
Chapter 5
Fast Online Recommendation

Abstract Based on the spatiotemporal recommender models developed in the
previous chapters, the top-k recommendation task can be reduced to an simple task of
finding the top-k itemswith themaximumdot-products for the query/user vector over
the set of item vectors. In this chapter, we build effective multidimensional index
structures metric-tree and Inverted Index to manage the item vectors, and present
three efficient top-k retrieval algorithms to speed up the online spatiotemporal rec-
ommendation. These three algorithms are metric-tree-based search algorithm (MT),
threshold-based algorithm (TA), and attribute pruning-based algorithm (AP).MTand
TA focus on pruning item search space, while AP aims to prune attribute space. To
evaluate the performance of the developed techniques, we conduct extensive experi-
ments on both real-world and large-scale synthetic datasets. The experimental results
show that MT, TA, and AP can achieve superior performance under different data
dimensionality.

Keywords Recommendation efficiency · Indexing structure · Top-k query
processing · Metric tree · TA

5.1 Introduction

The spatiotemporal recommender systems based on latent-class models such as topic
models and matrix factorization have demonstrated better accuracy than other meth-
ods such as nearest-neighbor models and graph-based models in the previous chap-
ters. However, the online computational cost of finding the top-ranked items for
every query/user in the system, once the models have been trained, has been rarely
discussed in the academic literature.

In the latent-class models, the predicted ranking score of an itemw.r.t. a query/use
can often boil down to a dot-product between two vectors representing the query/user
and the item, as shown in the previous three chapters. Given a query/user, the straight-
forward method of generating top-k recommendation needs to compute the ranking
scores for all items and select the k oneswith highest ranking scores, which is compu-
tationally inefficient, especially when the number of items or items’ latent attributes
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is large. Moreover, constructing the entire #QUERI ES × #I T EMS preference
matrix requires heavy computational (and space) resources. For example, the recently
published Yelp’s Challenge Dataset,1 which contains 366,000 users and 61,000 busi-
ness items. Generating the optimal recommendations in this dataset requires over
2.2 × 1011 dot-products using a naive algorithm. A 100-dimensional model required
56h to find optimal recommendations for all the queries. In terms of storage, saving
the whole preference matrix requires over 1TB of disk-space. Moreover, this dataset
is just a small sample of the actual Yelp dataset and the problem worsens with larger
numbers.

The online top-k recommendation can be formulated as: given a query q, we aim
to find k top-ranked items with highest ranking scores over a set of items V , and the
ranking score is computed as follows:

S(q, v) =
∑

a

W (q, a)F(v, a) = qT v = ‖q‖‖v‖ cos(�q,v) ∝ ‖v‖ cos(�q,v)

(5.1)

where a denotes a latent attribute of items, and W (q, a) represents the weight of
query q on attribute a, and F(v, a) represents the score of item v on attribute a. We
use q and v to denote the vectors of query q and item v, respectively, and �q,v is the
angle between the two vectors. Unfortunately, there is not any existing technique to
efficiently solve this problem; a linear search over the set of points appears to be the
state of the art.

5.1.1 Parallelization

The online computational cost of recommendation retrieval can be mitigated by par-
allelization. One possible way of parallelizing involves dividing the queries/users
across cores/machines—each worker can compute the recommendations for a single
query/user (or a small set of queries/users). Although the parallelization method can
reduce the expensive time cost brought by multiple queries, this form of paralleliza-
tion does not mitigate the high latency of computing recommendations for a single
query/user. Our proposed techniques are orthogonal to parallelization, and can be
parallelized to improve the scalability. The MT, TA, and AP techniques presented in
this chapter aim reducing the single query latency.

5.1.2 Nearest-Neighbor Search

Efficiently finding the top-k recommendation using the dot-product Eq. (5.1) appears
to be very similar to the widely studied problem of k-nearest-neighbor search in

1http://www.yelp.com.sg/dataset_challenge/.
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metric spaces [6]. The k-nearest-neighbor search problem (in metric space) can be
solved approximately with the popular Locality-sensitive hashing (LSH)method [3].
LSH has been extended to other forms of similarity functions (as opposed to the
distance as a dissimilarity function) like the cosine similarity [1]. In this section, we
show that our problem is different from these existing problems.

