
Examining Usability of Classes
in Collaboration with SPL Feature Model

Geetika Vyas and Amita Sharma

Abstract Software product line engineering paradigm focuses on developing
families of products keeping track of their common aspects and predicted vari-
abilities. Feature models are often used for depicting the commonalities and vari-
abilities existing in software product lines. Classes are used to program the features
of the feature models and thus a significant relationship exists between the two. As
software product line focuses on reuse, we have proposed a metric to measure the
degree of usability of classes in context of features which are using them. Eclipse
FeatureIDE is used to prove the proposed metrics. The aim of the research is to
track usability of classes keeping in mind their planned reuse, efficient development
and maintenance.

Keywords Software product line engineering � Features � Feature models �
Degree of usability � Eclipse FeatureIDE

1 Introduction

Software product lines engineering develops and maintains families of products
keeping track of their common aspects and predicted variabilities [1]. It focuses on
reusability [2]. It is structured into two main processes: domain engineering (also
called engineering for reuse) and application engineering (engineering with reuse)
[3]. Features are structures that extend and modify the structure of a given program
in order to meet the user requirement. Feature models introduced by Kang are used to
represent the features available in a product line. They portray all the configurations
a product line can possibly have [4]. The concept of feature is useful for description
of commonalities and variabilities not only in the analysis and design but also

Geetika Vyas (&) � Amita Sharma
The IIS University, Jaipur, India
e-mail: geetika_vyas@yahoo.co.in

Amita Sharma
e-mail: amitasharma214@gmail.com

© Springer Science+Business Media Singapore 2016
S.C. Satapathy et al. (eds.), Proceedings of the International Congress
on Information and Communication Technology, Advances in Intelligent Systems
and Computing 438, DOI 10.1007/978-981-10-0767-5_4

31



implementation phase of software product lines [5]. There exists a significant rela-
tionship between classes and features, but no significant work is done in reference to
the complexity that exists across the feature–class relationship. A feature in a feature
model is supported by class(s) in a class diagram. Software product line paradigm
aims reuse; and like features, classes are also reused. Therefore, the relationship
between feature model and class diagrams needs to be studied. The core focus of this
paper is to investigate the usability of classes. We have proposed a metric to measure
degree of usability of classes. Collaboration diagrams are used to check the result
generated by the metrics. The proposed metric is beneficial from the point of view
wherein we are able to detect the origin point of most vital classes in the feature
model, and also detect the most vital features and the least vital features possibly
turning dead in the future. Other possible benefits seen behind the research are
planned usage of classes in the system, their better development followed by
improved maintenance. The rest of the paper is organized as follows: Section 2
contains introduction of feature-oriented programming. Section 3 introduces Eclipse
FeatureIDE. Section 4 contains the proposed metrics and its implementation.
Section 5 contains the result, analysis and conclusion.

2 Feature-Oriented Programming

Feature-oriented programming paradigm allows decomposition of a program into
its constituent features. It was designed for software product line paradigm that
allows significant code reuse and the generation of many similar but functionally
different programs from the same set of features simply through selection of desired
features [6]. The stepwise refinement leads to a layered stack of features. This helps
in constructing well-structured software that can be tailored to the specific needs of
the user and the application scenario [7, 8].

3 FeatureIDE: Eclipse Plug-in

FeatureIDE is an eclipse-based integrated development environment (IDE). It
provides tool support for the feature-oriented design process and implementation of
software product lines [9]. Eclipse FeatureIDE provides the most powerful and
commercially successful open-source enhanced IDE support for feature-oriented
programming implementations [10]. Domain analysis and feature modeling are
supported with graphical feature model editor. Feature implementation is supported
by variety of composers like AHEAD, FeatureC++, FeatureHouse, AspectJ, DeltaJ,
Munge and Antenna building program families. Out of these we have used
FeatureHouse which is language independent.

32 Geetika Vyas and Amita Sharma



4 Experimental Setup

4.1 Implementation of the Proposed Metrics

In our Previous paper we have proposed metric for degree of usability [11] let us
assume an anonymous feature model and implement the proposed metrics over it.
Figure 1 contains this feature model, where F1 is the root node. It has three
children: F2 (mandatory), F3 (mandatory) and F4 (optional). The parent node F4
has two child features: F5 and F6. Parent nodes F2 and F3 have one mandatory
child each F7 and F8, respectively. There are following dummy classes, C1, C2,
C3, C4 and C5, used to implement this feature model. The usage of these classes by
the features is shown in Table 1.

The degree of usability can be defined as the number of times a class is used in
different features present in a feature model across the tree. It is obvious that at the
root node degree of all the classes will be zero, i.e. at the origin of the class its
degree of usability will always be zero. Irrespective of the traversal method the final
value of degree of usability of any class will always remain same. Table 1 displays
the individual class usage scenario across the feature model. It also shows the
calculated value of degree of usability following both methods of traversal, i.e.
breath first and depth first.

