Z , Z)

+ ||hν (X, Z) ||2 − (
(φX)2 ln σ1

)
g (Z , Z) − ((φX) ln σ1)

2 g (Z , Z)

+ ((∇φXφX
)
ln σ1

)
g (Z , Z)

− g (X, X) g (Z , Z) + ((φX) ln σ1)
2 g (Z , Z) . (9.45)

We recall that the Hessian of σ1 is defined by

Hσ1(X, Y ) = XYσ1 − (∇X Y )σ1.
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We will use the complex Hessian given by

Hσ1
C (X, Y ) = 1

2
Hσ1(X, Y ) + 1

2
Hσ1(φX,φY ).

Then the Eq. (9.45) becomes

||hν (X, Z) ||2 =
[

c + 3

4
g(X, X) + H ln σ1

C (X, X)

]
g (Z , Z) . (9.46)

Let
{

X0 = ξ, X1, . . . , X2α, Z1, . . . , Zβ

}
be a local orthonormal frame on M such

that X0, . . . , X2α are tangent to M1 and Z1, . . . , Zβ are tangent to M2. Since the
Hessian and the second fundamental form are bilinear, by polarization we obtain

g(hν (Xi , Zs) , hν

(
X j , Zt

)
) =

[
c + 3

2
δi j + H ln σ1

C (Xi , X j )

]
δst . (9.47)

Let assume that M1 is compact. Then the function ln σ1 has an absolute minimum at
some point u ∈ M1. At this critical point, the complex Hessian H ln σ1

C is non-negative
definite. Then by (9.46), each hν (Xi , Zt ) �= 0 at u. Since H ln σ1

C is self-adjoint, we
can choose an orthonormal basis X0, ..., X2α at u ∈ M1 which diagonalizes H ln σ1

C .
Then by (9.47), it follows that the vectors

hν (Xi , Zt ) ; i = 1, ..., 2α, t = 1, ...,β,

at u are mutually orthogonal nonzero vectors. Therefore, the rank of ν is at least
2αβ. It follows that m ≥ α + β + αβ.

Corollary 2 Let M̃ (c) be a Sasakian space form with c < −3. Then there do not
exist contact CR-doubly warped products σ2 M1 ×σ1 M2 with M1 a compact invariant
submanifold tangent to ξ and M2 a C-totally real submanifold of M̃ (c).

Proof Assume there exists a contact CR-doubly warped product σ2 M1 ×σ1 M2 in a
Sasakian space form with c < −3, such that M1 is compact. Then the function ln σ1

has an absolute maximum at some point u ∈ M1. At this critical point, the Hessian
H ln σ1 is non-positive definite. Thus (9.46) leads to a contradiction.

9.5 CR-doublyWarped Products in Kenmotsu Space Forms

9.5.1 A General Inequality

In this section, we present the following results from [30] and [32] for contact CR-
doubly warped product submanifolds in Kenmotsu space forms.
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We prove estimates of the squared norm of the second fundamental form in terms
of the warping function. Equality cases are investigated and obstructions to the exis-
tence of contact CR-doubly warped product submanifolds in Kenmotsu space forms
are derived.

Adoublywarped product submanifold M = f2 M1× f1 M2 of aKenmotsumanifold
M̃ , with M1 a (2α + 1)-dimensional invariant submanifold tangent to ξ and M2 a
β-dimensional anti-invariant submanifold of M̃ is said to be a contact CR-doubly
warped product submanifolfd.We state the following estimate of the squared norm of
the second fundamental form for contact CR-doubly warped products in Kenmotsu
manifolds.

Theorem 9.5 Let M̃ (c) be a (2m + 1) -dimensional Kenmotsu manifold and M = f2
M1 × f1 M2 an n-dimensional contact CR-doubly warped product submanifold, such
that M1 is a (2α + 1)-dimensional invariant submanifold tangent to ξ and M2 is a
β-dimensional anti-invariant submanifold of M̃ (c). Then:

(i) The squared norm of the second fundamental form of M satisfies

||h||2 ≥ 2β||∇ (ln f1) ||2 − 1], (9.48)

where ∇ (ln f1) is the gradient of ln f1.
(ii) If the equality sign of (9.48) holds identically, then both M1 and M2 are totally

umbilical submanifolds of M̃. Moreover, M is a minimal submanifold of M̃ .

Proof Let M = f2 M1 × f1 M2 be a doubly warped product submanifold of a Ken-
motsu manifold M̃ , such that M1 is an invariant submanifold tangent to ξ and M2 is
an anti-invariant submanifold of M̃ . For any unit vector fields X tangent to M1 and
Z , W tangent to M2, respectively, we have:

g (h (φX, Z) ,φZ) = g
(∇̃ZφX,φZ

) = g
(
φ∇̃Z X,φZ

)

= g
(∇̃Z X, Z

) = g (∇Z X, Z) = X ln f1,

g (h (φX, Z) ,φW ) = (X ln f1) g (Z , W ) . (9.49)

On the other hand, since the ambient manifold M̃ is a Kenmotsu manifold, it is easily
seen that

h (ξ, Z) = 0. (9.50)

Obviously, (9.25) implies ξ ln f1 = 1. Therefore, by (9.49) and (9.50), the inequality
(9.48) is immediately obtained. Denote by h′′ the second fundamental form of M2

in M . Then we get

g
(
h′′ (Z , W ) , X

) = g (∇Z W, X) = − (X ln f1) g(Z , W )

or equivalently

h′′ (Z , W ) = −g (Z , W ) ∇ (ln f1) . (9.51)
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Thus M2 is a totally umbilical submanifold of M .Analogously, M1 is totally umbilical
in M . If the equality sign of (9.48) holds identically, then we obtain

h (D,D) = 0, h
(D⊥,D⊥) = 0, h

(D,D⊥) ⊂ φD⊥. (9.52)

The first condition (9.52) implies that M1 is totally geodesic in M . On the other hand,
one has

g (h (X,φY ) ,φZ) = g
(∇̃XφY,φZ

)

= g (∇X Y, Z) = −Z(ln σ2)g(X, Y ).

It follows that M1 is totally umbilical in M̃ . The second condition (9.52) and (9.51)
imply that M2 is totally umbilical submanifold in M̃ . Moreover, by (9.52), it follows
that M is a minimal submanifold of M̃ .

In particular, if the ambient space is a Kenmotsu space form, one has the following.

Corollary 3 Let M̃ (c)be a (2m + 1) -dimensional Kenmotsu space form of constant
φ-sectional curvature c and M = f2 M1 × f1 M2 an n-dimensional nontrivial contact
CR-doubly warped product submanifold, satisfying

||h||2 = 2β
[||∇ (ln f1) ||2 − 1

]
.

Then we have
(a) M1 is a totally umbilical invariant submanifold of M̃ (c). Hence M1 is a

Kenmotsu space form of constant φ-sectional curvature < c.
(b) M2 is a totally umbilical anti-invariant submanifold of M̃ (c). Hence M2 is a

real space form of sectional curvature ε > c−3
4 .

Proof Statement (a) follows from Theorem9.5. Also, we know that M2 is a totally
umbilical submanifold of M̃ (c). Gauss equation implies that M2 is a real space form
of sectional curvature ε ≥ c−3

4 . Moreover, by (9.25), we see that ε = c−3
4 if and only

if the warping function f1 is constant.

9.5.2 Another Inequality

In [30], we improved the inequality (9.48) for contact CR-doubly warped product
submanifolds in Kenmotsu space forms. Equality case was characterized.

Theorem 9.6 Let M̃ (c) be a (2m + 1)-dimensional Kenmotsu space form of con-
stant φ-sectional curvature c and M = f2 M1 × f1 M2 an n-dimensional contact
CR-doubly warped product submanifold, such that M1 is a (2α + 1)-dimensional
invariant submanifold tangent to ξ and M2 is a β-dimensional anti-invariant sub-
manifold of M̃ (c). Then
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(i) The squared norm of the second fundamental form of M satisfies

||h||2 ≥ 2β
[||∇ (ln f1) ||2 − �1(ln f1) − 1

] + αβ (c + 1) , (9.53)

where �1 denotes the Laplace operator on M1.
(ii) The equality sign of (9.53) holds identically if and only if we have:

(a) M1 is a totally umbilical invariant submanifold of M̃ (c). Hence M1 is a
Kenmotsu space form of constant φ-sectional curvature < c.

(b) M2 is a totally umbilical anti-invariant submanifold of M̃ (c). Hence M2

is a real space form of sectional curvature ε ≥ c−3
4 .

Proof Let M = f2 M1 × f1 M2 be a contact CR-doubly warped product submanifold
of a (2m + 1)-dimensional Kenmotsu space form M̃ (c), such that M1 is an invariant
submanifold tangent to ξ and M2 is an anti-invariant submanifold of M̃ (c).Wedenote
by ν be the normal subbundle orthogonal to φ (T M2). Obviously, we have

T ⊥M = φ (T M2) ⊕ ν, φν = ν.

For any vector fields X tangent to M1 and orthogonal to ξ and Z tangent to M2,
Eq. (9.22) gives

R̃ (X,φX, Z ,φZ) = c + 1

2
g(X, X)g(Z , Z).

On the other hand, by Codazzi equation (9.5), we have

R̃ (X,φX, Z ,φZ)

= −g
(∇⊥

X h (φX, Z) − h (∇XφX, Z) − h (φX,∇X Z) ,φZ
)

+ g
(∇⊥

φX h (X, Z) − h
(∇φX X, Z

) − h
(
X,∇φX Z

)
,φZ

)
. (9.54)

Using the Eq. (9.25) and structure equations of a Kenmotsu manifold, we get

g
(∇⊥

X h (φX, Z) ,φZ
)

= Xg (h (φX, Z) ,φZ) − g
(
h (φX, Z) ,∇⊥

X φZ
)

= Xg (∇Z X, Z) − g
(
h (φX, Z) ,φ∇̃X Z

)

= X ((X ln f1) g (Z , Z))

− (X ln f1) g (h (φX, Z) ,φZ) − g (h (φX, Z) ,φhν (X, Z))

= (
X2 ln f1

)
g (Z , Z)

+ (X ln f1)
2 g (Z , Z) − ||hν (X, Z) ||2,
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where we denote by hν (X, Z) the ν-component of h (X, Z). Also, by (9.49) and
(9.25), we obtain, respectively,

g (h (∇XφX, Z) ,φZ) = ((∇X X) ln f1) g (Z , Z) ,

g (h (φX,∇X Z) ,φZ) = (X ln f1)g (h (φX, Z) ,φZ) = (X ln f1)
2 g (Z , Z) .

Substituting the above relations in (9.54), we find

R̃ (X,φX, Z ,φZ) = 2||hν (X, Z) ||2 − (
X2 ln f1

)
g (Z , Z)

+ ((∇X X) ln f1) g (Z , Z)

− (
(φX)2 ln f1

)
g (Z , Z) + ((∇φXφX

)
ln f1

)
g (Z , Z) .

(9.55)

Then the Eq. (9.55) becomes

2||hν (X, Z) ||2 =
[

c + 1

2
g(X, X) + (

X2 ln f1
) − ((∇X X) ln f1)

+ (
(φX)2 ln f1

) − ((∇φXφX
)
ln f1

) ]
g(Z , Z). (9.56)

Let
{

X0 = ξ, X1, . . . , Xα, Xα+1 = φX1, . . . , X2α = φXα, Z1, . . . , Zβ

}
be a local

orthonormal frame on M such that X0, . . . , X2α are tangent to M1 and Z1, . . . , Zβ

are tangent to M2. Therefore

2
2α∑

j=1

β∑

t=1

||hν

(
X j , Zt

) ||2 = αβ (c + 1) − 2β�1(ln f1). (9.57)

Combining (9.48) and (9.57), we obtain the inequality (9.53). The equality case can
be solved similarly to the Corollary3.

Corollary 4 Let M̃ (c) be a Kenmotsu space form with c < −1. Then there do not
exist contact CR-doubly warped product submanifolds f2 M1 × f1 M2 in M̃ (c) such
that ln f1 is a harmonic function on M1.

Proof Assume there exists a contact CR-doubly warped product submanifold
f2 M1 × f1 M2 in a Kenmotsu space form M̃ (c) such that ln f1 is a harmonic function
on M1 .Then (9.57) implies c ≥ −1.

Corollary 5 Let M̃ (c) be a Kenmotsu space form with c ≤ −1. Then there do not
exist contact CR-doubly warped product submanifolds f2 M1 × f1 M2 in M̃ (c) such
that ln f1 is a nonnegative eigenfunction of the Laplacian on M1 corresponding to
an eigenvalue λ > 0.
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2. Arslan, K., Ezentaş, R., Mihai, I., Murathan, C.: Contact CR-warped product submanifolds in
Kenmotsu space forms. J. Korean Math. Soc. 42(5), 1101–1110 (2005)

3. Atçeken, M.: Contact CR-warped product submanifolds in cosymplectic space forms. Collect.
Math. 62(1), 17–26 (2011)

4. Bejancu, A.: CR-submanifolds of a Kaehler manifold I. Proc. Am. Math. Soc 69(1), 135–142
(1978)

5. Bejancu, A.: Geometry of CR-submanifolds. D. Reidel Publ. Comp, Dordrecht (1986)
6. Bishop, R.L., O’Neill, B.: Manifolds of negative curvature. Trans. Am. Math. Soc. 145, 1–49

(1969)
7. Blair, D.E.: Contact Manifolds in Riemannian Geometry. Lecture Notes in Math. Springer,

Berlin (1976)
8. Blair, D.E.: Riemannian Geometry of Contact and Symplectic Manifolds. Birkhäuser, Boston

(2002)
9. Blair, D.E., Chen, B.Y.: On CR-submanifolds of Hermitian manifolds. Israel J. Math. 34,

353–363 (1979)
10. Bonanzinga, V., Matsumoto, K.: Warped product CR-submanifolds in locally conformal

Kaehler manifolds. Period. Math. Hung. 48(2–2), 207–221 (2004)
11. Bonanzinga, V., Matsumoto, K.: On doubly warped product CR-submanifolds in a locally

conformal Kaehler manifold. Tensor. New series 69, 76–82 (2008)
12. Chen, B.Y.: Geometry of Submanifolds. M. Dekker, New York (1973)
13. Chen, B.Y.: CR-submanifolds of a Kaehler manifold. J. Differ. Geom. 16, 305–323 (1981)
14. Chen, B.Y.: Some pinching and classification theorems for minimal submanifolds. Arch. Math.

60, 568–578 (1993)
15. Chen, B.Y.: Geometry of warped product CR-submanifolds in Kaehler Manifolds. Monatsh.

Math. 133, 177–195 (2001); 134, 103–119 (2001)
16. Chen, B.Y.: On isometric minimal immersions from warped products into real space forms.

Proc. Edinb. Math. Soc. 45, 579–587 (2002)
17. Chen, B.Y.: Another general inequality for CR-warped products in complex space forms.

Hokkaido Math. J. 32, 415–444 (2003)
18. Chen, B.Y.: CR-warped products in complex projective spaces with compact holomorphic

factor. Monatsh. Math. 141, 177–186 (2004)
19. Gebarowski, A.: Doubly warped products with harmonic Weyl conformal curvature tensor.

Colloquium Mathematicum 67, 73–89 (1994)
20. Hasegawa, I., Mihai, I.: Contact CR-warped product submanifolds in Sasakian manifolds.

Geom. Dedicata 102, 143–150 (2003)
21. Kenmotsu, K.: A class of almost contact Riemannian manifolds. Tohoku Math. J. 24, 93–103

(1972)
22. Matsumoto, K.: Doubly warped product manifolds and submanifolds. Global Analysis and

Applied Mathematics: International Workshop on Global Analysis, AIP Conference Proceed-
ings 729, 218–224 (2004)

23. Matsumoto, K., Bonanzinga, V.: Doubly warped product CR-submanifolds in a locally con-
formal Kaehler space form. Acta Math. Acad. Paedagog. Nyházi. (N. S.) 24, 93–102 (2008)

24. Mihai, A., Mihai, I., Miron, R. (Eds.): Topics in Differential Geometry, Academiei Romane,
Bucharest (2008)

25. Mihai, I.: Contact CR-warped product submanifolds in Sasakian space forms. Geom. Dedic.
109, 165–173 (2004)

26. Munteanu, M.I.: Warped product contact CR-submanifolds of Sasakian space forms. Publ.
Math. Debrecen 66, 75–120 (2005)

27. Munteanu, M.I.: Doubly warped product CR-submanifolds in locally conformal Kaehler man-
ifolds. Monatsh. Math. 150, 333–342 (2007)



288 A. Olteanu

28. Olteanu, A.: Recent results in the geometry of warped product submanifolds. Ph.D. thesis,
University of Bucharest (2009)

29. Olteanu, A.: CR-doubly warped product submanifolds in Sasakian space forms. Bull. Transilv.
Univ. Brasov, ser III 1(50), 269–278 (2008)

30. Olteanu, A.: Contact CR-doubly warped product submanifolds in Kenmotsu space forms. J.
Inequal. Pure Appl. Math. 10(4), 7 (2009). Article 119

31. Olteanu, A.: A general inequality for doubly warped product submanifolds. Math. J. Okayama
Univ. 52, 133–142 (2010)

32. Olteanu, A.: Recent results in the geometry of warped product submanifolds, Ed. MATRIX
ROM, Bucharest (2011)

33. Sasaki, S.: On differential manifolds with certain structures which are closely related to almost
contact structure I. Tohoku Math. J. 12, 459–476 (1960)

34. Sekigawa, K.: Some CR-submanifolds in a 6-dimensional sphere. Tensor N. S. 41, 13–20
(1984)

35. Sharma, R.: On the curvature of contact metric manifolds. J. Geom. 53, 179–190 (1995)
36. Sharma, R., Duggal, K.L.: Mixed foliate CR-submanifolds of indefinite complex space forms.

Ann. Mat. Pura Appl. 149(4), 103–111 (1987)
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10.1 Introduction

In submanifold theory, it is important to establish relations between extrinsic and
intrinsic invariants of submanifolds.

In the early 1990s, the notion of δ-invariants was introduced by Chen (see [11,
13, 14]). These invariants are obtained by subtracting a certain amount of sectional
curvatures from the scalar curvature. Furthermore, he established pointwise optimal
inequalities involving δ-invariants and the squared mean curvature of arbitrary sub-
manifolds in real and complex space forms. A submanifold is said to be δ-ideal if it
satisfies an equality case of the inequalities everywhere. During the past two decades,
many interesting results on δ-ideal submanifolds have been obtained.

The main purpose of this chapter is to survey some of the known results on δ-
ideal CR submanifolds in complex space forms, the nearly Kähler 6-sphere and odd
dimensional unit spheres. For a given CR manifold M equipped with a compatible
metric, the δ-ideal CR immersions of M minimize the λ-bienergy functional among
all isometric CR immersions of M. In view of this fact, some topics on variational
problem for the λ-bienergy functional are also presented.
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10.2 Preliminaries

Let M be an n-dimensional submanifold of a Riemannian manifold M̃. Let us denote
by ∇ and ∇̃ the Levi-Civita connections on M and M̃, respectively. The Gauss and
Weingarten formulas are respectively given by

∇̃XY = ∇XY + B(X, Y),

∇̃X V = −AV X + DX V

for tangent vector fields X, Y and normal vector field V , where B, A and D are the
second fundamental form, the shape operator and the normal connection.

The mean curvature vector field H is defined by H = (1/n)traceB. The function
|H| is called the mean curvature. If it vanishes identically, then M is called a minimal
submanifold. In particular, ifB vanishes identically, thenM is called a totally geodesic
submanifold.

Definition 22 ([6]) Let M be a Riemannian submanifold of an almost Hermitian
manifold M̃ and let J be the complex structure of M̃. A submanifold M is called a
CR submanifold if there exist differentiable distributionsH and H⊥ such that

TM = H ⊕ H⊥, JH = H, JH⊥ ⊂ T⊥M,

where T⊥M denotes the normal bundle of M. A CR submanifold is called a Kähler
submanifold (resp. totally real submanifold) if rank H⊥ = 0 (resp. rank H = 0). A
totally real submanifold is called a Lagraingian submanifold if J(TM) = T⊥M. A
CR submanifold is said to be proper if rank H �= 0 and rank H⊥ �= 0.

10.3 δ-Invariants

Let M be an n-dimensional Riemannian manifold. Denote by K(π) the sectional
curvature ofM associatedwith a plane sectionπ ⊂ TpM, p ∈ M. For any orthonormal
basis {e1, . . . , en} of the tangent space TpM, the scalar curvature τ at p is defined by

τ (p) =
∑

i<j

K(ei ∧ ej).

Let L be a subset of TpM of dimension r ≥ 2 and {e1, . . . , er} an orthonormal basis
of L. We define the scalar curvature τ (L) of the r-plane section L by

τ (L) =
∑

α<β

K(eα ∧ eβ), 1 ≤ α,β ≤ r.
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For an integer k ≥ 0, denote by S(n, k) the finite set which consists of unordered k-
tuples (n1, . . . , nk) of integers satisfying 2 ≤ n1 . . . , nk < n and n1 + · · · + nk ≤ n.
We denote by S(n) the set of k-tuples with k ≥ 0 for a fixed n.

For each k-tuple (n1, . . . , nk) ∈ S(n), the notion of δ-invariant δ(n1, . . . , nk) was
introduced by Chen [13] as follows:

δ(n1, . . . , nk)(p) = τ (p) − inf{τ (L1) + · · · + τ (Lk)},

where L1, …, Lk run over all k mutually orthogonal subspaces of TpM such that
dim Lj = nj, j = 1, . . . , k.

Let Ric denote the maximum Ricci curvature function on M defined by

Ric(p) = max{S(X, X)|X ∈ UpM},

where S is the Ricci tensor and UpM is the unit tangent vector space of M at p. Then,
we have δ(n − 1)(p) = Ric(p).

LetM be a Kähler manifold with real dimension 2n. For each k-tuple (2n1, . . . , 2nk)

∈ S(2n), Chen [13] also introduced the notion of complex δ-invariant δc(2n1, . . . , 2nk),
which is defined by

δc(2n1, . . . , 2nk)(p) = τ (p) − inf{τ (Lc
1) + · · · + τ (Lc

k)},

where Lc
1, …, Lc

k run over all k mutually orthogonal complex subspaces of TpM such
that dimLj = 2nj, j = 1, . . . , k.

For simplicity, we denote δ(λ, . . . ,λ) and δc(λ, . . . ,λ) by δk(λ) and δc
k(λ),

respectively, where λ appears k times.

10.4 Inequalities involving δ-Invariants on Submanifolds

For each (n1, . . . , nk) ∈ S(n), let c(n1, . . . , nk) and b(n1, . . . , nk) be the constants
given by

c(n1, . . . , nk) =
n2

(
n + k − 1 − ∑k

j=1 nj

)

2(n + k − ∑k
j=1 nj)

,

b(n1, . . . , nk) = 1

2

⎛

⎝n(n − 1) −
k∑

j=1

nj(nj − 1)

⎞

⎠ .

Chen obtained the following inequality for an arbitrary submanifold in a real space
form.
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Theorem 10.1 ([14]) Given an n-dimensional submanifold M in an m-dimensional
real space form Rm(ε) of constant sectional curvature ε, we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)|H|2 + b(n1, . . . , nk)ε. (10.1)

Equality sign of (10.1) holds at a point p ∈ M for some (n1, . . . , nk) ∈ S(n) if and
only if there exists an orthonormal basis {e1, . . . , e2m} at p such that e1, . . . , en are
tangent to M and the shape operators of M in Rm(ε) at p take the following forms:

Aer =

⎛

⎜⎜⎜⎝

Ar
1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 μrI

⎞

⎟⎟⎟⎠ , (10.2)

r = n + 1, . . . , 2m,

where each Ar
j is a symmetric nj × nj submatrix such that

trace(Ar
1) = · · · = trace(Ar

k) = μr . (10.3)

Let M̃m(4ε) be a complex space form of complex dimension m and constant
holomorphic sectional curvature 4ε and let J be the complex structure of M̃m(4ε).

Let M be an n-dimensional submanifold in M̃m(4ε). For any vector X tangent to
M, we put JX = PX + FX, where PX and FX are tangential and normal components
of JX, respectively. For a subspace L ⊂ TpM of dimension r, we set

�(L) =
∑

1≤i<j≤r

〈
Pui, uj

〉2
,

where {u1, . . . , ur} is an orthonormal basis of L.
For an arbitrary submanifold in a complex space form, we have

Proposition 26 ([14]) Let M be an n-dimensional submanifold in a complex space
form M̃m(4ε). Then, for mutually orthogonal subspaces L1,…, Lk of TpM such that
dim Lj = nj, we have

τ −
k∑

i=1

τ (Li) ≤ c(n1, . . . , nk)|H|2 + b(n1, . . . , nk)ε + 3

2
|P|2ε − 3ε

k∑

i=1

�(Li).

(10.4)
The equality case of inequality (10.4) holds at a point p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , e2m} at p such that

(a) Lj = Span{en1+ ··· +nj−1+1, . . . , en1+ ··· +nj }, j = 1, . . . , k,

(b) the shape operators of M in M̃m(4ε) at p satisfy (10.2) and (10.3).
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Using Proposition 26, we obtain the following inequalities.

Proposition 27 ([14]) Let M be a Kähler submanifold with real dimension 2n in a
complex space form M̃m(4ε). Then, we have

δc(2n1, . . . , 2nk) ≤ 2

(
n(n + 1) −

k∑

j=1

nj(nj + 1)

)
ε. (10.5)

The equality case of inequality (10.5) holds at a point p ∈ M if and only if there
exists an orthonormal basis {e1, . . . , e2m} at p such that e1, . . . , e2n are tangent to
M and e2l = Je2l−1 (1 ≤ l ≤ k), and moreover, the shape operators of M in M̃m(4ε)
at p take the following forms:

Aer =

⎛

⎜⎜⎜⎝

Ar
1 . . . 0
...

. . .
... 0

0 . . . Ar
k

0 0

⎞

⎟⎟⎟⎠ ,

r = 2n + 1, . . . , 2m,

where each Ar
j is a symmetric (2nj) × (2nj) submatrix satisfying trace(Ar

j ) = 0.

Proposition 28 ([42]) Let M be an n-dimensional CR submanifold with rankH =
2h in CHm(−4). Then, we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)|H|2 − b(n1, . . . , nk) − 3h + 3

2

k∑

j=1

nj. (10.6)

Equality sign of (10.6) holds at a point p ∈ M for some (n1, . . . , nk) ∈ S(n) if and
only if there exists an orthonormal basis {e1, . . . , e2m} at p such that

(a) each Lj = Span{en1+ ··· +nj−1+1, . . . , en1+ ··· +nj } satisfies �(Lj) = nj/2 for 1 ≤
j ≤ k,

(b) the shape operators of M in CHm(−4) at p satisfy (10.2) and (10.3).

Proposition 29 ([46])Let M be an n-dimensional CR submanifold with rankH = 2h
in CPm(4). Then, we have

δ(n1, . . . , nk) ≤ c(n1, . . . , nk)|H|2 + b(n1, . . . , nk) + 3h. (10.7)

Equality sign of (10.7) holds at a point p ∈ M for some (n1, . . . , nk) ∈ S(n) if and
only if there exists an orthonormal basis {e1, . . . , e2m} at p such that

(a) each Lj = Span{en1+ ··· +nj−1+1, . . . , en1+ ··· +nj } satisfies �(Lj) = 0 for 1 ≤ i ≤
k,

(b) the shape operators of M in CPm(4) at p satisfy (10.2) and (10.3).
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Definition 23 Asubmanifold is said to be δ(n1, . . . , nk)-ideal if it satisfies the equal-
ity case of (10.1), (10.6) or (10.7) identically for a k-tuple (n1, . . . , nk) ∈ S(n). Sim-
ilarly, a Kähler submanifold is said to be δc(2n1, . . . , 2nk)-ideal if it satisfies the
equality case of (10.5) identically for a k-tuple (2n1, . . . , 2nk) ∈ S(2n).

Formore information on δ-invariants and δ-ideal submanifolds,we refer the reader
to [16].

Definition 24 A submanifold is said to be linearly full in M̃m(4ε) if it does not lie
in any totally geodesic Kähler hypersurfaces of M̃m(4ε).

10.5 Ideal CR Submanifolds in Complex Hyperbolic Space

We first recall some basic definitions on hypersurfaces.

Definition 25 Let N be a submanifold in a Riemannian manifold M̃ and UN⊥ the
unit normal bundle of N . Then, for a sufficiently small r > 0, the following mapping
is an immersion:

fr : UN⊥ → M̃, fr(p, V ) = expp(rV ),

where exp denotes the exponential mapping of M̃. The hypersurface fr(UN⊥) of M̃
is called the tubular hypersurface over N with radius r. If N is a point x in M̃, then
the tubular hypersurface over x is a geodesic hypersphere centered at x.

