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To all who make our lives worthwhile



Preface

In this book, we will guide you through the world of spatiotemporal recommen-
dation in social media, which aims to help users find their potentially preferred
items by mining the spatiotemporal data generated by the users in social media sites
and apps. The spatiotemporal data imply extensive knowledge about individuals’
behaviors, mobility, and interests. It also bridges the gap between the online social
networks and the physical world, which enables us to better understand the users,
improve user experiences, and design optimal recommendation systems. Targeted
advertisement recommendation in social media is one of the application scenarios,
which is predicted to generate hundreds of billions of dollars revenue.

However, spatiotemporal recommendation in social media is a highly chal-
lenging research problem because of the temporal dynamics of users’ behaviors and
interests, users’ interests drift over geographical regions, data sparsity and cold start
in the specific spatiotemporal contexts (e.g., when users travel out of town or to new
cities). Moreover, users’ generated spatiotemporal data in social media arrives in a
timely fashion (e.g., data stream), making this problem much more difficult. Most
traditional recommender techniques encounter various limitations and insufficiency.

Our book covers the major fundamentals and the state-of-the-art research of new
generation spatiotemporal recommendation system in social media. This book
provides researchers and developers a rich blend of theory and practice to help them
explore this exciting field and develop new methods and application scenarios. It is
also suitable for advanced undergraduates and graduate students, since each chapter
is a tutorial that provides readers with an introduction to one important aspect of
spatiotemporal recommendation in social media and also contains many valuable
references to relevant research papers.

February 2016 Hongzhi Yin
Bin Cui
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Chapter 1
Introduction

Abstract We first introduce the background and motivation for developing
spatiotemporal recommendation in social media, and then analyze the signifi-
cant research issues and challenges emerging in this field, including Temporal
Context-Aware Recommendation, Spatial Recommendation for Out-of-Town Users,
Location-based and Real-time Recommendation, and the Efficiency of Online Rec-
ommendation. We overview this book by listing our basic solution ideas for these
problems and challenges. At the end of this chapter, we offer a rich overview of the
related work and the relevant publications.

Keywords Social media · 4W Information layout · Semantically meaningful
spatiotemporal data · Context-aware recommender system

1.1 Background

Over the past few years, one of the most important shifts in the digital world has been
the move from the wide-open Web to semiclosed social media platforms. It is driven
primarily by the rise of the mobile internet and smart phones. Social media services
have been penetrated into all aspects in daily life. You wake up and check your
messages on your WeChat or WhatsApp—that is one social media. During breakfast
you browse Facebook, Twitter, and Digg—three more social media. During lunch
time, you visit Yelp and look for restaurants, another social media. At the end of the
day, you come home, make dinner while listening to Pandora and watch a movie on
Youtube. You have spent the day on the social media, and you are not alone.

The recent advances in location-acquisition and wireless communication tech-
nologies such as GPS enable users to easily add a location dimension to traditional
social networks (e.g., Twitter, Facebook, and Weibo) via a smartphone, and also
fosters the growth of Location-based Social Networking services (LBSNs) such
as Foursquare, Yelp, GeoLife, Meetup, and Google Place, where users can easily
check-in at points of interests (e.g., restaurants, stores, hotels) and share their life
experiences in the physical world via mobile devices, resulting in a “4W” (i.e.,
who, when, where and what) information layout, corresponding to four distinct
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Fig. 1.1 The Information Layout of Social Media

information layers as shown in Fig. 1.1. The content information refers to tags,
images, videos, comments, and posts generated or uploaded by users on social media,
which represents the semantic information of users’ activities. The user layer pro-
vides extensive knowledge about an individual, such as his/her demographics and
social structure. The temporal and spatial layers provide rich contextual information
of users’ activities. Besides, the dimension of location also bridges the gap between
online social networks and the physical world. Thus, the social media data in the
mobile era captures the semantically meaningful snapshots of everyday lives, and
provides unprecedented potential for user modeling. On the other hand, it is cru-
cial to develop spatiotemporal recommendation services in social media, which help
common users find their potentially preferred items, facilitate advertisers to launch
targeted advertisements, and make social media platforms more attractive to users
and advertisers.
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1.2 The Research Issues and Challenges

In this section, we list the research issues and challenges in the spatiotemporal rec-
ommendation in social media.

