
Chapter 18

Association of COPD and Lung Cancer: How

Does COPD Management Change

the Outcome of Treatment of Lung Cancer?

Shinsaku Togo, Yukiko Namba, and Kazuhisa Takahashi

Abstract Chronic obstructive pulmonary disease (COPD) and lung cancer are

caused by cigarette smoking, and there is increasing evidence linking the two

diseases beyond a common etiology. COPD is widely considered to be a

preneoplastic condition of smoking-related lung cancer. However, COPD is an

independent risk factor for lung cancer and suggests some selected COPD pheno-

type in high-risk patients associates the development of lung cancer. Lung cancer

patients with COPD have a significantly worse outcome than those without COPD.

Thus, screening of patients with COPD for early detection of lung cancer using

biomarkers and computed tomography has been suggested to improve outcomes.

However, this approach of increased surveillance is hampered by the lack of

sensitivity of treatment and the resulting large number of false-positive diagnoses.

Improved understanding of the links between COPD and lung cancer and bio-

markers that are more reliable may make this approach viable. In future, it may

be possible to treat COPD patients with targeted therapies to reduce the risk of

development of lung cancer.

Keywords COPD-associated lung cancer • Lung cancer • Management

18.1 Introduction

The risk of lung cancer in patients with chronic obstructive pulmonary disease

(COPD) is well established, and several mechanisms have been suggested to

explain the strong association between emphysema and lung cancer. There are

55 carcinogens in cigarette smoke that have been evaluated by the International
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Agency for Research on Cancer (IARC) and for which there is “sufficient evidence

for carcinogenicity” in laboratory animals or humans [1]. Thus, it is reasonable that

both lung cancer and emphysema are associated with cigarette smoking, which, by

generating reactive oxidant species (ROS), induces a chronic inflammatory state in

the lung and results in DNA damage.

Typically, airway disease and smoking exposure are associated with proximal

lung cancers, such as squamous cell carcinoma (SCC) and small cell lung carci-

noma (SCLC), rather than adenocarcinoma. Squamous metaplasia is common in

smokers and is associated with airway obstruction in COPD [2]. The function of

bronchoalveolar stem cells (BASCs) is unknown, but these cells lead to Kras-

induced lung adenocarcinoma in a mouse model [3]. Inflammatory mediators

induced by cigarette smoke may promote growth of BASCs and stimulate nuclear

factor-kB (NF-kB) and signal transducer and activator of transcription 3 (STAT3),

which have key roles in development of lung cancer from COPD [4].

COPD is considered to be a preneoplastic condition of lung cancer, and about

2.2% of COPD patients develop lung cancer per year [5]. The risk of lung cancer in

patients with COPD is approximately fivefold greater than that of smokers without

COPD, independent of age and amount of cigarette smoking [6]. Smoking is an

independent risk factor for COPD. The genetic and biological characteristics of

COPD are similar to those of lung cancer, but the mechanism of development of

lung cancer in COPD is unknown. However, this mechanism seems to involve

individual host susceptibility to cigarette smoke and features of heterogeneity

between the two diseases. Further large cohort studies are needed in subjects with

appropriate phenotypes to identify potential drivers and predict biomarkers for

screening of COPD-associated lung cancer.

18.2 Screening for Early Detection of COPD-Associated

Lung Cancer

18.2.1 Annual Computed Tomography (CT) for Lung Cancer
Screening

It is unclear whether the degree of airflow limitation and alveolar destruction

confers a regional or global risk of lung cancer. The incidence of lung cancer

may be related to the severity of airspace destruction, as assessed by CT-based

semiquantitative scoring of emphysema lesions in the lungs [7–9]. Emphysema

lesions of �5% on CT were found to be associated with a 3.8-fold increase in lung

cancer risk among smokers [9]. An increased risk of lung cancer has also been

found with more severe COPD, based on the percentage predicted forced expiratory

volume in 1 s (FEV1) [7, 10, 11].
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Screening of COPD patients for development of lung cancer using annual CT

scans has been suggested for early detection. Patients with COPD and those with

>35 pack-years of smoking have a significantly increased risk of death due to lung

cancer, but CT screening was reported to have no significant effects on lung cancer

mortality [12]. However, the National Lung Screening Trial (NLST) showed that

low-dose CT screening is associated with a decrease in mortality from lung cancer

of 20%. In screening of patients with spirometric COPD, there was a twofold

increase in lung cancer incidence and a trend favoring greater detection of early-

stage cancers and fewer late-stage cancers in CT screening compared with chest

radiography screening [13]. However, this result was associated with 96.4% false-

positive findings, and 38.8% of patients with lung cancer were false negatives that

were missed by CT screening [14]. Therefore, these approaches of increased

surveillance are hampered by the lack of sensitivity of treatment and the large

number of false-positive diagnoses [13].