Definition 26 For a given point p ∈ CHm(−4), let γ(t) be a geodesic with γ(0) = p,
which is parametrized by arch length. Denote by St(γ(t)) the geodesic hypersphere
centered at γ(t) with radius t. The limit of St(γ(t)) when t tends to infinity is called
a horosphere.

Definition 27 Let M be a real hypersurface in an almost Hermitian manifold and V
be a unit normal vector. A hypersurface M is called a Hopf hypersurface if JV is a
principal curvature vector.

A real hypersurface in an almost Hermitian manifold is a proper CR submanifold
with rankH⊥ = 1. The following theorem characterizes the horosphere ofCHm(−4)
in terms of δk(2).

Theorem 10.2 ([14]) Let M be a δk(2)-ideal real hypersurface of CHm(−4). Then
k = m − 1 and M is an open portion of the horosphere in CHm(−4).

Remark 15 The third case of (9.5) in [14] does not occur, because L1 . . . , Lk are
complex planes. Therefore, case (1) of Theorem9.1 in [14] shall be removed from
the list of δk(2)-ideal real hypersurfaces in CHm(−4).

For δ(2m − 2)-ideal real hypersurfaces inCHm(−4), Chen proved the following.
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Theorem 10.3 ([15]) Let M be a real hypersurface of CHm(−4). Then M is δ(2m −
2)-ideal if and only if M is a Hopf hypersurface with constant mean curvature
given by 2α/(2m − 1), where AV JV = αJV for a unit normal vector V . If M has
constant principal curvatures, then M is an open portion of one of the following real
hypersurfaces:

(1) the horosphere of CH2(−4);
(2) the tubular hypersurface over totally geodesic CHm−1(−4) in CHm(−4) with

radius r = tanh−1(1/
√
2m − 3), where m ≥ 3.

It was proved in [15] that if m = 2 in Theorem 10.3, then the assumption of the
constancy of principal curvatures is satisfied. That is to say, we have

Corollary 22 ([15]) Let M be a δ(2)-ideal real hypersurface of CH2(−4). Then M
is an open portion of the horosphere.

Let Cm+1
1 be the complex number (m + 1)-space endowed with the complex

coordinates (z0, . . . , zm), the pseudo-Euclidean metric given by g̃ = −dz0dw̄0 +∑m
i=1 dzidw̄i and the standard complex structure. For ε < 0, we put H2m+1

1 (ε) =
{z ∈ C

m+1
1 | 〈z, z〉 = 1/ε}, where 〈, 〉 denote the inner product on Cm+1

1 induced from
g̃. For a given z ∈ H2m+1

1 (ε), we put [z] = {λz|λ ∈ C,λλ̄ = 1}. The Hopf fibration
is given by


{m,ε} : H2m+1
1 (ε) → CHm(4ε) : z �→ [z].

For δk(2)-ideal proper CR submanifolds in CHm(−4) whose codimensions are
greater than one, we have the following representation formula.

Theorem 10.4 ([40]) Let M be a linearly full (2n + 1)-dimensional δk(2)-ideal CR
submanifold in CHm(−4) such that rankH⊥ = 1, k ≥ 1 and m > n + 1. Then, up to
holomorphic isometries of CHm(−4), the immersion of M into CHm(−4) is given
by the composition 
{m,−1} ◦ z, where

z =
(

−1 − 1

2
|�|2 + iu,−1

2
|�|2 + iu, �

)
eit, (10.8)

and � is a 2n-dimensional δc
n(2)-ideal Kähler submanifold in C

m−1.

Up to holomorphic isometries ofCHm(−4), the horosphere inCHm(−4) is a real
hypersurface defined by {[z] : z ∈ H2m+1

1 (−1), |z0 − z1| = 1} (see, for example,
[48]). Hence, Theorem 10.4 can be considered as an extension of Theorem 10.2.

As an immediate corollary of Theorem 10.4, we obtain

Corollary 23 ([19]) Let M be a linearly full 3-dimensional δ(2)-ideal CR subman-
ifold in CHm(−4) such that rank H⊥ = 1 and m > 2. Then, up to holomorphic
isometries of CHm(−4), the immersion of M into CHm(−4) is given by the compo-
sition 
{m,−1} ◦ z, where z is given by (10.8) and �(w) is a holomorphic curve in
C

m−1 with � ′(w) �= 0.
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For general δ(n1, . . . , nk)-ideal properCRsubmanifolds inCHm(−4)whose codi-
mensions are greater than one, the following classification result has been obtained.

Theorem 10.5 ([42, 46]) Let M be a linearly full (2n + 1)-dimensional δ(n1, . . . ,
nk)-ideal CR submanifold inCHm(−4) such that rankH⊥ = 1, k ≥ 1and m > n + 1.
Then, we have JH ∈ H⊥, AV JV = (2n/

√
k(2n − k))JV for V = H/|H|, DH = 0,

and moreover, the mean curvature is given by

2n(k + 1)

(2n + 1)
√

k(2n − k)
.

If all principal curvatures of M with respect to H/|H| are constant, then one of the
following two cases occurs:

(1) M is locally congruent with the immersion described in Theorem 10.4.
(2) n/k ∈ Z − {1}, n1 = · · · = nk = 2n/k, and M is locally congruent with the

immersion


{m,−1}
(


−1
{m−1, 2k−2n

2n−k }(�),

√
k

2n − 2k
eit

)
,

where � is a 2n-dimensional δc
k(2n/k)-ideal Kähler submanifold in CHm−1

(
8k−8n
2n−k

)
.

If n > 1, k = 1 and n1 = 2n in Theorem 10.5, then we have

Corollary 24 ([41, 46]) Let M be a linearly full (2n + 1)-dimensional CR subman-
ifold in CHm(−4) such that rank H⊥ = 1, n > 1 and m > n + 1. Then M is δ(2n)-
ideal if and only if JH ∈ H⊥, DH = 0, AV JV = (2n/

√
(2n − 1))JV for V = H/|H|,

and moreover, the mean curvature is given by

4n

(2n + 1)
√
2n − 1

.

If all principal curvatures of M with respect to H/|H| are constant, then, up to
holomorphic isometries of CHm(−4), the immersion of M into CHm(−4) is given
by


{m,−1}
(


−1
{m−1, 2−2n

2n−1 }(�),

√
1

2n − 2
eit

)
,

where � is a 2n-dimensional Kähler submanifold in CHm−1
(
8−8n
2n−1

)
.

A hypersurface given by (2) in Theorem 10.3 can be rewritten as follows (see, for
example, [37, Example 6.1]):


{m,−1}
(

H2m−1
1

(
4 − 2m

2m − 3

)
× S1

(
1√

2m − 4

))
,
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where S1(r) = {z ∈ C|zz̄ = r2}. Thus, Corollary 24 can be regarded as an extension
of Theorem 10.3.

Let N be a Kähler hypersurface with real dimension 2n in a complex space form.
Let V and JV be normal vector fields of N . Since AJV = JAV and JAV = −AV J
holds (cf. [34, p. 175]), there exists an orthonormal basis {e1, Je1, . . . , en, Jen} of
TpN with respect to which the shape operators AV and AJV take the following forms:

AV =

⎛

⎜⎜⎜⎜⎜⎝

λ1 0
−λ1

. . .

λn

0 −λn

⎞

⎟⎟⎟⎟⎟⎠
, AJV =

⎛

⎜⎜⎜⎜⎜⎝

0 λ1 0
λ1 0

. . .

0 λn

0 λn 0

⎞

⎟⎟⎟⎟⎟⎠
.

Hence, it follows from Proposition27 that every Kähler hypersurface with real
dimension 2n in a complex space form is δc

k(2n/k)-ideal for any natural number k
such that n/k ∈ Z. Accordingly, applying Theorem10.4 yields the following.

Corollary 25 ([40]) Let M be a linearly full (2n + 1)-dimensional δk(2)-ideal CR
submanifold in CHn+2(−4) such that rankH⊥ = 1 and k ≥ 1. Then, up to holomor-
phic isometries of CHn+2(−4), the immersion of M into CHn+2(−4) is given by the
composition 
{n+2,−1} ◦ z, where z is given by (10.8), and � is a Kähler hypersurface
in C

n+1.

Similarly, we obtain the following corollary of Theorem10.5.

Corollary 26 Let M be a linearly full (2n + 1)-dimensional δ(n1, . . . , nk)-ideal
CR submanifold in CHn+2(−4) such that rank H⊥ = 1 and k ≥ 1. If all principal
curvatures of M with respect to H/|H| are constant, then one of the following two
cases occurs:

(1) M is locally congruent with the immersion described in Corollary 25.
(2) n/k ∈ Z − {1}, n1 = · · · = nk = 2n/k, and M is locally congruent with the

immersion


{n+2,−1}
(


−1
{n+1, 2k−2n

2n−k }(�),

√
k

2n − 2k
eit

)
,

where � is a Kähler hypersurface in CHn+1( 8k−8n
2n−k ).

It is natural to ask the following problem.

Problem 1 Find δ(n1, . . . , nk)-ideal CR submanifolds with rank H⊥ = 1 in CHm

(−4) such that the principal curvatures with respect to H/|H| are not all constant.
Generally, δ(n1, . . . , nk)-ideal proper CR submanifolds in CHm(−4) have the

following properties.

Theorem 10.6 ([42]) Let M be a linearly full (2n + q)-dimensional δ(n1, . . . , nk)-
ideal CR submanifold in CHm(−4) such that rankH⊥ = q. If q > 1, then M is min-
imal. If q = 1 and m > n + 1, then M is non-minimal and satisfies DH = 0.
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A differentiable manifold M is called an almost contact manifold if it admits a
unit vector field ξ, a one-form η and a (1, 1)-tensor field φ satisfying

η(ξ) = 1, φ2 = −I + η ⊗ ξ.

Every almost contact manifold admits a Riemannian metric g satisfying

g(φX,φY) = g(X, Y) − η(X)η(Y).

The quadruplet (φ, ξ, η, g) is called an almost contact metric structure.
An almost contact metric structure is called a contact metric structure if it satisfies

dη(X, Y) = 1

2

(
X(η(Y)) − Y(η(X)) − η([X, Y ])

)
= g(X,φY).

A contact metric structure is said to be Sasakian if the tensor field S defined by

S(X, Y) = φ2[X, Y ] + [φX,φY ] − φ[φX, Y ] − φ[X,φY ] + 2dη(X, Y)ξ

vanishes identically. A manifold equipped with a Sasakian structure is called a
Sasakian manifold. We refer the reader to [8] for more information on Sasakian
manifolds.

Let M be a CR submanifold with rank H⊥ = 1 in a complex space form. We
define a one-form η by η(X) = g(U, X), where U is a unit tangent vector field lying
inH⊥, and g is an inducedmetric onM.We put Ū = (1/

√
r)U, η̄ = √

rη and ḡ = rg
for a positive constant r. Then, the quadruplet (P, Ū, η̄, ḡ) defines an almost contact
structure on M (cf. [21, p. 96]).

For the almost contact structure (P, Ū, η̄, ḡ) on a CR submanifold described in
Theorem10.5, we have the following.

Proposition 30 ([46]) An almost contact structure (P, Ū, η̄, ḡ) with r =
√

k
2n−k on

a CR submanifold in Theorem10.5. becomes a Sasakian structure. In particular, in
the case of (1), the structure is Sasakian with respect to the induced metric.

10.6 Ideal CR Submanifolds in Complex Projective Space

All δk(2)-ideal Hopf hypersurfaces of CPm(4) have been determined as follows:

Theorem 10.7 ([14]) Let M be a δk(2)-ideal Hopf hypersurface of CPm(4). Then,
one of the following three cases occurs:

(1) k = 1 and M is an open portion of a geodesic sphere with radius π/4;
(2) m is odd, k = m − 1, and M is an open portion of a tubular hypersurface with

radius r ∈ (0,π/2) over a totally geodesic CP(m−2)/2(4);
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(3) m = 2, k = 1, and M is an open portion of a tubular hypersurface over the
complex quadric curve Q1 := {[z0, z1, z2] ∈ CP2 : z20 + z21 + z22 = 0}, with radius

r = tan−1((1 + √
5 −

√
2 + 2

√
5)/2). Here, [z0, z1, z2] is a homogeneous coordi-

nate of CP2.

Areal hypersurface ofCPm(4) is called a ruled real hypersurface ifH is integrable
and each leaf of its maximal integral manifolds is locally congruent to CPm−1(4).
For a unit normal vector V of a ruled real hypersurface M, the shape operator AV

satisfies
AV JV = μJV + νU (ν �= 0), AU = νJV, AX = 0 (10.9)

for all X orthogonal to both JV and U, where U is a unit vector orthogonal to JV ,
and μ and ν are smooth functions on M. Thus, all ruled real hypersurfaces ofCPm(4)
are non-Hopf (see [33]).

Using Proposition 29 and (10.9), we find that every minimal ruled real hyper-
surface in CPm(4) is δk(2)-ideal for 1 ≤ k ≤ m − 1. Such a hypersurface can be
represented as follows:

Theorem 10.8 ([1]) A minimal ruled hypersurface of CPm(4) is congruent to 
 ◦ z,
where 
 : S2m+1(1) → CPm(4) is the Hopf fibration and

z(s, t, θ, w) = e
√−1θ

(
cos s cos t, cos s sin t, (sin s)w

)

for w ∈ C
m−1, |w|2 = 1, −π/2 < s < π/2, 0 ≤ t, θ < 2π.

It seems interesting to consider the following problem.

Problem 2 Classify δ(n1, . . . , nk)-ideal non-Hopf real hypersurfaces in CPm(4).

Let M be an n-dimensional δ(n1, . . . , nk)-ideal CR submanifold in CPm(4). Let
Lj be subspaces of TpM defined in (a) of Proposition 29. Define the subspace Lk+1

by Lk+1 = Span{en1+ ··· +nk+1, . . . , en}. It is clear that TpM = L1 ⊕ · · · ⊕ Lk+1. We
denote by Li the distribution which is generated by Li. Then, we have the following
codimension reduction theorem.

Theorem 10.9 ([46]) Let M be an n-dimensional δ(n1, . . . , nk)-ideal CR submani-
fold with rank H⊥ = 1 in CPm(4). If H⊥ ⊂ Li for some i ∈ {1, . . . , k + 1}, then M
is contained in a totally geodesic Kähler submanifold CP

n+1
2 (4) in CPm(4).

It was proved in [46] that if dim M = 3, then the assumption on H⊥ in Theo-
rem10.9 holds. That is to say, we have the following.

Corollary 27 ([46]) Let M be a 3-dimensional δ(2)-ideal proper CR submanifold
in CPm(4). Then, M is contained in CP2(4).

The following problem arises naturally.

Problem 3 Find δ(n1, . . . , nk)-ideal CR submanifoldswith rankH⊥ = 1 inCPm(4)
such that the codimensions are greater than one.
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10.7 Ideal CR Submanifolds in the Nearly Kähler 6-sphere

Let O be the Cayley algebra, and denote by ImO the purely imaginary part of O.
We identify ImO with R7 and define the exterior product u × v on it by

u × v = 1

2
(uv − vu).

The canonical inner product on R
7 is given by 〈u, v〉 = −(uv + vu)/2.

We define the tensor field J of type (1, 1) on S6(1) = {p ∈ ImO| 〈, 〉 = 1} by

JX = p × X

for any p ∈ S6(1), X ∈ TpS6(1). Let g be the standard metric on S6(1). Then
(S6(1), J, g) is a nearly Kähler manifold, i.e., an almost Hermitian manifold sat-
isfying (∇XJ)X = 0 for any X ∈ TS6(1), where∇ is the Levi-Civita connection with
respect to g (cf. [34, pp. 139–140]).

For 3-dimensional δ(2)-ideal proper CR submanifolds in the nearly Kähler S6(1),
we have the following result.

Theorem 10.10 ([22, 23]) Let M be a 3-dimensional δ(2)-ideal proper CR subman-
ifold in the nearly Kähler S6(1). Then, M is minimal and locally congruent with the
following immersion:

f (t, u, v) = (cos t cos u cos v, sin t, cos t sin u cos v,

cos t cos u sin v, 0,− cos t sin u sin v, 0). (10.10)

Remark 16 A CR submanifold (10.10) can be rewritten as

x21 + x22 + x23 + x24 + x26 = 1, x5 = x7 = 0, x3x4 + x1x6 = 0,

which implies that it lies in S4(1).

The following theorem determines 4-dimensional δ(2)-ideal proper CR subman-
ifolds in the nearly Kähler S6(1).

Theorem 10.11 ([2, 3]) Let M be a 4-dimensional δ(2)-ideal proper CR submani-
fold in the nearly Kähler S6(1). Then, M is minimal and locally congruent with the
following immersion:

f (t, u, v, w) = (cosw cos t cos u cos v, sinw sin t cos u cos v,

sin 2w sin v cos u + cos 2w sin u, 0, sinw cos t cos u cos v,

cosw sin t cos u cos v, cos 2w sin v cos u − sin 2w sin u). (10.11)

Remark 17 A CR submanifold given by (10.11) lies in S5(1).
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Definition 28 A 2-dimensional submanifold N of the nearly Kähler S6(1) is called
an almost complex curve if J(TpN) = TpN for any p ∈ N .

Chen has classified δk(n1, . . . , nk)-ideal Hopf hypersurfaces of the nearly Kähler
S6(1) as follows:

Theorem 10.12 ([16, p. 415]) A Hopf hypersurface of the nearly Kähler S6(1) is
δ(n1, . . . , nk)-ideal if and only if it is either

(1) a totally geodesic hypersurface, or
(2) an open part of a tubular hypersurface with radius π/2 over a non-totally

geodesic almost complex curve of S6(1).

Remark 18 A tubular hypersurface described in (2) of Theorem 10.12 is a minimal
δ(λ)-ideal hypersurface for λ ∈ {2, 3, 4}.

It is natural to consider the following problem.

Problem 4 Classify 4-dimensional δ(2, 2)-ideal and δ(3)-ideal CR submanifolds in
the nearly Kähler S6(1).

10.8 Ideal Contact CR Submanifolds in Odd Dimensional
Unit Spheres

For any point x ∈ S2n+1(1) ⊂ C
n+1, we set ξ = Jx, where J denotes the canonical

complex structure ofCn+1. Let g be the standard metric on S2n+1(1) and η be the one-
form given by η(X) = g(X, ξ).We consider the orthogonal projectionP : TxC

n+1 →
TxS2n+1(1). We define a (1, 1)-tensor field φ on S2n+1(1) by φ = P ◦ J . Then, the
quadruplet (φ, ξ, η, g) is a Sasakian structure (see, for example, [7]).

Definition 29 ([35]) Let M be a Riemannian submanifold tangent to ξ of a Sasakian
manifold. A submanifold M is called a contact CR submanifold if there exist differ-
entiable distributions H and H⊥ such that

TM = Rξ ⊕ H ⊕ H⊥, φH = H, φH⊥ ⊂ T⊥M.

A contact CR submanifold is said to be proper if rank H �= 0 and rank H⊥ �= 0.

Non-minimal δ(2)-ideal submanifolds in a sphere have been completely described
in [20]. Forminimal δ(2)-ideal proper contact CR submanifolds in S2m+1(1), we have
the following codimension reduction theorem.

Theorem 10.13 ([38]) Let Mn be a minimal δ(2)-ideal proper contact CR subman-
ifold in S2m+1(1). Then n is even and there exits a totally geodesic Sasakian S2n+1(1)
in S2m+1(1) containing Mn as a hypersurface.
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Therefore, it is sufficient to investigate the case of hypersurfaces. Let N be a
minimal surface in Sn(1) and let UN⊥ be its unit normal bundle. Then, a map

F : UN⊥ → Sn(1) : Vp �→ Vp

is a minimal δ(2)-ideal codimension one immersion (see [13, Example 9.8]).
Munteanu and Vrancken proved the following.

Theorem 10.14 ([38]) Let M2n be a minimal δ(2)-ideal proper contact CR hyper-
surface in S2n+1(1). Then M2n can be locally considered as the unit normal bundle
of the Clifford torus S1(1/

√
2) × S1(1/

√
2) ⊂ S3(1) ⊂ S2n+1(1).

10.9 Related Topics

This section gives an account of the relationship between δ(n1, . . . , nk)-ideal immer-
sions and critical points of the λ-bienergy functional E2,λ. Some topics about varia-
tional problems for E2,λ are also presented.

10.9.1 λ-Bienergy Functional

Let f : M → N be a smooth map of an n-dimensional Riemannian manifold into
another Riemannian manifold. The tension field τ (f ) of f is a section of the induced
vector bundle f ∗TN defined by

τ (f ) =
n∑

i=1

{∇ f
ei

df (ei) − df (∇ei ei)}

for a local orthonormal frame {ei} on M, where∇ f and∇ denote the induced connec-
tion and the Levi-Civita connection ofM, respectively. If f is an isometric immersion,
then we have

τ (f ) = nH. (10.12)

A smooth map f is called a harmonic map if it is a critical point of the energy
functional

E(f ) =
∫

�

|df |2dvg

over every compact domain � of M, where dvg is the volume form of M. A smooth
map f is harmonic if and only if τ (f ) vanishes identically on M.
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Definition 30 For each smooth map f of a compact domain � of M into N , the
λ-bienergy functional is defined by

E2,λ(f ) =
∫

�

|τ (f )|2dvg + λE(f ).

For simplicity, we denote E2,0(f ) by E2(f ), which is called the bienergy functional.

Eliasson [24] proved thatE2,λ satisfiesCondition (C) of Palais-Smale if the dimen-
sion of the domain is 2 or 3 and the target is non-positively curved. In general, E2,λ

does not satisfy Condition (C) (see [35]).

10.9.2 Ideal CR Immersions as Critical Points of λ-Bienergy
Functional

Let (M, HM, JH , g) be a compact Riemannian almost CR manifold (with or without
boundary) whose CR dimension is h, i.e., a compact smooth manifold equipped
with a subbundle HM of TM of rank 2h together with a bundle isomorphism JH :
HM → HM such that (JH)2 = −I , and a compatible Riemannian metric g such that
g(X, Y) = g(JHX, JHY) for all X,Y ∈ HM.

An immersion f of (M, HM, JH , g) into M̃m(4ε) is called a CR immersion if
J(df (X)) = df (JH(X)) for any X ∈ HM. If f is an isometric immersion, then f (M)

is a CR submanifold of M̃m(4ε). We denote by ICR(M, M̃m(4ε)) the family of
isometric CR immersions of M into M̃m(4ε). By Propositions28 and 29, we see that
a δ(n1, . . . , nk)-ideal CR immersion of M into M̃m(4ε) is a stable critical point of
E2,λ within the class of ICR(M, M̃m(4ε)).

10.9.3 λ-Biharmonic Submanifolds and Their Extensions

Definition 31 ([25]) A smooth map f : M → N is called a λ-biharmonic map if
it is a critical point of the λ-bienergy functional with respect to all variations with
compact support. If f is a λ-biharmonic isometric immersion, then M is called a
λ-biharmonic submanifold in N . In the case of λ = 0, we simply call it a biharmonic
submanifold.

The Euler–Lagrange equation for E2,λ is given by (see [30] and [25, p. 515])

τ2,λ := −�f (τ (f )) + traceRN (τ (f ), df )df − λτ (f ) = 0, (10.13)

where �f = −∑n
i=1(∇ f

ei∇ f
ei − ∇ f

∇ei ei
) and RN is the curvature tensor of N , which is

defined by
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RN (X, Y)Z = [∇N
X ,∇N

Y ]Z − ∇N
[X,Y ]Z

for the Levi-Civita connection ∇N of N . For simplicity, we denote τ2,0(f ) by τ2(f ).
By decomposing the left-hand side of (10.13) into its tangential and normal com-

ponents, we have

Proposition 31 ([4]) Let M be an n-dimensional submanifold of R̃m(ε). Then M is
λ-biharmonic if and only if

{
�DH + traceB(·, AH(·)) + (λ − εn)H = 0,

4traceAD(·)H(·) + ngrad(|H|2) = 0,

where �D = −∑n
i=1{Dei Dei − D∇ei ei}.

Proposition 32 ([25]) Let M be an n-dimensional submanifold of M̃m(4ε) such that
JH is tangent to M. Then M is λ-biharmonic if and only if

{
�DH + traceB(·, AH(·)) + {λ − ε(n + 3)}H = 0,

4traceAD(·)H(·) + ngrad(|H|2) = 0.

Remark 19 By Proposition 32, we see that all hypersurfaces with constant principal
curvatures in Rm(ε) and M̃m(4ε) are {−|B|2 + ε(m − 1)}-biharmonic and {−|B|2 +
2ε(m + 1)}-biharmonic, respectively.

It follows from (10.12) and (10.13) that anyminimal submanifold isλ-biharmonic.
Thus, it is interesting to investigate non-minimal λ-biharmonic submanifolds.

Remark 20 Let f : M → R
n be an isometric immersion. We denote the mean cur-

vature vector field of M by H = (H1, . . . , Hn). Then, it follows from (10.12) and
(10.13) that M is λ-biharmonic if and only if it satisfies

�MHi = −λHi, 1 ≤ i ≤ n, (10.14)

where�M is the Laplace operator acting onC∞(M). Hence, the notion of biharmonic
submanifolds in Definition31 is same as one defined by B.Y. Chen (cf. [17]). It was
proved in [10] that a submanifoldM satisfies (10.14) if and only if one of the following
three cases occurs:

(1) f satisfies �Mf = −λf ;
(2) f can be written as f = f0 + f1, �Mf0 = 0, �Mf1 = −λf1;
(3) M is a biharmonic submanifold.
An immersion described in (1) (resp. (2)) is said to be of 1-type (resp. null 2-

type). An immersion f : M → R
n is of 1-type if and only if either M is a minimal

submanifold of Rn or M is a minimal submanifold of a hypersphere in R
n (cf. [12,

Theorem3.2]). The classification of null 2-type immersions is not yet complete.
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There exist many non-minimal biharmonic submanifolds in a sphere or a com-
plex projective space (see, for example, [5, 25]). On the other hand, the following
conjecture proposed by Chen [12] is still open.

Conjecture 1 Any biharmonic submanifold in Euclidean space is minimal.

Several partial positive answers to this conjecture have been obtained (see [17]).
For example, Chen and Munteanu [18] proved that Conjecture 1 is true for hypersur-
faces which are δ(2)-ideal or δ(3)-ideal in Euclidean space of arbitrary dimension.

As an extension of the notion of biharmonic submanifolds, the following notion
was introduced by Loubeau and Montaldo in [36].

Definition 32 An isometric immersion f : M → N is called a λ-biminimal if it is a
critical point of the λ-bienergy functional with respect to all normal variations with
compact support. Here, a normal variation means a variation ft through f = f0 such
that the variational vector field V = dft/dt|t=0 is normal to f (M). In this case, M
is called a λ-biminimal submanifold in N . In the case of λ = 0, we simply call it
biminimal submanifold.

An isometric immersion f is λ-biminimal if and only if

[τ2,λ(f )]⊥ = 0,

where [·]⊥ denotes the normal component of [·] (see [36]). It is known that there
exist ample examples of λ-biminimal submanifolds in real and complex space forms,
which are not λ-biharmonic (see, for example, [36, 43, 45, 47]).

In [44], the notion of tangentially biharmonicity for submanifolds was introduced
as follows:

Definition 33 Let f : M → N be an isometric immersion. Then M is called a tan-
gentially biharmonic submanifold in N if it satisfies

[τ2(f )]� = 0, (10.15)

where [·]� denotes the tangential part of [·].
Example 20 Let x : Mn−1 → R

n be an isometric immersion. The normal bundle
T⊥Mn−1 ofMn−1 is naturally immersed inRn × R

n = R
2n by the immersion f (ξx) :=

(x, ξx), which is expressed as
f (x, s) = (x, sV ) (10.16)

for the unit normal vector field V along x. We equip T⊥Mn−1 with the metric induced
by f . If we define the complex structure J onCn = R

n × R
n by J(X, Y) := (−Y , X),

then T⊥Mn−1 is a Lagrangian submanifold in C
n (see [26, III.3.C]). It was proved

in [44] that T⊥M2 is a tangentially biharmonic Lagrangian submanifold in C3 if and
only if M2 is either minimal, a part of a round sphere or a part of a circular cylinder
in R3.
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Remark 21 For any λ ∈ R, we have [τ2,λ(f )]� = [τ2(f )]�.
Remark 22 By the first variation formula for E2 obtained in [30], we see that an
isometric immersion f : M → N is tangentially biharmonic if andonly if it is a critical
point of E2 with respect to all tangential variations with compact support. Here, a
tangential variationmeans a variation ft through f = f0 such that the variational vector
field V = dft/dt|t=0 is tangent to f (M).