• Temporal Context-Aware Recommendation: After investigating multiple social
media systems, we observe that users’ behaviors are dynamic since they are not
only influenced by their personal interests (internal factor), but also by the dynamic
social context (external factor), called temporal context. For example, given a user
who prefers things of thriller and horror, he will not go to the haunted house or
watch a horror movie on the Saint Valentine’s Day. However, the data represent-
ing the user’s personal interests and the temporal context respectively is mixed
up together in social media. For example, some of my posts in Twitter are on my
interests while others reflect the temporal context. Moreover, the two factors have
different degrees of influence on users’ behaviors on different social media plat-
forms. Although on the same social media platform, the two factors have different
influence strengths for different users. Thus, it is very challenging to simultane-
ously extract users’ personal interests and discover the temporal contexts from the
users’ behavior data, and model their effect on users’ decision-making in a unified
way.

• Recommendation for Out-of-Town Users: With the rapid development of
Location-based Social Networks (LBSNs) and Event-based Social Networks
(EBSNs), spatial item recommendation has become an important means to help
people discover attractive and interesting venues and events, especially when users
travel out of town. However, this recommendation is very challenging compared
to the traditional recommender systems. A user can visit only a limited number of
spatial items, leading to a very sparse user-item matrix. Most of the items visited
by a user are located within a short distance from where he/she lives, which makes
it hard to recommend items when the user travels to a far away place (i.e., out
of town), especially in a new city where she has no activity information. More-
over, users’ interests and behavior patterns may vary dramatically across different
geographical regions, due to different urban compositions and cultures.

• Location-based and Real-time Recommendation: As the time goes on and users’
locations are changing, their interests and needs may change. In a certain short
term, users’ activities exhibit strong temporal cyclic patterns in terms of hour of the
day or day of theweek. For example, a user ismore likely to go to a restaurant rather
than a bar at lunch time, and is more likely to go to a bar rather than an office at
midnight. In the long term, users’ interests are intrinsically dynamic. This requires
producing recommendation results in a real-time manner. However, the existing
recommendation approaches or models [58, 63, 65, 67–69] developed for spatial
item recommendation are incapable of supporting real-time recommendation due
to the following reasons. First, most of them ignore users’ real-time locations and
the time information. Second, these methods assume that the individuals’ interests
are stable and ignore their dynamics in the long term. In reality, they are changing
and evolving over time, as analyzed in [64]. For instance, users will naturally be



4 1 Introduction

interested in visiting parenting-related items (e.g., the playground and amusement
park) after they have a baby, and probably ignore their other interests. Accurately
capturing this change in a real-time manner has been proved to be commercially
very valuable since it indicates visiting and purchasing intents. Third, almost all
existing recommendation models are based on batch learning, and it is difficult
to apply them for large-scale users’ activity or behavior data which arrives in a
stream, since the batch learning algorithm needs to run through all the training
data for many iterations, which is very time-consuming and infeasible.

• The Efficiency of Online Recommendation: Once the recommender models have
been trained offline, given a query/user, the naive approach to produce online top-k
recommendations is to first compute a ranking score for each item and then select
k ones with highest ranking scores. However, when the number of available items
becomes large, to produce a top-k ranked list using this brute-force method is very
time-consuming and slow.Especially, to support real-timeonline recommendation,
effective indexing techniques and smart top-k retrieval algorithms are needed to
narrow down the search space of candidate items and find top-k results by scanning
the minimum number of items.

1.3 Overview of the Book

The goal of this book is to develop a spatio-temporal usermodeling framework to ana-
lyze the factors (e.g., personal interests, mobility patterns, local preferences, and tem-
poral context) that influence users’ behaviors and decision-making on social media,
and then build an efficient intelligent recommender system to provide location-
based, time-aware, real-time and personalized services by effectively overcoming the
challenges proposed in Sect. 1.2. From a computing perspective, this book targets
developing a computational foundation for mining, analyzing and modelling users’
behavioral data, on top of which accurate and efficient recommendations can be
achieved. The organization of this book is listed as follows.