The problem of k-nearest-neighbor search in metric space is defined as: given a
query q, the aim is to find k points v ∈ V with least Euclidean distance to the query
point q, and the Euclidean distance is computed as follows:

‖ q − v ‖2 =‖ q ‖2 + ‖ v ‖2 −2qT v ∝‖ v ‖2 /2 − qT v �= −qT v (5.2)

Obviously, if all the points in V are normalized to the same length, then the problem
of top-k recommendation with respect to the dot-product is equivalent to the problem
of k-nearest-neighbor search in any metric space. However, without this restriction,
the two problems can yield very different answers.

Similarly, the problem of k-nearest-neighbor search w.r.t. cosine similarity is
defined as: given a query q, the aim is to find k points v ∈ V with maximum cosine
similarity for the query q, and the cosine similarity is computed as follows:

cos(�q,v) = qT v
‖ q ‖‖ v ‖ ∝ qT v

‖ v ‖ �= qT v (5.3)

From the above equation, we can see that our problem of top-k recommendation
w.r.t. the dot-product is equivalent to the problem of k-nearest-neighbor search w.r.t.
cosine similarity, if all the points in the set V are normalized to the same length.
Under general conditions, the two problems can be very different.

As analyzed above, our problem is not equivalent to the classic k-nearest-neighbor
search problem in metric space or cosine similarity, thus existing solutions (e.g.,
the LSH family) to the knn problem cannot be straightforwardly applied to our
problem. Actually, our problem is much harder than the knn problem. Unlike the
distance functions in metric space, dot-products do not induce any form of triangle
inequality.Moreover, this lack of any induced triangle inequality causes the similarity
function inducedby the dot-products to haveno admissible family of locality sensitive
hashing functions. Any modification to the similarity function to conform to widely
used similarity functions (like Euclidean distance or Cosine-similarity) will create
inaccurate results.

Moreover, dot-products lack the basic property of coincidence the self similarity
is highest. For example, the Euclidean distance of a point to itself is 0; the cosine-
similarity of a point to itself is 1. The dot-product of a point q to itself is ‖ q ‖2. There
can possibly bemany other points vi (i =1, 2,…) in the set V such that qT vi >‖ q ‖2.
Without any assumption, the problem of top-k recommendation with respect to the
dot-product is inherently harder than the previously addressed similar problems.
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Algorithm 5: Make-Metric-Tree-Split

Input: Item Set V ;

1 Pick a random item v ∈ V ;
2 a ← arg maxv′∈V ‖ v − v′ ‖;
3 c ← arg maxv′∈V ‖ a − v′ ‖;
4 w ← c − a;
5 b ← −1

2 (‖ c ‖2 − ‖ a ‖2);
6 return (w, b);

Algorithm 6:Make-Metric-Tree

Input: Item Set V ;
Output: Metric Tree T ;

1 T .V ← V ;
2 T .center ← mean(V );
3 T .radius ← arg maxv∈V ‖ T .center − v ‖;
4 if |V | ≤ N0 then
5 return T ; //leaf node
6 end
7 else
8 //else split the set;
9 (w,b) ← Make-Metric-Tree-Split(V);

10 Vl ← {v ∈ V : wT v + b ≤ 0};
11 Vr ← V − Vl ;
12 T .le f t ← Make-Metric-Tree(Vl );
13 T .right ← Make-Metric-Tree(Vr );
14 return T ;
15 end

5.2 Metric Tree

In this section, we describe metric tree and develop a novel branch-and-bound algo-
rithm to provide fast top-k recommendations.