Remark 23 As described by Hilbert [28], the stress-energy tensor associated to a
variational problem is a symmetric 2-covariant tensor which is conservative, namely,
divergence-free at critical points. The stress-energy tensor S2 for E2(f ) was intro-
duced by Jiang [31] as follows:

S2(X, Y) = 1

2
|τ (f )|2 〈X, Y〉 + 〈

df ,∇ f τ (f )
〉

− 〈
df (X),∇ f

Yτ (f )
〉 − 〈

df (Y),∇ f
Xτ (f )

〉
.

It satisfies div S2 = −〈τ2(f ), df 〉. Hence, an isometric immersion f is tangentially
biharmonic if and only if div S2 = 0. Caddeo et al. [9] called these submanifolds
satisfying such a condition as biconservative submanifolds, and moreover, classified
biconservative surfaces in 3-dimensional real space forms.

Remark 24 Hasanis and Vlachos [27] classified hypersurfaces in R
4 satisfying

(10.15). They called such hypersurfaces as H-hypersurfaces. Afterwards, the bihar-
monic ones are picked out in the class. As a result, the non-existence of non-minimal
biharmonic hypersurfaces in R4 was proved.

Remark 25 It follows fromDefinitions32 and 33 that a map f is λ-biharmonic (resp.
λ-biminimal) if and only if it is a critical point ofE2(f ) for all variations (resp. normal
variations) with compact support and fixed energy. Here,λ is the Lagrangemultiplier.

10.9.4 Biharmonic Ideal CR Submanifolds

For homogeneous real hypersurfaces in CPm(4), namely, orbits under some sub-
groups of the projective unitary group PU(m + 1), we have

Theorem 10.15 ([29]) Let M be a homogeneous hypersurface in CPm(4). Then, M
is non-minimal biharmonic if and only if it is congruent to an open portion of one of
the following real hypersurfaces:

(1) a tubular hypersurface over CPq(4) with radius

r = cot−1

⎛

⎝
√

m + 2 ± √
(2q − m + 1)2 + 4(m + 1)

2m − 2q − 1

⎞

⎠ .
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(2) a tubular hypersurface over the Plücker imbedding of the complex Grassmann
manifold Gr2(C5) ⊂ CP9(4) with radius r, where 0 < r < π/4 and t = cot r is a
unique solution of the equation

41t6 + 43t4 + 41t2 − 15 = 0.

(3) a tubular hypersurface over the canonical imbedding of the Hermitian symmet-
ric space SO(10)/U(5) ⊂ CP15(4) with radius r, where 0 < r < π/4 and t = cot r
is a unique solution of the equation

13t6 − 107t4 + 43t2 − 9 = 0.

For details on the canonical imbedding of a compact Hermitian symmetric space
into CPm(4), we refer the reader to Sect. 4 of [39].

Remark 26 Let M be a real hypersurface inCPm(4). Kimura [32] proved that M is a
Hopf hypersurfacewith constant principal curvatures if and only if it is homogeneous.

Combining Theorem10.7, Proposition32 and Theorem10.15, we obtain

Corollary 28 Let M be a δk(2)-ideal non-minimal biharmonic Hopf hypersurface
in CPm(4). Then, m is odd and M is an open portion of a tubular hypersurface over
CP(m−1)/2(4) with radius

r = cot−1

⎛

⎝

√
m + 2 ± 2

√
m + 1

m

⎞

⎠ .

Example 21 On each CR submanifold described in Theorem10.5, there exists an
orthonormal frame {e1, . . . , e2m} such that e2r = Je2r−1 for r ∈ {1, . . . , n}, JH||e2n+1 ∈
H⊥ and the second fundamental form B takes the following form:

B(e2r−1, e2r−1) =
√

k

2n − k
Je2n+1 + φrξr,

B(e2r, e2r) =
√

k

2n − k
Je2n+1 − φrξr,

B(e2r−1, e2r) = φrJξr,

B(e2n+1, e2n+1) = 2n√
k(2n − k)

Je2n+1,

B(ui, uj) = h(ui, e2n+1) = 0 (i �= j),

where φr are functions, ξr ∈ ν and uj ∈ Lj (see Lemma 7 of [42]). Here, ν denotes an
orthogonal complement of JH⊥ in T⊥M. Therefore, by using Proposition32, we find
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that all ideal CR submanifolds given in Theorem10.5 are non-minimal λ-biharmonic
submanifolds with

λ = −2n(2n + k2)

k(2n − k)
− 2n − 4 ( �= 0).

The following problem seems interesting.

Problem 5 Classify δ(n1, . . . , nk)-ideal proper CR submanifolds in CPm(4) which
are non-minimal biharmonic.

Example 22 The standard product S2r+1(1/
√
2) × S2s+1(1/

√
2) in S2(r+s)+3(1) is

a biharmonic contact CR hypersurface (see [49, Example5.1] and [5, p. 92]).
Its principal curvatures are {1,−1} with multiplicities {2r + 1, 2s + 1}. We may
assume that r ≥ s. By Theorem10.1, we see that the biharmonic hypersurface
S2r+1(1/

√
2) × S2s+1(1/

√
2) is minimal and δ2s+1(2)-ideal if r = s; otherwise it

is non-minimal and δ(4s + 3)-ideal.

Incidentally, the following conjectures proposed in [4] remains open.

Conjecture 2 The only non-minimal biharmonic hypersurfaces in Sm+1 are the
open parts of hyperspheres Sm(1/

√
2) or of the standard products Sm1(1/

√
2) ×

Sm2(1/
√
2), where m1 + m2 = m and m1 �= m2.

Conjecture 3 Any non-minimal biharmonic submanifold in Sn(1) has constantmean
curvature.
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11.1 Introduction

The study of Riemannian submersions π : M −→ N of a Riemannian manifold M
onto a Riemannian manifold N was initiated by O’Neill (cf. [28]) and later such
submersions have been studied widely between manifolds endowed with additional
geometric structures. The simplest example of Riemannian submersion is the projec-
tion of Riemannian product manifold on one of its factors.We note that a submersion
gives two distributions on total manifold called horizontal and vertical distributions.
It is also important to mention that the vertical distribution of a Riemannian submer-
sion is always integrable.

Bejancu introduced a remarkable class of submanifolds of a Kaehler manifold
that are known as CR submanifolds (see [3, 4]). A CR submanifold M of an almost
Hermitian manifold M̄ with an almost complex structure J requires two orthogonal
complementary distributions D and D⊥ defined on M such that D is invariant under
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J and D⊥ is totally real. Kobayashi (cf. [21]) observed this similarity between the
total space of the submersion π : M −→ N of a CR submanifold M of a Kaehler
manifold M̄ onto an almost Hermitian manifold N such that the distributions D and
D⊥ of M become, respectively, the horizontal and vertical distributions required by
the submersion and π restricted to D becomes a complex isometry.

Deshmukh et al. studied (cf. [13]) submersions of CR submanifolds of a Kaehler
manifold and in [14], Deshmukh, Tehseen, and Hashem considered similar problem
to CR submanifolds of manifolds in different classes of almost Hermitian manifolds,
viz., quasi-Kaehler manifold, nearly Kaehler manifold. Submersions of CR sub-
manifolds of locally conformal Kaehler (l.c.k.), quaternionic Kaehler manifold, and
para-quaternionic Kaehler manifold were studied in [26, 31] and [20], respectively,
while Mangione studied (cf. [22]) submersions of CR hypersurfaces of Kaehler–
Einstein manifold. B. Sahin studied (cf. [30]) horizontally conformal submersions
of CR submanifolds of Kaehler manifold. On the other hand, submersions of contact
CR submanifolds were studied by Massamba and Matamba (cf. [24]).

The aimof this article is to survey the contributions on submersions ofCR subman-
ifolds of different classes of almost Hermitian manifolds, viz., Kaehler manifolds,
quasi-Kaehler manifolds, nearly Kaehler manifolds, and l.c.k. manifolds, and some
almost contact metric manifolds, viz., quasi-K-cosymplectic manifold and quasi-
Kenmotsu manifold.

11.2 Preliminaries

Let (M̄, g) be an almost Hermitian manifold. This means that M̄ admits a tensor
field J of type (1, 1) on M̄ such that for any X, Y ∈ T M̄ we have

J 2 = −I d, g(J X, JY ) = g(X, Y ).

Let M be an m-dimensional submanifold of M̄ . The Riemannian connection ∇̄
on M̄ induces the Riemannian connections∇ and∇⊥ on M and in the normal bundle
of M in M̄ , respectively. These connections are related by Gauss and Weingarten
formulae:

∇̄X Y = ∇X Y + h(X, Y ), (11.1)

∇̄X N ′ = − ĀN ′ X + ∇⊥
X N ′ (11.2)

for any X, Y ∈ T M and N ′ ∈ T M⊥. h and Ā are the second fundamental form and
Weingarten map and it is easy to see that g(h(X, Y ), N ′) = g( ĀN ′ X, Y ).

Let R̄ and R be the curvature tensors of M̄ and M . The equations of Gauss,
Codazzi, and Ricci are given by [13]
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R̄(X, Y, Z , W ) = R(X, Y, Z , W ) − g(h(X, W ), h(Y, Z)) + g(h(X, Z), h(Y, W )),

(11.3)

[R̄(X, Y )Z ]⊥ = (∇̄X h)(Y, Z) − (∇̄Y h)(X, Z), (11.4)

R(X, Y, N1, N2) = R⊥(X, Y, N1, N2) − g([AN1 , AN2 ]X, Y ) (11.5)

for any X, Y, Z , W ∈ T M and N1, N2 ∈ T ⊥Mwhere [ ]⊥ denotes the normal com-
ponent.

Definition 1 Let M be a CR submanifold of an almost Hermitian manifold M̄ with
distributions D and D⊥ and the normal bundle T ⊥M . By a submersion π : M −→ N
of M onto an almost Hermitian manifold N we mean a Riemannian submersion
π : M → N together with the following conditions (cf. [21]):

(i) D⊥ is the kernel of π∗, that is, π∗ D⊥ = {0},
(ii) π∗ Dp = Tπ(p)N is complex isometry, where p ∈ M and Tπ(p)N is the tangent

space of N at π(p),
(iii) J interchanges D⊥ and T ⊥M .

Thus using the metric of M we decompose the tangent bundle T M into a direct
sum

T M = H ⊕ V (11.6)

where H is called horizontal distribution and V is called vertical distribution. We
use the same letters to denote the orthogonal projections onto these distributions.
Therefore if X ∈ T M , we may write

X = HX + VX

whereH and V are the projections of X on D and D⊥ and are called horizontal and
vertical part of X , respectively.

We recall that a vector field X ∈ T M for the submersion π : M −→ N is said to
be basic vector field if X ∈ D and X is π-related to a vector field on N , that is, there
exists a vector X∗ on N such that (π∗ X)p = X∗π(p) for each p ∈ M (cf. [28]).

The following lemma is known for basic vector fields (cf. [28]).

Lemma 1 Let X and Y be basic vector fields of M. Then
(a) g(X, Y ) = g′(X∗, Y∗) ◦ π, g is the metric on M and g′ is the Riemannian

metric on N.
(b) the horizontal part H[X, Y ] of [X, Y ] is a basic vector and corresponds to

[X∗, Y∗], i.e., π∗(H[X, Y ]) = [X∗, Y∗] ◦ π.

(c) [V, X ] ∈ D⊥ for any V ∈ D⊥.
(d) H(∇X Y ) is the basic vector field corresponding to ∇′

X∗Y∗, where ∇′ is the
Riemannian connection on N.
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Now we put

∇̃′
X Y = H(∇X Y ) for any X, Y ∈ D (11.7)

then ∇̃′
X Y is basic vector field and from Lemma 1, we have

π∗(∇̃′
X Y ) = ∇′

X∗Y∗. (11.8)

A tensor field C on M is defined by setting (cf. [13])

∇X Y = ∇̃′
X Y + C(X, Y ) for any X, Y ∈ D (11.9)

where C(X, Y ) denotes the vertical part of ∇X Y and is denoted by V(∇X Y ) for any
X, Y ∈ D. It is easy to check that C is skew symmetric and satisfies (cf. [21])

C(X, Y ) = 1

2
V[X, Y ] for any X, Y ∈ D. (11.10)

Furthermore, for any X ∈ D and V ∈ D⊥, A is defined by the following equation
(cf. [13]):

∇X V = V(∇X V ) + AX V .

Thus AX V is the horizontal component of ∇X V . Since by Lemma 1, [V, X ] ∈ D⊥
for any X ∈ D and V ∈ D⊥, we have

H(∇X V ) = H(∇V X) = AX V .

The operators A and C are related by

g(AX V, Y ) = −g(V, C(X, Y ) (11.11)

for any X, Y ∈ D, V ∈ D⊥. The curvature tensor R of M and R′ of N are related
by (cf. [13])

R(X, Y, Z , W ) = R′(X∗, Y∗, Z∗, W∗) + g(C(X, Z), C(Y, W ))

− g(C(Y, Z), C(X, W )) + 2g(C(X, Y ), C(Z , W )) (11.12)

for any X, Y, Z , W ∈ D.

11.3 Submersions of CR Submanifolds

An almost Hermitian manifold M̄ with almost complex structure J and Hermitian
metric g is said to be a Kaehler manifold if

http://dx.doi.org/10.1007/978-981-10-0916-7_1
http://dx.doi.org/10.1007/978-981-10-0916-7_1
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∇̄X JY = J ∇̄X Y for any X, Y ∈ T M̄ . (11.13)

First, we prove the following theorem (cf. [21]).

Theorem 11.1 Let π : M −→ N be a submersion of a CR submanifold of a Kaehler
manifold M̄ onto an almost Hermitian manifold N. Then

(i) N is a Kaehler manifold.
(ii) If H̄ and H ′ are the holomorphic sectional curvatures of M̄ and that of N ,

respectively, then for any horizontal unit vector X ∈ D,

H̄(X) = H
′
(X∗) − 4 ‖h(X, X)‖2 .

Proof For any basic vector fields X, Y , we have

∇̄X Y = ∇X Y + h(X, Y ).

Using (11.9) in the last equation, we get

∇̄X Y = ∇̃′
X Y + C(X, Y ) + h(X, Y ).

Hence

J ∇̄X Y = J ∇̃′
X Y + JC(X, Y ) + J h(X, Y ). (11.14)

Similarly, we have

∇̄X JY = ∇̃′
X JY + C(X, JY ) + h(X, JY ). (11.15)

Since M̄ is Kaehler, we have from (11.14) and (11.15)

J ∇̃′
X Y = ∇̃′

X JY, (11.16)

JC(X, Y ) = h(X, JY ), (11.17)

C(X, JY ) = J h(X, Y ) (11.18)

from which it follows easily that

h(X, JY ) + h(J X, Y ) = 0. (11.19)

Equation (11.16) shows that N is Kaehler. Further using (11.3), (11.12), (11.17),
and (11.18), for any unit basic vector field X , we derive

R̄(X, J X, X, J X) = R′(X∗, J ′ X∗, X∗, J ′ X∗) − 4 ‖h(X, X)‖2
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or
H̄(X) = H ′(X∗) − 4 ‖h(X, X)‖2 . �

Definition 2 The invariant distribution D (respectively the totally real distribution
D⊥) is said to be parallel if ∇X Y ∈ D for any X, Y ∈ D (respectively if ∇X Y ∈ D⊥
for any X, Y ∈ D⊥) .

Then we have the following (cf. [13]).

Proposition 1 Let π : M −→ N be a submersion of a CR submanifold of a Kaehler
manifold M̄ onto an almost Hermitian manifold N. If D is integrable and D⊥ is
parallel, then M is the product M1 × M2 where M1 is a complex submanifold and
M2 is a totally real submanifold of M̄.

Proof Integrability of distribution D yields (cf. [3])

h(X, JY ) = h(Y, J X) for any X, Y ∈ D. (11.20)

Combining (11.19) and (11.20) we find

h(X, JY ) = 0 for any X, Y ∈ D.

Therefore from (11.17) we obtain

C(X, Y ) = 0,

and thus from (11.9), ∇X Y ∈ D for any X, Y ∈ D which proves D is parallel. This
completes the proof. �

Combining Theorem 11.1 and Proposition 1, we have the following (cf. [13]).

Corollary 1 Let π : M −→ N be a submersion of a CR submanifold of a Kaehler
manifold M̄ onto an almost Hermitian manifold N with integrable distribution D.
Then

H̄(X) = H ′(X∗)

for any X ∈ D.

Definition 3 A CR submanifold is said to be mixed foliate if D is integrable and
h(X, Y ) = 0 for any X ∈ D, Y ∈ D⊥, whereas it is called mixed totally geodesic if
h(X, Y ) = 0 for any X ∈ D, Y ∈ D⊥ [13].

Thus we have the following (cf. [13]).

Proposition 2 Let π : M −→ N be a submersion of a mixed foliate CR submanifold
M of a Kaehler manifold M̄ onto an almost Hermitian manifold N. Then M is the
product M1 × M2, where M1 is a complex submanifold and M2 is a totally real
submanifold of M̄.
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Proof From Proposition 1, we have

h(X, Y ) = 0

for any X, Y ∈ D. Now M being mixed foliate, we have

h(X, Y ) = 0

for any X ∈ D, Y ∈ D⊥. Further for any X, Y ∈ D⊥, we have from Kaehlerian
property

(∇̄X J )Y = 0

which gives
∇̄X JY = J ∇̄X Y.

Using Gauss and Weingarten formulas, we get

− ĀX JY + ∇⊥
X JY = J∇X Y + J h(X, Y ).

Comparing normal components on both sides, we find

∇⊥
X JY = J∇X Y

proving that ∇X Y ∈ D⊥ for any X, Y ∈ D⊥, i.e., D⊥ is parallel and thus the proof
follows from Proposition 1. �

Now for any U, V ∈ D⊥, L is defined by (cf. [13])

∇U V = ∇̂U V + L(U, V )

where ∇̂U V = V(∇U V ) and L(U, V ) = H(∇U V ). The sectional curvatures K̄ of
M̄ and K̂ of the fibers are related by (cf. [13]).

Proposition 3 Let π : M −→ N be a submersion of a CR submanifold of a Kaehler
manifold M̄ onto an almost Hermitian manifold N. Then

K̄ (U ∧ V ) = K̂ (U ∧ V ) − g([ ĀJU , ĀJ V ]U, V )

for any orthonormal vector fields U, V ∈ D⊥.

Proof By a simple calculation and using (11.3) we have

K̄ (U ∧ V ) = R̄(U, V, U, V ) = K̂ (U ∧ V ) − g(L(U, V ), L(U, V ))

+ g(L(U, U ), L(V, V )) − g(h(U, V ), h(U, V )) + g(h(U, U ), h(V, V ))
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for any orthonormal vectors U, V ∈ D⊥. Now usingH( ĀJU V ) = −J L(U, V ) and
V( ĀJU V ) = −J h(U, V ) [13] in the above equation, we obtain

K̄ (U ∧ V ) = K̂ (U ∧ V ) − g( ĀJU ĀJ V U, V ) + g( ĀJ V ĀJU U, V )

= K̂ (U ∧ V ) − g([ ĀJU , ĀJ V ]U, V ). �

For a mixed totally geodesic CR submanifold, we have the following (cf. [13]).

Proposition 4 Let π : M −→ N be a submersion of a mixed totally geodesic CR
submanifold M of a Kaehler manifold M̄ onto an almost Hermitian manifold N then

R̄(X, V, Y, W ) = −g((∇V C)(X, Y ), W ) − g(AX V, AY W ) + g(h(X, Y ), h(V, W )) (11.21)

for any X, Y ∈ D and V, W ∈ D⊥.

As an application of Proposition 4 we prove the following (cf. [13]).

Proposition 5 Let π : M −→ N be a submersion of a mixed totally geodesic CR
submanifold M of a Kaehler manifold M̄ onto an almost Hermitian manifold N.
Then for the unit vectors X ∈ D and V ∈ D⊥

K̄ (X ∧ V ) = − ∥∥ ĀJ V X
∥∥2 + g(h(X, X), h(V, V )). (11.22)

Proof Taking X = Y, W = V in Proposition 4 and noting C(X, X) = 0, we get

K̄ (X ∧ V ) = g(h(X, X), h(V, V )) − ‖AX V ‖2 . (11.23)

Also using (∇̄X J )V = 0, we get

− ĀJ V X + ∇⊥
X J V = J AX V + JV∇X V + J h(X, V ).

Since M is mixed totally geodesic, we have h(X, V ) = 0 for any X ∈ D, V ∈ D⊥
and this implies ĀJ V X ∈ D for any X ∈ D, V ∈ D⊥. Thus equating horizontal com-
ponent in the above equation we get

AX V = J ĀJ V X. (11.24)

Therefore, Eqs. (11.23) and (11.24) imply (11.22). �

The following proposition is an easy consequence of Propositions 1 and 4 (cf.
[13]).

Proposition 6 Let π : M −→ N be a submersion of a mixed foliate CR submanifold
M of a Kaehler manifold M̄ onto an almost Hermitian manifold N, then the curvature
tensor R̄ of M̄ satisfies
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R̄(X, V, Y, W ) = 0

for any X, Y ∈ D and any V, W ∈ D⊥.

Definition 4 If the almost complex structure J on almost Hermitian manifold M̄
satisfies

(∇̄X J )(Y ) + (∇̄J X J )(JY ) = 0 for any X, Y ∈ T M̄ (11.25)

then M̄ is called a quasi-Kaehler manifold and if it satisfies

(∇̄X J )(Y ) + (∇̄Y J )(X) = 0 for any X, Y ∈ T M̄ or ((∇̄X J )(X) = 0)
(11.26)

then it is called a nearly Kaehler manifold [14].

Equation (11.26) yields

(∇̄X J )(JY ) = −J (∇̄X J )(Y )

and
(∇̄J X J )(Y ) = −J (∇̄X J )(Y )

for any X, Y ∈ T M̄ . Combining this with equation (11.26) gives

(∇̄J X J )(JY ) + (∇̄X J )(Y ) = −(∇̄X J )(Y ) + (∇̄X J )(Y ) = 0

which shows that a nearly Kaehler manifold is a quasi-Kaehler manifold. On the
other hand a nearly Kaehler manifold with vanishing Nijenhuis torsion is a Kaehler
manifold. Now we have the following theorem (cf. [14]).

Theorem 11.2 Let π : M −→ N be a submersion of a CR submanifold of a quasi-
Kaehler manifold M̄ onto an almost Hermitian manifold N. Then

(i) N is a quasi-Kaehler manifold.
(ii) If H̄ and H ′ are the holomorphic sectional curvatures of M̄ and that of N ,

respectively, then for any horizontal unit vector X ∈ D

H̄(X) = H ′(X∗) + ‖h(X, J X)‖2 − g(h(J X, J X), h(X, X)) − 3 ‖C(X, J X)‖2 .

Proof Let X, Y ∈ D be the basic vector fields. Then using (11.1) and (11.9) in (11.25)
we get

∇̃′
X JY − ∇̃′

J X Y − J ∇̃′
X Y − J ∇̃′

J X JY

+ C(X, JY ) − C(J X, Y ) + h(X, JY ) − h(J X, Y )

− J (C(X, Y ) + C(J X, JY )) − J (h(X, Y ) + h(J X, JY )) = 0.
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Equating horizontal, vertical, and normal components in the above equation, we get

∇̃′
X JY − ∇̃′

J X Y − J ∇̃′
X Y − J ∇̃′

J X JY = 0, (11.27)

C(X, JY ) − C(J X, Y ) = J (h(X, Y ) + h(J X, JY )), (11.28)

J (C(X, Y ) + C(J X, JY )) = h(X, JY ) − h(J X, Y ). (11.29)

Equation (11.27) shows that N is a quasi-Kaehler manifold. Next using (11.8)–
(11.11), we obtain

R(X, Y, Z , W ) = R′(X∗, Y∗, Z∗, W∗) − g(C(Y, Z), C(X, W ))

+ g(C(X, Z), C(Y, W )) + 2g(C(X, Y ), C(Z , W ))

for any X, Y, Z , W ∈ D. Now using equation of Gauss (11.3) and the fact that C is
skew symmetric, the above equation yields

R̄(X, J X, J X, X) = R′(X∗, J ′ X∗, J ′ X∗, X∗) + ‖h(X, J X)‖2
− g(h(J X, J X), h(X, X)) − 3 ‖C(X, J X)‖2

or

H̄(X) = H ′(X∗) + ‖h(X, J X)‖2 − g(h(J X, J X), h(X, X))

− 3 ‖C(X, J X)‖2 . �

In [1] one can find analogous results for submersions of a CR submanifold of a non-
Kaehler, nearlyKaehlermanifold M . In fact by adding (11.15)with the corresponding
value of ∇̄Y J X , using (11.14) and the skew symmetric property of C we get

(∇̃′
X J )(Y ) + (∇̃′

Y J )(X) + C(X, JY ) + C(Y, J X)

+ h(X, JY ) + h(Y, J X) = 2J h(X, Y ).

for any basic vector fields X, Y . Thus we have the following theorem (cf. [1]).

Theorem 11.3 Let π : M −→ N be a submersion of a CR submanifold of a nearly
Kaehler manifold M̄ onto an almost Hermitian manifold N. Then

(i) N is a nearly Kaehler manifold.
(ii) If H̄ and H ′ are the holomorphic sectional curvatures of M̄ and N, then for

any horizontal unit vector X ∈ D

H̄(X) = H ′(X∗) − 4 ‖h(X, X)‖2 .

Definition 5 The normal connection of M in M̄ is called D-flat if R⊥(X, Y )N ′ = 0
for any X, Y ∈ D and N ′ ∈ T ⊥M [1].
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We now have the following theorem (cf. [1]).

Theorem 11.4 Let π : M −→ N be a submersion of a mixed foliate CR submanifold
of a nearly Kaehler manifold M̄ onto an almost Hermitian manifold N. Then the
normal connection of M in M̄ is D-flat.

Proof It is known from [1] that for nearly Kaehler manifolds we have

R̄(X, Y, J Z , J W ) = R̄(X, Y, Z , W ) − g((∇̄X J )(Y ), (∇̄Z J (W ) (11.30)

for any X, Y, Z , W ∈ T M̄ . Combining (11.30) and Ricci equation (11.5), for any
X, Y ∈ D and V, W ∈ D⊥, we obtain

R⊥(X, Y, J V, J W ) = R̄(X, Y, V, W ) − g((∇̄X J )(Y ), (∇̄V J )(W ))

+ g([ ĀJ V , ĀJ W ](X), Y ). (11.31)

Again in the Bianchi identity

R̄(X, Y, V, W ) + R̄(Y, V, X, W ) + R̄(V, X, Y, W ) = 0

the last two terms vanish from Proposition 2.4 of [1] and hence we have

R̄(X, Y, V, W ) = 0. (11.32)

Thus for any X, Y ∈ D and V, W ∈ D⊥ we get

g([ ĀJ V , ĀJ W ](X), Y ) = g(AX W, AY V ) − g(AX V, AY W )

= −g(C(X, AY V ), W ) + g(C(X, AY W ), V ) = 0 (11.33)

where we have used (11.24), (11.11) and the fact that for a foliate CR submanifold
C(X, Y ) = 0.Therefore,weget R⊥(X, Y, J V, J W ) = 0, for any X, Y ∈ D,V, W ∈
D⊥ from which theorem follows. �

Finally, in this section, we discuss how the submersion π : M → N of a CR
submanifold M with integrable invariant distribution D affects the topology of M . Let
M be a CR submanifold of a Hermitian manifold M̄ with almost complex structure
J . Let

{E1, E2 , . . . , E p, J E1, J E2, . . . , J E p, E2p+1, E2p+2, . . . , Em}

be the local orthonormal frame on M such that {E j , J E j : 1 ≤ j ≤ p} is a local
orthonormal frame of D and {E2p+1 , E2p+2 , · · · , Em} is a local orthonormal frame
of D⊥. Let
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{ω1, ω2, . . . ,ω2p, ω2p+1, . . . , ωm}

be the dual frame of 1-forms to the above local orthonormal frame.We write a global
2p-form � on M , independent of the choice of {E j , J E j : 1 ≤ j ≤ p}, as

� = ω1 ∧ ω2 ∧ · · · ∧ ω2p. (11.34)

Definition 6 LetD be a s-dimensional distribution on a Riemannian manifold M .If∑s
i=1 ∇Ei Ei ∈ D then the distribution is said to be minimal, where ∇ is the Rie-

mannian connection on M and {E1, E2, ...., Es} is a local orthonormal frame of D.