18.2.2 Screening Using Liquid Biomarkers

Early detection of lung cancer in high-risk individuals has been attempted using

evaluation of serum tumor markers such as cancer antigen 19–9 (CA19-9) and

CA125, which are increased in relation to the severity of COPD [15]. However, it is

difficult to use markers to detect lung cancer in COPD, since the serum levels of

carcinoembryonic antigen (CEA), neuron-specific enolase (NSE), and cytokeratin

fragment 19 (CYFRA 21–1) do not differ between patients with lung cancer and

those with nonneoplastic lung diseases such as acute pneumonia, COPD, and

interstitial lung diseases [16, 17].

Methods used for early diagnosis of lung carcinoma, including biological tests of

blood samples and multiplexed tumor-associated autoantibody-based blood tests,

are inconclusive or require confirmation in larger cohorts [18]. A large prospective

study of early detection of lung cancer in patients with lung impairment showed that

serum p53Abs levels were associated with smoking level and lung function impair-

ment, both of which are risk factors of cancer development. However, no occur-

rence of lung cancer was detected in follow-up of positive subjects [19].

Plasma cfDNA levels in patients with non-small cell lung cancer (NSCLC) are

significantly higher than in patients with chronic respiratory inflammation and in

healthy controls. The mechanism through which cfDNA is released into the blood-

stream is unknown, but it is revealed that elevated plasma cfDNA levels in patients

with NSCLC are primarily due to tumor development, which has clinical implica-

tions for lung cancer screening and early diagnosis [20]. Migration of circulating

tumor cells (CTCs) into the bloodstream also seems to be an early event in

carcinogenesis, based on data showing that tumors of size <1 mm are associated

with the presence of CTCs in blood [21]. CTCs were detected in 3% of COPD

patients by the isolation by size of epithelial tumor cells (ISET) method in blood
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filtration size-based CTC selection. After a mean follow-up period of 3.2 years, a

surveillance CT program revealed lung nodules with a mean size of 1.7 cm in

diameter. All CTC-positive COPD patients had lung cancer of stage IA [22]. These

results suggest that validation of liquid biomarkers for early detection of lung

cancer in COPD patients is warranted in larger population-based studies in different

ethnic groups.

18.2.3 Screening of Gene Mutations

Cigarette smoking is a major risk factor for COPD, but only a minority of smokers

develop COPD, and this seems to depend on the host response against cigarette

smoking [23]. A minor population of COPD patients with genetic susceptibility to

COPD-associated lung cancer have DNA damage that results in occurrence of lung

cancer. Genetic mapping has identified several single nucleotide polymorphisms

(SNPs) that have been speculatively linked to COPD-associated lung cancer. In

addition, genome-wide association studies (GWASs) have shown that lung cancer

and COPD share some genetic mutations, independent of smoking. Genotypes with

reduced α1-antitrypsin (A1AT) inhibitory capacity have an increased risk for lung

cancer [24, 25]. Imbalance of oxidative stress and antioxidants is common in COPD

and drives cancer onset through free radical-mediated DNA damage, repair of

which may be impaired by mutations and polymorphisms. Mutation of antioxidant

enzymes such as glutathione S-transferase μ1 (GSTM1) reduces lung tissue pro-

tection against damage-inducing substances in tobacco and increases the risk of

lung cancer in patients with COPD compared to healthy subjects [26].