On the basis of the calculations in the above table we can conclude that classes 1
and 3 have the highest usability. They are used maximum number of times, in
comparison to the other classes. The value obtained by this metric is of great worth
because it is an indicator of their usage highlighting their importance and subsequent
use. Degree of usability can also be derived by classifying abstract and concrete
classes. The collaboration diagram generated for this feature model also reflects the
same value of usability of each class across each feature. Figure 2 proves our metric,
wherein it can be clearly seen that classes 1 and 3 have the maximum reusability.

4.2 Implementation of the Proposed Metric

For implementing the proposed metric, we take the example of the Direct-to-home
(DTH) systems. To implement our metric we are taking the broader aspect of DTH.

Fig. 1 Anonymous feature
model developed using
eclipse

Examining Usability of Classes … 33



We are focusing on its limited functionality and services. This television service is
the reception of satellite programs with a personal dish installed individually at
home. Its network consists of modulators, broadcasting center, encoders, satellites,
multiplexers and DTH receivers. Here service provider leases Ku-band

Table 1 Calculated values: degree of usability

Name of feature Name of class Degree of usability
(breath first traversal)

Degree of usability
(depth first traversal)

F1 (root feature) – – –

F2 Class 1, 2, 3, 4 d(C1) = 1 d(C1) = 1

d(C2) = 1 d(C2) = 1

d(C3) = 1 d(C3) = 1

d(C4) = 1 d(C4) = 1

F3 Class 1, 3 d(C1) = 2 d(C1) = 4

d(C3) = 2 d(C3) = 4

F4 Class 1, 2, 4 d(C1) = 3 d(C1) = 6

d(C2) = 2 d(C2) = 5

d(C4) = 2 d(C4) = 4

F7 Class 1, 2, 3, 4 d(C1) = 4 d(C1) = 2

d(C2) = 3 d(C2) = 2

d(C3) = 3 d(C3) = 2

d(C4) = 3 d(C4) = 2

F8 Class 1, 3, 5 d(C1) = 5 d(C1) = 3

d(C3) = 4 d(C3) = 3

d(C5) = 1 d(C5) = 1

F5 Class 2, 3, 4 d(C2) = 4 d(C2) = 2

d(C3) = 5 d(C3) = 5

d(C4) = 4 d(C4) = 3

F6 Class 1, 2, 3 d(C1) = 6 d(C1) = 5

d(C2) = 5 d(C2) = 4

d(C3) = 6 d(C3) = 6

Fig. 2 Collaboration diagram for anonymous feature mode

34 Geetika Vyas and Amita Sharma



transponders from the satellite. The audio, video and data signals are converted into
the digital format and the multiplexer mixes these signals. At the users end, there is
a small dish antenna installed and set-top boxes to decode it and viewing of
numerous channels. The smallest receiving dish can be 45 cm in diameter. This
transmission travels directly to the consumer through a satellite. DTH also offers
stereophonic sound effects. Its advantage is that it can also reach remote areas
where terrestrial transmission and cable TV cannot penetrate. Along with enhanced
picture quality, other benefits are that it allows interactive TV services such as
movie-on-demand, internet access, video conferencing and e-mail also. Figure 3
shows the DTH feature model.

Here DTHBase (root feature) has InformationZone (mandatory), CustomerZone
(mandatory) and CarrierZone (optional) features. InformationZone has two
mandatory features and two optional features, out of which DTHPackages feature
has Basic (mandatory) and two features Regional (optional) and Extra (optional)
features. Feature Extra has Kids (optional), Sports (optional) and Movies (optional)
features. In total this feature model can have 144 valid configurations.

The basic (dummy) classes in this software include CostInfo, CustInfo,
LocalDealerInfo and PackageInfo. The java files which use these dummy classes
are jak files (extended files of java), also called FeatureIDE files. In later stages, as
per need these classes will be refined in order to add new features in the software.
These classes are dummy by nature. Implementation needs more effort on the
programmer’s part.

Using the depth first traversal method, the degree of usability of dummy class
CostInfo is as follows:

At Feature InformationZone, d (CostInfo) = 1, (assuming the degree of Class
CostInfo1 at DTHBase is 0)
At Feature Set_TopBoxInfo, d (CostInfo) = 2,
At Feature DTHPackages, d (CostInfo) = 3,
At Feature Basic, d (CostInfo) = 4,
At Feature CustomerQuery, d (CostInfo) = 5.

Fig. 3 Contains the feature model

Examining Usability of Classes … 35



Using the breath first traversal method, the degree of usability of dummy class
CostInfo is as follows:

At Feature InformationZone, d (CostInfo) = 1, (the degree of Class CostInfo1 at
feature DTHBase is 0)
At Feature Set_TopBoxInfo, d (CostInfo) = 2,
At Feature DTHPackages, d (CostInfo) = 3,
At Feature CustomerQuery, d (CostInfo) = 4,
At Feature Basic, d (CostInfo) = 5.

