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Abstract The network density, energy consumption, and connectivity are the most
important design parameters for a self-organizing wireless sensor network. This
paper presents a social impact theory-based multi-objective strategy for optimizing
these parameters. The proposed strategy optimizes the clustering schemes and
signal strengths along with the operational modes of the sensor nodes. The algo-
rithm has been implemented in MATLAB using an open source social impact
theory Optimization toolbox (http://mloss.org/software/view/457/). The suggested
algorithm offers the achievement of optimal designs and satisfies the different
design parameters.
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1 Introduction

Wireless sensor networks (WSNs) have incited remarkable research interests due to
their vast potential in sensors, electronics, and computational fields. They have been
exploited for civil as well as defense-related purposes. A WSN typically comprises
large numbers of sensor nodes, which are energy constrained with limited com-
putational and communication capabilities [1, 2]. The deployment of WSN nodes is
usually based upon its application and could be random or deterministic [3–5].
Random deployment is usually done in hostile scenarios such as battlefield or
hazardous environments, whereas amiable scenarios call for the deterministic
deployment. In general, WSNs are expected to provide access to information about
the physical world, regardless of time and space, this vision poses significant
challenges for WSNs. The pervasiveness of WSN’s limits its centralized control
and is not practical and calls for capabilities of scalability, self-organization,
self-adaptation, and survivability [6].

Energy utilization is a major issue for a WSN as the energy resources are con-
sumed during the operation of nodes. The replacement of batteries or their recharge
may sometimes be infeasible. Energy efficiency and utilization of a WSN depends
upon the temporal resolution of information being collected, routing strategies, node
placements, etc. [7–9]. Another important issues to be taken care of in a WSN are the
network lifetime and connectivity. Cluster-based architectures are generally
employed, in which the nodes are arranged in their network. These networks
communicate with their respective cluster head node. Thus, collected information
from the nodes is transmitted to the base station. The network connectivity problems
include not only the load handling capability of the sink nodes, but also the ability of
the sensor nodes to communicate with the cluster heads. Apart from the above
issues, the application-specific design parameters also pose some issues. Several
algorithms [3, 10–21] have been reported for the WSN design optimization in terms
of scalability, self-organization, self-adaptation, and survivability. However, most of
those suggested algorithms do not necessarily address the application-specific issues
and make design parameterization and optimization a challenging task.

The design of aWSN system hence calls for simultaneous optimization ofmultiple
nonlinear design parameters. This is a challenging task, as it requires finding
pareto-optimal solutions under severe computational limitations. Such problems have
been reported to be tackled with the application of computational approaches, such as
neural networks, swarm optimization, genetic algorithm (GA), and ant colony opti-
mization [22–28]. Social impact theory (SITO) is a recently introduced approach
based on the application of a novel [29]. In this approach, a spatially distributed
population of individuals in a two-dimensional lattice networks with each other to
generate an optimal solution. In the process, the individuals change their attitude for a
particular feature under influence of their neighbors’ number, attitude, strength, and
immediacy. The optimizer has been tested on benchmark problems for feature subset
selection [29–33]. However, this optimizer has not been attempted for WSN opti-
mization as yet.
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In the present work, we have tried to analyze the application of SITO in WSN by
integrating the network characteristics according to the application-specific require-
ments. In general, the algorithm under the constraints of application-specific
requirements and energy consumption determines operational modes of the nodes.
In particular, the network design has been investigated with respect to the sensor
placements, communication range, and clustering. The performance of the proposed
approach has been investigated by the study of connectivity and related energy
characteristics and application-oriented properties (e.g., uniformity/spatial density of
the sensing nodes). The work finally proposes an optimal design in which the mode of
operation has been specified for each sensor node.

2 Methodology

2.1 Social Impact Theory-Based Optimization (SITO)

The social impact theory was proposed by Latané [34] wherein the author defined
the social impact as any influence on an individual’s feelings, thoughts, or behavior
that is exerted by the real, implied, or imagined presence or actions of others. This
meta-theory characterized the spatiotemporal variabilities of human opinion for-
mation. This theory was modified by Nowak et al. [35] by taking into consideration
the reciprocal influence of the individuals on their environment. Further, Macaš
et al. [29] and Bhondekar et al. [30] implemented the above theory for optimal
feature extraction and classification. The SITO algorithm is advantageous because
of the requirement of few control parameters and capability of analyzing spatially
distributed population.