First, we state the following (cf. [14]).

Proposition 7 Let π : M → N be submersion of a complete, simply connected CR
submanifold M of a Hermitian manifold M̄ onto an almost Hermitian manifold N.
If D is integrable and D⊥ is parallel then M is the Riemannian product M1 × M2,
where M1 is an invariant submanifold, and M2 is a totally real submanifold of M̄.

Now we prove the following theorem (cf. [14]).

Theorem 11.5 Let π : M → N be submersion of a closed CR submanifold M of a
Hermitian manifold M̄ with integrable distribution D onto an Hermitian manifold
N. Then the 2p-form � is closed which defines a canonical de Rham cohomol-
ogy class [�] ∈ H 2p(M, R), where 2p = dim D. Moreover, the cohomology group
H 2p(M, R) is nontrivial if D⊥ is minimal.

Theorem 11.5 is an immediate consequence of the following lemma in [9].

Lemma 2 Let M be a closed CR submanifold of a Hermitian manifold M.
(i) If D is minimal and D⊥ is integrable then � is closed (i.e., d� = 0).
(ii) If D is integrable and D⊥ is minimal then � is co-closed (i.e., δ� = 0).

In particular if both D and D⊥ are integrable and minimal, H 2p(M,R) = 0, where
p is the complex rank of the holomorphic distribution D.

The result was stated in [9] under the assumption that the ambient space M is a
Kaehlerian manifold (and if this is the case the hypothesis in (i) of Lemma 2 holds
true to start with). The proof is, however, more general (and will be outlined below,
for the reader’s convenience). Equation (11.34) of � gives

d� =
2p∑

i=1

(−1)i−1ω1 ∧ · · · ∧ dωi ∧ ..... ∧ ω2p.

From the above equation, it follows that d� = 0 if and only if

d�(Z , W, E1, E2, . . . , E2p−1) = d�(Z , E1, ....., E2p) = 0 (11.35)

for any Z , W ∈ D⊥ and E1, E2, . . . , E2p ∈ D. Choosing Ea ∈ D, 1 ≤ a ≤ 2p, as
a local orthonormal frame {E j , J E j : 1 ≤ j ≤ p} of D to which {ω1,ω2, ....,ω2p}
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works as a dual frame of 1-forms, we can say that the first equation in (11.35) holds
if and only if D⊥ is integrable, whereas the second part in (11.35) is satisfied if and
only if D is minimal. In particular, under the assumptions in (i) of Chen’s Lemma 2
the form� is closed and thus gives rise to a well-defined de Rham cohomology class
[�] ∈ H 2p(M, R). Next, let us consider the (m − 2p)-form �⊥ on M given by

�⊥ = ω2p+1 ∧ · · · ∧ ωm

where {ω2p+1, . . . ,ωm} is a dual frame to the local orthonormal frame {E2p+1, . . . , Em}
of D⊥. Then with the similar argument for �, it follows that d�⊥ = 0 if D is
integrable and D⊥ is minimal. It may then be shown (by expressing the Hodge
operator in terms of the chosen local frames) that d�⊥ = 0 is equivalent to δ� = 0.
Consequently,� is a harmonic form on M so that (as M is closed) the corresponding
de Rham cohomology class is nontrivial ([�] = 0). �

11.4 Horizontally Conformal Submersions

In this section, we discuss the results on horizontally conformal submersions of
CR submanifolds of a Kaehler manifold M̄ onto an almost Hermitian manifold N
obtained by B. Sahin, [30].

Definition 7 Let (Mm, g) and (N n, g′) be Riemannian manifolds. Suppose that π :
(Mm, g) −→ (N n, g′) is a map between Riemannian manifolds and p ∈ M . Then π
is called a horizontally weakly conformal map at p if either

(i) π∗ p = 0 or
(ii) π∗ p maps the horizontal spaceH = {ker(π∗ p)}⊥ conformally onto Tπ(p)N , i.e.,

π∗ p is surjective and there exists a number λ(p) = 0 such that

g′(π∗ p(X),π∗ p(Y )) = λ(p)g(X, Y ) (11.36)

for any X, Y ∈ H. If a point p is of type (i), then it is called critical point of π. A
point p of type (ii) is called regular. The number λ(p) is called square dilation. The
map π is called horizontally conformal submersion if π has no critical point.

Thus a Riemannian submersion is a horizontally conformal submersion with
square dilation identically one. A horizontally conformal submersion π : M −→ N
is said to be horizontally homothetic if the gradient of λ is vertical, i.e.,

H(gradλ) = 0. (11.37)
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The unsymmetrized second fundamental form AV of V is defined by

AV
E F = H(∇VEVF) (11.38)

and the symmetrized second fundamental form BV of V is given by

BV(E, F) = 1

2
{AV

E F + AV
F E} = 1

2
{H(∇VEVF) + H(∇VFVE)} (11.39)

for any E, F ∈ T M [30]. The integrability tensor of V is the tensor field IV given
by

IV(E, F) = AV
E F − AV

F E − H([VE,VF]). (11.40)

Moreover, the mean curvature of V is defined by [30]

μV = 1

q

q∑

r=1

H(∇Er Er ) (11.41)

where {E1, E2, . . . , Eq} is a local frame of V . By reversing the roles of V and H,

we can define BH, AH and IH. For example

BH(E, F) = 1

2
{V(∇HEHF) + V(∇HFHE)} (11.42)

Hence, we have the mean curvature ofH as

μH = 1

m − q

m−q∑

s=1

V(∇Es Es)

where {E1, E2, . . . , Em−q} is a local frame of H.
It is known that if a horizontally conformal submersionπ : M → N is horizontally

homothetic, then (cf. e.g., [2])

μH = grad ln λ = 1

2
(grad ln ‖π∗‖2). (11.43)

The tension field τ (π) for horizontally conformal submersion is given by [2]

τ (π) = −(n − 2)π∗(grad ln λ) − (m − n)π∗(μV). (11.44)

Let M be a CR submanifold of a Kaehler manifold (M̄, J ) and (N , J ′) be an almost
Hermitian manifold. Let π : M → N be a horizontally conformal submersion such
that
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D⊥ = ker(π∗), D = {ker(π∗)}⊥ = H, (11.45)

J (D⊥) = T ⊥M, J ′ ◦ π∗ = π∗ ◦ J.

Now we have the following theorem (cf. [30]).

Theorem 11.6 Let π : M −→ N is a horizontally homothetic submersion of a CR
submanifold M of a Kaehler manifold M̄ onto an almost Hermitian manifold N
under the assumptions (11.45). Then π is a Riemannian submersion up to a scale.
Moreover, π is a harmonic map if M is mixed geodesic.

Proof Weknow from (11.37) thatH(grad ln λ) = 0. On the other hand, from (11.42)
we have

g(BH(X, X), V ) = g(∇X X, V )

for any X ∈ D and V ∈ D⊥. Using Gauss formula (11.1), we find

g(BH(X, X), V ) = g(∇̄X X, V )

which, after considering that M̄ is Kaehler, gives

g(BH(X, X), V ) = g(∇̄X JY, J V ).

It implies that
g(BH(X, X), V ) = g([X, J X ] + ∇̄J X X, J V ).

From this, we derive

g(BH(X, X), V ) = g(∇̄J X X, J V ).

Using (11.13) and (11.1) we have

g(BH(X, X), V ) = −g(∇J X J X, V ) for any X ∈ D, V ∈ D⊥

Hence we have
g(BH(X, X), V ) = −g(BH(J X, J X), V ). (11.46)

Thus we have

g(μH, V ) = 1

2p

p∑

i=1

{g(BH(Ei , Ei ), V ) + g(BH(J Ei , J Ei ), V )}.

Using (11.46) in the above equation yields
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g(μH, V ) = 1

2p

p∑

i=1

{g(BH(Ei , Ei ), V ) − g(BH(Ei , Ei ), V )} = 0

which implies that
μH = 0. (11.47)

Combining (11.43) and (11.47) we find grad ln λ = 0. Hence, λ is a constant on M .
Thus π is a Riemannian submersion up to scale. On the other hand from (11.38) and
(11.39) we have

g(BV(Z , Z), X) = g(∇Z Z , X)

for any X ∈ D and Z ∈ D⊥. Then using (11.13) we derive

g(BV(Z , Z), X) = g(∇̄Z J Z , J X).

Thus from (11.2) we get

g(BV(Z , Z), X) = −g(h(Z , J X), J Z). (11.48)

Then since M is mixed totally geodesic, last equation along with the definition of
μV gives

g(μV , X) = 0. (11.49)

The harmonicity of π now follows from (11.44), (11.49) and grad ln λ = 0. �

For horizontally conformal submersion and N , a Kaehler manifold, we have (cf.
[30])

Theorem 11.7 Let π : M −→ N be a horizontally conformal submersion of a CR
submanifold M of a Kaehler manifold M̄ onto a Kaehler manifold N under the
assumptions (11.45). Then π is a Riemannian submersion up to a scale. Moreover,
π is a harmonic map if M is mixed totally geodesic.

11.5 Submersions of Totally Umbilical CR Submanifolds

A submanifold M of a Kaehler manifold M̄ is said to be totally umbilical if
h(X, Y ) = g(X, Y )H , where H = 1

m (trace h) is called the mean curvature and
extrinsic hyperspheres are defined to be totally umbilical hypersurfaces having
nonzero parallel mean curvature vector field (cf. e.g., [27]). Many of the basic results
concerning extrinsic spheres in Riemannian and Kaehlerian geometry were studied
by Chen [8]. First, we discuss the submersions of totally umbilical CR submanifolds
M of a Kaehler manifold M̄ (cf. [13]) and in this case the Gauss and Weingarten
formulae become
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∇̄X Y = ∇X Y + g(X, Y )H, (11.50)

∇̄X N ′ = −g(N ′, H)X + ∇⊥
X N ′ (11.51)

for any X, Y ∈ T M and N ′ ∈ T ⊥M . Further in this case, the Codazzi equation
becomes (11.4)

[R̄(X, Y )Z ]⊥ = g(Y, Z)∇⊥
X H − g(X, Z)∇⊥

Y H. (11.52)

If M̄(c) is a complex space form of constant holomorphic sectional curvature c, the
curvature tensor R̄ of M̄(c) is given by (cf. [13])

R̄(X, Y, Z , W ) = c

4
[g(Y, Z)g(X, W ) − g(X, Z)g(Y, W ) + g(JY, Z)g(J X, W )

− g(J X, Z)g(JY, W ) + 2g(X, JY )g(J Z , W )]. (11.53)

Theorem 11.8 (cf. [13]) Let π : M −→ N be a submersion of a totally umbilical
CR submanifold M (dim M ≥ 5) of a complex space form M̄(c) onto an almost
Hermitian manifold N. Then N is also a complex space form.

Proof Since in case of submersion π : M −→ N , J D⊥ = T ⊥M , from a theorem
[5] it follows that either H = 0 or dim D⊥ = 1. In case H = 0, it follows that N
is also a complex space form [21] . Now suppose dim D⊥ = 1. We easily get the
following expression for the curvature tensor R′ of N :

R′(X∗, Y∗, Z∗, W∗) =
( c

4
+ ‖H‖2

)
{g(Y, Z)g(X, W ) − g(X, Z)g(Y, W )

+ g(JY, Z)g(J X, W ) − g(J X, Z)g(JY, W )

+ 2g(X, JY )g(J Z , W )}

for any X, Y, Z , W ∈ D. Since dim M ≥ 5 we can choose vectors X, Y ∈ D such
that

g(X, Y ) = g(X, JY ) = 0.

From (11.53) it follows that R(JY, X, JY, N ′) = 0. Thus (11.52) gives

g(∇⊥
X H, N ′) = 0 for N ′ ∈ T ⊥M (11.54)

which shows that

∇⊥
X H = 0 for any X ∈ D.

Next let X ∈ D⊥. Then using some curvature properties of M̄ given in [13] and
(11.53), we obtain
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R̄(X, Y, Y, X) = R̄(X, Y, JY, N ′) = 0, N ′ = J X.

Furthermore, using linearity of R̄ in R̄(X, Y, Y, X) = 0, we get

R̄(X, Y, Y, N ′) = 0.

Using this in (11.52), we find

g(∇⊥
X H, N ′) = 0.

Since dim D⊥ = 1 we get ∇⊥
X H = 0 for any X ∈ D⊥. Therefore, for any X on M ,

we have X ‖H‖2 = Xg(H, H) = 2g(∇⊥
X H, H) = 0 showing ‖H‖2 = constant and

hence the theorem. �

Next we have the following theorem (cf. [13]).

Theorem 11.9 Let π : M −→ N be a submersion of a totally umbilical CR sub-
manifold M of a Kaehler manifold M̄ with parallel distribution D onto an almost
Hermitian manifold N. Then M is the product M1 × M2, where M1 is a complex
submanifold and M2 is a totally real submanifold of M̄.

Proof Since M is totally umbilical CR submanifold, using Gauss and Weingarten
formulae (11.1) and (11.2) respectively in (∇̄X J )(J H) = 0, we get

g(H, H)X − ∇⊥
X H = J∇X J H + h(X, J H)J H (11.55)

which, after taking inner product with X = 0 ∈ D, gives

‖H‖2 ‖X‖2 = g(J H,∇X J X). (11.56)

As D is parallel,∇X J X ∈ D for any X ∈ D, which implies that g(∇X J X, J H) = 0,
the above relation (11.56) gives ‖H‖2 = 0, i.e., M is totally geodesic and hence the
result. �

Now we shall study some curvature results for submersions of CR submanifolds
of Kaehler manifold. First, we quote the following theorem (cf. [13]).

Theorem 11.10 Let π : M −→ N be a submersion of a mixed foliate CR subman-
ifold M of a Kaehler manifold M̄ onto an almost Hermitian manifold N. Then the
Ricci tensors S̄ and S

′
of M̄ and N, respectively, satisfy the relation

S̄(X, Y ) = S′(X, Y ) (11.57)

for any X, Y ∈ D.
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Definition 8 The Kaehler manifold M̄ is said to be an Einstein space if there exist
a constant σ such that the Ricci tensor S̄ of M̄ satisfies

S̄(X, Y ) = σg(X, Y ) (11.58)

for all tangent vectors X, Y on M̄ .

As a direct consequence of (11.58), Theorem 11.10 gives the following theorem
(cf. [13]).

Theorem 11.11 Let π : M −→ N be a submersion of a mixed foliate CR subman-
ifold M of a Kaehler manifold M̄ onto an almost Hermitian manifold N. Then N is
Einstein space if and only if M̄ is Einstein.

Now, simple calculations starting from (11.3), (11.12), and (11.53) yield

R′(Z∗, X∗, Y∗, W∗) = c

4
{g(X, Y )g(Z , W ) − g(Z , Y )g(X, W )

+ g(J X, Y )g(J Z , W ) − g(J Z , Y )g(J X, W ) + 2g(Z , J X)g(JY, W )}
+ g(h(Z , W ), h(X, Y )) − g(h(Z , Y ), h(X, W ))

+ g(C(X, Y ), C(Z , W )) − g(C(Z , Y ), C(X, W )) − 2g(C(Z , X), C(Y, W ))

(11.59)

for any basic vector fields X, Y, Z , W on M . The above equation is simplified to the
following form:

S′(X∗, Y∗) = (p + 1)c

2
g(X, Y ) +

2p∑

i=1

{g(h(X, Y ), h(Ei , Ei )) − g(h(Ei , Y ), h(Ei , X))}

+ 3
2p∑

i=1

{g(h(Ei , JY ), h(Ei , J X))}. (11.60)

From (11.60), the scalar curvature ρ′ of N is given in the following form:

ρ′ = p(p + 1)c

+
2p∑

i, j=1

{g(h(Ei , Ei ), h(E j , E j )) − g(h(Ei , E j ), h(Ei , E j ))}

+ 3
2p∑

i, j=1

{g(h(Ei , J E j ), h(Ei , J E j ))}. (11.61)

Thus we have the following theorem (cf. [13]).

Theorem 11.12 Let π : M −→ N be a submersion of a mixed foliate CR subman-
ifold M of a complex space form M̄(c) of constant holomorphic sectional curvature
c onto an almost Hermitian manifold N. Then the Ricci tensor S′ of N satisfies
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S′(X∗, Y∗) = (p + 1)c

2
g(X, Y )

for any horizontal vector fields X, Y ∈ D.

In particular for scalar curvature ρ′ of N , we have the following theorem (cf. [13]).

Theorem 11.13 Let π : M −→ N be a submersion of a foliate CR submanifold M
of a complex space form M̄(c) of constant holomorphic sectional curvature c onto
an almost Hermitian manifold N. Then M is D-totally geodesic if and only if the
scalar curvature ρ′ of N satisfies

ρ′ = p(p + 1)c.

The following corollary follows from Theorem 11.12 (cf. [13]).

Corollary 2 Let π : M −→ N be a submersion of a mixed foliate CR submanifold
M of a complex space form M̄(c) of constant holomorphic sectional curvature c,
onto an almost Hermitian manifold N. Then N is an Einstein space.

Before we close this section, we study submersions of CR hypersurfaces of Kaehler
manifold. For this we denote by N ′ the global unit normal vector field to M . Then ζ =
−J N ′. It should be noted that M is a CR hypersurface of M̄ such that T M = D ⊕
D⊥, where D⊥ is one-dimensional anti-invariant distribution generated by the vector
field ζ on M . Thus we prove a theorem via curvatures for extrinsic hyperspheres as
follows (cf. [22]).

Theorem 11.14 Let M be an orientable extrinsic hypersphere of a Kaehler–Einstein
manifold M̄. If π : M −→ N is a CR submersion of M onto an almost Hermitian
manifold N, then N is a Kaehler–Einstein manifold.

Proof From Gauss formula (11.1) and the umbilicality of M , we get ∇̄Xζ = ∇Xζ
for any vector field X ∈ T M . Then we have (cf. [22])

g(∇̄X J N ′, Y ) = −g(∇Xζ, Y ) = −g(H∇Xζ, Y ) = −g(AXζ, Y ). (11.62)

If we put ‖H‖ = k, then k is a nonzero constant function on the extrinsic hypersphere
M . Since M̄ is Kaehler and M is totally umbilical, for any horizontal vector field X
and Y , we have

g(∇̄X J N ′, Y ) = g(J ∇̄X N ′, Y ) = −g(∇̄X N ′, JY )

= g(h(X, JY ), N ′) = g(X, JY )g(H, N ′) = kg(X, JY ). (11.63)

Combining (11.62) and (11.63) we conclude that

g(AXζ, Y ) = −kg(X, JY ).

Consequently, from the last equation we have
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g(AXζ, AY ζ) = k2g(X, Y ). (11.64)

It is known that for any horizontal vector fields X and Y, AX Y is a vertical vector
field and hence (cf. [22])

AX Y = g(AX Y, ζ)ζ.

Therefore, from the last equation we derive

g(AX Y, AZ W ) = k2g(X, JY )g(Z , J W ) (11.65)

for any X, Y, Z , W ∈ D. Also, using the Gauss equation (11.3) and umblicality of
M , we get

R̄(X, Y, Z , W ) = R(X, Y, Z , W ) + k2{g(X, Z)g(Y, W ) − g(X, W )g(Y, Z)}
(11.66)

for any X, Y, Z , W ∈ D. Now it is known that the anti-invariant distribution D⊥ is
integrable and its leaves are totally geodesic in M and for Riemannian submersions
with totally geodesic fibers, the following formula is known (cf. [22]):

R̄(X, V, Y, U ) = g((∇V A)(X, Y ), U ) + g(AX V, AY U ) (11.67)

for any X, Y ∈ D and U, V ∈ D⊥. It is noted that the first term on the right part of
the above equation is skew symmetric with respect to the vertical vector fields V and
U . Combining (11.66) and (11.67) we arrive at

R̄(ζ, X, Y, ζ) = 0, R̄(ζ, J X, JY, ζ) = 0. (11.68)

On the other hand, for any X, Y, Z , W ∈ D, we have (cf. [28])

R(X, Y, Z , W ) = R′(X∗, Y∗, Z∗, W∗) − 2g(AX Y, AZ W ) + g(AY Z , AX W )

− g(AX Z , AY W ). (11.69)

From (11.66), (11.68), and (11.69), we get

R̄(X, Y, Z , W ) = R′(X∗, Y∗, Z∗, W∗) − k2{g(X, J Z)g(Y, J W )

− g(X, J W )g(Y, J Z) + 2g(X, JY )g(Z , J W )}
− k2{g(X, Z)g(Y, W ) − g(X, W )g(Y, Z)}. (11.70)

Using the above facts in (11.70), it follows that N is a Kaehler–Einstein
manifold. �

The following corollary is an easy consequence of the last theorem (cf. [22]).
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Corollary 3 Let π : M −→ N be a submersion of an orientable CR hypersurface
of a complex space form M̄(c) onto an almost Hermitian manifold N. Then the base
space N is also a complex space form.

It is noted that Shahid and Solamy [31] studied submersions of quaternion CR
submanifolds of quaternion Kaehler manifold onto an almost quaternion manifold
while in [20], Ianus, Marchiafava, and Vilcu defined the para-quaternionic CR sub-
mersions as semi-Riemannian submersions from quaternionic CR submanifold onto
an almost para-quaternionic Hermitian manifold and obtained some properties con-
cerning their geometry. They also discussed curvature properties of fibers and base
manifold for para-quaternionic CR submersions.

11.6 Submersions of CR Submanifolds of l.c.K. Manifolds

CR submanifolds of locally conformal Kaehler manifolds were studied by Dragomir
[15], Matsumoto [25], Narita [26], and others. In this section, we give some results
on submersions of CR submanifolds of locally conformal Kaehler manifolds [26].

Let M̄ be an almost Hermitian manifold with fundamental 2-form �. Then the
manifold M̄ is characterized to be a locally conformal Kaehler manifold if the fol-
lowing holds:

d� = ω ∧ �, dω = 0 (11.71)

where ω is a globally defined 1-form on M̄ . We call ω the Lee form. We define the
Lee vector field L by

g(X,L) = ω(X). (11.72)

The Weyl connection ∇̄W is the linear connection defined by

∇̄W
X Y = ∇̄X Y − 1

2
ω(X)Y − 1

2
ω(Y )X + 1

2
g(X, Y )L. (11.73)

It is known from [32] that an almost Hermitian manifold M̄ is a locally conformal
Kaehler manifold if and only if there is a closed 1-form ω on M̄ such that

∇̄W
X J = 0. (11.74)

Furthermore, (11.74) is equivalent to

∇̄X JY − 1

2
ω(JY )X + 1

2
g(X, JY )L = J∇X Y − 1

2
ω(Y )J X + 1

2
g(X, Y )JL

(11.75)
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for any vector fields X and Y on M̄ . If R̄W is the curvature tensor field of the Weyl
connection ∇W , then we have

R̄W (X, Y )Z = R̄(X, Y )Z

− 1

2
{[(∇Xω)Z + 1

2
ω(X)ω(Z)]Y

− [(∇Y ω)Z + 1

2
ω(Y )ω(Z)]X − g(Y, Z)(∇XL + 1

2
ω(X)L)

+ g(X, Z)(∇YL + 1

2
ω(Y )L)} − 1

4
‖ω‖2 (g(Y, Z)X − g(X, Z)Y )

(11.76)

for any vector fields X and Y on M̄ .

Definition 9 A locally conformal Kaehler manifold (M̄, g, J ) is said to be a gener-
alized Hopf manifold if the Lee form is parallel, i.e., ∇̄ω = 0(ω = 0). A generalized
Hopf manifold is called a Po K -manifold if the Weyl curvature tensor is zero.

First, we have the following theorem (cf. [26]).

Theorem 11.15 Let π : M → N be a submersion of a CR submanifold M of a
locally conformal Kaehler manifold M̄ onto an almost Hermitian manifold N with
Lee vector field L ∈ T ⊥M. Then N is a Kaehler manifold.

Proof For any vector field X tangent to M andL ∈ T ⊥M , we have ω(X) = 0. Since
M is a CR submanifold of M̄ , (11.75) implies

∇̄X JY + 1

2
g(X, JY )L = J∇X Y + 1

2
g(X, Y ) JL (11.77)

where X and Y are any horizontal vector fields. It is easy to see that

∇̄X Y = H∇X Y + AX Y + h(X, Y ). (11.78)

From (11.77) and (11.78), we get

H∇X JY = JH∇X Y ∈ D, (11.79)

AX JY = J h(X, Y ) + 1

2
g(X, Y )JL ∈ D⊥, (11.80)

h(X, JY ) + 1

2
g(X, JY )L = J AX Y ∈ T ⊥M (11.81)

where X and Y are any horizontal vector fields on M . Since π∗ is a complex isometry,
we have π∗ ◦ J = J ′ ◦ π∗. Therefore, if X is a basic vector field, J X is also a basic
vector field. Using Lemma 1, (11.7) and (11.79), we have
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∇X∗
′ J ′Y∗ = J ′∇X∗

′Y∗.

Hence, N is a Kaehler manifold. �

Next we have the following theorem (cf. [26]).

Theorem 11.16 Let π : M → N be a submersion of a CR submanifold M of a
Po K -manifold M̄ onto an almost Hermitian manifold N. If M is a totally umbilical
submanifold whose mean curvature vector is parallel and L ∈ T ⊥M, then N is a
locally symmetric Kaehler manifold and H ′(X∗) > 0 where H ′ is the holomorphic
sectional curvature of N and X∗ is any unit tangent vector on N.

Proof Since M̄ is a Po K -manifold, we have R̄W = 0 and ∇̄ω = 0. We set c = ‖ω‖
2 .

Since ∇̄� = 0, we have ∇̄L = 0 and c = constant (cf. [33]). From (11.76) we have

R̄(X, Y )Z = 1

4
{[ω(X)Y − ω(Y )X ]ω(Z)

+ [g(X, Z)ω(Y ) − g(Y, Z)ω(X)]L} + c2(g(Y, Z)X − g(X, Z)Y ).

(11.82)

Using ∇̄ω = 0 and ∇̄L = 0, we obtain ∇̄ R̄ = 0 (cf. [15]). Since L ∈ T ⊥M , using
(11.3) and (11.82), for any vector fields X, Y, Z , and W tangent to M we have

R̄(W, Z , X, Y ) = c2(g(Y, Z)g(X, W ) − g(X, Z)g(Y, W ))

+ g(h(Y, Z), h(X, W )) − g(h(X, Z), h(Y, W )). (11.83)

Since M is a totally umbilical submanifold of M̄ and the mean curvature vector is
parallel, the second fundamental form is parallel. Thus M is a locally symmetric
space. Using (11.83) and h(X, Y ) = g(X, Y )H , then for any X, Y, Z ∈ D and V ∈
D⊥ we obtain R̄(X, Y, Z , V ) = 0. Moreover, since h(X, Y ) = g(X, Y )H and L ∈
T ⊥M , the fibers of π are totally geodesic (cf. [15]). Hence, reflections ϕπ−1(x) with
respect to the fibers are isometries (cf. [10]). Therefore, N is a locally symmetric
space [10, 26]. From Theorem 11.15, N is a Kaehler manifold. Using (11.82), for
any horizontal unit vector X , we get H̄(X) = c2. Also, it is easy to see that

H̄(X) = H ′(X∗) − 3 ‖AX J X‖2 − ‖h(X, X)‖2 .

Therefore, we have H ′(X∗) > 0, where X∗ is any unit tangent vector on N . �

11.7 Submersions of Contact CR Submanifolds

In this section, we shall discuss almost contact metric submersions of contact CR
submanifolds M of quasi-K-cosymplectic and quasi-Kenmotsu manifolds M̄ onto
an almost contact metric manifold N (cf. [24]). It should be noted that the theory of
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CR submersion was extended to the case where the total space is a semi-invariant
submanifold (as meant in Sasakian geometry) by Papaghiuc (cf. [29]). He obtained
the basic properties of CR submersions of a semi-invariant submanifold of a Sasakian
manifold onto an almost contact metric manifold.

Let M̄ be a differentiable manifold. An almost contact structure on M̄ is a triplet
(φ, ξ, η), where φ is a tensor field of type (1,1), ξ is a vector field, and η is a 1-form
satisfying

φ2X = −X + η(X)ξ, η(ξ) = 1 (11.84)

for any vector field X tangent to M̄ . If M̄ is equipped with a Riemannian metric g
such that

g(φX,φY ) = g(X, Y ) − η(X)η(Y )

then (g,φ, ξ, η) is called an almost contact metric structure. So the quintuple
(M̄, g,φ, ξ, η) is an almost contact metric manifold.