Metric trees [4] are binary space-partitioning trees that are widely used for the task
of indexing datasets in Euclidean spaces. The space is partitioned into overlapping
hyper-spheres (balls) containing the points. We use a simple metric tree construction
heuristic that tries to approximately pick a pair of pivot points farthest apart from
each other [4], and splits the data by assigning points to their closest pivot. The tree
T is built hierarchically and each node in the tree is defined by the mean of the data
in that node (T .center ) and the radius of the ball around the mean enclosing the
points in the node (T .radius). The tree has leaves of size at most N0. The splitting
and the recursive tree construction algorithm is presented in Algorithms 5 and 6.

The tree is space efficient since every node only stores the indices of the item
vectors instead of the item vectors themselves. Hence, the matrix for the items is
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never duplicated. Another implementation optimization is that the vectors in the
items’ matrix are sorted in place (during the tree construction) such that all the items
in the same node are arranged serially in the matrix. This avoids random memory
access while accessing all the items in the same leaf node.

5.2.1 Branch-and-Bound Algorithm

Metric trees are used for efficient nearest-neighbor search and are fairly scalable [5].
The search employs a depth-first branch-and-bound algorithm. A nearest-neighbor
query is answered by traversing the tree in a depth-first manner—going down the
node closer to the query first and bounding the minimum possible distance to items
in other branches with the triangle-inequality. If this branch is farther away than
the current neighbor candidate, the branch is removed from computation. Since the
triangle inequality does not hold for the dot-product, we present a novel analytical
upper bound for the maximum possible dot-product of a query vector with points (in
this case, items) in a ball. We then employ a similar branch-and-bound algorithm for
the purposes of searching for the k-highest dot-products (as opposed to the minimum
pairwise distance in k-nearest-neighbor search).

Deriving the Upper Bound. Let Br
vc be the ball of items centered around vc with

radius r . Suppose that v∗ is the best possible recommendation in the ball Br
vc for the

query represented by the vector q, and r∗ be the Euclidean distance between the ball
center vc and the best possible recommendation v∗ (by definition, r∗ ≤ r ). Let � be
the angle between the vector vc and the vector v∗ − vc,�q,vc and�v∗,vc be the angles
between the vector vc and vectors q and v∗, respectively, as shown in Fig. 5.1. The
distance of v∗ from vc is (r∗sin�) and the length of the projection of v∗ onto vc is
‖ vc ‖ +r∗cos�. Therefore, we have:

‖ v∗ ‖ =
√

(‖ vc ‖ + r∗ cos�)2 + (r∗ sin�)2 (5.4)

Fig. 5.1 Bounding with a
ball
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Algorithm 7: Search-Metric-Tree

Input: Item Tree Node T , query q;

1 if q.ub < qTT.center + T .radius· ‖ q ‖ then
2 if isLea f (T ) then
3 for v ∈ T .V do
4 if qT v > q.ub then
5 v′ ← arg minvi∈q.candidates qT vi;
6 q.candidates ← (q.candidates − {v′}) ⋃{v};
7 q.ub ← minvi∈q.candidatesqT vi;
8 end
9 end

10 end
11 else
12 //best depth first traversal
13 if qTT.left.center < qTT.right.center then
14 Search-Metric-Tree(q, T .right);
15 Search-Metric-Tree(q, T .le f t);
16 end
17 else
18 Search-Metric-Tree(q, T .le f t);
19 Search-Metric-Tree(q, T .right);
20 end
21 end
22 end

cos�v∗,vc = ‖ vc ‖ + r∗ cos�
‖ v∗ ‖ , sin�v∗,vc = r∗ sin�

‖ v∗ ‖ . (5.5)

Let �q,v∗ be the angle between the vectors q and v∗. This gives the following
inequality regarding the angle between the query and the best possible recommen-
dation (we assume that the angles lie in the range of [−π,+π ] instead of the usual
range [0, 2π ]):

|�q,v∗ | ≥ |�q,vc − �v∗,vc |,

which implies

cos�q,v∗ ≤ cos(�q,vc − �v∗,vc) (5.6)

since cos(·) is monotonically decreasing in the range [0, π ]. Using this equality we
obtain the following bound for the highest possible affinity between the user and any
item within that ball:
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max
v∈Br

vc

qT v = qT v∗ =‖ q ‖‖ v∗ ‖ cos�q,v∗ ≤‖ q ‖‖ v∗ ‖ cos(�q,vc − �v∗,vc)

where the last inequality follows from Eq. (5.6). Substituting Eqs. (5.4) and (5.5) in
the above inequality, we have:

max
v∈Br

vc

qT v ≤‖ q ‖ (cos�q,vc(‖ vc ‖ +r∗ cos�) + sin�q,vc(r
∗ sin�))