In the SITO algorithm, an individual represents a probable solution for the
problem at hand by maintaining a set of spatially distributed population in a
two-dimensional lattice. The strength of the individual is estimated by taking in
account the fitness value of its opinion. This opinion is subsequently modified at
every iteration with respect to number of neighbors, strength, and immediacy. Total
societal impact (I) is calculated by difference between the persuasive impact (Ip) of
individuals holding the opposite opinions and the supportive impact (Is) of indi-
viduals with the same opinion. Ip and Is are defined as expressed by the following
equations.

Ip ¼ N1=2
o

X
pi
�
d2i

� �.
No

h i
ð1Þ

Is ¼ N1=2
s

X
si
�
d2i

� �.
Ns

h i
ð2Þ
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where, pi is the persuasiveness of source i
si denotes the supportiveness of source i
No represents number of sources (individuals with opposing opinion)
Ns represents the number of individuals with individual opinions and di refers to

the distance between the source i and the recipient

Generally, the individuals’ opinions are modulated by comparing Ip and Is, if Ip
is greater than Is, the of the individual changes with a probability 1 − K. Similarly,
the attitude may change with a probability K if Ip is lesser than Is. The probability
K improves the explorative capability by preventing loss of diversity.

The pseudocode as proposed by Macaš [29] is expressed as under:

2.1.1 Problem Outline

In this work we have assumed a two-dimensional field employing three types of
sensors, which monitor parameters related to X, Y, Z. The spatial variability is such
that sensor nodes’ density in Z is greater than Y and X and for Y it is greater than X
[36].
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2.1.2 Network Model

A grid-based Euclidian model has been considered here, wherein the nodes have
been placed at the intersections (see Fig. 1).

The active sensing nodes considered for this simulation are identical and have
the usual features like power control and selection parameter for different sensing
modes in X, Y, Z along with power control in transmission. We have assumed a
cluster architecture where, the cluster-in-charge are the nodes operating in X-sense,
along with Y and Z sensing modes with middle and small transmission ranges,
respectively. It should be noted that the nodes present in the X mode can com-
municate with the base station using a multi-hop protocol and this leads to clus-
tering of nodes in their vicinity [30].

Apart from sensing the X parameter the node in X-sense mode also performs
tasks of data collection and its accumulation along with complex computations.

2.1.3 Problem Statement

The design parameters of WSN can be categorized into 3 classes [37]. First cate-
gory incorporates the parameters of sensor deployment, e.g., uniformity and cov-
erage. The second category deals with the connectivity parameters in a manner that
no node remains unconnected. The last category involves the variables or param-
eters responsible for the survivability of the network, such as operational energy. In
the proposed work, we have explored a multi-objective algorithm to optimally
select these design parameters by scalarizing them into a single fitness function as

Fig. 1 The layout of a
wireless sensor network
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given by Eq. 3. The design optimization has been achieved by minimizing con-
straints such as number of unconnected sensors, operational energy and number of
overlapping cluster-in-charge. The parameters namely number of sensors for each
cluster-in-charge and field coverage are maximized. The measurement of quality of
each probable solution of the optimization problem is given by the objective
function in form of a numerical figure [36].

f ¼ min
X5
i¼1

kiPi

( )
ð3Þ

where, k and Pi are the corresponding weight and optimization parameter,
respectively [36].

2.2 WSN Representation, Optimization Parameters,
and Fitness Function

A square field (L × L length units) has been subdivided into several grids of unit
lengths. The nodes are arranged on the grids. A bit-string represents an individual
attitude in the society, which is employed for the encoding of the sensor nodes in a
row-wise pattern as depicted in Fig. 2. Two bits are needed for the encoding of four
states of the sensing nodes, viz. X, Y, Z, and inactive. Thus, the total length of the
bit-string is set to be 2 · L2.

The optimization parameters listed in Table 1 are derived from following net-
work attributes
nx is the X Sensors (cluster-in-charge) in terms of numbers. Similarly,
ny Y Sensors
nz Z Sensors
nOR Out-of-Range Sensors

Fig. 2 Representation of Bit-string network layout [30]
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ninactive Inactive Sensors
ntotal total sensing points
no overlaps of cluster heads

The parameters to be optimized are derived as follows and are defined in [36]:

