
Offloading for Application Optimization
Using Mobile Cloud Computing

Chinu Singla and Sakshi Kaushal

Abstract Mobile applications are increasingly becoming ubiquitous which pro-
vides rich functionalities and services to mobile users. But despite having some
technological advancements, smart mobile devices (SMDs) are still minimum
potential computing devices enforced by battery life, storage capacity, and network
bandwidth which obstructs the possible execution of computational intensive
applications. Thus, mobile cloud computing is employed to optimize the compu-
tationally intensive applications which use computation offloading techniques for
increasing SMD’s capabilities. The aim of this paper is to emphasize the specific
issues related to mobile cloud computing, offloading, and thus concluding the paper
by analyzing the challenges that have not been met perfectly and charts a roadmap
towards this direction.

Keywords Mobile cloud computing � Application offloading � Distributed sys-
tems � Smart mobile devices

1 Introduction

The latest development in mobile computing has altered user preferences for
computing. As users expect to operate computationally intensive applications on
their smart mobile devices (smartphone’s, personal computers, tablets) but smart
mobile devices have certain limitations such as battery life, storage capacity, CPU
potential, etc, due to which the user faces so many problems while running large
applications. Examples of such applications comprise image processors [1, 2],

Chinu Singla (&) � Sakshi Kaushal
Computer Science and Engineering, UIET, Panjab University,
Chandigarh, India
e-mail: cheenusingla10@gmail.com

Sakshi Kaushal
e-mail: sakshi@pu.ac.in

© Springer Science+Business Media Singapore 2016
S.C. Satapathy et al. (eds.), Proceedings of the International Congress
on Information and Communication Technology, Advances in Intelligent
Systems and Computing 439, DOI 10.1007/978-981-10-0755-2_51

477



video processing [3], and online gaming. Such applications need battery lifetime,
more computing power on resource constrained SMDs [4]. To overcome these
limitations, the concept of mobile cloud computing has been introduced. Besides,
its computational offloading is a good solution to enhance the performance of the
mobile application.

Cloud computing (CC) directs to manipulating, configuring and accessing the
application via the Internet. It provides online infrastructure, data storage, and
applications. Cloud computing provides various services and resources to SMDs
such as software as a service (SaaS), platform as a service (PaaS), infrastructure as
service (IaaS), testing as a service (TaaS), etc., through different service provider
applications in an on-demand fashion and users can access these resources through
centralized cloud server. With the support of cloud computing and the eruption of
mobile applications, mobile cloud computing (MCC) is introduced, which is
defined as the combination of cloud computing into the mobile environment. MCC
provides ubiquitous and computationally intensive mobile applications by attaining
the benefits of cloud data centers. It brings new facilities and services to mobile
users by taking the benefits of CC and thus reduces the resource limitations of
SMDs. For increasing computing potentials of SMDs and to eliminate resource
limitations, MCC utilizes application offloading techniques [5, 6]. In application
offloading, computationally intensive applications are offloaded by migrating
intensive applications to remote server nodes. The terms “surrogate computing” or
“cyber foraging” are also used to define computation offloading. Computation
offloading methods improves the performance of mobile systems by saving energy
and by reducing execution cost. Offloading can be performed either in the static
environment (constant network bandwidth, server loads, and connection status) or
in the dynamic environment (by changing network bandwidth, server loads, and
connection status). For offloading intensive applications partitioning of the appli-
cations is done and it may be static or dynamic. In static application partitioning,
various components are partitioned either at compile time or at runtime in a static
manner, i.e., at development time, whereas in dynamic application partitioning, the
applications are separated in a dynamic manner at runtime. Static partitioning is
valid if and only if all the performance parameters are predicted in advance but this
approach minimizes the overall performance because the servers speed may vary.
So currently offloading techniques employ dynamic partitioning techniques to
improve the performance of SMDs. But the major challenging issue in dynamic
partitioning is the additional consumption on mobile devices during the establish-
ment and management of distributed applications at runtime. This paper examines
different frameworks for computational offloading at runtime by discussing the
critical aspects, approaches used and related issues to it.