≤‖ q ‖ max� (cos�q,vc(‖ vc ‖ +r∗ cos�) + sin�q,vc(r
∗ sin�))

=‖ q ‖ (cos�q,vc(‖ vc ‖ +r∗ cos�q,vc) + sin�q,vc(r
∗ sin�q,vc))

≤‖ q ‖ (cos�q,vc(‖ vc ‖ +r cos�q,vc) + sin�q,vc(r sin�q,vc))

The second inequality comes from the definition of maximum, and the next equality
comes from maximizing over � giving us the optimal value for � = �q,vc . The last
inequality follows the r∗ ≤ r . Simplifying the final inequality gives us the following
upper bound:

max
v∈Br

vc

qT v ≤ qT vc + r ‖ q ‖ . (5.7)

The Retrieval Algorithm. Using this upper bound in Eq. (5.7) for the maxi-
mum possible dot-product, we present the depth-first branch-and-bound algorithm
to search for the k-highest dot-products in Algorithm 7. In the algorithm, the object
q.candidates contains the set of current best k candidate items and q.ub denotes
the lowest affinity between the query and its current best candidates. The algorithm
begins at the root of the tree of items. At each subsequent step, the algorithm is at
a tree node. Using the bound in Eq. (5.7), the algorithm checks if the best possible
item in this node is any better than the current best candidates for the query. If the
check fails, this branch of the tree is not explored any more. Otherwise, the algorithm
recursively traverses the tree, exploring the branch with the better potential candi-
dates in a depth-first manner. If the node is a leaf, the algorithm just finds the best
candidates within the leaf with the simple naive search. This algorithm ensures that
the exact solution (i.e., the best candidates) is returned by the end of the algorithm.

5.3 TA-Based Algorithm

The straightforwardmethod of generating the top-k items needs to compute the rank-
ing scores for all items according to Eq. (5.1), which is computationally inefficient,
especially when the number of items becomes large. To speed up the process of
producing recommendations, we extend the Threshold-based Algorithm (TA) [7, 8],
which is capable of finding the top-k results by examining the minimum number of
items.
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Algorithm 8: Threshold-based algorithm

Input: An item set V , a query q and A ranked lists La ;
Output: List L with all the k highest ranked items;

1 Initialize priority lists PQ, L and the threshold score STa ;
2 for a = 1 to A do
3 v = La .get f irst ();
4 Compute S(q, v) according to Eq. (5.1);
5 PQ.insert (a, S(q, v));
6 end
7 Compute STa according to Eq. (5.8);
8 while true do
9 next ListT oCheck = PQ.get f irst ();

10 PQ.remove f irst ();
11 v = Lnext ListT oCheck .get f irst ();
12 Lnext ListT oCheck .remove f irst ();
13 if v /∈ L then
14 if L .si ze() < k then
15 L .insert (v, S(q, v));
16 end
17 else
18 v′ = L .get (k);
19 if S(q, v′) > STa then
20 break;
21 end
22 if S(q, v′) < S(q, v) then
23 L .remove(k);
24 L .insert (v, S(q, v));
25 end
26 end
27 end
28 if Lnext ListT oCheck .hasMore() then
29 v = Lnext ListT oCheck .get f irst ();
30 Compute S(q, v) according to Eq. (5.1);
31 PQ.insert (next ListT oCheck, S(q, v));
32 Compute STa according to Eq. (5.8);
33 end
34 else
35 break;
36 end
37 end