It is known that, similar to almost Hermitian manifolds, any almost contact metric
manifold admits a fundamental 2-form � defined by

�(X, Y ) = g(X,φY ).

We shall consider the following structures (for further study see [24]) referred to as
quasi-K-cosymplectic if

(∇̄Xφ)Y + (∇̄φXφ)φY − η(Y )(∇̄φXξ) = 0, (11.85)

[where ∇̄ is the Levi-Civita connection on (M̄, g)] and quasi-Kenmotsu if dη = 0
and

(∇̄X�)(Y, Z) + (∇̄φX�)(φY, Z) = η(Y )�(Z , X) + 2η(Z)�(X, Y ) (11.86)

for any X, Y, Z ∈ T M .

Definition 10 Let the Riemannian manifold M be isometrically immersed in M̄
with tangential structure vector field ξ. Then the submanifold M is called a contact
CR submanifold if it is endowed with the pair of distribution (D, D⊥) satisfying the
following conditions:

(i) T M = D ⊕ D⊥ ⊕ {ξ} and D, D⊥, and ξ are orthogonal to each other.
(ii) the distribution D is invariant, i.e., φ(D) = D.
(iii) the distribution D⊥ is anti-invariant, i.e., φ(D⊥) ⊂ T ⊥M .

The projections of T M to D and D⊥ are denoted by H and V , respectively, i.e.,
for any X ∈ T M , we have

X = HX + VX + η(X)ξ. (11.87)
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Applying φ on both sides of the above equation, we have

φX = F X + T X, for any X ∈ T M (11.88)

where F X = φHX and T X = φVX are tangential and normal components of φX ,
respectively. Similarly, from the decomposition T ⊥M = φD⊥ ⊕ ν, we have

U = uU + tU (11.89)

for any U ∈ T ⊥M . Applying φ on both sides of (11.89), we get

φU = f U + mU (11.90)

where f U = φuU ∈ D⊥ and mU = φtU ∈ ν. Let M be a contact CR subman-
ifold of a quasi-K-cosymplectic (respectively quasi-Kenmotsu) manifold M̄ and
N be an almost contact metric manifold with the almost contact metric structure
(φ′, ξ′, η′, g′). Let there be a submersion π : M −→ N such that [24]

(i) D⊥ = ker π∗,
(ii) π∗ : D ⊕ {ξ} −→ T N is an isometry which satisfies π∗ ◦ φ = φ′ ◦ π∗; η =

η′ ◦ π∗; π∗ ◦ ξ = ξ′.
We recall the following result (cf. [24]).

Lemma 3 Let X, Y be basic vector fields on M. Then
(i) g(X, Y ) = g′(X∗, Y∗) ◦ π;
(ii) the component H([X, Y ]) + η([X, Y ])ξ of [X, Y ] is basic vector field and cor-
responds to [X∗, Y∗];
(iii) [U, X ] ∈ D⊥ for any U ∈ D⊥;
(iv) H(∇X Y ) + η(∇X Y )ξ is a basic vector field corresponding to ∇′

X∗Y∗ where ∇′
denotes the Levi-Civita connection on N.

First, we discuss some preliminary results on contact CR submanifolds of quasi-
K-cosymplectic and quasi-Kenmotsu manifolds. The following result (cf. [24]) is an
easy consequence of (11.85) (resp (11.86)).

Lemma 4 For a contact CR submanifold M of a quasi-K-cosymplectic (resp. quasi-
Kenmotsu) manifold M̄, the following equations hold

F2 + f T = −I + η ⊗ ξ, T F + mT = 0, (11.91)

F f + f m = 0, m2 + T f = −I. (11.92)

Moreover, we have the following result (cf. [24]).

Lemma 5 For a contact CR submanifold M of a quasi-K-cosymplectic (respectively
quasi-Kenmotsu) manifold M̄, the following equations hold:

ker F = D⊥ ⊕ {ξ}, ker T = D ⊕ {ξ}, (11.93)
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ker m = T D⊥, ker f = ν. (11.94)

Next, the covariant derivative of the structure vector field ξ is given, for quasi-K-
cosymplectic, by

∇̄Xξ = φ(∇̄φXξ) (11.95)

and for a quasi-Kenmotsu manifold by

∇̄Xξ = −2φ2X + φ(∇̄φXξ), (11.96)

for any X ∈ T M [24]. �

Then we have the following (cf. [24]).

Lemma 6 Let M be a contact C R submanifold of an almost contact manifold M̄.
Then, if M̄ is quasi-K-cosymplectic, we have the following identities:

∇Xξ = F(∇F Xξ) + f h(F X, ξ), (11.97)

h(X, ξ) = T (∇F Xξ) + mh(F X, ξ) (11.98)

for any X ∈ D. Moreover, if M̄ is quasi-Kenmotsu, we have

∇Xξ = 2{X − η(X)ξ} + F(∇F Xξ) + f h(F X, ξ), (11.99)

h(X, ξ) = T (∇F Xξ) + mh(F X, ξ), (11.100)

for any X ∈ D.

Proof Let M̄ be a quasi-K-cosymplectic manifold. Then for any X ∈ D, (11.95)
gives

∇Xξ + h(X, ξ) = φ(∇F Xξ) + φh(F X, ξ)

= F(∇F Xξ) + T (∇F Xξ) + mh(F X, ξ) + f h(F X, ξ).

Similarly for a quasi-Kenmotsu manifold, from (11.96), we get

∇Xξ + h(X, ξ) = −2φ2X + φ(∇F Xξ) + φh(F X, ξ)

= −2φ2X + F(∇F Xξ) + T (∇F Xξ) + f h(F X, ξ) + mh(F X, ξ).

Then comparing tangential and normal components on both sides of these equations
completes the proof. �
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The differential of the fundamental 2-form � gives, for any X, Y, Z ∈ T M ,

3 d�(X, Y, Z) = X (�(Y, Z)) + Y (�(Z , X)) + Z(�(X, Y ))

− �([X, Y ], Z) − �([Z , X ], Y ) − �([Y, Z ], X).

Now for any Y, Z ∈ D⊥ we find

3 d�(X, Y, Z) = g(φ[Y, Z ], X). (11.101)

Hence, d�(X, Y, Z) = 0 if and only if [Y, Z ] ∈ ker(F), i.e., [Y, Z ] = V[Y, Z ] +
η([Y, Z ])ξ. Also we have

η([Y, Z ]) = g(∇̄Zξ, Y ) − g(∇̄Y ξ, Z).

For a quasi-K-cosymplectic manifold, we have ∇̄Zξ = φ(∇̄φZξ) and which gives for
any Y, Z ∈ D⊥

g(∇̄Zξ, Y ) = −g(AφY ξ,φZ) = 0.

Consequently, η([Y, Z ]) = 0 and [Y, Z ] ∈ D⊥ for any Y, Z ∈ D⊥. Similar is the
case if M̄ is a quasi-Kenmotsu manifold. Therefore, we have the following theorem
(cf. [24]).

Theorem 11.17 Let M be a contact CR submanifold of a quasi-K-cosymplectic
(or quasi-Kenmotsu) manifold M̄. The distribution D⊥ is integrable if and only if
d�(X, Y, Z) = 0, for any X tangent to M and Y, Z ∈ D⊥.

We now discuss submersions of contact CR submanifolds of a quasi-K-
cosymplectic (quasi-Kenmotsu) manifold M̄ onto an almost contact metric mani-
fold N . For any X, Y ∈ D ⊕ {ξ} we have

∇̄X Y = ∇X Y + h(X, Y )

or
∇̄X Y = ∇̃′

X Y + C(X, Y ) + uh(X, Y ) + th(X, Y ). (11.102)

If M̄ is a quasi-K-cosymplectic manifold, we know

(∇̄Xφ)Y = ∇̄XφY − φ(∇̄X Y ) = −(∇̄φXφ)φY + η(Y )(∇̄φXξ). (11.103)

Now combining (11.102) and (11.103) we find

∇̃′
XφY + C(X,φY ) + uh(X,φY ) + th(X,φY )

− φ∇̃′
X Y − φC(X, Y ) − φuh(X, Y ) − φth(X, Y )

= −(∇̄φXφ)φY + η(Y )(∇̄φXξ). (11.104)
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Similarly for quasi-Kenmotsu manifold we have

∇̃′
XφY + C(X,φY ) + uh(X,φY ) + th(X,φY )

− φ∇̃′
X Y − φC(X, Y ) − φuh(X, Y ) − φth(X, Y )

= φ((∇̄φXφ)Y ) + g(φX, Y )ξ − 2η(Y )φX. (11.105)

We now prove the following theorem (cf. [24]).

Theorem 11.18 Let π : M −→ N be a submersion of a contact CR submanifold of
a manifold M̄ onto an almost contact metric manifold N. Then

(i) If M̄ is quasi-K-cosymplectic, for any X, Y ∈ D ⊕ {ξ}

(∇̃′
Xφ)Y + (∇̃′

φXφ)φY = η(Y )∇̃′
φXξ, (11.106)

C(X,φY ) − C(φX, Y ) = f {h(X, Y ) + h(φX,φY )}, (11.107)

t{h(X,φY ) − h(φX, Y )} = m{h(X, Y ) + h(φX,φY )}, (11.108)

u{h(X,φY ) − h(φX, Y )} = φ{C(X, Y ) + C(φX,φY )}. (11.109)

(ii) If M̄ is quasi-Kenmotsu, for any X, Y ∈ D ⊕ {ξ}

(∇̃′
Xφ)Y − φ((∇̃′

φXφ)Y ) = g(φX, Y )ξ − 2η(Y )φX, (11.110)

C(X,φY ) − C(φX, Y ) = f h(X, Y ), (11.111)

C(X, Y ) = −C(φX,φY ), (11.112)

uh(X,φY ) = φth(X, Y ). (11.113)

Proof If M̄ is a quasi-K-cosymplectic manifold, we have

∇̄φXξ = ∇̃′
φXξ + C(φX, ξ) + h(φX, ξ) (11.114)

and

(∇̄φXφ)φY = (∇̃′
φXφ)φY − −C(φX, Y ) + η(Y )C(φX, ξ) − h(φX, Y )

+ η(Y )h(φX, ξ) − φC(φX,φY ) − φh(φX,φY ) (11.115)

for any X, Y ∈ D ⊕ {ξ}. Combining (11.104), (11.114), and (11.115) and comparing
the components of D ⊕ {ξ}, D⊥, φD⊥, and ν, respectively, on both sides, we get (i)
of the theorem. Similarly, we can prove (ii) in case M̄ is a quasi-Kenmotsu manifold.
�
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Next we give the following result (cf. [24]).

Theorem 11.19 Let π : M −→ N be a submersion of a contact CR submanifold of
a manifold M̄ onto an almost contact metric manifold N.

(i) If M̄ is quasi-K-cosymplectic, then N is also a quasi-K-cosymplectic manifold.
(ii) If M̄ is quasi-Kenmotsu, then M is D ⊕ {ξ}-totally geodesic and N is also a

quasi-Kenmotsu manifold.

Definition 11 Let (N 2r ′
, g′, J ′) be an almost Hermitian manifold, then the Rie-

mannian submersion
π : M2r+1 −→ N 2r ′

is called an almost contact metric submersion of type I I if

π∗ ◦ φ = J ′ ◦ π∗.

First, we state the following theorem (cf. [24]).

Theorem 11.20 Let π : M2r+1 −→ N 2r ′
be an almost contact metric submersion of

type I I of contact CR submanifold M of a quasi-K-cosymplectic (or quasi-Kenmotsu)
manifold M̄ onto an almost contact metric manifold N. Then the base space is a
quasi-Kaehler manifold.

Now we prove the following theorem (cf. [24]).

Theorem 11.21 Let π : M −→ N be a submersion of a contact CR submanifold
of a quasi-K-cosymplectic (or quasi-Kenmotsu) manifold M̄ onto an almost con-
tact metric manifold N. If the horizontal distribution D ⊕ {ξ} is integrable and the
vertical distribution D⊥ is parallel, then M is CR product.

Proof Since D ⊕ {ξ} is integrable we have V[X, Y ] = 0 for any X, Y ∈ D ⊕ {ξ}.
This implies that C(X, Y ) = 0 which gives ∇X Y = ∇̃′

X Y ∈ D ⊕ {ξ} for any X, Y ∈
D ⊕ {ξ}. This equation shows that D ⊕ {ξ} is parallel. Thus using de Rham’s theo-
rem, it follows that M is the product M1 × M2 , where M1 is the invariant submanifold
of M̄ and M2 is the totally real submanifold of M̄ . Hence, M is a CR product. �

Finally, we discuss holomorphic sectional curvature of the submersion of contact
CR submanifold of quasi-K-cosymplectic (resp. quasi-Kenmotsu manifold) M̄ onto
an almost contact metric manifold N . From Gauss Eq. (11.12), we find (cf. [24])

R̄(X,φX,φY, Y ) = R′(X∗,φ∗ X∗,φ∗Y∗, Y∗)
− g(C(X, Y ), C(φX,φY )) + g(C(X,φY ), C(φX, Y ))

+ 2g(C(X,φX), C(φY, Y ))

− g(uh(X, Y ), uh(φX,φY )) − g(th(X, Y ), th(φX,φY ))

+ g(uh(X,φY ), uh(φX, Y )) + g(th(X,φY ), th(φX, Y )).

(11.116)
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Suppose that the distribution D ⊕ {ξ} is integrable. Then we have C(X, Y ) = 0 and
h(φX,φY ) = −h(X, Y ) for any X, Y ∈ D ⊕ {ξ}. Using these relations, (11.116)
becomes

R̄(X,φX,φY, Y ) = R′(X∗,φ′ X∗,φ′Y∗, Y∗) + ‖h(X, Y )‖2 + ‖h(X,φY )‖2

which implies that

H̄(X) = H ′(X∗) + ‖h(X, Y )‖2 + ‖h(X,φY )‖2

where H̄ and H ′ are the holomorphic sectional curvatures of M̄ and N ,
respectively. �

From the above discussion we have the following results (cf. [24]).

Theorem 11.22 Let π : M −→ N be a submersion of a contact CR submanifold of
a quasi-K-cosymplectic manifold M̄ onto an almost contact metric manifold N with
integrable D ⊕ {ξ}. Then the holomorphic sectional curvatures H̄ and H ′ of M̄ and
N respectively satisfy

H̄(X) ≥ H ′(X∗),

for any X ∈ D ⊕ {ξ}, ‖X‖ = 1, and the equality holds if and only if M is D ⊕ {ξ}-
totally geodesic.

Theorem 11.23 Let π : M −→ N be a submersion of a contact CR submanifold of
a quasi-Kenmotsu manifold M̄ onto an almost contact metric manifold N. Then the
holomorphic sectional curvatures H̄ and H ′ of M̄ and N, respectively, satisfy

H̄(X) ≥ H ′(X∗),

for any X ∈ D ⊕ {ξ}, ‖X‖ = 1, and the equality holds if and only if the distribution
D ⊕ {ξ} is integrable.
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Chapter 12
CR-Submanifolds of Semi-Riemannian
Kaehler Manifolds

Ramesh Sharma
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12.1 Introduction

An almost complex structure on a smooth manifold M is a (1, 1)-tensor field J
satisfying the condition

J2 = −I (12.1)

where I is the identity operator on the tangent space at each point. M furnished with
an almost complex structure is known as an almost complex manifold and is even-
dimensional and orientable. An almost complex structure that comes from a complex
structure is called integrable, and when one wishes to specify a complex structure as
opposed to an almost complex structure, one calls it an integrable complex structure.
This integrability condition is equivalent to the vanishing of the Nijenhuis’ tensor
[J, J] defined by

[J, J](X, Y) = [JX, JY ] − [X, Y ] − J[X, JY ] − J[JX, Y ]

for arbitrary vector fields X and Y on M. An almost complex manifold is called
an almost Hermitian manifold if there exists a Riemannian metric g such that
g(JX, JY) = g(X, Y). An almost Hermitian manifold is said to be Hermitian if the
underlying almost complex structure is integrable.

One may note that, if g is semi-Riemannian, then its signature has even number
(including 0) of positive signs and even number (including 0) of negative signs.
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AKaehler manifold is a Hermitianmanifold whose complex structure J is parallel
with respect to the Levi-Civita connection∇ of g. A holomorphic section of aKaehler
manifold is section obtained by a plane element spanned by a non-null tangent vector
X (i.e. g(X, X) �= 0) at a point and JX. The sectional curvature of M with respect
to a holomorphic section is called the holomorphic sectional curvature. A Kaehler
manifold is said to be a complex space-form if its holomorphic sectional curvature is
independent of the choice of a holomorphic section at each point. A complex space-
form with constant holomorphic sectional curvature c is denoted by M(c) whose
curvature tensor is given by

R(X, Y)Z = c

4
[g(Y , Z)X − g(X, Z)Y + g(JY , Z)JX

− g(JX, Z)JY + 2g(X, JY)JZ] (12.2)

One can easily check that c is constant on M.
At this point, we denote an almost Hermitian manifold by (M̄, g) with the almost

complex structure J . Generalizing the cases of invariant and anti-invariant (i.e., totally
real) submanifolds, Bejancu [2] introduced the notion of a CR-submanifold as fol-
lows.

Definition 1 A CR-submanifold of a semi-Riemannian almost Hermitian manifold
(M̄, g) is a non-degenerate submanifold (M, g) of (M̄, g) admitting a smooth distri-
bution D : p → Dp ⊂ TpM such that

(1) D is invariant, i.e., JDp = Dp at each point p ∈ M and
(2) the orthogonal complementary distribution D⊥ is anti-invariant,

i.e. JD⊥
p ⊂ (TpM)⊥ for each p ∈ M.

Remark 1 The above definition would not be feasible if D was degenerate with
respect to g, because D and D⊥ are not necessarily complementary in TM for degen-
erate D. Henceforth, we will assume D and D⊥ both non-degenerate with respect to
g.

Recall that a CR-structure on a smooth manifold M is a complex subbundle H of
the complexified tangent bundle C(TM) of M such that (H ∩ H̄)p = 0 at each p ∈ M
andH is involutive, i.e.,X, Y ∈ H ⇒ [X, Y ] ∈ H. It is known that, on aCR-manifold,
there exist a real distribution D and a field of endomorphisms P : D → D such
that P2 = −I, D = Re(H ⊕ H̄) and Hp = {X − iPX : X ∈ Dp}. Blair and Chen [7]
proved that a proper CR-submanifold M of a Hermitian manifold is a CR-manifold.
This justifies the term “CR-submanifold.”

If the holomorphic distribution D is equal to the tangent bundle TM, then M
reduces to an invariant submanifold of M̄, and if the totally real distribution D⊥
equals TM then M reduces to a totally real submanifold of M̄. When the dimensions
of D⊥ and (TM)⊥ are equal, M is said to be a generic submanifold of M̄.

For a tangential vector field X and a normal vector field V on a CR-submanifold
of an almost Hermitian manifold M̄, we have the following decomposition formulas:



12 CR-Submanifolds of Semi-Riemannian Kaehler Manifolds 345

JX = PX + FX (12.3)

JV = tV + f V (12.4)

where PX and tV are the tangential parts of JX and JV , respectively, and FX and
f V are the normal parts of JX and JV , respectively. It is easy to verify from the
preceding two equations that

g(FX, V ) + g(X, tV ) = 0 (12.5)

and that g(PX, Y) is skew-symmetric in X, Y , and g(fU, V ) is skew-symmetric in
U, V . Operation of J on Eqs. (12.3) and (12.4) yields the following relations:

P2 = −I − tF, FP + fF = 0 (12.6)

Pt + tf = 0, f 2 = −I − Ft (12.7)

Let us denote the projection operator on D by l and that on D⊥ bt l⊥. Then, evidently

l + l⊥ = I, l2 = l, (l⊥)2 = l⊥, ll⊥ = l⊥l = 0

l⊥Pl = 0, Fl = 0, Pl = P

Using this in the second equation of (12.6) one gets

FP = 0 (12.8)

Thus, the second equation of (12.6) reduces to

fF = 0

Taking f V for V in Eq. (12.5) we find

tf = 0 (12.9)

Using this in the first equation of (12.7) gives

Pt = 0 (12.10)

Consequently, the first equation of (12.6) implies

P3 + P = 0 (12.11)
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and the second equation of (12.7) implies

f 3 + f = 0 (12.12)

Equations (12.11) and (12.12) show that P and f define f -structures (for details on
an f -structure, we refer to Yano [18]) on the tangent and normal bundles of M,
respectively. Setting l = P2 and l⊥ = I − l, one can easily verify the following result
of Yano and Kon [21].

Theorem 12.1 A submanifold M of an almost Hermitian manifold M̄ is a CR-
submanifold if and only if FP = 0.

12.2 Basic Equations and Results

According to a theorem of Flaherty [12], we know that the signature of a Hermitian
metric g on an almost complex manifold has even number of positive signs and
even number of negative signs. Thus, g cannot be Lorentzian which is essential for a
physical space-time of relativity. For a four dimensional space-time, we can choose
a coordinate system comprising two real coordinates x, y and complex null coordi-
nates z + it and z − it. The aforementioned facts suggest that a complex structure
can be defined only on its two dimensional submanifold defined by x = constant
and y = constant. With this motivation and the purpose of applying our results in
relativity theory, we consider a class of submanifolds of a semi-Riemannian Kaehler
manifold such that there may be complementary complex and real distributions. One
of the settings for such a distribution can be provided by singling out holomorphic
distributions of the CR-submanifolds (see for example, Penrose [15]).

As pointed out in the previous section, a CR-submanifold (M, g) has an induced
f -structure defined by the (1, 1) tensor field P on M, and hence the metric g can
be Lorentzian. Our study is not only applicable within the framework of general
relativity, but also in the theory of semi-Riemannian manifolds whose metrics have
signatures compatible with the induced f -structure. We also note in our context that
indefinite Kaehler manifolds (in particular, complex space-forms) were studied by
Barros and Romero in [1].

We denote the Levi-Civita connection of the induced metric g on the CR-
submanifold (M, g) of a semi-Riemannian Kaehler manifold (M̄, g, J) by ∇ and
that of (M̄, g) by ∇̄. The second fundamental form of M is denoted by B and the
Weingarten operator by AV for an arbitrary normal vector field V on M. They are
related by g(AV X, Y) = g(B(X, Y), V ). The Gauss and Weingarten formulas are

∇̄XY = ∇XY + B(X, Y)

∇̄X V = −AV X + DX V
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The Gauss and Codazzi equations are

g(R̄(X, Y)Z, W ) = g(R(X, Y)Z, W ) − g(B(Y , Z), B(X, W )

+ g(B(X, Z), B(Y , W )

[R̄(X, Y)Z]⊥ = (∇XB)(Y , Z) − (∇Y B)(X, Z)

where

(∇XB)(Y , Z) = DX(B(Y , Z)) − B(∇XY , Z) − B(Y ,∇XZ) (12.13)

X, Y , Z, W denote arbitrary vector fields tangent to M, and D denotes the normal
connection ofM. Also,R and R̄ denote the curvature tensors of∇ and ∇̄, respectively.

The covariant derivatives of the operators P, F, t, f are defined along M as

(∇XP)Y = ∇X(PY) − P(∇XY) (12.14)

(∇XF)Y = DX(FY) − F(∇XY) (12.15)

(∇Xt)V = ∇X(tV ) − t(DX V ) (12.16)

(∇Xf )V = DX(f V ) − f (DX V ) (12.17)

At this point, we use the Kaehlerian condition ∇̄J = 0. The Gauss and Weingarten
formulas provide the following equations

(∇XP)Y = AFY X + tB(X, Y) (12.18)

(∇XF)Y = −B(X, PY) + fB(X, Y) (12.19)

(∇Xt)V = Af V X − PAV X (12.20)

(∇Xf )V = −FAV X − B(X, tV ) (12.21)

We now recall the following results and definitions from Yano and Kon [20] and
Yano and Ishihara [19], that will be used later.

Lemma 1 Let M be a CR-submanifold of a Kaehler manifold M̄. Then, for any
vector fields X and Y in D⊥ we have

AFXY = AFY X. (12.22)

Theorem 12.2 Let M be a CR-submanifold of a Kaehler manifold M̄. Then, the
totally real distribution D⊥ is integrable and its maximal integral submanifold M⊥
is an anti-invariant (totally real) submanifold of M.
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Definition 2 The f -structure induced on the CR-submanifold of a Kaehler manifold
is said to be partially integrable if D is integrable and the almost complex structure
induced on each leaf of D is integrable.

Theorem 12.3 Let M be a CR-submanifold of a Kaehler manifold M̄. Then the
f -structure induced on M is partially integrable if and only if

B(PX, Y) = B(X, PY) (12.23)

for all X and Y in D.

Definition 3 The f -structure induced on the CR-submanifold M of a Kaehler man-
ifold is said to be normal if the (1, 2)-tensor field S defined by

S(X, Y) = [P, P](X, Y) − t((∇XF)Y − (∇Y F)X)

vanishes identically on M.

This normality condition is equivalent (see [20]) to AFX = PAFX for any X tangent
to M.

Definition 4 A CR-submanifold of a Kaehler manifold is said to be mixed totally
geodesic if B(X, Y) = 0 for any vector field X ∈ D and Y ∈ D⊥.

12.3 Mixed Foliate CR-Submanifolds

In this section, we will deal with a subclass of mixed totally geodesic
CR-submanifolds characterized by the partial integrability of f -structure induced
on them.

Definition 5 A CR-submanifold of a Kaehler manifold is called mixed foliate if it
is mixed totally geodesic and the f -structure induced on it is partially integrable.

Next, we recall the following lemma (see Yano and Kon [20]).

Lemma 2 Let M be a mixed foliate CR-submanifold of a Kaehler manifold M̄. Then,
for all V ∈ (TM)⊥ we have

AV P + PAV = 0 (12.24)

Now, we recall the following theorem of Bejancu et al. [4], which holds for a
positive definite Kaehler metric.

Theorem 12.4 If M is a mixed foliate proper CR-submanifold of a complex space-
form M̄(c), then c ≤ 0.
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So, the following question arises “what sort of constraint is imposed on the pos-
sible values of c when the metric of M̄(c) is indefinite?” Sharma and Duggal [17]
provided an answer to this question in a special case in the form of the following
result.

Theorem 12.5 If the mixed foliate proper CR-submanifold of a semi-Riemannian
complex space-form M̄(c) is such that the metric g restricted to D is definite and g
restricted to D⊥ is indefinite, then c = 0.

Proof The curvature tensor of M̄(c) is given by Eq. (12.2). Restricting the vector
fields X, Y to D and Z to D⊥ we find that

[R̄(X, Y)Z]⊥ = c

2
g(PY , X)JZ (12.25)

Equation (12.13) provides

(∇XB)(Y , Z) = −B(∇XY , Z) − B(Y ,∇XZ)

since M is mixed totally geodesic. Anti-symmetrizing the last equation with respect
to X and Y we get

(∇XB)(Y , Z) − (∇Y B)(X, Z) = −B([X, Y ], Z)

− B(Y ,∇XZ) + B(X,∇Y Z)

As per our hypothesis, M is mixed foliate and hence, by the integrability of D, the
above equation reduces to

(∇XB)(Y , Z) − (∇Y B)(X, Z) = −B(Y ,∇XZ) + B(X,∇Y Z) (12.26)

As Z is any vector field in D⊥, there is a normal vector field V such that Z = JV .
Therefore, Z = tV and f V = 0. Consequently, we have

∇Y Z = (∇Y t)V + tDY V = tDY V − PAV Y

where we used Eq. (12.20). The Eq. (12.10) shows that tDY V ∈ D⊥. The use of
Lemma2 transforms equation (12.26) into

(∇XB)(Y , Z) − (∇Y B)(X, Z) = B(X, AV PY) + B(PY , AV X) (12.27)

Taking X = PY , substituting the value JV for Z , and taking inner product with V
provides

g(AV PY , AV PY) = − c

4
g(PY , PY)g(V, V ) (12.28)

By hypothesis, g restricted to D is definite. By Lemma2, AV PY = −PAV Y . Thus,
the above equation implies the inequality

http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
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cg(V, V ) = cg(Z, Z) ≤ 0

for any Z ∈ D⊥. Again, by hypothesis, g restricted to D⊥ is indefinite, and therefore,
D⊥ does contain at least one space-like vector field Z1 (i.e., g(Z1, Z1) > 0) and a
time-like vector field Z2 (i.e., g(Z2, Z2) < 0). Consequently, we get c ≥ 0 and c ≤ 0.
Thus, we conclude that c = 0, completing the proof.

Corollary 1 Under the hypothesis of the preceding theorem, we have

AV P = 0 (12.29)

for every V ∈ JD⊥.