The remaining of the paper is as follows: Sect. 2 explains the concept of mobile
cloud computing and computation offloading. Section 3 analyzes the different
application partitioning frameworks. Section 4 concludes the paper by discussing
the future work.

478 Chinu Singla and Sakshi Kaushal



2 Background

This section demonstrates the basic concepts of MCC and also describes the con-
cept and existing work related to computation offloading in MCC.

2.1 Mobile Cloud Computing

It is the current practical distributed computing model where both data processing
and data storage occurs outside of mobile device. It is a computing paradigm which
provides various outspread services to smart mobile devices. It shortens the
development and execution cost of the mobile devices and enable users to access a
variety of cloud services in an on-demand basis. Its main objective is to increase the
computing potential of SMDs. Smartphone is a compressed mobile computing
device which combines computing power of handheld equipments such as PDAs
and capabilities of common cellular mobile phones. MCC provides various aug-
mentation methods such as storage augmentation, screen augmentation, energy
augmentation, and application processing augmentation to alleviate resource limi-
tations in SMDs [7]. Three major components of MCC model are SMDs, com-
putational cloud, and Internet wireless technology. Various wireless network
protocols such as Wi-Fi, LTE, 3G, etc, can be used by SMDs so that one can easily
access the services of computational clouds. Key issues occurs in mobile cloud
computing are end user issues, privacy and security issues, application and services
level issues, data management, context awareness issues, and operational issues.
These issues highlight a certain set of challenges in MCC as depicted in Fig. 1.

MCC uses various cloud services which provide cloud processing services and
online storage for extending the processing capabilities of SMDs [6]. The following
section explains the concept of computation offloading which is a solution to reduce
the limitations of MCC and enhances mobile systems potentiality by transferring
heavy computation to rich resourceful datacenters.

Fig. 1 Issues in mobile cloud computing

Offloading for Application Optimization Using Mobile Cloud Computing 479



2.2 Computation Offloading

MCC utilizes the computing power of more resourceful cloud servers by offloading
the computational intensive applications to cloud datacenters [8–10]. Nowadays,
many computational offloading-based mechanisms have been introduced for out-
sourcing large applications partially or fully to remote servers [6, 11–13]. The latest
computation offloading frameworks pinpoints the configuration of distributed
processing of applications at runtime. Application partitioning is the most important
step of offloading process and it can mainly be classified as static and dynamic.

2.2.1 Static and Dynamic Partitioning

When the offloading decision is static, it means partitioning of program is done
during its development. Static partitioning involves low overhead and here the
intensive application components are partitioned statically either at runtime or at
compile time. This method is efficient only if all the factors are accurately known in
advance. Prediction algorithms include history-based prediction [14, 15], fuzzy
control [16], and probabilistic prediction [17]. It involves onetime partitioning of
the application, i.e., during its design time. Here the distribution of workload occurs
only once between remote servers and SMDs.

When the offloading decision is dynamic, it adapts to different runtime condi-
tions. In dynamic offloading partitioning is done during execution of the program.
This approach involves high overhead as compared to static partitioning approach
because here program deals with the runtime conditions (network bandwidth, server
speed). Distributed application processing frameworks is entrenched at runtime in
an ad hoc manner where elastic applications are partitioned dynamically at runtime
[18]. The establishment of distributed application frameworks at runtime is an
energy consuming and a resource intensive method [13]. This partitioning method
employs two steps, which includes application profiling and solving [11]. The
mechanism where computational intensive components are identified is called
application profiling, whereas application solving is the method where intensive
components are separated for offloading process.

2.2.2 Algorithm for Application Partitioning and Offloading Process

Offloading Algorithm Begin:

1: Elastic mobile applications execute on SMDs and utilize the application pro-
filing mechanism.

2: Then it evaluates availability and requirement of resources.
3: If there are insufficient resources then application solving mechanism is ini-

tialized to separate the computationally intensive applications at runtime. Go to
step 5.