We first precompute the ordered lists of items, where each list corresponds to
a latent attribute learned by the latent-class models. For example, given A latent
attributes, we will compute A lists of sorted items (i.e., inverted indices), La , a ∈
{1, 2, . . . , A}, where items in each list La are sorted according to F(v, a). Given a
query q, we run Algorithm 8 to compute the top-k items from the A sorted lists and
return them in the priority list L . As shown in Algorithm 8, wemaintain a priority list
PL of the A sorted lists where the priority of a list La is determined by the ranking
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score (i.e., S(q, v)) of the first item v in La (Lines 2–6). In each iteration, we select
the most promising item (i.e., the first item) from the list that has the highest priority
in PL and add it to the resulting list L (Lines 9–16). When the size of L is no less
than k, we will examine the kth item in the resulting list L . If the ranking score of
the kth item is higher than the threshold score (i.e., STa), the algorithm terminates
early without checking any subsequent items (Lines 18–21). Otherwise, the kth item
v′ in L is replaced by the current item v if v’s ranking score is higher than that of v′
(Lines 22–25). At the end of each iteration, we update the priority of the current list
as well as the threshold score (Lines 28–33).

Equation (5.8) illustrates the computation of the threshold score, which is obtained
by aggregating the maximum F(v, a) represented by the first item in each list La

(i.e., maxv∈La F(v, a)). Consequently, it is the maximum possible ranking score that
can be achieved by the remaining unexamined items. Hence, if the ranking score
of the kth item in the resulting list L is higher than the threshold score, L can be
returned immediately because no remaining item will have a higher ranking score
than the kth item.

STa =
A∑

a=1

W (q, a)max
v∈La

F(v, a) (5.8)

5.3.1 Discussion

Being different from the metric tree-based algorithm, the TA-based algorithm
requires the ranking function defined in Eq. (5.1) to be monotone given a query.
Both the ranking functions in the nonnegative matrix factorization models and the
probabilistic generative models developed in the previous three chapters meet this
requirement, since the query weight on each attributeW (q, a) is nonnegative in these
models. It is easy to understand that Algorithm 8 is able to correctly find the top-k
items if the ranking function S(q, v) defined in Eq. (5.1) is monotone. Below, we will
prove it formally.

Theorem 5.1 Algorithm 8 is able to correctly find the top-k items if the ranking
function S(q, v) defined in Eq. (5.1) is monotone.

Proof Let L be a ranked list returned by Algorithms 8 which contains the k spatial
items that have been seen with the highest ranking scores. We only need to show
that every item in L has a ranking score at least as high as any other item v not in
L . By definition of L , this is the case for each item v that has been seen in running
Algorithm 8. So assume that v was not seen, and the score of v in each attribute a is
F(v, a). For each ranked list La , let ṽa be the last item seen in the list La . Therefore,
F(v, a) ≤ F (̃va, a), for every a. Hence, S(q, v) ≤ STa where STa is the threshold
score. The inequality S(q, v) ≤ STa holds because of themonotonicity of the ranking
function S(q, v) defined in Eq. (5.1). But by definition of L , for every v′ in L we have
S(q, v′) ≥ STa . Therefore, for every v′ in L we have S(q, v′) ≥ STa ≥ S(q, v), as
desired.
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Besides, Algorithm 8 has another nice property that it is instance optimal with
accessing the minimum number of items, and no deterministic algorithm has a lower
optimality ratio [2]. We use the word “optimal” to reflect the fact that Algorithm 8
is best deterministic algorithm. Intuitively, instance optimality corresponds to opti-
mality in every instance, as opposed to just worst case or the average case. There are
many algorithms that are optimal in a worst-case sense, but are not instance optimal.

Below, we will investigate the instance optimality of Algorithm 8 by an intuitive
argument. If P is an algorithm that stops earlier than Algorithm 8 in a certain case,
before P finds k itemswhose ranking score is at least equal to the threshold score STa ,
then P must make a mistake, since the next unseen item vmight have a ranking score
equal to F (̃va, a) in each attribute a, and hence have ranking score S(q, v) = STa .
This new item, which P has not even seen, has a higher ranking score than some
item in the top-k list that was output by P , and so P erred by stopping too soon.