Epidemiological studies have consistently found associations between the chro-

mosome 15q24–15q25.1 locus, which is linked to nicotine addiction, and lung

cancer susceptibility in COPD [27]. The association with this locus encompasses

four candidate genes (CHRNA3/CHRNA5, IREB2, PSMA4) and several function-

ally relevant SNPs in a region where the degree of linkage disequilibrium is still to

be clarified. Genetic variation in the 15q25 locus, which encodes the nicotinic

acetylcholine receptor subunits (CHRNA3/CHRNA5), has a strong association

with tobacco consumption and is a risk factor for COPD and lung cancer [28]. Var-

iants of IREB2, a mediator of iron homeostasis, have also been linked to COPD and

lung cancer [29]. PSMA4 encodes a structural protein of the 20S proteasome core

and has recently been associated with in vitro lung cancer cell proliferation and

apoptosis. PSMA4 mRNA levels are increased in lung tumors compared with

normal lung tissues [30]. The Hedgehog-interacting protein (HHIP), which medi-

ates the epithelial response to smoking, including the epithelial-mesenchymal

transition (EMT), is related to COPD and lung cancer, and genetic variants on the

4q31 (HHIP/glycophorin A (GYPA)) locus are also associated with lung cancer

[31]. FAM13A protein has an N-terminal region containing a RhoGAP domain,

which has tumor suppressor activity through inhibition of RhoA intracellular signal
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transduction. Genetic variants in FAM13A may determine susceptibility to COPD

and lung cancer [32].

Smoking and oxidative stress can induce EMT-induced airway remodeling,

which is related to the pathogenesis of COPD, and the occurrence of EMT in

COPD may account for the high incidence of lung cancer in patients with COPD

[33]. Recent GWASs have shown that germline variants in or close to EMT-related

genes (e.g., Snai1, Slug) are associated with a risk for lung cancer or COPD

[31]. The functional germline variant c.353T>C (p.Val118Ala) of Snai1 confers

decreased risks of lung cancer and COPD, and this variant affects lung cancer risk

through a mediation effect on COPD [34].

Screening of gene mutations as susceptibility loci for COPD-associated lung

cancer, particularly in the 15q24–15q25 region, should be considered after sensi-

tivity is determined in future studies. Monitoring of mutation-positive COPD

patients may allow early diagnosis of lung cancer at lower cost than noninvasive

screening for inflammatory cells in blood or sputum, rather than lung tissues from

invasive diagnostic modalities such as fine-needle aspiration, transbronchial

biopsy, and thoracoscopic surgery. Genetic variants might be predictors for the

risk of COPD and lung cancer separately, as well as for the risk of development of

lung cancer in patients with COPD (Table 18.1).

18.2.4 Screening of Epigenetic Changes

Epigenetic changes in COPD include higher levels of methylation induced by

cigarette smoking, while altered expression of numerous oncogenes and tumor

Table 18.1 Targets and effects of genetic mutations in COPD-associated lung cancer

Genetic mutations Biological functions Ref

Nicotinic acetylcholine receptor region

on chromosome 15q25

Cholinergic nicotinic acetylcholine

receptor (CHRNA3/CHRNA5)

Associations with tobacco consumption and a

risk factor for lung cancer

[28]

Family with sequence similarity

13, member A (FAM13A)

Dysfunction of tumor suppressor activity-

mediated RhoA signaling

[32]

Iron-responsive element-binding pro-

tein 2 (IREB2)

Contains genes encoding CHRNA3/CHRNA5

and associated with lung cancer

[29]

Proteasome subunit alpha type

4 (PSMA4)

Lung cancer cell proliferation, apoptosis, and

increased in lung tumors

[30]

Others

Glutathione S-transferase μ1 (GSTM1) Antioxidant-mediated DNA damage [26]

Hedgehog-interacting protein (HHIP) Epithelial response (EMT) to smoking [31]

Snai1 Powerful regulator of EMT [34]

EMT Epithelial-mesenchymal transition
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suppressor gene promoters is observed in most lung cancers. Methylation of

CDKN2A, MGMT, CCDC37, and MAP1B is significantly associated with COPD

and lung cancer. CDKN2A, which encodes tumor suppressors p16 (INK4A) and

ARF, is a common methylation mark in COPD and lung cancer [35]. Such aberrant

methylation of tumor suppressor genes in lung tissues and induced sputum may be a

predictor for early diagnosis of COPD-associated lung cancer [36]. Epigenetic

changes in noncoding RNAs, including microRNAs (miRNAs), which are small

noncoding, single-stranded RNA molecules, may also be important. For example,

miR-1 has been linked to cigarette smoking-related conditions such as heart disease

and cancer [37] and is related to atrophy of skeletal muscle in patients with COPD

compared with non-smoking controls [37]. miR-21 has roles in inflammation and

carcinogenesis [38], whereas miR-146a suppresses inflammation and cancer cell

proliferation [39]. However, the mechanisms of epigenetic biomarkers in COPD-

associated lung cancer and their effects on prognosis remain poorly understood.