480 Chinu Singla and Sakshi Kaushal



4: Else application executes on local SMDs. Go to step 6.
5: After partitioning, application is migrated to cloud server node for remote

processing.
6: Upon successful execution of remote components of the application, the result

is returned to the main application and running on SMDs.
7: Exit.

2.2.3 Various Entities Affecting Offloading Process

There are various parameters that affect the process of offloading as discussed
below.

(a) Smartphone efficiency: If a smartphone has powerful processor than that of a
cloud server, then taking an offloading decision is a complex process.

(b) Nature of application: If an application requires inbuilt resources, then
offloading method is not beneficial.

(c) Cloud provider: The cloud provider must have the availability of powerful
resources otherwise; there will not be a benefit to offload the application to the
cloud.

3 Analysis of Application Partitioning Frameworks

Current offloading frameworks offload computationally intensive components at
various granularity levels such as at module, class, object, bundle, thread, and
method levels. At the module level, whole module is migrated for offloading
process [12, 13]. In the class level partitioning, application is partitioned into
classes [9, 10]. At the object level, an object is partitioned for application
offloading. At the thread level, a thread is offloaded for remote processing mech-
anism of the applications [19]. In the same manner, bundle level granularity rep-
resents groups of classes that are partitioned [20, 21]. Migration support indicates
the support level required for migrating the intensive applications to remote clouds.
Various migration patterns are VM-based migration, entire application-based
migration, and application partitioning-based application offloading. The main
objective for application offloading of the application is to improve performance,
reducing memory constraints, saving energy, and updating the application
dynamically. MISCO algorithm [22] employs static partitioning which partitions
the application into two functions: map and reduce. Mirror server framework [23]
employed VM-based migration; the designed VM template is called mirror and the
server which is responsible for its management and development is called mirror
server. The critical aspects of mirror server are that it is not basically sketched for
data processing due to that limited services which can be achieved from it. Elastic
clone cloud [24] uses thread-based granularity at application level. A major

Offloading for Application Optimization Using Mobile Cloud Computing 481



disadvantage of this framework is that it requires a heavy traffic synchronization
mechanism. In this architecture, VM-based migration has been done because it
requires more resources and an additional support from operating system. In [18] a
middleware framework has been proposed for the establishment of distributed
applications dynamically. Its main critical aspects are more resource consumption
due to dynamic partitioning of application.

Mobile assistance using infrastructure (MAUI) [25] is a dynamic
partitioning-based framework which concentrates on saving energy techniques for
SMDs. It uses application proxy method at application level. The main aspects of
this framework are that it requires more efforts for the development of individual
method of the application. This architecture is based on method level granularity so
difficulty in maintaining consistency. Elastic application model [6] is a middleware
framework which implements distribution processing elastic applications at appli-
cation layer. Cuervo et al. [25] and Zhang et al. [6] employed method level gran-
ularity and requires more overhead because such frameworks involves application
profiling and partitioning mechanisms at runtime [26]. Investigate VM deployment
and management in simulation environment can be investigated using cloudsim.
Such models need feasible profiling application method which is resource starva-
tion and a time-consuming method [27]. Considered active service migration
(ASM) approach which reduces energy consumption cost (ECC) and turnaround
time by deploying coarse level granularity which present the lightweight nature of
proposed framework. The limitations of such frameworks are that it involves
additional overhead of application offloading and more complications occur in the
deployment and management of distributed applications at runtime. Shiraz et al.
[28] included SaaS with IaaS for eliminating ECC during component migration at
runtime such as binary code migration cost and active data state migration cost. The
critical aspects of this proposed framework is that it lacks in maintaining consis-
tency between local SMDs and cloud server node.

Since there have not been sufficient work done in order to resolve all issues; such
as availability of resources, homogeneous and consistent distributed platform,
security and privacy issues so there is a scope to develop a lightweight model which
overcomes these issues and optimizes and enhances the overall performance of
applications in MCC.