5.4 Attribute-Pruning Algorithm

Both metric-tree and TA algorithms focus on pruning item search space, and they
cannot reduce the time cost of computing the ranking score for a single item. More-
over, they cannot adapt to the high-dimension data, i.e., the number of latent attributes
is large. When the dimensionality of items is high (e.g., A > 500), the tree index
structures and tree-based search algorithms (e.g., metric-tree and R-tree) will lose
their pruning ability, as analyzed in [5], which is also validated in our experiments.
As for TA, it needs to frequently update the threshold for each access of sorted lists
and to maintain the dynamic priority queue of sorted lists. These extra computations
reduce down the efficiency of TA when the dimensionality is high.

Toovercome the curse of dimensionality and speed up the online recommendation,
we propose an efficient algorithm to prune the attribute space and facilitate fast
computation of the ranking score for a single POI, inspired by TA algorithm [8]
and Region Pruning strategy [9]. Our algorithm is based on three observations that
(1) a query q only prefers a small number of attributes (i.e., the sparsity of query
preferences) and the query weights on most attributes are extremely small; (2) items
with high values on these preferred attributes are more likely to become the top-
k recommendation results; and (3) the attribute values of most items also exhibit
sparsity, i.e., each POI has significant values for only a handful of attributes.

The above three observations indicate that only when a query prefers an attribute
and the item has a high value on that attribute, will the score W (q, a)F(v, a) con-
tribute significantly to the final ranking score. Thus, we first pre-compute ordered
lists of items, where each list corresponds to a latent attribute. For example, given
A latent attributes, we will compute A lists of sorted items, Laj , 1 ≤ j ≤ A, where
items in each list Laj are sorted according to F(v, a j ). Different from the threshold
algorithm (TA) developed in [8], each sorted list Laj only stores k items with highest
F(v, a j ) values instead of all items. Hence, it is space-saving. Besides, for each item
v, its attributes are preranked offline according to the value of F(v, a j ). Given an
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Algorithm 9: Attribute Pruning Algorithm

Input: An item set V , a query q and A ranked lists La ;
Output: Result list L with k highest ranking scores;

1 Initialize L as ∅;
2 Sort the query attributes by W (q, a);

3 Choose top m attributes satisfying:
∑m

j=1 W (q, a j ) > 0.9
∑A

j=1 W (q, a j );
4 for j = 1 to m do
5 for v ∈ La j and v /∈ L do
6 Compute S(q, v) according to Eq. (5.1);
7 if L .si ze() < k then
8 L .add(< v, S(q, v) >);
9 end

10 else
11 v′ = L .top();
12 if S(q, v) > S(q, v′) then
13 L .removeTop();
14 L .add(v, S(q, v));
15 end
16 end
17 end
18 end
19 for v ∈ V and v /∈ L do
20 PS = 0, PW = 0, Skip = f alse, and v′ = L .top();
21 while there exists attribute a not examined for v do
22 a = v.next Attribute();
23 PS = PS + W (q, a)F(v, a);
24 PW = PW + W (q, a);

25 if PS + (
∑A

j=1 W (q, a j ) − PW )F(v, a) ≤ S(q, v′) then
26 Skip = true;
27 break;
28 end
29 end
30 if Skip == f alse then
31 if S(q, v) > S(q, v′) then
32 L .removeTop();
33 L .add(< v, S(q, v) >);
34 end
35 end
36 end
37 L .Reverse();
38 Return L;

online query q, we develop a branch and bound algorithm, as shown in Algorithm 9,
to prune the search space of the attributes in the computation of the ranking score,
i.e., after we have scanned a small number of significant attributes for an item, it
may not be necessary to examine the remaining attributes. The algorithm is called
AP (Attribute Pruning) and contains two components: initialization and pruning.