18.3 Management of Outcomes of COPD-Associated Lung

Cancer

18.3.1 Management of Chronic Inflammation

Exposure to cigarette smoke causes inflammatory cells, particularly neutrophils and

macrophages, to be recruited at the site of lung injury and activated to release

neutrophil elastase (NE), serine and matrix metalloproteinases (MMPs), and ROS.

A defect in A1AT contributes to degradation of elastin due to activation of NE and

oxidative stress-mediated inflammation in the lung, resulting in development of

emphysema and lung tumorigenesis [40, 41]. Many studies have shown that chronic

inflammation in lung tissue and associated repair processes in COPD may initiate

lung cancer [42, 43]. An excess of circulating inflammatory mediators such as IL-6,

TNF-α, and IL-8 released from inflammatory cells maintains chronic systemic

inflammation in patients with COPD and, thus, further contributes to carcinogenesis

[44, 45]. Current therapies for COPD, including inhaled corticosteroids (ICS), long-

acting muscarinic receptor antagonists (LAMAs), long-acting β2-agonists
(LABAs), and theophylline, suppress inflammation in the lung and prevent spill-

over of inflammatory mediators into the systemic circulation. Theophylline indi-

rectly suppresses NF-kB, which is a cause of persistent airway inflammation, and

may reduce the risk of tumorigenesis by activating histone deacetylase 2 (HDAC2),

which restores sensitivity to ICS in patients with COPD [46]. Thus, patients with

COPD who are treated with ICS have a reduced incidence of lung cancer and lower

mortality, which suggests that inhibition of inflammation can slow lung tumor onset

[47]. However, large prospective trials have failed to demonstrate a survival benefit

in chronic use of ICS with or without LABAs [48].
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18.3.2 Management of Oxidative Stress

The free radical hypothesis suggests that reactive nitrogen and oxygen species

(RNOS) drive accumulation of cell and DNA damage, which results in mutations

and cancer initiation if incorrectly repaired. RNOS can degrade proteins, including

tumor suppressors, leading to cell division and decreased apoptosis and DNA repair

[49], which results in cancer promotion and progression. Antioxidant therapy for

reduction of the risk of lung cancer using vitamin C, vitamin E, or N-acetyl cysteine

(NAC) may be of benefit for patients with COPD. However, supplementation with

vitamins E or C was shown to have no significant effect on total cancer incidence in

the USA [50, 51], and 2-year NAC supplementation resulted in no survival or

event-free survival benefit in patients with lung cancer, most of whom were

previous or current smokers [52].

18.3.3 Management of Angiogenesis

A recent study suggested that hypoxic regions of the lung may have a role in the

association between COPD and lung cancer. The hypoxia-inducible factor (HIF)

family, HIF-1α and HIF-2α, is well known as inducers of VEGF-mediated angio-

genesis and is likely to play a role in the increased cancer risk in COPD

[53, 54]. HIF-2α overexpression in a conditionally expressed mutant mouse

model of lung carcinogenesis resulted in larger tumors [55]. However, HIF-2α
deletion unexpectedly showed an increase in tumor burden, associated with a

decrease in a candidate tumor suppressor gene.

Serum VEGF levels are significantly associated with clinical staging and lower

survival of patients with NSCLC [56]. Bevacizumab is a recombinant, humanized,

monoclonal antibody against VEGF that is approved as first-line treatment of

NSCLC based on data from randomized phase III clinical trials [57]. In COPD

pathogenesis, epithelial cell injury mediated by oxidative stress may induce a

decrease in lung VEGF levels, resulting in promotion of COPD. Inhibition of

VEGF receptors induces alveolar septal cell apoptosis and leads to enlargement

of air spaces, indicative of emphysema [58]. These results suggest that

bevacizumab-based chemotherapy for COPD-associated lung cancer may be dis-

advantageous for COPD management. However, some studies have linked COPD

with increased expression of VEGF in bronchial tissue [59], and activation of

NF-kB in COPD promotes HIF stabilization [60]. The significance of VEGF

production in patients with COPD remains unclear, but inflammation and hypoxia

regulation may have some impact on the prognosis of COPD-associated lung

cancer. Thus, the response to specific treatment for tumors arising in a hypoxic

lung-induced VEGF production might be exploitable in patients with

underlying COPD.
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18.3.4 Management of Extracellular Matrix Regulation