4 Conclusion and Future Scope

This paper explains the procedure of mobile cloud computing, computation
offloading and analyzes current distributed application processing frameworks. In
this paper, we have explored the challenges and issues to optimal and lightweight
distributed applications frameworks for MCC. Further, a lightweight optimized
framework is needed to be devised which will enhance the performance of appli-
cation and reduces developmental efforts by overcoming the challenges related to
distributed processing of applications in mobile cloud computing.

482 Chinu Singla and Sakshi Kaushal



Our future work will therefore focus on proposing lightweight methods to carry
out the offloaded computation tasks and to design an optimal algorithm to enhance
the performance of mobile systems by investigating the system performance in a
real environment.

References

1. M. Kristensen and N. Bouvin, “Developing cyber foraging applications for portable devices,”
in Portable Information Devices, 2008 and the 2008 7th IEEE Conference on Polymers and
Adhesives in Microelectronics and Photonics. PORTABLE-POLYTRONIC 2008. 2nd IEEE
International Interdisciplinary Conference on. IEEE, 2008, pp. 1–6.

2. J. Porras, O. Riva, and M. Kristensen, “Dynamic resource management and cyber foraging,”
Middleware for Network Eccentric and Mobile Applications, vol. 1, p. 349, 2009.

3. B. Chun and P. Maniatis, “Augmented smartphone applications through clone cloud
execution,” in Proc. 8th Workshop on Hot Topics in Operating Systems (HotOS), Monte
Verita, Switzerland, 2009.

4. M. Sharifi, S. Kafaie, and O. Kashefi, “A survey and taxonomy of cyber foraging of mobile
devices,” IEEE Commun. Surveys Tuts., 2011.

5. G. Huerta-Canepa and D. Lee, “A virtual cloud computing provider for mobile devices,” in
Proc. 1st ACM Workshop on Mobile Cloud Computing & Services: Social Networks and
Beyond. ACM, 2010, p. 6.

6. X. Zhang, A. Kunjithapatham, S. Jeong, and S. Gibbs, “Towards an elastic application model
for augmenting the computing capabilities of mobile devices with cloud computing,” Mobile
Networks and Applications, vol. 16, no. 3, pp. 270–284, 2011.

7. S. Abolfazli, Z. Sanaei, and A. Gani, “Mobile cloud computing: A review on smartphone
augmentation approaches,” in Proc. 1st International Conference on Computing, Information
Systems and Communications, 2012.

8. Sanaei Z, Abolfazli S, Gani A, Buyya R. Heterogeneity in mobile cloud computing:
Taxonomy and open challenges. IEEE Communications Surveys and Tutorials 2014; 16
(1):369–92.

9. Shiraz M, Ahmed E, Gani A, Han Q. Investigation on Runtime Partitioning of Elastic Mobile
Applications for Mobile Cloud Computing. Journal of Supercomputing 2014; 67(1):84–103.

10. Abolfazli S, Sanaei Z, Ahmed E, Gani A, Buyya R. Cloud-based Augmentation for Mobile
Devices: Motivation, Taxonomies, and Open Issues. IEEE Communications Surveys and
Tutorials 2014; 16(1):337–68.

11. Cuervo E, Balasubramanian A, Cho DK, Wolman A, Saroiu S, Chandra R, Bahlx P. “MAUI:
Making Smartphones Last Longer with Code Offload” MobiSys’10. June 15–18, 2010.

12. Hung, S. H., Shih, C. S., Shieh, J. P., Lee, C. P., & Huang, Y. H. (2012). Executing mobile
applications on the cloud: Framework and issues. Computers & Mathematics with
Applications, 63(2), 573–587.

13. Shiraz, M., Gani, A., Khokhar, R. H., & Buyya, R. (2013). A review on distributed application
processing frameworks in smart mobile devices for mobile cloud computing. Communications
Surveys & Tutorials, IEEE, 15(3), 1294–1313.

14. Gurun S, Krintz C, Wolski R (2004) NWSLite: a lightweight prediction utility for mobile
devices. In: International conference on mobile systems, applications, and services, pp. 2–11.

15. Huerta-Canepa G, Lee D (2008) An adaptable application offloading scheme based on
application behavior. In: International conference on advanced information networking and
applications—workshops, pp. 387–392.