Proof It follows from (12.28) and the conclusion c = 0 of Theorem12.5, that
g(AV PY , AV PY) = 0. Since AV P = −PAV , the vector field AV PY ∈ D. The hypoth-
esis that g is definite on D, implies that (12.28) holds.

Remark 2 The following result of Chen [8] “A CR-submanifold of Cn is mixed
foliate if and only if it is a CR-product, i.e., the product of the leaves of D and D⊥”
can be shown to be valid for both definite and indefinite metrics.

Employing it for the mixed foliate CR-submanifold M under the hypothesis of the
Theorem12.5, it follows straightaway that M is a CR-product. This can be proved
independently (without using Chen’s theorem) in another way to gain more insight
into the structure of M. First, let us establish the following lemma.

Lemma 3 A necessary and sufficient condition for the integrability of the f -structure
induced on a mixed foliate proper CR-submanifold M of a Kaehler manifold M̄ is
that AFY P = 0 for any vector field Y tangent to M.

Proof Weknow that a propermixed foliateCR-submanifoldM of aKaehlermanifold
M̄ has a partially integrable f -structure and integrable D⊥. The f -structure would be
completely integrable if its Nijenhuis tensor [P, P] vanishes identically, i.e.,

[PX, PY ] + P2[X, Y ] − P[PX, Y ] − P[X, PY ] = 0.

For X, Y ∈ D, the integrability of D implies [P, P](X, Y) = 0. For X, Y ∈ D⊥, the
integrability of D⊥ implies [P, P](X, Y) = 0. For X ∈ D and Y ∈ D⊥ we observe
that

[P, P](X, Y) = (∇PXP)Y − (∇PY P)X − P[(∇XP)Y − (∇Y P)X]
= AFY PX − PAFY X = 2AFY PX

where Eqs. (12.18) and (12.24) have been used. Hence, the f -structure induced on
M is integrable if and only if AFY P = 0 for any V in JD⊥.
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Definition 6 The f -structure induced on the CR-submanifold of a Kaehler manifold
is said to be normal if the (1, 2)-tensor field S defined by

S(X, Y) = [P, P](X, Y) − t[(∇XF)Y − (∇Y F)X]

vanishes identically.

It has been shown in [20] that the normality of the f -structure induced on the CR-
submanifold of aKaehlermanifold is equivalent toAFX P = PAFX , for any vector field
X tangent toM. This holds for a definite as well as an indefinite metric. The following
result characterizes the intrinsic structure of M hypothesized as in Theorem12.5.

Theorem 12.6 Under the hypothesis of Theorem12.5, the f -structure induced on M
is integrable and normal. Moreover, if D⊥ is parallel, then M is locally a CR-product
MT × M⊥, where MT is flat and M⊥ is a totally geodesic real submanifold of M.

Proof We conclude from Eq. (12.28) and the conclusion c = 0 of Theorem12.5
that AV P = 0. Hence Lemma3 asserts that the f -structure on M is integrable. Now,
the necessary and sufficient condition for the normality of the f -structure on M
is PAV = AV P for any V ∈ JD⊥. This is automatically satisfied since we have
AV P = 0 (corollary to Theorem12.5 and Lemma2). Thus, the structure is also nor-
mal. It can be shown with the aid of Eq. (12.18) that the fundamental 2-form �

of the f -structure is closed. It therefore follows from a result of Goldberg [13] that
(∇XP)Y = 0 forX ∈ D. The expression (12.18) for (∇XP)Y ensures that it lies inD⊥,
which is clear from the result PAV X = −AV PX = 0 so that AV X ∈ D⊥. Next, from
Eq. (12.18) and Lemma1 we have (∇XP)Y = (∇Y P)X for all X, Y ∈ D⊥. There-
fore, g((∇XP)Y , Z) = g((∇Y P)X, Z) for all X, Y ∈ D⊥ and Z ∈ T(M). This means,
(∇X�)(Y , Z) = −(∇Y�)(Z, X) whence we find (∇Z�)(X, Y) = 0. This shows that
(∇ZP)X ∈ D, but as shown earlier, (∇ZP)X ∈ D⊥ for any Z and X tangent to M. We
had also proved that (∇ZP)X = 0 whenever X ∈ D and Z is tangent to M. Conse-
quently, we obtain (∇ZP)X = 0 for any Z and X tangent toM, i.e.∇P = 0. Applying
Chen’s result [8] “A CR-submanifold of a Kaehler manifold is a CR-product if and
only if ∇P = 0,” we conclude that M is MT × M⊥, where MT is a leaf of D totally
geodesic in M and M⊥ is a leaf of D⊥ totally geodesic in M. This shows that MT is
flat, and hence completes the proof.

Proposition 1 Under the hypothesis of Theorem12.5, if D⊥ is parallelizable and
the normal connection is flat, then M is locally flat.

Proof Since D⊥ is parallelizable, we can choose an orthonormal base (ξa) of D⊥.
If (ηa) denotes its dual, then one can show that FX = ηa(X)Jξa and tJξa = −ξa.
Hence, we have

S(X, Y) = NP(X, Y) − t[(∇XF)Y − (∇Y F)X]

http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
http://dx.doi.org/10.1007/978-981-10-0916-7_2
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Therefore, as the f -structure is integrable and normal, we obtain

(dηa)(X, Y)ξa − ηa(Y)tDXJξa + ηa(X)tDY Jξa = 0

But the normal connection is flat, and so dηa = 0. For such a structure we know from
Blair [5] that Lξag = 0. Consequently, ∇ξa = 0 and hence R(X, Y)ξa = 0, i.e., M⊥
is locally flat. Hence, M is locally flat. This completes the proof.

Remark 3 If M of the foregoing proposition was of dimension 4 and complete,
and the f -structure globally framed, then M would be a quotient of the Minkowski
space-time of special relativity.

12.4 Normal Mixed Totally Geodesic CR-Submanifolds

Let us consider a class of CR-submanifolds of a Kaehler manifold, which are mixed
totally geodesic with distribution D not necessarily integrable (unlike that of a mixed
foliate CR-submanifold) and the f -structure induced on M is normal.

Definition 7 A CR-submanifold M of a Kaehler manifold M̄ is said to be normal
mixed totally geodesic if it is mixed totally geodesic and the f -structure induced on
M is normal.

We state and prove the following result.

Theorem 12.7 Let M be a normal mixed totally geodesic CR-submanifold of a
complex space-form M̄(c). Then,

(1) if g and W = A2
V + AFAV Z (V ∈ JD⊥ and Z = JV ) are positive definite on D,

then c ≥ 0 and
(2) if g is positive definite on D and indefinite on D⊥, then W cannot be definite on

D. Also, c = 0 if and only if W = 0 on D.

Proof Supposing X, Y ∈ D, using Codazzi equation and the expression (12.2) for
the curvature tensor of M̄(c) we can show that

B(Y , PAV X) − B(X, PAV Y) − B([X, Y ], Z) = c

2
g(PY , X)JZ

where Z = JV ∈ D⊥. Taking its inner product with V we get

g(AV Y , PAV X) − g(AV X, PAV Y) − g(AV Z, [X, Y ]) + c

2
g(PY , X)g(V, V ) = 0

(12.30)
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It can be shown by a straightforward computation that

B(PX, Y) − B(X, PY) = F[X, Y ]

which, in turn, implies that

g(AV PX + PAV X, Y) = g([X, Y ], Z)

Substituting PY for X in Eq. (12.30) gives

g(W Y , Y) = c

2
g(V, V )g(Y , Y) (12.31)

where we have used the normality condition AV P = PAV . If g and W (as defined
in Theorem12.7) are positive definite on D, then (12.31) implies that c ≥ 0, which
proves part (1). Let W be definite on D. If g is positive definite on D and indefinite
on D⊥, then (12.31) implies cg(V, V ) = cg(Z, Z) ≥ 0. Now, Z being in D⊥ could
be space-like or time-like. Hence c = 0, and therefore the operator W vanishes on
D, which contradicts our hypothesis that W is definite. The last part of (2) follows
from Eq. (12.31). This completes the proof.

Remark 4 For the case when g is definite on D and indefinite on D⊥, we compare
Theorem12.5 and part (2) of the Theorem12.7. As a consequence of Theorem12.5,
M reduces to a CR-product provided the f -structure on it is globally framed. On the
other hand Theorem12.7 involves the operator W on D. The condition that c may
vanish, is that W must vanish identically on D. This is quite compatible with the
consequence of Theorem12.5 in that if we assume that M of Theorem12.7 (part
(2)) is a CR-product then we must have AV vanish on D and hence the operator
W vanishes on D, thus reducing c to 0. Hence, we claim to have gotten a wider
class of CR-submanifolds, as hypothesized in part (2) of Theorem12.7, which can
be embedded in Cn.

12.5 Totally Umbilical CR-Submanifolds

This section is devoted to totally umbilical CR-submanifolds of a Kaehler manifold.
We denote the dimension of the totally real distribution D⊥ by q. First, we state and
prove

Proposition 2 Let M be a CR-submanifold of a Kaehler manifold. Then both the
distributions D and D⊥ are non-degenerate.

Proof Let D be degenerate. Then there exists a nonzero vector field X ∈ D such that
g(X, Y) = 0 for all Y ∈ D. As D and D⊥ are complementary and orthogonal to each
other, we conclude that g(X, Y) = 0 for all Y ∈ TM. Hence X = 0 because TM is
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nondegenerate. But X is nonzero. Hence, we arrive at a contradiction. This proves
that D is nondegenerate. Similarly, one can show that D⊥ is non-degenerate.

Next, we state and prove

Proposition 3 The mean curvature vector μ of a totally umbilical CR-submanifold
of a Kaehler manifold belongs to JD⊥.

Proof Total umbilicity of M means B(X, Y) = g(X, Y)μ. Consider any X ∈ D and
V in the complementary orthogonal subbundle to JD⊥ in TM⊥. Then we have

g(J(∇̄XX), JV ) = g(∇̄XJX, JV )

= g(∇XJX + g(X, JX)μ, JV ) = 0

g(J(∇̄XX), JV ) = g(∇̄XX, V )

= g(∇XX + g(X, X)μ, V ) = g(X, X)g(μ, V ).

Thus we find g(X, X)g(μ, V ) = 0. By the preceding proposition, we conclude that
g(μ, V ) = 0, i.e. f μ = 0. Hence μ ∈ JD⊥, completing the proof.

Let us recall the following result of Bejancu [3] for a positive definite metric.

Theorem 12.8 Let M be a totally umbilical proper CR-submanifold of a Kaehler
manifold M. For q > 1, M reduces to a totally geodesic submanifold and is locally
a Riemannian product of an invariant and an anti-invariant submanifold of M.

That this theorem holds for an indefinite metric, was proved by Duggal and Sharma
[11]. The proof is slightly longer than that for the positive definite case, and is given
below.

Proof By virtue of Lemma1, we have AFXY = AFY X for all X, Y ∈ D⊥. As tμ ∈
D⊥, for any X ∈ D⊥ we have AFXtμ = AFtμX. As M is totally umbilical, we have
B(X, Y) = g(X, Y)μ and AV X = g(μ, V )X. Hence we obtain

g(tμ, X)tμ = g(tμ, tμ)X (12.32)

for all X ∈ D⊥. Since q > 1, it follows, upon contraction of Eq. (12.32) at X with
respect to a local orthonormal basis of D⊥, that g(tμ, tμ) = 0. Hence tμ = 0. Now,
let X be a vector field tangent to M. Then

(∇Xt)μ = ∇Xtμ − tDXμ = −tDXμ

Using Eq. (12.20) in the above equation provides

−tDXμ = Af μX − PAμX = −g(μ,μ)PX

http://dx.doi.org/10.1007/978-981-10-0916-7_2
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UsingPt = 0,we get g(μ,μ)P2X = 0.AsM is properCR-submanifold, we conclude
that g(μ,μ) = 0. Further, (∇XP)Y = AFY X + tB(X, Y) = −g(Y , tμ) = 0. Thus we
obtain∇XP = 0, which implies through Chen’s result [8] mentioned earlier, thatM is
locally a product of an invariant submanifold MT and an anti-invariant submanifold
M⊥ ofM. What remains to be proved is that μ = 0. Suppose that Y ∈ D so that FY =
0. As D is parallel, ∇XY ∈ D and hence F(∇XY) = 0. Consequently, (∇XF)Y = 0
and usingEq. (12.19)we have g(X, PY)μ = g(X, Y)f μ for everyY ∈ D. Substituting
X = PY and noting the skew-symmetry g(PX, Y) = −g(PY , X) we find that μ = 0.
Hence B = 0, i.e., M is totally geodesic and locally a CR-product of the leaves of D
and D⊥. This completes the proof.

The case q = 1 was not covered in the preceding theorem. Chen [9] proved the
following result.

Theorem 12.9 Let M be a totally umbilical CR-submanifold of a Kaehler manifold
M̄. Then (i) M is totally geodesic, or (ii) q = 1, or (iii) M is totally real.

Note that if M was a proper CR-submanifold in the above theorem, then the
possibility (iii) would be ruled out. Also, note that (i) and (ii) are not mutually
exclusive. The case (ii) has been investigated by Chen [9], in the context of a locally
Hermitian symmetric space M̄ with dim. M̄ ≥ 5. In [11], Duggal and Sharma studied
the case (ii) by relaxing these conditions and assuming M to be proper, and proved
the following result.

Theorem 12.10 Let M be a proper totally umbilical CR-submanifold of a semi-
Riemannian Kaehler manifold M̄ with q = 1 and g positive definite on D⊥. Suppose
that the mean curvature vector μ vanishes nowhere on M. Then the following state-
ments are equivalent: (1) M has an α-Sasakian structure, (2) μ has a constant norm,
(3) μ is parallel in the normal bundle, (4) second fundamental form of M is parallel.

For α-Sasakian structures, we refer to [6, 14].

Proof As μ �= 0 and μ ∈ JD⊥ by Proposition3, it follows that tμ �= 0 and lies in
D⊥. Now since q = 1, any vector field in D⊥ is a scalar multiple of tμ. For any X
tangent to M we can show, using Eq. (12.20), that

g(μ,μ)P2X = g(tμ, X)tμ − g(tμ, tμ)X

Operating P on this gives g(μ,μ) = g(tμ, tμ). Hence we get

g(tμ, tμ)(P2X + X) = g(tμ, X)tμ (12.33)

In this case too, Eq. (12.32) holds, which shows (q = 1) that g(tμ, tμ) �= 0 and hence
g(μ,μ) �= 0. Hence the Eq. (12.33) assumes the form

P2X = −X + [g(tμ, tμ)]−1g(tμ, X)tμ (12.34)

http://dx.doi.org/10.1007/978-981-10-0916-7_3
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As g is positive definite on D⊥, and μ vanishes nowhere on M, we have g(tμ, tμ) =
α2. Hence Eq. (12.34) becomes

P2X = −X + η(X)ξ (12.35)

where ξ = 1
α

tμ is a unit vector field, and η is a 1-form onM given by η(X) = g(X, ξ).
One can easily verify that Pξ = 0, η(PX) = 0, rank(P) = n − 1, and

g(PX, PY) = g(X, Y) − η(X)η(Y) (12.36)

Use of Eq. (12.18) and total umbilicity shows that

(∇XP)Y = α[g(X, Y)ξ − g(ξ, Y)X] (12.37)

Equations (12.35)–(12.37) show that (M, g) is an α-Sasakian manifold if and only if
g(μ,μ) is constant. This proves the equivalence of (1) to (2). In virtue of the equality
(whose proof is easy)

tDXμ = (Xln|g(tμ, tμ)|)tμ

the statement (2) is equivalent to tDXμ = 0.Differentiating the result f μ = 0obtained
earlier, and operating f 2 on the derived equation provides f (DXμ) = 0. Hence (2) is
equivalent to DXμ = 0, i.e. the statement (3). The statement (4) means

DX(B(Y , Z)) = B(∇XY , Z) + B(Y ,∇XZ)

Substituting totally umbilical condition (hypothesis) B(X, Y) = g(X, Y)μ in the pre-
ceding equation shows that (4) is equivalent to (3). This completes the proof.

Remark 5 In particular, if M was a real hypersurface of M̄ (as hypothesized in the
foregoing theorem, second case), then the statement (3) would have been automati-
cally true, as apparent from the fact that DXμ does not belong to JD⊥.

12.6 Application to General Relativity

The CR-submanifolds under the hypothesis of Theorem12.8 are locally decom-
posable as MT × M⊥. Recall that these submanifolds carry a parallel f -structure:
P3 + P = 0, rank (P) = 2p, and ∇P = 0, where 2p is the dimension of D. M has a
pair of complementary orthogonal distributions D⊥ (of dimension q) and D defined
respectively by the projection operators −P2 and P2 + I acting on the tangent space
of M at every point. For simplicity, we assume that D and D⊥ are each of dimension
2 (i.e. 2p = 2, q = 2). Let D⊥ be parallelizable so that there exist vector fields ξ1, ξ2
spanning D⊥ and their duals η1, η2 such that
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P2(X) = −X + η1(X)ξ1 + η2(X)ξ2

Pξ1 = Pξ2 = 0, Pξ3 = ξ4, Pξ4 = −ξ3

where ξ3, ξ4 is a basis of D such that (ξ1, ξ2, ξ3, ξ4) is an orthonormal basis of TM.
Thus, if the metric g on M is indefinite on D⊥ and positive definite on D, then it can
be expressed canonically as

g = −η1 ⊗ η1 + η2 ⊗ η2 + η3 ⊗ η3 + η4 ⊗ η4.

Using the condition ∇P = 0, we can show that

∇Xξ1 = h(X)ξ2,∇Xξ2 = h(X)ξ1

∇Xξ3 = w(X)ξ4,∇Xξ4 = −w(X)ξ3

where h and w are smooth 1-forms on M. A straightforward computation gives the
curvature tensor R, Ricci tensor Ric and scalar curvature r as follows:

R(X, Y)Z = 2H(η2 ∧ η1)(X, Y)[η1(Z)ξ2 + η2(Z)ξ1]
+ 2W (η4 ∧ η3)(X, Y)[η3(Z)ξ4 − η4(Z)ξ3]

Ric = H(−η1 ⊗ η1 + η2 ⊗ η2) + W (η3 ⊗ η3 + η4 ⊗ η4)

r = 2(H + W )

where H = (dh)(ξ2, ξ1) and W = (dw)(ξ4, ξ3). Let us call such a manifold (M, g) a
Lorentzian Framed (LF)-manifold.

Evidently, LF-manifolds are Ricci-flat if and only if h andw are closed. Also, LF-
manifolds are Einstein if and only if 4H = 4W = r. By a straightforward calculation
one can verify that LF-manifolds are conformally flat if and only if r = 0. Let us
consider a coordinate frame ( ∂

∂xi ) (abbreviated ∂i) compatible with the LF-structure,
for a local coordinate system (t, x, y, z) = (xi) such that

∂1 = σξ1, ∂2 = σξ2, ∂3 = τξ3, ∂4 = τξ4

where σ and τ are nonzero smooth functions. Under such a coordinate system, the
metric g takes the form

ds2 = σ2(−dt2 + dx2) + τ 2(dy2 + dz2)

where σ = σ(t, x) and τ = τ (y, z) and are related to H and W by partial differential
equations

(lnσ),tt − (lnσ),xx = Hσ2, (lnτ ),yy + (lnτ ),zz = −Wτ 2
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The Ricci tensor is expressed in terms of the coordinates (t, x, y, z) as

Ric = H(−dt ⊗ dt + dx ⊗ dx) + W (dy ⊗ dy + dz ⊗ dz).

Exact solutions of the Einstein’s field equations

Ric − r

2
g = 8πT

with a given energy-momentum tensor T , have been obtained by Duggal and Sharma
in [10] under various cases such as flat (Minkowski), Einstein, Conformally flat,
Scalar field and nonsingular simple electromagnetic field. For details we refer to
[10] and the Ph.D. dissertation of Sharma [16].
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Chapter 13
Paraquaternionic CR-Submanifolds

Gabriel-Eduard Vîlcu

2000 Mathematics Subject Classification 53C15

13.1 Introduction

The paraquaternionic structures, previously called quaternionic structures of second
kind, have been introduced in geometry by P. Libermann [50], in 1952. The theory
of paraquaternionic manifolds parallels the theory of quaternionic manifolds, but
uses the algebra of paraquaternionic numbers, in which two generators have square
1 and one generator has square −1. Accordingly, such manifolds are equipped with
a subbundle of rank 3 in the bundle of the endomorphisms, locally spanned by two
almost product structures and one almost complex structure. From the metric point
of view, the almost paraquaternionic Hermitian manifolds have neutral signature.
An example of such kind of structure has been considered on the tangent bundle of
a manifold endowed with an almost complex structure and a linear connection in
[35]. The differential geometry of manifolds equipped with paraquaternionic struc-
tures was developed in the last two decades by papers of Blažić [14], Vukmirović
[67], García-Río, Matsushita, Vázquez-Lorenzo [32], Bonome, Castro, García-Río,
Hervella, Vázquez-Lorenzo [16], Ivanov, Zamkovoy [39, 68], Alekseevsky, Cortes,
Kamishima [2, 3], Marchiafava [51, 52], Dancer, Jorgensen, Swann [28], David
[29], etc. Almost all important constructions from quaternionic geometry have been
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adapted (for example, the twistor space has been studied in [4, 12, 13, 45]), but the
majority has remained at the stage of definition and first properties. Recently, there
has been a lot of work in this direction (in Germany, at Augsburg, in Italy, at Roma
II and Bari, several PhD thesis on this topic have been defended [19, 49, 59]) and
also there are some constructions which were not tackled.

The counterpart in odd dimension of paraquaternionic geometry was introduced
in [40]. It is called mixed 3-structure, which appears in a natural way on lightlike
hypersurfaces in paraquaternionic manifolds (there are two paracontact structures
and one contact structure, that satisfy analogous conditions to those satisfied by 3-
Sasakian structures). Thefirst propertieswere obtained in [21] and [36].A compatible
metric with a mixed 3-structures is necessarily semi-Riemann and mixed 3-Sasakian
manifolds are Einstein, hence there is a possible importance of these structures in
theoretical physics [43].

This work is organized as follows: in Sects. 13.2 and 13.3, one recalls basic defin-
itions and fundamental properties of manifolds endowed with paraquaternionic and
mixed 3-structures.

In Sect. 13.4, the geometry of the semi-Riemannian hypersurfaces of co-index
both 0 and 1 in a manifold endowed with a mixed 3-structure and a compatible
metric is presented [38].

Section13.5 deals with the class of paraquaternionic CR-submanifolds in the
paraquaternionic Kähler manifolds. This is a natural extension in paraquaternionic
setting of CR-submanifolds, first introduced in Kählerian geometry by Bejancu [6].
We define the paraquaternionic CR-submersions (in the sense of Kobayashi [47])
as semi-Riemannian submersions from paraquaternionic CR-submanifolds onto an
almost paraquaternionic hermitian manifold and obtain some properties concerning
their geometry [44]. We also discuss curvature properties of fibers and base manifold
for paraquaternionic CR-submersions.

In Sect. 13.6, we introduce a new class of semi-Riemannian submersions from a
manifold endowed with a metric mixed 3-structure onto an almost paraquaternionic
hermitian manifold [64]. We obtain some fundamental properties which discuss the
transference of structures and the geometry of the fibers. In particular we obtain
that such a submersion is a harmonic map provided that the total space is mixed
3-cosymplectic or 3-Sasakian. Moreover, some nontrivial examples are given.

13.2 Paraquaternionic Structures on Manifolds

Let H̃ be the algebra of paraquaternions and identify H̃n = R
4n. It is well known that

H̃ is a real Clifford algebras with H̃ = C(1, 1) ∼= C(0, 2). In fact H̃ is generated by
the unity 1 and generators J0

1 , J0
2 , J0

3 satisfying the paraquaternionic identities

(J0
1 )

2 = (J0
2 )

2 = −(J0
3 )

2 = 1, J0
1J0

2 = −J0
2J0

1 = J0
3 .
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We assume that H̃ acts on H̃n by right multiplication and use the convention that
SO(2n, 2n) acts on H̃

n on the left.
An almost product structure on a smooth manifold M is a tensor field P of type

(1, 1) on M, P �= ±Id, such that P2 = Id, where Id is the identity tensor field of
type (1, 1) on M. The pair (M, P) is called an almost product manifold. An almost
para-complex manifold is an almost product manifold (M, P) such that the two
eigenbundles T+M and T−M associated with the two eigenvalues +1 and −1 of P,
respectively, have the same rank. Equivalently, a splitting of the tangent bundle TM
of a differentiable manifold M, into the Whitney sum of two subbundles T±M of the
same fiber dimension is called an almost para-complex structure on M.

An almost para-Hermitian structure on a smooth manifold M is a pair (g, P),
where g is a pseudo-Riemannian metric on M and P is an almost product structure
on M, which is compatible with g, i.e., P∗g = −g. In this case, the triple (M, g, P)

is called an almost para-Hermitian manifold. Moreover, (M, g, P) is said to be a
para-Hermitian manifold if P is integrable, i.e., if the Nijenhuis NP defined by

NP(X, Y) = [PX, PY ] − P[X, PY ] − P[PX, Y ] + [X, Y ]

vanishes. An almost complex structure on a smooth manifold M is a tensor field
J of type (1, 1) on M such that J2 = −Id. The pair (M, J) is called an almost
complex manifold. We note that the dimension of an almost (para-)complex manifold
is necessarily even (see [27, 48]).

An almost pseudo-Hermitian structure on a smooth manifold M is a pair (g, J),
where g is a pseudo-Riemannian metric on M and J is an almost complex structure
on M, which is compatible with g, i.e., J∗g = g. In this case, the triple (M, g, J)

is called an almost pseudo-Hermitian manifold. Moreover, (M, g, J) is said to be
pseudo-Hermitian if J is integrable, i.e., if the Nijenhuis NJ defined by

NJ(X, Y) = [JX, JY ] − J[X, JY ] − J[JX, Y ] − [X, Y ]

vanishes.
An almost para-hypercomplex structure on a smooth manifold M is a triple H =

(J1, J2, J3) of (1, 1)-type tensor fields on M satisfying

J2
α = −ταId, JαJβ = −JβJα = τγJγ, (13.1)

for any α ∈ {1, 2, 3} and for any even permutation (α,β, γ) of (1, 2, 3), where τ1 =
τ2 = −1 = −τ3. In this case, (M, H) is said to be an almost para-hypercomplex
manifold. We remark that from (13.1) it follows that J1 and J2 are almost product
structures on M, while J3 = J1J2 is an almost complex structure on M. We note that
the almost para-hypercomplex structures have been introduced in geometry by P.
Libermann [50] under the name of quaternionic structures of second kind (structures
presque quaternioniennes de deuxième espèce).

A semi-Riemannian metric g on (M, H) is said to be compatible or adapted to
the almost para-hypercomplex structure H = (Jα)α=1,2,3 if it satisfies:
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g(JαX, JαY) = ταg(X, Y)

for all vector fieldsX,Y , onM andα ∈ {1, 2, 3}.Moreover, the pair (g, H) is called an
almost para-hyperhermitian structure on M and the triple (M, g, H) is said to be an
almost para-hyperhermitian manifold. We note that any almost para-hyperhermitian
manifold is of dimension 4m, m ≥ 1, and any adaptedmetric is necessarily of neutral
signature (2m, 2m). If {J1, J2, J3} is parallel with respect to the Levi-Civita connec-
tion of g, then the manifold is called para-hyper-Kähler. We note that the simplest
example of para-hyper- Kähler manifold is the paraquaternionic vector space H̃n.

An almost para-hypercomplex manifold (M, H) is called a para-hypercomplex
manifold if each Jα, α = 1, 2, 3, is integrable. In this case H is said to be a para-
hypercomplex structure on M. Moreover, if g is a semi-Riemannian metric adapted
to the para-hypercomplex structure H, then the pair (g, H) is said to be a para-
hyperhermitian structure on M and (M, g, H) is called a para-hyperhermitian man-
ifold.

An almost paraquaternionic Hermitian manifold is a triple (M,σ, g) where M
is a smooth manifold, σ is an almost paraquaternionic structure on M, i.e., a rank
3-subbundle of End(TM) which is locally spanned by an almost para-hypercomplex
structure H = (Jα)α=1,2,3 and g is a compatible metric with respect to H. We remark
that, if {J1, J2, J3} and {J ′

1, J ′
2, J ′

3} are two canonical local bases of σ in U and in
another coordinate neighborhood U ′ of M, then for all x ∈ U ∩ U ′

(
J ′
α

)
x
=

3∑

β=1

sαβ(x)
(
J ′
β

)
x
,α = 1, 2, 3,

where SUU ′(x) = (
sαβ(x)

)
α,β=1,2,3 ∈ SO(2, 1), because {J1, J2, J3} and {J ′

1, J ′
2, J ′

3}
satisfy the paraquaternionic identities (13.1).