Neutrophil elastase (NE) has a well-known effect on elastin fiber degradation

that results in emphysema and promotes lung tumor growth in a Kras mouse

model of lung adenocarcinoma [61]. The relationship of NE activity with poor

outcomes in human lung cancer has not been established, but drugs that inhibit NE

activity might be of value as therapeutic prevention for COPD-associated lung

cancer.

Members of the MMP family are matrix-degrading enzymes in emphysema and

lung cancer and may be mechanistic links between COPD and lung cancer by

contributing to lung tissue destruction in emphysema and promoting lung tumor

growth and invasiveness. The activities of MMP9 (gelatinase B) in BAL fluid and

serum correlate with COPD severity [62, 63], and MMP9 is essential for tumor

angiogenesis in animal models [64]. MMP1 (collagenase I) contributes to growth of

most solid tumors and promotes metastasis [65]. Overexpression of MMP1 in

transgenic mice causes development of emphysema [66], and polymorphisms in

the MMP1 promoter predict disease severity in patients with COPD [67]. MMP12,

a somewhat macrophage-specific proteinase, is a stimulator of emphysema, and its

activity has been associated with disease severity in COPD [68]. Interestingly,

MMP12 is known more as a tumor suppressor and not as a target for treatment of

lung cancer [69] (Table 18.2).

The effects of AZD1236, a selective MMP9 and MMP12 inhibitor, on emphy-

sematous lung tissue degradation were evaluated in patients with moderate-to-

severe COPD, but AZD1236 and other MMP inhibitors do not improve lung

function and symptoms [70]. Similarly, other MMP inhibitors, marimastat

(BB2516) and BAY12-9566, failed to improve survival in patients with advanced

NSCLC [71]. Clinical trials have yet to demonstrate significant increases in overall

survival and toxicity remains an issue.

18.3.5 Drug Potency

Increasing intracellular levels of cAMP induce cancer cell death in vitro. Theoph-

ylline, which elevates intracellular cAMP, induces cancer cell apoptosis and thus

may be a potential anticancer drug in combination with other chemotherapeutic

agents [72]. COX2 generates prostaglandin E2 (PGE2), which strongly elevates

intracellular cAMP, but PGE2 also promotes carcinogenesis in several ways,

including increased resistance to apoptosis, increased angiogenesis, and enhanced

invasion [73]. Celecoxib, a COX2-selective inhibitor, may reduce the cancer risk in

a high-risk smoking population based on reduction of proliferation markers in the

bronchial epithelium [74]. Celecoxib increased progression-free survival in com-

bination treatment in patients with lung adenocarcinoma cancer with biomarkers for

high metabolism of PGE2 in urine [75] and reduced progression of cigarette smoke-
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induced pulmonary emphysema by suppression of NF-kB-regulated anti-

inflammatory effects in an animal model [76]. Oral prostacyclin (iloprost) also

has a tumor-suppressive effect and displays antiproliferative and antimetastatic

properties [77]. However, the proven benefits of celecoxib and iloprost are limited

to patients with established COPD. A nonselective COX inhibitor, indomethacin,

and a nonselective PDE inhibitor, IBMX, significantly inhibit proliferation of

SCLC cells with neuronal characteristics in vitro [78]. Beta-adrenergic receptors

co-express COX2 in lung adenocarcinoma tissue [79], and indacaterol, an ultra-

long-acting inhaled β2-agonist (LABA), inhibits NF-kB activity and reduces

expression of NF-kB target genes related to COPD and lung cancer, including

MMP9 [80]. This suppresses tumor cell invasion and migration in vitro, but the

effect on outcomes for lung cancer in human study is unknown.

Non-neuronal ACh activates downstream NF-kB signaling and acts as an

autoparacrine growth factor to stimulate cell proliferation and promote epithelial-

mesenchymal transition (EMT) in NSCLC via activation of the M2 muscarinic

receptor (M2R) [81, 82]. Expression of another mAChR, M3R, is significantly

increased in NSCLC and is correlated with tumor metastasis and poor survival.