110 5 Fast Online Recommendation

In the initialization component (Lines 1–18), we select k candidate items that
are potentially good for recommendation. Specifically, we pick top m attributes
which cover most the query’s preferences with smallest m, i.e.,

∑m
j=1 W (q, a j ) >

ρ
∑A

j=1 W (q, a j ), where ρ is a predefined constant between 0 and 1 (Line 3). In our
experiment, AP achieves its best performance for ρ = 0.9. For each of the top m
attributes a, we choose top ranked items from La as candidates (Lines 4–18).

In the pruning component (Lines 19–36), we check whether we can avoid travers-
ing unnecessary attributes for item v according to the descending order of F(v, a).
Suppose we have traversed attributes {a1, . . . , ai−1}. The partial score we have com-
puted for the traversed attributes is

PS(q, v) =
i−1∑

j=1

W (q, a j )F(v, a j ).

When we explore the i th attribute, we compute the upper bound of ranking score for
the item v as:

UB(q, v) = PS(q, v) +
A∑

j=i

W (q, a j )F(v, ai ) (5.9)

Because we check the attributes in the descending order of F(v, a), the actual value
of F(v, a) for the remaining attributes should be less than the value for the current
attribute, i.e., F(v, ai ). Therefore, we have a partial ranking score for the rest of the
attributes, which is at most

A∑

j=i

W (q, a j )F(v, ai ), (5.10)

where
∑A

j=i W (q, a j ) is the portion of query preferences for the rest attributes. The

upper bound of
∑

a W (q, a) F(v, a) for all attributes is PS(q, v) + ∑A
j=i W (q, a j )

F(v, ai ), which results in Eq. (5.9).
We employ a binary min-heap to implement L so that the top item v′ has the

smallest ranking score in L (Line 20). If the upper bound is smaller than the ranking
score of v′, we skip the current item (no need to check the remaining attributes) (Lines
25–28). Otherwise, we continue to check the remaining attributes. If all attributes
are examined for the item and the item is not pruned by the aforementioned upper
bound, we obtain the full score of the item to compare with v′ (Lines 30–35). We
remove the item v′ and add the current item to the list if its full score is larger than
v′ (Lines 31–34).

Note that our proposed AP algorithm in this section also requires the ranking
function S(q, v) to be monotone, e.g., the query weight on each attribute W (q, a) is
nonnegative.
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5.5 Experiments

In this section, we evaluate the top-k recommendation efficiency of metric tree (MT),
TA, and attribute pruning (AP) algorithms on both real-world and large-scale syn-
thetic datasets. There are 114,508 users, 62,462 spatial items and 1,434,668 check-
ins in the real-world dataset Twitter. Every user has approximately 13 check-ins and
every spatial item is associated with 23 check-ins on average. The users’ check-ins
display the power-law distribution. To keep the sparsity property on the synthetic
dataset, we generate a dataset with 23 million check-ins, 1 million spatial items and
1.77 million users to simulate the distribution of the check-ins on the real-world
dataset.

5.5.1 Experimental Results

This experiment is to evaluate the efficiency of our proposed online recommendation
algorithms MT, TA, and AP on both the real-life and large-scale synthetic datasets.
We compare themwith a baseline algorithms. The baseline is a brute-force algorithm
(BF) that needs to compute a ranking score for each item and selects top-k ones with
highest ranking scores. All the online recommendation algorithmswere implemented
in Java (JDK 1.7) and run on a Windows Server 2008 with 256G RAM.

Figure5.2 shows the time costs of producing top-10 recommendation on the large-
scale synthetic dataset. We control the number of available items to vary from 0.1
million to 1 million to test the scalability, and the dimensionality is set to be 10,
50, 100, 500, 1000, and 1500. From the results, we can observe that these four
algorithms have significant performance disparity when the dimensionality increases
from 10 to 1500. Obviously, AP exhibits highly desirable scaling characteristics—
sub-linear time complexity to both data size and data dimensionality, while other
competitor methods, MT and TA, are very sensitive to the data dimensionality, and
they perform better than BF only for low-dimensionality setting (e.g., less than 100
dimensionality). The test results also provide important insights to choose online
recommendation algorithms: when the data dimensionality is not larger than 10, MT
is the best choice; when 10 < A ≤ 50, TA can achieve best performance; and when
A > 50, we suggest to choose AP algorithm.