FC ¼ ðnx þ ny þ nzÞ � ðnOR þ ninactiveÞ
ntotal

ð4Þ

SpCi ¼ ny þ nz � nOR
nx

ð5Þ

SORE ¼ nOR
ntotal � ninactive

ð6Þ

OpCiE ¼ no
nx

ð7Þ

NE
4 � nx þ 2 � ny þ nz

ntotal
ð8Þ

Therefore, there is a unique bit-string sequence for every unique WSN Design
whose feature and performance can be estimated using fitness or weighting func-
tion. The fitness or weighting function needs to properly signify all the significant
design parameters to influence the desired quality/performance of the WSN design.
Each of the design parameter is equally important. Therefore for the present
problem, the fitness function may be formulated as

f ¼ �a1FCþ a2OpCiEþ a3SORE� a4SpCiþ a5NE ð9Þ

In the above fitness function, the appropriate weighting coefficients αi: i = 1, 2…
5 define the significance of each design parameter. Therefore, the SITOs objective
is to minimize the value of fitness function, to maximize some parameters their
coefficients must be negative. The coefficient values are determined on the basis of
design requirements and related experimentation. The desired values of the indi-
vidual parameter coefficient were manually computed. The well-performing weight
are listed in Table 2.

Table 1 Correspondences
between objectives and
optimization parameters [36]

Objective Parameters for optimization Symbols

P1 Field coverage FC

P2 Overlaps in unit cluster-in-charge error OpCiE

P3 Out-of-range sensor error SORE

P4 Sensors in unit cluster-in-charge SpCi

P5 Network energy NE
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During the analysis (Table 2), the network connectivity variables (weights α1,
α4) were considered as constraints such that all the sensor nodes are in the limit of a
cluster-in-charge, and no cluster-in-charge connects to higher than a predefined
number of the sensors nodes.

3 Experimental Results

A network size of 10 × 10 was considered for experimentation. A total of 100 runs
were carried out wherein four different machines performed 1000 iterations on four
separate segments of 25 samples. Various combinations of society size and
neighborhood were experimented and the best results in terms of convergence rate
were obtained for society size of 225, and neighborhood size of 2. The convergence
results obtained for neighborhood size 2 at different society sizes are shown in
Fig. 3. It may be observed that increasing the society size beyond 225 does not

Table 2 Optimized values of the weighing coefficients

Parameters Coefficient Optimized value

Field coverage α1 6

Overlaps-per-cluster-in-charge error α2 0.65

Out-of-range sensors-error α3 9

Sensors-per-cluster-in-charge α4 1

Network energy α5 1.2

Fig. 3 A comparison between the convergence rates obtained at different society sizes with
constant neighborhood size of 2

326 Kavita Kumari et al.



improve the performance of the algorithm. Moreover, by further increasing the
society size, the convergence time increases exponentially. Similarly, Fig. 4 shows
the convergence rate of the fitness value for a society size of 225 with varying
neighborhood sizes. It may be observed that the neighborhood size of 2 gives the
best convergence rate.

The optimized network by the algorithm is graphically represented employing a
customized MATLAB script. One of the observed designs is shown in Fig. 5 in
which the red, blue, and green circle, respectively, denote the X (cluster-in-charge),

Fig. 4 Comparison of convergence rates obtained at different neighborhood sizes with constant
society size of 225

Fig. 5 A graphically
represented network as
optimized by the algorithm
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Y, and Z sensor positions. A cross-mark circle represents the out-of-range sensor
node, whereas an inactive sensor node is represented by the empty space.

Figure 6 shows the progress of average value and minimum value of society
fitness of one of the best runs. The three best SITO runs (abbreviated as S1, S2, and
S3) that yielded the best results after 3000 iterations were observed and their results
are in Table 3.

Fig. 6 Evolution progress for the identification of best individual (highest fitness value) and the
entire society (average fitness value) using SITO approach

Table 3 Values of optimized
parameters for 3
SITO-generated layouts of the
network

Design parameter S1 S2 S3

FC 0.85 0.9 0.75

OpCiE 2 1 0

SORE 0.2 0 0.01

SpCi 21.5 20.25 22.75

NE 1.6 1.5 1.41

Active sensors 91 87 93

X mode sensors 4 4 4

Y mode sensors 18 58 74

Z mode sensors 56 21 10

Inactive sensors 9 10 7

Out-of-range sensors 13 7 5

X mode or active sensors 0.043 0.044 0.043

Y mode or active sensors 0.197 0.644 0.795

Z mode or active sensors 0.615 0.233 0.107
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4 Conclusions

A human opinion formation-based strategy (SITO) was used to optimize the nodes
deployment of a fixed WSN. A grid-based fixed WSN having nodes of different
operating modes was considered. The optimization was based upon various net-
work parameters viz. field coverage, cluster overlapping, out-of-range errors, and
network energy. The results showed that human opinion formation-based algorithm
such as SITO can be used in WSN applications.
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