M3R enhances expression and activity of MMP9 through PI3K/Akt, which pro-

motes migration and invasion of NSCLC cells, and blockade of M3R suppresses

proliferation, invasion, and migration of NSCLC and SCLC cells [83–85]. R2HBJJ

has high affinity to M3 and M1 AChRs and markedly suppresses growth of NSCLC

cells [86]. These findings indicate that M2R and M3R antagonists may be beneficial

therapy for COPD-associated lung cancer. Such compounds are currently used for

COPD treatment, including LAMAs, LABAs, and theophylline, but they may be

toxic at higher concentrations required for anticancer treatment according to the

results from these in vitro experiments. There are currently no clinical trials of these

drugs in lung cancer patients.

18.4 Treatment of COPD-Associated Lung Cancer

18.4.1 Thoracic Surgery

Severe airway obstruction, advanced clinical stage, and higher age are independent

factors associated with an indication for thoracic surgery in COPD-associated lung

cancer [87]. Comorbidities such as COPD can have a significant effect on long-term

survival due to an influence on treatment indication, complication rate, and treat-

ment efficacy. COPD and smoking are significant independent risk factors for

postoperative pulmonary complications such as atelectasis and pneumonia and

are associated with a poorer long-term outcome [88]. Patients receiving curative

surgery for NSCLC who have co-existing COPD have worse survival than their

counterparts with better pulmonary function. Notably, the treatment-naı̈ve COPD

patients who have improved preoperative symptoms and pulmonary function by
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inhaled tiotropium starting 2 weeks prior to surgery demonstrated better postoper-

ative pulmonary functions than expected [89].

Higher COPD grades have more postoperative pulmonary complications and

poorer long-term survival because of higher rates of recurrence of lung cancer

(Fig. 18.1) [90]. In patients with stage I resected NSCLC, COPD is an independent

predictor of reduced recurrence-free survival, and these patients are at higher risk of

recurrence than patients without COPD [91, 92]. Therefore, it is important to

identify patients with early-stage NSCLC for more aggressive treatment. Clinical

studies are needed in patients with lung cancer to determine how COPD promotes

recurrence and affects the indication for adjuvant chemotherapy following curative

resection.

18.4.2 Chemotherapy and Molecular Targeted Therapy

Although there is not yet strong evidence for specific difference in management for

lung cancer comorbidity with COPD, the patients with high age, poor overall PS,

and severe impaired lung function associated with COPD are generally restricted to

receive the appropriate platinum-based standard chemotherapy for the high risk of

adverse effects. Thus, they often receive single-agent chemotherapy or choose best

supportive care due to rapid progression to death. The mild COPD patients with

advanced metastatic disease who received chemotherapy can delayed progression,

palliate symptom, and improved overall survival and did not find significant

differences in improved treatment outcome between mild COPD and non-COPD

[93]. However, COPD exacerbations by airway infections and other factors often

prevent the chemotherapy, and once acute exacerbation has occurred, the mortality

rate is high in patients with COPD-associated lung cancer during chemotherapy.

EGFR mutations and ALK rearrangements are major drivers in non-smoker lung

adenocarcinoma, and these patients may be particularly responsive to molecular

targeted therapy. In contrast, patients with COPD-associated NSCLC have a low

prevalence of EGFR mutations and ALK rearrangements, but these are linked to

COPD severity and more frequent poorly differentiated lung cancer with a poor

Fig. 18.1 Overall survival

after pulmonary resection

for lung cancer. The 5-year

survival rates in the

non-COPD, mild, moderate,

and severe COPD groups

were 61.5, 50.2, 55.3, and

25.1%, respectively [90]
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prognosis [87, 94]. In a comparison of the molecular features of COPD-associated

adenocarcinoma with those of smoke-related adenocarcinoma without COPD,

Schiavon et al. found that EGFR mutation did not differ between the two groups,

but KRAS mutation was higher in smokers than in COPD patients [95].

In contrast to idiopathic interstitial pneumonias, the presence of COPD is not

recognized as a significant risk factor for drug-induced interstitial lung disease

associated with lung cancer treatment. Expression of EGFR is higher in lung cancer

patients and in COPD patients [96]. Thus, EGFR inhibition has been examined in

COPD as a method to prevent stimulation of mucous hypersecretion, but the initial

studies have produced negative findings [97].