Thus we can conclude that the degree of usability of dummy class CostInfo,
irrespective of the traversal method, is 5 and is the highest. To check whether the
metric is returning the correct value, we refer to the collaboration diagram generated
by Eclipse FeatureIDE. Once we define the FeatureIDE files, FeatureIDE generates
a collaboration diagram which shows the collaboration of all classes with feature.
Figure 4 contains the collaboration diagram for this example. The columns in the
diagram contain the classes and rows contain the features which are using these
classes. It clearly depicts that class CostInfo is the most referred class. Out of the
four dummy classes it is the most frequently used one. Through the diagram also we
come to the conclusion that the degree of usability of dummy class CostInfo is 5.

5 Analysis and Conclusion

A significant relationship is seen between features and classes. The strong associ-
ation between these two leads us to relate the core focus of SPL in both the respects,
i.e. to discuss usability of features and classes as well. The available measures in
literature limit the complexity within the features. The complexity across the classes
and features relationship remains untouched. Available metrics do not suffice in

Fig. 4 Collaboration diagram of DTH service feature model

36 Geetika Vyas and Amita Sharma



controlling the usability of the whole system. The metric proposed in our paper is
generating the degree of usability of various classes used in the example of DTH
services. The collaboration diagram of the example also proves that the metrics are
returning values which are true from the practical point of view. The classes which
have highest usability theoretically have the same usability practically also. The
calculated value thus obtained by our metric will help us check the usage of each
class. This will ultimately benefit the programmers, practitioners and researchers in
better understanding of classes. It will also help in improved control and develop-
ment of the product line. It will help determine the best ways for the maintenance of
classes which are an integral part of the whole process. Our current work is gen-
eralized by nature and is in its initial stages. Our proposal still needs validation. We
are currently working upon the theoretical and empirical validations by studying
variety of feature models and the classes used for implementing them [12]. We will
also apply the metric over more examples to calculate accurate results. Further
experimentation will validate our work and help us draw the final conclusions.

References

1. Clements, P., Northrop, L., Software Product Lines: Practices and Patterns, Addison-Wesley,
Boston (2001).

2. Montagud, S., Insfran, E., Abrahão, S., A systematic review of quality attributes and measures
for software product lines, Software Quality Control, Vol. 20, Issue 3–4, pp. 425-486, (2012).

3. Pohl, K., Bockle, G., Linden, F., Software Product Line Engineering: Foundations, Principles
and Techniques, Springer-Verlag New York, Inc. Secaucus, NJ, USA, (2005).

4. Kang, Kyo, C., Lee, Jaejoon, Kim, Kijoo, Kim, Jounghyun, G., Euiseob, S., Moonhang, H.,
FORM: A Feature-Oriented Reuse Method with Domain-Specific Reference Architectures.
Annals of Software Engineering (Springer Netherlands), vol. 5, pp. 143–168, (2004).

5. Bagheri, E., Gasevic, D., Assessing the Maintainability of Software Product Line Feature
Models Using Structural Metrics, Software Quality Journal, vol. 19 (3), pp. 579–612, (2011).

6. Apel, S., Kastner, C., An Overview of Feature-Oriented Software Development, J. Object
Technology (JOT), vol. 8, No. 5, pp. 49–84, (2009).

7. Sharma, A., Sarangdevot, S.S., Investigating the Application of Feature-Oriented
Programming in the Development of Banking Software Using Eclipse-Featureide
Environment, International Journal of Computer Science & Technology, Vol. 2, Issue 1,
pp 53–57,(2011).

8. Rumbaugh, J., Blaha, M., R., Object Oriented Modeling and Design, Prentice Hall, (1991).
9. Leich, T., Apel, S., Marnitz, L., Tool Support for Feature-Oriented Software Development -

FeatureIDE: An Eclipse-Based Approach, OOPSLA Workshop on eclipse technology
eXchange (ETX), San Diego, USA, (2005).

10. Kastner, C. FeatureIDE: A Tool Framework for Feature-Oriented Software Development,
Proc. 31st Int’l Conf. on Software Engineering (ICSE), Vancouver, Canada, IEEE, (2009).

11. Sharma, A., Vyas, G., New Set of Metrics for Accessing Usability in Feature Oriented
Programming, International Journal of Computer Applications, vol. 81(11), pp. 19–22, (2013).

12. Siegmund, J.; Siegmund, N.; Apel, S., “Views on Internal and External Validity in Empirical
Software Engineering,” in Software Engineering (ICSE), 2015 IEEE/ACM 37th IEEE
International Conference on, vol. 1, no., pp. 9–19, 16–24 May 2015.

Examining Usability of Classes … 37


	4 Examining Usability of Classes in Collaboration with SPL Feature Model
	Abstract
	1 Introduction
	2 Feature-Oriented Programming
	3 FeatureIDE: Eclipse Plug-in
	4 Experimental Setup
	4.1 Implementation of the Proposed Metrics
	4.2 Implementation of the Proposed Metric

	5 Analysis and Conclusion
	References