To further analyze these algorithms in the high-dimension setting, we test them
on the Twitter dataset. Table5.1 shows the performance with 1500 latent dimensions
(i.e., A = 1500) and k (i.e., the number of recommendations) set to 1, 5, 10, 15,
and 20.A greater value of k is not necessary for the top-k recommendation task.
Obviously, the AP algorithm outperforms others significantly and consistently for
different number of recommendations. For example, on average the AP algorithm
finds the top-10 recommendations from about 62,000 items in 67.57ms, and achieves
1.65 times faster than the brute-force algorithm (BF).
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Fig. 5.2 Recommendation Efficiency on the Synthetic Dataset with Varying Dimensionality (A).
a A = 10. b A = 50. c A = 100. d A = 500. e A = 1000. f A = 1500

Specifically, from the results, we observe that: (1) AP outperforms BF signifi-
cantly, justifying the benefits brought by pruning attribute space. It only needs to
access very few attributes for each item to compute its partial score, about 145
attributes on average (that is less than 10%) for k = 10, and 120 attributes for k = 5,
sinceAP algorithm takes full advantage of the sparsity of both query and POI vectors.
(2) Although the time cost of AP increases with the increasing number of recom-
mendations (i.e., k), it is still much lower than that of BF in the recommendation task
even when k = 20. (3) The time cost of MT is higher than that of the naive linear
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Table 5.1 Recommendation efficiency on twitter dataset

Methods Online recommendation time cost (ms)

k=1 k=5 k=10 k=15 k=20

AP 50.91 61.75 67.57 72.13 75.32

BF 110.83 111.40 111.81 111.95 112.94

MT 130.90 131.46 131.87 132.39 132.99

TA 880.92 1055.68 1144.82 1221.49 1265.58

scan method (BF) in this task, although it achieves better performance than BF in the
low-dimension setting. This is becauseMT loses its ability to prune item search space
and needs to scan all items in the leaf nodes when the dimensionality is high. (4) The
threshold algorithm (TA) performs worse than the brute-force algorithm, since it still
needs to accessmany items (around 40%of the items on average for k = 10 and 35%
for k = 5). Moreover, TA needs to frequently update the threshold for each access
of sorted lists and to maintain the dynamic priority queue of sorted lists. These extra
computations reduce down the efficiency of TA when the dimensionality is high. In
summary, although both TA and MT can achieve better performance than BF due to
their ability of pruning POI search space when the dimensionality is not very high,
they cannot overcome the curse of dimensionality when the items have thousands of
attributes. In contrast, the AP algorithm is designed for pruning attribute space, thus
it can still achieve superior performance for the setting of high dimensionality.

5.6 Summary

In this chapter, we proposed three techniques for efficient spatiotemporal recommen-
dation: (i) metric tree (MT).We index the item vectors in a binary spatial partitioning
metric tree and used a simple branch-and-bound algorithm with a novel bounding
scheme to prune the item search space. (ii) TA. We precomputes an inverted list for
each latent attribute a in which items are sorted according to their values on attribute
a, and alsomaintains a priority queue of the inverted lists that controls which inverted
list to access in the next. The algorithm has the nice property of terminating early
without scanning all items. (iii) Attribute Pruning (AP). Being different from metric
tree and TAwhich focus on pruning item search space, the AP aims to reduce the time
cost of computing the ranking score for a single item by pruning the attribute space.
We evaluated our algorithms on both real-world and large-scale synthetic datasets,
demonstrating the superiority of MT, TA, and AP over the linear-scan algorithm.
Moreover, we found that these three techniques show different performances with
varying the data dimensionality (i.e., the number of items’ latent attributes): when
the data dimensionality is not larger than 10, MT is the best choice; when the number
of latent attributes is between 10 and 50, TA can achieve best performance; and when
the data dimensionality exceeds 50, we suggest to choose the AP.
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