If (M,σ, g) is an almost paraquaternionicHermitianmanifold such that the bundle
σ is preserved by the Levi-Civita connection ∇ of g, then (M,σ, g) is said to be a
paraquaternionic Kähler manifold [32]. Equivalently, we can write

∇Jα = τβωγ ⊗ Jβ − τγωβ ⊗ Jγ, (13.2)

where (α,β, γ) is an even permutation of (1, 2, 3) and ω1,ω2,ω3 are locally defined
1-forms. We note that the prototype of paraquaternionic Kähler manifold is the
paraquaternionic projective space Pn(H̃) as described by Blažić [14].

If the Riemannian curvature tensor R is taken with the sign convention

R(X, Y)Z = ∇X∇Y Z − ∇Y∇XZ − ∇[X,Y ]Z,

for all vector fields X, Y , Z on M, then a consequence of (13.2) is that R satisfies

[R, Jα] = τβAγ ⊗ Jβ − τγAβ ⊗ Jγ,
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for any even permutation (α,β, γ) of (1, 2, 3), where

Aα = dωα + ταωβ ∧ ωγ .

If we consider �α := g(Jα·, ·) the fundamental form associated with Jα, α =
1, 2, 3, then we have the following structure equations (see [4, 13]):

dωα + ταωβ ∧ ωγ = ταν�α,

for any even permutation (α,β, γ) of (1, 2, 3), where ν = Sc
4n(n+2) is the reduced

scalar curvature,Sc being the scalar curvature defined as the trace of theRicci tensorρ.
We recall that the main property of manifolds endowed with this kind of structure

is as follows:

Theorem 13.1 ([32]) Any paraquaternionic Kähler manifold (M,σ, g) is an Ein-
stein space, provided that dimM > 4.

Let (M,σ, g) be a 4n-dimensional paraquaternionic Kähler manifold. Then the
Ricci 2-forms of the Levi-Civita connection of g are defined as (see [45]):

ρα(X, Y) = −τα

2
Trace(Z → JαR(X, Y)Z), α = 1, 2, 3,

and for n > 1 it follows:

ρ(X, Y) = n + 2

n
ρα(X, JαY), α = 1, 2, 3.

Using Theorem 13.1, we obtain the following relations

ρα(X, Y) = −τα
Sc

4(n + 2)
g(X, JαY), α = 1, 2, 3.

We consider now the general case of a 4n-dimensional smooth manifold M
endowed with an almost paraquaternionic structure σ and with a paraquaternionic
connection ∇, i.e., a linear connection which preserves σ, and following [45] we
recall next some basic facts concerning the twistor and reflector spaces of M.

Let p ∈ M, any linear frame u on TpM can be considered as an isomorphism
u : R4n → TpM. Taking such a frame u, we can define a subspace of the space
of the all endomorphisms of TpM by u(sp(1,R))u−1. This subset is a paraquater-
nionic structure and we define P(M) to be the set of all linear frames u which
satisfy u(sp(1,R))u−1 = σ, where sp(1,R) = Span{J01, J02, J03} is the Lie algebra of
Sp(1,R). It is clear thatP(M) is the principal frame bundle ofM with structure group
GL(n, H̃)Sp(1,R), where

GL(n, H̃) = {A ∈ GL(4n,R)|A(sp(1,R))A−1 = sp(1,R)}.
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We denote by π : P(M) → M the natural projection and remark that the Lie
algebra of GL(n, H̃) is

gl(n, H̃) = {A ∈ gl(4n,R)|AB = BA for all B ∈ sp(1,R)}.

Wealso denote by (,) the inner product in gl(4n,R) given by (A, B) = Trace(ABt),
for A, B ∈ gl(4n,R).

We split now the curvature of ∇ into gl(n, H̃)-valued part R′ and sp(1,R)-valued
part R′′ following the classical scheme (see e.g., [10]). We denote the splitting of the
gl(n, H̃) ⊕ sp(1,R)-valued curvature 2-form � on P(M) according to the splitting
of the curvature R by

� = �′ + �′′,

where �′ is a gl(n, H̃)-valued 2-form and �′′ is a sp(1,R)-valued form. Explicitly,

�′′ = �′′
1J0

1 + �′′
2J0

2 + �′′
3J0

3 ,

where�′′
α, α = 1, 2, 3 are 2-forms. If ξ, η ∈ R

4n, then the 2-forms�′′
α, α = 1, 2, 3,

are given by

�′′
α(B(ξ), B(η)) = 1

2n
ρα(X, Y) = −τα

Sc

8n(n + 2)
g(X, JαY),

where X = u(ξ), Y = u(η) (see [45]).
For each u ∈ P(M)weconsider two linear isomorphism j+(u) and j−(u) onTπ(u)M

defined by:
j+(u) = uJ0

1u−1, j−(u) = uJ0
3u−1.

It is easy to see that

(j−(u))2 = −Id, (j+(u))2 = Id

and
g(j−(u)X, j−(u)Y) = g(X, Y), g(j+(u)X, j+(u)Y) = −g(X, Y),

for all X, Y ∈ Tπ(u)M.
As in [45], for each p ∈ M we consider

Z±
p (M) = {j±(u)|u ∈ P(M),π(u) = p}
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and we define the twistor space Z− of M and the reflector space Z+ of M, by setting

Z± = Z±(M) =
⋃

p∈M

Z±
p (M).

Then the twistor space Z−(M) is the unit pseudo-sphere bundle with fiber the 2-
sheeted hyperboloid S2

1(−1) = {(x, y, z) ∈ R
3|x2 + y2 − z2 = −1} and the reflector

space Z+(M) is the unit pseudo-sphere bundle with fiber the 1-sheeted hyperboloid
S2
1(1) = {(x, y, z) ∈ R

3|x2 + y2 − z2 = 1}.
We denote by A∗ (resp. B(ξ)) the fundamental vector field (resp. the standard

horizontal vector field) on P(M), the principal frame bundle of M, corresponding
to A ∈ gl(n, H̃) ⊕ sp(1,R) (resp. ξ ∈ R

4n). Let u ∈ P(M) and Qu be the horizontal
subspace of the tangent space TuP(M) induced by the connection ∇ on M (see [48]).
As in [45] we have the decompositions

TuP(M) = (hi)
∗
u ⊕ (mi)

∗
u ⊕ Qu, i = 1, 3

and the following isomorphisms

j−∗u|(m3)∗u⊕Qu : (m3)
∗
u ⊕ Qu → Tj−(u)Z

−,

j+∗u|(m1)∗u⊕Qu : (m1)
∗
u ⊕ Qu → Tj+(u)Z

+

where
h3 = {A ∈ gl(n, H̃) ⊕ sp(1,R)|AJ0

3 = J0
3A},

h1 = {A ∈ gl(n, H̃) ⊕ sp(1,R)|AJ0
1 = J0

1A},

m3 = {A ∈ gl(n, H̃) ⊕ sp(1,R)|AJ0
3 = −J0

3A} = Span{J0
1 , J0

2 },

m1 = {A ∈ gl(n, H̃) ⊕ sp(1,R)|AJ0
1 = −J0

1A} = Span{J0
2 , J0

3 },

and
(hi)

∗
u = {A∗

u|A ∈ hi}, (mi)
∗
u = {A∗

u|A ∈ mi}, i = 1, 3.

Now, we can define two almost complex structures I1 and I2 on Z− by (see [45])

I1(j
−
∗uA∗) = j−∗u(J

0
3A)∗,

I2(j
−
∗uA∗) = −j−∗u(J

0
3A)∗

Ii(j
−
∗uB(ξ)) = j−∗uB(J0

3 ξ), i = 1, 2,

for u ∈ P(M), A ∈ m3, ξ ∈ R
4n.

Similarly, it can be defined two almost para-complex structures P1 and P2 on Z+
by (see [45])
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P1(j
+
∗uA∗) = j+∗u(J

0
1A)∗,

P2(j
+
∗uA∗) = −j+∗u(J

0
1A)∗

Pi(j
+
∗uB(ξ)) = j+∗uB(J0

1 ξ), i = 1, 2,

for u ∈ P(M), A ∈ m1, ξ ∈ R
4n.

We remark that the almost complex structures defined above were also defined
and investigated in [13] on paraquaternionic Kähler manifolds, the authors proving
that the almost complex structure I2 is never integrable while I1 is always integrable.
Moreover, we note that in [45] the authors found that the para-complex structures P2

is never integrable on reflector space, while P1 is always integrable.
We recall now that the *-Ricci tensor of a 2n-dimensional almost pseudo-

Hermitian manifold (M, g, J) is defined by

ρ∗(X, Y) =
2n∑

i=1

εiR(X, Ei, JY , JEi),

whereR denotes the curvature of themetric g, {E1, . . . , E2n} is a pseudo-orthonormal
basis at an arbitrary point p, and X, Y are tangent vectors at p. If the *-Ricci tensor
is scalar multiple of the metric then the manifold is said to be *-Einstein.

On the other hand, we note that A. Gray introduced [33] three basic classes
AH1, AH2, AH3 of almost Hermitian manifolds, whose curvature tensors resemble
that of a Kähler manifold. They are defined by the following curvature identities:

AH1 : R(X, Y , Z, T) = R(X, Y , JZ, JT),

AH2 : R(X, Y , Z, T) = R(JX, JY , Z, T) + R(JX, Y , JZ, T) + R(JX, Y , Z, JT),

AH3 : R(X, Y , Z, T) = R(JX, JY , JZ, JT),

where R is the curvature tensor of the manifold. It is easy to see that

AH1 ⊂ AH2 ⊂ AH3.

By analogy, one says that an almost para-Hermitian manifold satisfies the para-
Gray identities if

APH1 : R(X, Y , Z, T) = −R(X, Y , JZ, JT),

APH2 : R(X, Y , Z, T) = −R(JX, JY , Z, T) − R(JX, Y , JZ, T) − R(JX, Y , Z, JT),

APH3 : R(X, Y , Z, T) = R(JX, JY , JZ, JT),

whereR is the curvature tensor of themanifold.We note that para-Gray-like identities
were considered in [18, 24] and it can be easily checked that

APH1 ⊂ APH2 ⊂ APH3.

The main curvature properties of (Z−, Ii, ht) and (Z+, Pi, ht), i = 1, 2, are given
in the following two theorems.
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Theorem 13.2 ([66]) Let (M,σ, g) be a 4n-dimensional paraquaternionic Kähler
manifold and (Z−, Ii, ht), i = 1, 2 the twistor spaces associated. Then:
(i) The manifolds (Z−, Ii, ht), i = 1, 2, belong always to AH2 and AH3 and are with
pseudo-Hermitian Ricci tensor and with pseudo-Hermitian *-Ricci tensor;
(ii) The manifolds (Z−, I1, ht) belong to AH1 iff Sc = 0 or Sc = 4(n+2)

t ;
(iii) The manifolds (Z−, I2, ht) belong to AH1 iff Sc = 0;
(iv) The manifolds (Z−, Ii, ht), i = 1, 2 are Einstein iff

Sc = 4(n + 2)

t
or Sc = 4(n + 2)

(n + 1)t
;

(v) The manifolds (Z−, I1, ht) are *-Einstein iff

Sc = 4(n + 2)

t
or Sc = −4(n + 2)

nt
;

(vi) The manifolds (Z−, I2, ht) are *-Einstein iff

Sc = 2(n + 2)

(n − 1)t

[
3n − 1 −

√
9n2 − 10n + 5

]

or

Sc = 2(n + 2)

(n − 1)t

[
3n − 1 +

√
9n2 − 10n + 5

]
.

Theorem 13.3 ([66]) Let (M,σ, g) be a 4n-dimensional paraquaternionic Kähler
manifold and (Z+, Pi, ht), i = 1, 2, the reflector spaces associated. Then:
(i) The manifolds (Z+, Pi, ht), i = 1, 2, belong always to APH2 and APH3 and are
with para-Hermitian Ricci tensor and with para-Hermitian *-Ricci tensor;
(ii) The manifolds (Z+, P1, ht) belong to APH1 iff Sc = 0 or Sc = − 4(n+2)

t ;
(iii) The manifolds (Z+, P2, ht) belong to APH1 iff Sc = 0;
(iv) The manifolds (Z+, Pi, ht), i = 1, 2 are Einstein iff

Sc = −4(n + 2)

t
or Sc = −4(n + 2)

(n + 1)t
;

(v) The manifolds (Z+, P1, ht) are *-Einstein iff

Sc = −4(n + 2)

t
or Sc = 4(n + 2)

nt
;

(vi) The manifolds (Z+, P2, ht) are *-Einstein iff
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Sc = 2(n + 2)

(n − 1)t

[
1 − 3n −

√
9n2 − 10n + 5

]

or

Sc = 2(n + 2)

(n − 1)t

[
1 − 3n +

√
9n2 − 10n + 5

]
.

13.3 Mixed 3-Structures on Manifolds

Definition 1 Let M̄ be a differentiable manifold equipped with a triple (ϕ, ξ, η),
where ϕ is a field of endomorphisms of the tangent spaces, ξ is a vector field and η
is a 1-form on M̄. If we have:

ϕ2 = τ (−I + η ⊗ ξ), η(ξ) = 1 (13.3)

then we say that:
(i) (ϕ, ξ, η) is an almost contact structure on M̄, if τ = 1 [56].
(ii) (ϕ, ξ, η) is an almost paracontact structure on M̄, if τ = −1 [57].

We note that from (13.3) we can easily obtain ϕξ = 0, η ◦ ϕ = 0 (see [11]).

Definition 2 ([21, 38]) A mixed 3-structure on a smooth manifold M̄ is a triple
of structures (ϕα, ξα, ηα), α ∈ {1, 2, 3}, which are almost paracontact structures for
α = 1, 2 and almost contact structure for α = 3, satisfying the following conditions:

ηα(ξβ) = 0, (13.4)

ϕα(ξβ) = τβξγ, ϕβ(ξα) = −ταξγ, (13.5)

ηα ◦ ϕβ = −ηβ ◦ ϕα = τγηγ , (13.6)

ϕαϕβ − ταηβ ⊗ ξα = −ϕβϕα + τβηα ⊗ ξβ = τγϕγ , (13.7)

where (α,β, γ) is an even permutation of (1, 2, 3) and τ1 = τ2 = −τ3 = −1.
If a manifold M̄ equipped with a mixed 3-structure (ϕα, ξα, ηα)α= ¯1,3 admits a

semi-Riemannian metric ḡ such that:

ḡ(ϕαX,ϕαY) = τα[ḡ(X, Y) − εαηα(X)ηα(Y)], (13.8)

for any X, Y tangent to M̄ and α = 1, 2, 3, where εα = ḡ(ξα, ξα) = ±1, then we say
that M̄ has a metric mixed 3-structure and ḡ is called a compatible metric.

Remark 1 From (13.8) we obtain

ηα(X) = εαḡ(X, ξα), ḡ(ϕαX, Y) = −ḡ(X,ϕαY) (13.9)
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for any X, Y tangent to M̄ and α = 1, 2, 3.
We remark that if (M̄, (ϕα, ξα, ηα)α= ¯1,3, ḡ) is a manifold endowed with a metric

mixed 3-structure then from (13.9) it follows

ḡ(ξ1, ξ1) = ḡ(ξ2, ξ2) = −ḡ(ξ3, ξ3).

Hence the vector fields ξ1 and ξ2 are either spacelike or timelike and these force the
causal character of the third vector field ξ3. We may therefore distinguish between
positive and negative metric mixed 3-structures, according as ξ1 and ξ2 are both
spacelike or both timelike vector fields. Because at each point of M there always
exists a pseudo-orthonormal frame field given by

{(Ei,ϕ1Ei,ϕ2Ei,ϕ3Ei)i= ¯1,n , ξ1, ξ2, ξ3}

We conclude that the dimension of the manifold is 4n + 3 and the signature of g is
(2n + 1, 2n + 2), if the metric mixed 3-structure is positive (i.e., ε1 = ε2 = −ε3 =
1), or the signature of g is (2n + 2, 2n + 1), if themetricmixed 3-structure is negative
(i.e., ε1 = ε2 = −ε3 = −1).

In what follows, we denote by �(V ) the module of all differentiable sections on
a vector bundle V over M̄.

Definition 3 ([21, 38]) Let (M̄, (ϕα, ξα, ηα)α= ¯1,3, ḡ) be a manifold with a metric
mixed 3-structure.

(i) If (ϕ1, ξ1, η1, ḡ) and (ϕ2, ξ2, η2, ḡ) are para-cosymplectic structures and
(ϕ3, ξ3, η3, ḡ) is a cosymplectic structure, i.e., the Levi-Civita connection ∇̄ of ḡ
satisfies

∇̄ϕα = 0 (13.10)

for all α ∈ {1, 2, 3}, then ((ϕα, ξα, ηα)α= ¯1,3, ḡ) is said to be a mixed 3-cosymplectic
structure on M̄.

(ii) If (ϕ1, ξ1, η1, ḡ), (ϕ2, ξ2, η2, ḡ) are para-Sasakian structures and (ϕ3, ξ3, η3, ḡ)

is a Sasakian structure, i.e.,

(∇̄Xϕα)Y = τα[g(X, Y)ξα − εαηα(Y)X] (13.11)

for all X, Y ∈ �(TM̄) and α ∈ {1, 2, 3}, then ((ϕα, ξα, ηα)α= ¯1,3, ḡ) is said to be a
mixed 3-Sasakian structure on M̄.

We remark that from (13.10) we obtain

∇̄ξα = 0

and from (13.11) it follows
∇̄Xξα = −εαϕαX,
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for all α ∈ {1, 2, 3} and X ∈ �(TM̄).
We note that the main property of a manifold endowed with a mixed 3-Sasakian

structure is given by the following theorem.

Theorem 13.4 ([21, 36]) Any (4n + 3)−dimensional manifold endowed with a
mixed 3-Sasakian structure is an Einstein space with Einstein constant λ = (4n +
2)ε, with ε = ∓1, according as the metric mixed 3-structure is positive or negative,
respectively.

Several examples of manifolds endowed with mixed 3-cosymplectic and mixed
3-Sasakian structures can be found in [38, 42]. We note that R4n+3

2n+1 admits a positive
mixed 3-cosymplectic structure and R

4n+3
2n+2 admits a negative mixed 3-cosymplectic

structure. On the other hand, the unit pseudo-sphere S4n+3
2n+2 ⊂ R

4n+4
2n+2 is the canonical

example of manifold with negative mixed 3-Sasakian structure, while the pseudo-
hyperbolic space H4n+3

2n+1 ⊂ R
4n+4
2n+2 can be endowed with a canonical positive mixed

3-Sasakian structure. We note that other interesting examples were recently given in
[5, 22, 23].

Using the cones over pseudo-Riemannian manifolds (see [4]) and the techniques
from [17],weobtain the following characterization ofmanifolds endowedwithmixed
3-Sasakian structures (see [42] for the negative mixed 3-Sasakian case).

Theorem 13.5 Let (M, g) be a semi-Riemannian manifold. Then the following five
assertions are mutually equivalent:
(i) There is a positive mixed 3-Sasakian structure, a negative mixed 3-Sasakian
structure, respectively, on (M, g).
(ii) There is a para-hyper-Kähler structure on the timelike cone

(C(M), h) = (R+ × M,−dr2 + r2g),

respectively, on the spacelike cone

(C(M), h) = (R+ × M, dr2 + r2g).

(iii) There exists three orthogonal Killing vector fields {ξ1, ξ2, ξ3} on M, with ξ1, ξ2
unit spacelike vector fields and ξ3 unit timelike vector field, respectively, ξ1, ξ2 unit
timelike vector fields and ξ3 unit spacelike vector field, satisfying

[ξα, ξβ] = (εβτα + εατβ)ξγ, (13.12)

where (α,β, γ) is an even permutation of (1, 2, 3), such that the tensor fields φα of
type (1, 1), defined by:

φαX = −εα∇Xξα, α = 1, 2, 3,
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satisfy (13.11).
(iv) There exists three orthogonal Killing vector fields {ξ1, ξ2, ξ3} on M, with ξ1, ξ2
unit spacelike vector fields and ξ3 unit timelike vector field, respectively, ξ1, ξ2 unit
timelike vector fields and ξ3, unit spacelike vector field, satisfying (13.12), such that:

R(X, ξα)Y = g(ξα, Y)X − g(X, Y)ξα, α = 1, 2, 3,

where R is the Riemannian curvature tensor of the Levi-Civita connection ∇ of g.
(v) There exists three orthogonal Killing vector fields {ξ1, ξ2, ξ3} on M, with ξ1, ξ2
unit spacelike vector fields and ξ3 unit timelike vector field, respectively, ξ1, ξ2 unit
timelike vector fields and ξ3 unit spacelike vector field, satisfying (13.12), such that
the sectional curvature of every section containing ξ1, ξ2 or ξ3 equals 1.

Let (M̄, ḡ) be a semi-Riemannianmanifold and letM be an immersed submanifold
of M̄. Then M is said to be non-degenerate if the restriction of the semi-Riemannian
metric ḡ to TM is non-degenerate at each point of M [9, 54]. We denote by g the
semi-Riemannian metric induced by ḡ on M and by TM⊥ the normal bundle to M.
Then we have the following orthogonal decomposition:

TM̄ = TM ⊕ TM⊥.

We denote by ∇̄ and ∇ the Levi-Civita connection on M̄ and M, respectively.
Then the Gauss formula is given by

∇̄XY = ∇XY + h(X, Y)

for all X, Y ∈ �(TM), where h : �(TM) × �(TM) → �(TM⊥) is the second funda-
mental form of M in M̄.

On the other hand, the Weingarten formula is given by

∇̄XN = −AN X + ∇⊥
X N

for any X ∈ �(TM) and N ∈ �(TM⊥), where −AN X is the tangential part of ∇̄XN
and ∇⊥

X N is the normal part of ∇̄XN ; AN and ∇⊥ are called the shape operator of
M with respect to N and the normal connection, respectively. Moreover, it is well
known that h and AN are related by

ḡ(h(X, Y), N) = g(AN X, Y)

for all X, Y ∈ �(TM) and N ∈ �(TM⊥).
For the rest of this paper, we shall assume that the induced metric is non-

degenerate.
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13.4 Semi-Riemannian Hypersurfaces

13.4.1 Semi-Riemannian Hypersurfaces of Manifolds
Endowed with Metric Mixed 3-Structures,
Tangent to the Structure Vector Fields

Let (M, (φα, ξα, ηα)α=1,3, g) be a manifold with a metric mixed 3-structure and
let (M, g) be a semi-Riemannian hypersurface of M with g = g|M , i.e., a semi-
Riemannian submanifold of codimension 1, isometrically immersed in M; thus the
co-index of M must be 0 or 1. The sign of the semi-Riemannian hypersurface M,
denoted by εM , is defined as +1 if the co-index of M is 0, and −1 if the co-index
of M is 1 (see [54]). We note that, unlike the positive definite case where every
hypersurface is Riemannian with sign +1, in the indefinite case, sign−1 is as natural
as +1.

Next we suppose that M is tangent to the structure vector fields ξ1, ξ2, ξ3 and
denote by TpM and TpM⊥ the tangent space and the normal space, respectively,
to M at p ∈ M. Let N be the unit spacelike or timelike vector field normal to M,
correspondent to the co-index 0, respectively. Since

g(φαN, N) = 0, α = 1, 2, 3

we can define three one-dimensional distributions D1,D2 andD3 on M, spanned by
φ1N,φ2N and φ3N , respectively, i.e.,

Dα : p −→ Dαp = φα(TpM⊥) ⊂ TpM, α = 1, 2, 3.

We denote by

D⊥ = D1 ⊕ D2 ⊕ D3

and

ξ = {ξ1} ⊕ {ξ2} ⊕ {ξ3},

where {ξα}, α = 1, 2, 3, are the one-dimensional distributions spanned by structure
vector fields ξα on M. Concerning these distributions, we have the following result.

Proposition 1 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a manifold
M endowed with a metric mixed 3-structure ((φα, ξα, ηα)α=1,3, g), such that ξ1, ξ2, ξ3
are tangent to M. Then we have the following assertions:
(i) The distributions D1,D2 and D3 are mutually orthogonal.
(ii) The distribution D⊥ is orthogonal to the distribution ξ.
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We denote now by D the orthogonal complementary distribution to D⊥ ⊕ ξ in
TM. Thus we have the decomposition

TM = D ⊕ D⊥ ⊕ ξ

and we can easily remark that

φα(Dα) = TM⊥, α = 1, 2, 3

and

φα(Dβ) = Dγ,

for any cyclic permutation (α,β, γ) of (1, 2, 3). Moreover, the distribution D is
invariant with respect to each φα, i.e., φα(D) = D, α = 1, 2, 3 (see [38]).

Concerning the integrability of the above distributions and the geometry of
the induced foliations, we have the following theorems which extends in semi-
Riemannian setting some results obtained in [7, 58] for hypersurfaces of manifolds
endowed with Sasakian or hypercosymplectic 3-structures.

Theorem 13.6 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that
ξ1, ξ2, ξ3 are tangent to M. Then the distribution ξ is integrable.

Theorem 13.7 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that
ξ1, ξ2, ξ3 are tangent to M. Then the following statements are equivalent.
(i) M is D-geodesic, i.e., h(X, Y) = 0, ∀X, Y ∈ �(D).
(ii) The distribution D ⊕ ξ is integrable.
(iii) The second fundamental form h of M satisfies

h(X,φαY) = h(φαX, Y), ∀X, Y ∈ �(D), α = 1, 2, 3.

Theorem 13.8 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that ξ1, ξ2, ξ3 are tangent to
M. Then we have:
(i) The distribution D ⊕ D⊥ is integrable.
(ii) The distribution D is integrable if and only if:

g([X, Y ], Z) = 0, ∀X, Y ∈ �(D), Z ∈ �(D⊥).

(iii) The distribution D⊥ is integrable if and only if:

g([X, Y ], Z) = 0, ∀X, Y ∈ �(D⊥), Z ∈ �(D).
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Theorem 13.9 ([38]) If (M, g) is a semi-Riemannian hypersurface of a mixed 3-
Sasakian manifold (M, (φα, ξα, ηα)α=1,3, g), such that ξ1, ξ2, ξ3 are tangent to M,
then we have:
(i) The distributions Dα ⊕ ξα, α = 1, 2, 3, are integrable.
(ii) The distribution D⊥ is not integrable.
(iii) The distribution D is not integrable, provided that dimension of M is strictly
greater than 7.

Theorem 13.10 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that
ξ1, ξ2, ξ3 are tangent to M. Then the following statements are equivalent:
(i) The distribution D⊥ ⊕ ξ is integrable.
(ii) M is (D,D⊥)-geodesic, i.e., h(X, Y) = 0, ∀X ∈ �(D), Y ∈ �(D⊥).

Theorem 13.11 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that
ξ1, ξ2, ξ3 are tangent to M. If D ⊕ ξ is integrable, then its leaves are totally geodesic
immersed in M.

Theorem 13.12 ([38]) Let (M, g) be a semi-Riemannian hypersurface of a mixed
3-Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g), such that
ξ1, ξ2, ξ3 are tangent to M. IfD⊥ ⊕ ξ is integrable, then the induced foliationF(D⊥ ⊕
ξ) is totally geodesic, i.e., each leaf of the foliation is totally geodesic immersed in
M. Moreover, if M is a mixed 3-Sasakian manifold, then any leaf is never totally
geodesic immersed in M.

13.4.2 Semi-Riemannian Hypersurfaces of Manifolds
Endowed with Metric Mixed 3-Structures,
Normal to the Structure Vector Fields

Let (M, (φα, ξα, ηα)α=1,3, g) be a manifold with a metric mixed 3-structure and let
(M, g) be a semi-Riemannian hypersurface of M, such that ξi is normal to M, where
i is settled in {1, 2, 3}. Then it is clear that TM⊥ = {ξi} and ξj, ξk are tangent to
M, provided that {j, k} = {1, 2, 3} \ {i}. Moreover, if the metric mixed 3-structure
is positive, then the sign of the hypersurface is εM = +1, provided that i = 1 or
i = 2, and εM = −1, provided that i = 3. Analogous, if the metric mixed 3-structure
is negative, then the sign of the hypersurface is εM = +1, provided that i = 3, and
εM = −1, provided that i = 1 or i = 2.