Offloading for Application Optimization Using Mobile Cloud Computing 483



16. Gu X, Nahrstedt K, Messer A, Greenberg I, Milojicic D (2003) Adaptive offloading inference
for delivering applications in pervasive computing environments. In: IEEE international
conference on pervasive computing and communications, pp. 107–114.

17. Rong P, Pedram M (2003) Extending the lifetime of a network of battery-powered mobile
devices by remote processing: a markovian decision-based approach. In: Conference on design
automation, pp. 906–911.

18. A. Messer, I. Greenberg, P. Bernadat, D. Milojicic, D. Chen, T. Giul and X. Gu, “Towards a
distributed platform for resource-constrained devices,” in Distributed Computing Systems,
2002. Proceedings of the 22nd International Conference on. IEEE, 2002, pp. 43–51.

19. Goyal S, Carter J. A Light weight Secure Cyber Foraging Infrastructure for Resource—
Constrained Devices, WMCSA 2004 6th IEEE Workshop. IEEE Publisher; 2–3 December
2004.

20. Giurgiu I, Riva O, Juric D, Krivulev I, Alonso G. Calling the cloud: enabling mobile phones as
interfaces to cloud applications. In: Proceedings of the ACM/IFIP/ USENIX 10th international
conference on middleware (Middleware’09), Urbana, IL, USA. Springer-Verlag; 2009.
pp. 83–102.

21. Giurgiu I, Riva O, Alonso G. Dynamic software deployment from clouds to mobile devices.
In: Proceedings of the 13th international middleware conference (Middleware’12), Montreal,
QC, Canada. Springer-Verlag; 2012. pp. 394–414.

22. Dou, V. Kalogeraki, D. Gunopulos, T. Mielikainen, and V. Tuulos, “Misco: a map reduce
framework for mobile systems,” in Proc. 3rd International Conference on Pervasive
Technologies Related to Assistive Environments. ACM, 2010, p. 32.

23. Zhao, Z. Xu, C. Chi, S. Zhu, and G. Cao, “Mirroring smartphones for good: A feasibility
study,” Mobile and Ubiquitous Systems: Computing, Networking, and Services, pp. 26–38,
2012.

24. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clone cloud: elastic execution between
mobile device and cloud,” in Proc. sixth conference on Computer systems, 2011, pp. 301–314.

25. E. Cuervo, A. Balasubramanian, D. Cho, A. Wolman, S. Saroiu, R. Chandra, and P. Bahl,
“Maui: making smartphones last longer with code offload,” in Proc. 8th international
conference on Mobile systems, applications, and services. ACM, 2010, pp. 49–62.

26. Shiraz M, Abolfazli S, Sanaei Z, Gani A (2012) A study on virtual machine deployment for
application outsourcing in mobile cloud computing. J Supercomput 63(3):946–964.

27. Shiraz, M., Gani, A.: A lightweight active service migration framework for computational
offloading in mobile cloud computing. J. Supercomput. 68(2), 978–995 (2014). doi:10.1016/j.
jnca.2014.04.009.

28. Shiraz, M., Gani, A., Shamim, A., Khan, S., & Ahmad, R. W. (2015). Energy Efficient
Computational Offloading Framework for Mobile Cloud Computing. Journal of Grid
Computing, 13(1), 1–18.

484 Chinu Singla and Sakshi Kaushal

http://dx.doi.org/10.1016/j.jnca.2014.04.009
http://dx.doi.org/10.1016/j.jnca.2014.04.009

	51 Offloading for Application Optimization Using Mobile Cloud Computing
	Abstract
	1 Introduction
	2 Background
	2.1 Mobile Cloud Computing
	2.2 Computation Offloading
	2.2.1 Static and Dynamic Partitioning
	2.2.2 Algorithm for Application Partitioning and Offloading Process
	2.2.3 Various Entities Affecting Offloading Process


	3 Analysis of Application Partitioning Frameworks
	4 Conclusion and Future Scope
	References