18.4.3 Radiation Therapy

Stereotactic body radiotherapy (SBRT) is standard of care for early-stage non-small

cell lung cancer at high risk of surgical complications and associated with excellent

local control (�90% at 3 years). In previous retrospective study, 32% of stage I

lung cancer patients with COPD who underwent SBRT had radiation pneumonitis,

and COPD and the Brinkman index were statistically significant risk factors for the

development of radiation pneumonitis. However, SBRT-mediated radiation pneu-

monitis did not associate OS, and thus SBRT can be tolerated in early lung cancer

patients with COPD [98]. Severity of radiation pneumonitis associated higher in

patients with a high V20 (�25%) value and severe low-attenuation area (LAA)

grade on CT scans [99]. In contrast, patients with severe emphysema had a low risk

of radiation pneumonitis following SBRT rather than normal lung function and

with mild emphysema. Furthermore, fewer pack-years smoked among COPD

patients were the strongest predictor for severe radiation pneumonitis [100, 101].

SBRT can be considered as therapeutic option in patients with higher operative

risks, such as the elderly and patients with severe COPD. However, previous studies

still provide controversial results about the risk of radiation pneumonitis in severe

COPD patients. Further follow-up study might be needed to evaluate the tolerability

to SBRT in COPD-associated lung cancer patients.

18.4.4 Immunotherapy

Chronic inflammation is a common feature in COPD and lung cancer, but the

characteristics of immune cells in COPD differ from those found in lung cancer.

Immune cells in BAL fluid from COPD patients tend to shift toward the T helper

1 (TH1) phenotype with interferon-γ (IFNγ) production [102]. In contrast, immune

cells in most solid tumors show a trend for the TH2 phenotype with infiltration of

immunosuppressive cells in tumor tissue. These cells include myeloid-derived

suppressor cells (MDSCs) and regulatory T cells (TRegs) and express programmed
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cell death protein 1 (PD-1) on the cell surface, which results in suppression of

cytotoxic T lymphocyte function and enhanced tumor viability [103, 104]. The use

of PD-1- and PD-L1-blocking antibodies in therapy for NSCLC is focused on

increasing cytotoxic T cell activity, which increases the cancer antigen-mediated

immune response. Increasing PD-L1 expression in tumor tissue was observed in

smokers and associated with more pack-years [105] and anti-PD-1/PD-L1 treat-

ment prolonged OS in NSCLC patients with smoking history [106]. An increased

proportion of CD8þ T cells in lung parenchyma in COPD patients has been

described, and the PD-1 pathway has been suggested to be relevant in COPD

pathogenesis. CD8þ T cells expressing PD-1 are present at higher levels in blood

from COPD patients and are correlated with disease severity [107–109]. Further-

more, virus-induced expression of PD-L1, the ligand for PD-1, is decreased in

COPD macrophages, with a corresponding increase in IFNγ release from infected

COPD lungs resulting in increased severity of viral infection, prolonged viral

shedding, and structural lung damage associated with exacerbations

[110]. Although, anti-PD-1/PD-L1 treatment may associate better clinical outcome

in smoking related lung cancers patients with COPD, we should note that the use of

PD-1- and PD-L1-blocking antibodies may have indirect effects against chronic

inflammation-mediated COPD development and aberrant immune regulation, espe-

cially during exacerbation of COPD. Aminophylline, which is often used as a

bronchodilator for COPD patients, also has an unexpected effect on lymphocyte

regulation and synergistically accelerates lymphocyte cell division in patients with

lung cancer undergoing chemotherapy [111].

18.5 Conclusion

The incidence of COPD is a robust predictor of poor survival in lung cancer.

Therefore, early detection of lung cancer is important in high-risk COPD sub-

populations to prevent development of lung cancer. Although many approaches

to predict the onset of lung cancer in patients with COPD have been proposed, most

of them were still provided by experimental evidences (Table 18.3). Larger studies

are needed to validate the potential of early diagnostic identification of COPD-

associated lung cancer, along with further evidence of the efficacy of targeted

therapies. Follow-up studies are also needed to evaluate the impact on patients

with an increased risk of lung cancer and assess the predictive value of biomarkers

for early detection of lung cancer in at-risk patients with COPD.
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