Next, we settle j and k such that (i, j, k) to become an even permutation of (1, 2, 3).
We consider the distribution ξjk = {ξj} ⊕ {ξk} and let ξ⊥

jk be the orthogonal comple-
mentary distribution to ξjk in TM. We have the decomposition TM = ξjk ⊕ ξ⊥

jk and
we can easily remark that φi(ξjk) = ξjk . Moreover, the distribution ξ⊥

jk is invariant by
each φα, α = 1, 2, 3 (see [38]) and we can prove the following results.
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Proposition 2 ([38]) If (M, g) is a semi-Riemannian hypersurface of a mixed 3-
Sasakian or mixed 3-cosymplectic manifold (M, (φα, ξα, ηα)α=1,3, g) such that ξi is
normal to M, then the distribution ξjk is integrable.

Theorem 13.13 Let (M, g) be a semi-Riemannian hypersurface of a manifold M
endowed with a metric mixed 3-structure ((φα, ξα, ηα)α=1,3, g) such that ξi is nor-
mal to M.
(i) If (M, (φα, ξα, ηα)α=1,3, g) is a mixed 3-cosymplectic manifold then the distribu-
tion ξ⊥

jk is integrable. Moreover each leaf of ξ⊥
jk is totally geodesic immersed in M.

(ii) If (M, (φα, ξα, ηα)α=1,3, g) is a mixed 3-Sasakian manifold then the distribution
ξ⊥

jk is never integrable, provided that dimension of M is strictly greater than 3.

Remark 2 We note that non-degenerate invariant and anti-invariant submanifolds
in manifolds endowed with mixed 3-structures were recently studied in [46], the
relevant ambient being mixed 3-Sasakian and mixed 3-cosymplectic.

13.5 Paraquaternionic CR-submanifolds

Let N be an n-dimensional non-degenerate submanifold of an almost paraquater-
nionic hermitian manifold (M,σ, g). We say that (N, g) is a paraquaternionic CR-
submanifold of M if there exists a non-degenerate distribution D : x → Dx ⊆ TxN
such that on any U ∩ N we have (see [44])
(i) D is a paraquaternionic distribution, i.e.,

JαDx = Dx, α ∈ {1, 2, 3}

and
(ii) D⊥ is a totally real distribution, i.e.,

JαD⊥
x ⊂ T⊥

x N, α ∈ {1, 2, 3}

for any local basis {J1, J2, J3} of σ on U and x ∈ U ∩ N , whereD⊥ is the orthogonal
complementary distribution to D in TN .

A non-degenerate submanifold N of an almost paraquaternionic hermitian man-
ifold (M,σ, g) is called a paraquaternionic (respectively, totally real) submanifold
if D⊥ = 0 (respectively, D = 0). A paraquaternionic CR-submanifold is said to be
proper if it is neither paraquaternionic nor totally real.

We remark that other important classes of submanifolds in paraquaternionic
Kähler manifolds have been recently investigated: Kähler and para-Kähler subman-
ifolds in [4, 49, 60], normal semi-invariant submanifolds in [1, 8, 62], anti-invariant
submanifolds in [26], and lightlike submanifolds in [37, 40].

Example 1 (i) The canonical immersion of Pn
H̃(c) into Pm

H̃(c), where n ≤ m, pro-
vides us a very natural example of paraquaternionic submanifold (see [51]).
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(ii) The real projective space Pn
sR( c

4 ) is a totally real submanifold of the paraquater-
nionic projective space Pn

H̃(c), where s ∈ {0, . . . , n} denotes the index of the mani-
fold, defined as the dimension of the largest negative definite vector subspace of the
tangent space.
(iii) Let (M1, g1,σ1) and (M2, g2,σ2) be two paraquaternionic Kähler manifolds.
If U1 and U2 are open subsets of M1 and M2, respectively, on which local basis
{J(1)

1 , J(1)
2 , J(1)

3 } and {J(2)
1 , J(2)

2 , J(2)
3 } for σ1 and σ2, respectively, are defined, then the

product manifold U = U1 × U2 can be endowed with an almost paraquaternionic
hermitian non-Kähler structure (g,σ) (see [61]). Now, if N1 is a paraquaternionic
submanifold of U1 and N2 is a totally real submanifold of U2, then N = N1 × N2 is a
proper paraquaternionic CR-submanifold of the almost paraquaternionic hermitian
manifold (U, g,σ).
(iv) A large class of examples of proper paraquaternionic CR-submanifolds can be
constructed using the paraquaternionic momentum map [67] and the technique from
[55]. Suppose that a Lie groupG acts freely and isometrically on the paraquaternionic
Kähler manifold (M,σ, g), preserving the fundamental 4-form � of the manifold.
We denote by g the Lie algebra of G, by g∗ its dual and by V the unique Killing
vector field corresponding to a vector V ∗ ∈ g. Then there exists a unique section f
of bundle g∗ ⊗ σ such that (see [67])

∇fV ∗ = θV ∗ ,

for all V ∗ ∈ g, where the section θV ∗ of the bundle �1(σ) with values in σ is well
defined globally by

θV ∗(X) =
3∑

α=1

ωα(V, X)Jα, ∀X ∈ TM.

Moreover, the group G acts by isometries on the pre-image f −1(0) of the zero-section
0 ∈ g∗ ⊗ σ. Similarly as in [55], we have the decomposition

Tx(f
−1(0)) = Tx(G · x) ⊕ Hx,∀x ∈ M,

where G · x represents the orbit of G through x, supposed to be non-degenerate, and
Hx is the orthogonal complementary subspace of Tx(G · x) in Tx(f −1(0)). Because
Hx is invariant under the action of σ and Tx(G · x) is totally real, we can state now
the following result.

Proposition 3 ([44]) If f −1(0) is a smooth submanifold of a paraquaternionic Käh-
ler manifold (M,σ, g), then f −1(0) is a proper paraquaternionic CR-submanifold
of M.

We remark that, in general, f −1(0) is not a differentiable submanifold of M,
but always we can take a subset N ⊂ f −1(0) which is invariant under the action of
G and which is a submanifold of M. A particular example is given in [15], as a
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paraquaternionic version of the example constructed by Galicki and Lawson in [31]:
if p and q are distinct and relatively prime natural numbers, then we have the action
of the Lie group G = {ejt|t ∈ R} on P2

H̃ defined by

φp,q(t) · [u0, u1, u2] := [ejqtu0, ejptu1, ejptu2],

where ejt = cosht + jsinht and [u0, u1, u2] are homogenous coordinates on P2
H̃.

We can see that this action is free, isometric, and preserves the paraquaternionic
structure on P2

H̃ and, moreover, we have that the pre-image by the momentum map
fp,q : P2

H̃ → ImH̃ of the zero-section 0 ∈ ImH̃ is (see also [67]):

f −1
p,q (0) = {[u0, u1, u2] ∈ P2

H̃|qū0ju0 + pū1ju1 + pū2ju2 = 0}.

Finally, we conclude that the subset N of the regular points of f −1
p,q (0), given by

N = {[u0, u1, u2] ∈ f −1
p,q (0)|q2|u0|2 + p2|u1|2 + p2|u2|2 �= 0}

is a proper paraquaternionic CR-submanifold of P2
H̃.

Let now N be a paraquaternionic CR-submanifold of an almost paraquaternionic
hermitian manifold (M,σ, g). Then we say that:
(i) N is D-geodesic if h(X, Y) = 0, ∀X, Y ∈ �(D);
(ii) N is D⊥-geodesic if h(X, Y) = 0, ∀X, Y ∈ �(D⊥);
(iii) N is mixed geodesic if h(X, Y) = 0, ∀X ∈ �(D), Y ∈ �(D⊥);
(iv) N is mixed foliated if N is mixed geodesic and D is integrable.

Since any paraquaternionic submanifold of a paraquaternionic Kähler manifold is
a totally geodesic paraquaternionicKähler submanifold, we deduce the next property.

Proposition 4 ([44])

(1) Let (N, g) be a paraquaternionic submanifold of a paraquaternionic Kähler
manifold (M,σ, g). Then:
(i) dimN = 4n, n ≥ 1 and the signature of g|TN is (2n, 2n);
(ii) N is an Einstein manifold, provided that dimN > 4.

(2) The paraquaternionic submanifolds of R4m
2m and of paraquaternionic projective

space Pm
H̃ are locally isometric with R

4n
2n and Pn

H̃, respectively, where n ≤ m.

Next, let (N, g) be a paraquaternionic CR-submanifold of a paraquaternionic
Kähler manifold (M,σ, g). We put ναx = Jα(D⊥

x ), α ∈ {1, 2, 3} and ν⊥
x = ν1x ⊕

ν2x ⊕ ν3x, and remark that ν1x, ν2x, ν3x are mutually orthogonal non-degenerate
vector subspaces of TxN⊥, for any x ∈ U ∩ N . We also note that the subspaces
ναx depend on the choice of the local base (Jα)α, while ν⊥

x does not depend on it.
Moreover, we can prove the following result:

Proposition 5 ([44]) Let (N, g) be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g). Then we have:
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(i) Jα(ναx) = D⊥
x , ∀x ∈ U ∩ N, α ∈ {1, 2, 3};

(ii) Jα(νβx) = νγx, for any even permutation (α,β, γ) of (1, 2, 3) and x ∈ U ∩ N;
(iii) The mapping

ν⊥ : x ∈ N → ν⊥
x

defines a non-degenerate distribution of dimension 3s, where s = dimD⊥
x ;

(iv) Jα(νx) = νx, ∀x ∈ U ∩ N, α ∈ {1, 2, 3}, where ν is the complementary orthog-
onal distribution to ν⊥ in TN⊥.

Concerning the integrability of the distributions involved in the definition of the
paraquaternionic CR-submanifolds, we have the following results.

Theorem 13.14 ([44]) The distribution D⊥ is integrable.

Theorem 13.15 ([44]) The paraquaternionic distributionD is integrable if and only
if N is D-geodesic.

Moreover, we can prove the following.

Theorem 13.16 ([44]) The paraquaternionic distribution D is minimal.

Theorem 13.17 ([44]) Let N be a closed paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g). Then the 4r-form ω is closed and
defines a canonical de Rham cohomology class [ω] in H4r(M,R). Moreover, this
cohomology class is nontrivial if D is integrable and D⊥ is minimal.

Theorem 13.18 ([44]) Let N be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g). The next assertions are equivalent:
(i) The foliation F⊥ induced by D⊥ is totally geodesic;
(ii) h(X, Y) ∈ �(ν), ∀X ∈ �(D), Y ∈ �(D⊥);
(iii) AN X ∈ �(D⊥), ∀X ∈ �(D⊥), N ∈ �(ν⊥);
(iv) AN Y ∈ �(D), ∀Y ∈ �(D), N ∈ �(ν⊥).

A submanifold N of a semi-Riemannian manifold (M, g) is said to be a ruled
submanifold if it admits a foliation whose leaves are totally geodesic submanifolds
immersed in (M, g) [9, 63].

AparaquaternionicCR-submanifold of a paraquaternionicKählermanifoldwhich
is a ruled submanifold with respect to the foliation F⊥ is called totally real ruled
paraquaternionic CR-submanifold.Wehavenext characterization of totally real ruled
paraquaternionic CR-submanifolds which extends in paraquaternionic setting a pre-
vious result obtained in [41] for quaternionic CR-submanifolds.

Theorem 13.19 ([44]) Let N be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g). Then the following assertions are mutu-
ally equivalent:
(i) N is a totally real ruled paraquaternionic CR-submanifold.
(ii) N is D⊥-geodesic and:
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B(X, Y) ∈ �(ν), ∀X ∈ �(D), Y ∈ �(D⊥).

(iii) The subbundle ν⊥ is D⊥-parallel, i.e.,

∇⊥
X JαZ ∈ �(ν⊥), ∀X, Z ∈ �(D⊥), α ∈ {1, 2, 3}

and the second fundamental form satisfies:

B(X, Y) ∈ �(ν),

for all X ∈ �(D⊥), Y ∈ �(TN).

(iv) The shape operator satisfies:

AJαZX = 0, ∀X, Z ∈ �(D⊥), α ∈ {1, 2, 3}

and

AN X ∈ �(D), ∀X ∈ �(D⊥), N ∈ �(ν).

Remark 3 It is known that semi-Riemannian submersions were introduced by
O’Neill [54]. Let (M, g) and (M ′, g′) be two connected semi-Riemannian mani-
folds of index s (0 ≤ s ≤ dimM) and s′ (0 ≤ s′ ≤ dimM ′), respectively, with s′ ≤ s.
A semi-Riemannian submersion is a smooth map π : M → M ′ which is onto and
satisfies the following conditions:

(i) π∗|p : TpM → Tπ(p)M ′ is onto for all p ∈ M;
(ii) The fibers π−1(p′), p′ ∈ M ′, are semi-Riemannian submanifolds of M;
(iii) π∗ preserves scalar products of vectors normal to fibers.
The vectors tangent to fibers are called vertical and those normal to fibers are

called horizontal. We denote by V the vertical distribution, by H the horizontal
distribution, and by v and h the vertical and horizontal projection. An horizontal
vector field X on M is said to be basic if X is π-related to a vector field X ′ on M ′. It
is clear that every vector field X ′ on M ′ has a unique horizontal lift X to M and X is
basic.

Remark 4 A semi-Riemannian submersion π : M → M ′ determines, as well as in
theRiemannian case (see [30]), two (1, 2) tensor fieldsT andA onM, by the formulas:

T(E, F) = h∇vEvF + v∇vEhF

and

A(E, F) = v∇hEhF + h∇hEvF

respectively, for anyE, F ∈ �(TM).We remark that forU, V ∈ �(V),T(U, V ) coin-
cides with the second fundamental form of the immersion of the fiber submanifolds
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and for X, Y ∈ �(H), A(X, Y) = 1
2v[X, Y ] characterizes the complete integrability

of the horizontal distributionH.

Remark 5 In [47], S. Kobayashi observed the next similarity between a Riemannian
submersion and a CR-submanifold of a Kähler manifold: both involve two distribu-
tions (the vertical and horizontal distribution), one of them being integrable. Then he
introduced the concept of CR-submersion, as a Riemannian submersion from a CR-
submanifold to an almost hermitian manifold. Next, we’ll consider CR-submersions
from paraquaternionic CR-submanifolds of a paraquaternionic Kähler manifold.

Let N be a paraquaternionic CR-submanifold of an almost paraquaternionic her-
mitian manifold (M,σ, g) and (M ′,σ′, g′) be an almost hermitian manifold. A semi-
Riemannian submersionπ : N → M ′ is said to be a paraquaternionicCR-submersion
if the following conditions are satisfied [44]

(i) V = D⊥;
(ii) For each p ∈ N , π∗ : Dp → Tπ(p)M ′ is an isometry with respect to each com-

plex and product structure of Dp and Tπ(p)M ′, where Tπ(p)M ′ denotes the tangent
space to M ′ at π(p).

Example 2 We remarked below that

N = {[u0, u1, u2] ∈ f −1
p,q (0)|q2|u0|2 + p2|u1|2 + p2|u2|2 �= 0}

is a proper paraquaternionic CR-submanifold of P2
H̃. Moreover, the Lie group G =

{ejt|t ∈ R} acts freely and isometrically onN . Nowusing the paraquaternionicKähler
reduction (see Theorem 5.2 from [67]), we obtain that the manifold M ′ = N/G
equipped with the submersed metric (i.e., the one g′ which makes the projection
π : (N, g) → (M ′, g′) a semi-Riemannian submersion) is again a paraquaternionic
Kähler manifold with respect to the structure σ′ induced on M ′ from the structure σ
by the projection π. Moreover, π : N → N/G is a paraquaternionic CR-submersion.

The main properties of the paraquaternionic CR-submersions are as follows.

Theorem 13.20 ([44]) Let N be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g) and (M ′,σ′, g′) be an almost
paraquaternionic hermitian manifold. If π : N → M ′ is a paraquaternionic CR-
submersion, then (M ′,σ′, g′) is a paraquaternionic Kähler manifold.

Theorem 13.21 ([44]) Let N be a mixed foliated paraquaternionic CR-submanifold
of a paraquaternionic Kähler manifold (M,σ, g) and (M ′,σ′, g′) be an almost
paraquaternionic hermitian manifold. If π : N → M ′ is a paraquaternionic CR-
submersion, then N is locally a semi-Riemannian product of a paraquaternionic
submanifold and a totally real submanifold of M. In particular, if N is complete and
simply connected then it is a global semi-Riemannian product.

Remark 6 Let (M, g) be a semi-Riemannian manifold. The sectional curvature K of
a 2-plane in TpM, p ∈ M, spanned by {X, Y}, is defined by:
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K(X, Y) = R(X, Y , X, Y)

g(X, X)g(Y , Y) − g(X, Y)2
. (13.13)

It is clear that the above definition makes sense only for non-degenerate planes, i.e.,
those satisfying Q(X, Y) = g(X, X)g(Y , Y) − g(X, Y)2 �= 0.

The main curvature properties of the paraquaternionic CR-submersions are the
following.

Theorem 13.22 ([44]) Let N be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g) and (M ′,σ′, g′) be an almost
paraquaternionic hermitian manifold. If π : N → M ′ is a paraquaternionic CR-
submersion, then the sectional curvatures of M and the fibers are related by:

K(U, V ) = K̂(U, V ) − εαθUθV [g(AJαUU, AJαV V ) − g(AJαV U, AJαV U)]
− εαθUθV [g(h∇⊥

U JαU, h∇⊥
V JαV ) − g(h∇⊥

U JαV, h∇⊥
U JαV )]

for any unit spacelike or timelike orthogonally vector fields U, V ∈ �(D⊥) and
α ∈ {1, 2, 3}, where θU = g(U, U) ∈ {−1, 1} and θV = g(V, V ) ∈ {−1, 1}.
Theorem 13.23 ([44]) Let N be a paraquaternionic CR-submanifold of a
paraquaternionic Kähler manifold (M,σ, g) and (M ′,σ′, g′) be an almost
paraquaternionic hermitian manifold. If π : N → M ′ is a paraquaternionic CR-
submersion, then for any unit spacelike or timelike horizontal vector field X one
has:

Hα(X) = H ′
α(π∗X) − 4g(vB(X, X), vB(X, X)) + 2g(hB(X, X), hB(X, X)),

for α ∈ {1, 2, 3}, where Hα and H ′
α are the holomorphic sectional curvatures of M

and M ′, defined by Hα(X) = K(X, JαX) and H ′
α(X) = K ′(X, JαX), respectively.

Corollary 1 ([44]) Let N be a totally geodesic paraquaternionic CR-submanifold
of a paraquaternionic Kähler manifold (M,σ, g) and (M ′,σ′, g′) be an almost
paraquaternionic hermitian manifold. If π : N → M ′ is a paraquaternionic CR-
submersion one has:

Hα(X) = H ′
α(π∗X),

for any unit spacelike or timelike horizontal vector field X.

Remark 7 It is known that the natural product of two paraquaternionic Kähler man-
ifolds does not become a paraquaternionic Kähler manifold, but it is an almost
paraquaternionic Kähler product manifold (see [61]). Motivated by this result, the
concept of paraquaternionic CR-submanifolds was introduced recently in a more
general setting, namely for a paraquaternionic Kähler product manifold in [65].
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13.6 Mixed Paraquaternionic 3-Submersions

Let (M, (ϕα, ξα, ηα)α=1,3, g) be a manifold with a metric mixed 3-structure and
(M ′,σ, g′) be an almost paraquaternionic hermitian manifold. Then a
semi-Riemannian submersion π : M → M ′ is called a mixed paraquaternionic 3-
submersion (see [64]) if for any p ∈ M there exists a canonical local basis {J ′

α}α=1,3
of σ on an open neighborhood U of π(p) such that

Aαβ
(
J ′
β

)
π(y)

◦ π∗,y ◦ (ϕα)y = π∗,y

for any y ∈ π−1(U), where Aαβ are the entries of a matrix A in SO(2, 1).

Remark 8 Since SO(2, 1) preserves the identities (13.1) and (13.4)–(13.7), we can
choose in the above definition the local basis {J ′

α}α=1,3 such that Aαβ = −ταδαβ . In
the sequel we shall assume this. Therefore, we can suppose that for each p ∈ M, σπ(p)

admits a canonical local basis {J ′
α}α=1,3 such that:

π∗ϕα = J ′
απ∗, α = 1, 2, 3.

Concerning the transference of structures and the geometry of the fibers, we have
the following results.

Theorem 13.24 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. If the total space of the submersion is mixed 3-
cosymplectic or mixed 3-Sasakian then

(i) the base space is a locally para-hyper-Kähler manifold;
(ii) the fibers inherit the structure of the total space;

(iii) the fibers are totally geodesic immersed.

Theorem 13.25 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. If the total space of the submersion is mixed 3-
cosymplectic then the horizontal distribution is integrable.

Taking account of Vilms Theorem (which states that a semi-Riemannian submer-
sion is a harmonic map if and only if its fibers are minimal submanifolds [25]), we
deduce from Theorem 13.24 the following result.

Theorem 13.26 ([64]) Any mixed paraquaternionic 3-submersion from a mixed 3-
cosymplectic or mixed 3-Sasakian manifold is a harmonic map.

Remark 9 Letπ : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′)be amixedparaquaternionic
3-submersion. We denote by Bϕα

the ϕα-(para-)holomorphic bisectional curva-
ture, defined for any pair of nonzero non-lightlike orthogonal vector fields E and
G on M by
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Bϕα
(E, G) = R(E,ϕαE, G,ϕαG)

||E||2||G||2 .

On the other hand, the ϕα-(para-)holomorphic sectional curvature is defined for
any nonzero non-lightlike vector field E on M by Hϕα

(E) = K(E,ϕαE).

We denote by B̂ϕα
and Ĥϕα

the bisectional and the sectional (para-) holomorphic
curvatures of a fiber. On the other hand, for each of the three-structures {J1, J2, J3}
on the almost paraquaternionic hermitian manifold M ′, we consider the (para)-
holomorphic bisectional curvature tensor B′

J ′
α
and (para-)holomorphic sectional cur-

vature tensor H ′
J ′
α
defined in the usual way for almost (para-)hermitian manifolds.

The following theorem is a translation of the results of Gray [34] and O’Neill [53]
to the present situation.

Theorem 13.27 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. Let X and Y be unit spacelike or timelike horizon-
tal vector fields, and U and V be unit spacelike or timelike vertical vector fields,
orthogonal to ξα. Then, we have:

(i) Bϕα
(U, V ) = B̂ϕ̂α

(U, V ) − θUθV [g(TU V, TϕαUϕαV ) − g(TUϕαV, TϕαU V )];
(ii)

Bϕα
(X, U) = θXθU [g((∇UA)X(ϕαX),ϕαU) − g((∇ϕαUA)X(ϕαX), U)

+g(AXU, AϕαXϕαU) − g(AXϕαU, AϕαXU)

−g(TUX, TϕαUϕαX) + g(TUϕαX, TϕαUX)];

(iii)

Bϕα
(X, Y) = B′

J ′
α
(π∗X,π∗Y) − θXθY [2g(AXϕαX, AYϕαY)

−g(AϕαXY , AXϕαY) + g(AXY , AϕαXϕαY)],

for α = 1, 2, 3, where θU = g(U, U) ∈ {±1}, θV = g(V, V ) ∈ {±1}, θX =
g(X, X) ∈ {±1} and θY = g(Y , Y) ∈ {±1}.

Using Theorem 13.27, we obtain the following curvature properties of mixed
paraquaternionic 3-submersions.

Theorem 13.28 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. If X is a unit spacelike or timelike horizontal vector
field and U is a unit spacelike or timelike vertical vector field orthogonal to ξα, then
we have for α = 1, 2, 3:

(i) Hϕα
(U) = Ĥϕ̂α

(U) − τα[g(TUU, TϕαUϕαU) − g(TUϕαU, TϕαUU)];
(ii) Hϕα

(X) = H ′
J ′
α
(π∗X) − 3τα||AXϕαX||2.

Theorem 13.29 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. If M is mixed 3-cosymplectic, then we have
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Hϕα
(U) = Ĥϕ̂α

(U),

Hϕα
(X) = H ′

J ′
α
(π∗X),

for any unit spacelike or timelike horizontal vector field X and any unit spacelike or
timelike vertical vector field U orthogonal to ξα, where α = 1, 2, 3.

Theorem 13.30 ([64]) Let π : (M, (ϕα, ξα, ηα)α=1,3, g) → (M ′,σ, g′) be a mixed
paraquaternionic 3-submersion. If M is mixed 3-Sasakian, then we have for any unit
spacelike or timelike horizontal vector field X and any unit spacelike or timelike
vertical vector field U orthogonal to ξα:

Hϕα
(U) = Ĥϕ̂α

(U),

Hϕα
(X) = H ′

J ′
α
(π∗X) − 3ε,

with ε = ∓1, according as the metric mixed 3-structure is positive or negative,
respectively, and α = 1, 2, 3.

Finally, we give some examples of mixed paraquaternionic 3-submersions.

Example 3 ([64]) We consider M ′ = R
4
2

∼= H̃ equipped with the canonical para-
hyper Kähler structure (H = (Jα)α=1,2,3, g

′) and we take M = R
11
s (s = 5, respec-

tively, 6) endowed with the standard positive (negative) mixed 3-cosymplectic struc-
ture ((ϕα, ξα, ηα)α=1,2,3, g). Then the map π : M → M ′ defined by

π(x1, x2, x3, . . . , x11) =
(

x4 + x8√
2

,
x6 + x10√

2
,

x7 + x11√
2

,
x5 + x9√

2

)
,

is a mixed paraquaternionic 3-submersion.

Example 4 ([64]) Let (M ′, (J ′
α)α=1,2,3, g

′) be an almost para-hyperhermitian mani-
fold of dimension 4n and let (M, (ϕα, ξα, ηα)α=1,2,3, g) be a manifold endowed with
a metric mixed 3-structure having dimension 4m + 3. Then we can obtain a mixed
3-structure on the product manifold M̄ = M ′ × M by setting

ϕ̄α =
(

J ′
α 0
0 ϕα

)
, ξ̄α = m + n

m

(
0
ξα

)
, η̄α = m

m + n
(0, ηα),

for α = 1, 2, 3.
If we define now a semi-Riemannian metric ḡ on M̄ by

ḡ((E′, E), (G ′, G)) := g′(E′, G ′) + (m + n)2

m2
g(E, G),

for all E′, G ′ ∈ �(TM ′) and E, G ∈ �(TM), then a direct computation show that
ḡ is compatible with the mixed 3-structure (ϕ̄α, ξ̄α, η̄α)α=1,2,3 on M̄ = M ′ × M.
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Moreover, it can be easily proved that M̄ is mixed 3-cosymplectic if and only if
M is mixed 3-cosymplectic and M ′ is para-hyper-Kähler.

We consider now the canonical projection π1 : M ′ × M → M ′ andwe remark that
we have

π1∗ϕ̄α(E′, E) = π1∗(J ′
αE′,ϕαE) = J ′

αE′.

On the other hand, it is obvious that

J ′
απ1∗(E′, E) = J ′

αE′.

Thus, we have π1∗ϕ̄α = J ′
απ1∗, for α = 1, 2, 3, and therefore we deduce that π1

is a mixed paraquaternionic 3-submersion.

Example 5 ([64]) Let (M ′, H ′ = (J ′
α)α=1,2,3, g

′) be an almost para-hyperhermitian
manifold and let (TM ′,π, M ′) its tangent bundle. Then it is known from [20] that
the almost para-hypercomplex structureH ′ determines an almost para-hypercomplex
structure H = (Jα)α=1,2,3 on TM ′ such that (TM ′, H, G) is an almost para-
hyperhermitianmanifold, whereG is the Sasakimetric on TM ′.Moreover, the canon-
ical projection π : TM ′ → M ′ is a semi-Riemannian submersion which commutes
with the structure tensor fields of type (1, 1), i.e.,

π∗Jα = J ′
απ∗, α = 1, 2, 3 (13.14)

and if we suppose that M ′ is para-hyper-Kähler with g′ flat, then it follows that TM ′
is also a para-hyper-Kähler manifold.

Next, let (M, (ϕα, ξα, ηα)α=1,2,3, g) be a manifold endowed with a mixed 3-
cosymplectic structure, then we can construct, as in the previous example, a
mixed 3-cosymplectic structure ((ϕ̄α, ξ̄α, η̄α)α=1,2,3, ḡ) on the product manifold
M̄ = TM ′ × M. If we define the map F : M̄ → M ′ by

F(E, E′) = π(E),

for all E ∈ �(TTM ′) and E′ ∈ �(TM), then using (13.14) it follows that

F∗ϕ̄α = J ′
αF∗, α = 1, 2, 3.

Therefore F is a mixed paraquaternionic 3-submersion.
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