• Temporal Context-Aware Recommendation: In Chap.2, we analyze users’ behav-
iors in multiple social media systems and design a latent class statistical mixture
model, namely temporal context-aware mixture model (TCAM), to account for
the intentions and preferences behind users’ dynamic behaviors. Based on the
observation that the behaviors of a user in social media systems are generally
influenced by intrinsic interest as well as the temporal context (e.g., the public’s
attention at that time), TCAM simultaneously models the topics related to users’
intrinsic interests and the topics related to temporal context and then combines the
influences from the two factors to model user behaviors in a unified way. Exten-
sive experiments have been conducted to evaluate the performance of TCAM on
four real-world datasets crawled from different social media sites. The experimen-
tal results demonstrate the superiority of the TCAM models, compared with the

http://dx.doi.org/10.1007/978-981-10-0748-4_2
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state-of-the-art competitor methods, by modeling user behaviors more precisely
and making more effective recommendations.

• Recommendation for Out-of-Town Users: In Chap.3, we propose LCA-LDA, a
location-content-aware LDA model that provides a user with spatial item rec-
ommendations within the querying city by giving consideration to both personal
interest and user interest drift. LCA-LDA learns the user’s interests as a distri-
bution over a set of latent topics, by mining both the co-occurrence patterns of
spatial items and their content information (e.g., tags and categories). Exploiting
content information of spatial items not only alleviates the data sparsity issue but
also addresses the travel locality for out-of-town recommendation. The content of
spatial items serves as the medium to transfer user interests learned from home
town to unfamiliar regions. To adapt to user interest drift across regions, LCA-LDA
learns local preferences/attractions of each region (e.g., city) from all the users’
activity records within that specific region. We evaluate the performance of our
LCA-LDAmodel on two large-scale real datasets, Douban-Event and Foursquare.
The results show the superiority of LCA-LDA in recommending spatial items for
users, especially when traveling to new cities.

• Location-based and Real-time Recommendation: In Chap.4, we propose a unified
probabilistic generative model, Topic-Region Model (TRM), to simultaneously
discover the semantic, temporal cyclic and spatial mobility patterns of users’
check-in activities, and to model their joint effect on users’ decision-making.
Thus, TRM is capable of providing accurate recommendations for mobile users
according to their real-time locations and querying time. To support real-time
recommendation, we further extend the TRM model to an online learning model
TRM-Online to track changing user interests and speed up the model training.
We conduct extensive experiments to evaluate the performance of our proposals
on two real-world datasets including recommendation effectiveness, overcoming
cold-start problem andmodel training efficiency. The experimental results demon-
strate the superiority of our TRM models, especially the TRM-Online, compared
with the state-of-the-art competing methods, by making more effective and effi-
cient mobile recommendations.

• The Efficiency of Online Recommendation: Based on the spatio-temporal recom-
mender models developed in the previous three chapters, the top-k recommen-
dation task can be reduced to an simple task of finding the top-k items with the
maximum dot-products for the query/user vector over the set of item vectors. In
Chap.5, we build effective multi-dimensional index structures and inverted index
structures to manage the item vectors, and develop three efficient top-k retrieval
algorithms to speed up the online spatio-temporal recommendation. These three
algorithms are Metric-Tree based search algorithm (MT), Threshold-based algo-
rithm (TA) and Attribute Pruning-based algorithm (AP). MT and TA focus on
pruning item search space while AP aims to prune attribute space. To evaluate
the performance of our developed techniques, we conduct extensive experiments
on both real-world and large-scale synthetic datasets. The experimental results
show that MT, TA, and AP can achieve superior performance under different data
dimensionality.

http://dx.doi.org/10.1007/978-981-10-0748-4_3
http://dx.doi.org/10.1007/978-981-10-0748-4_4
http://dx.doi.org/10.1007/978-981-10-0748-4_5
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1.4 Literature and Research Review

In this section, we review related literatures, including traditional context-aware
recommendation, temporal recommendation, and spatial recommendation.

1.4.1 Traditional Context-Aware Recommendation

Collaborative filtering and content-based filtering techniques are two widely adopted
approaches for recommender systems [2]. Both of them discover users’ personal
interests and utilize these discovered interests to find relevant items. Collaborative
filtering techniques [16, 53] automatically suggest relevant items for a given user
by referencing item rating information from other taste-similar users. The content-
based recommendation [52] is based on the assumption that descriptive features
of an item tell much about a user’s preference for an item. Recommender systems
using pure collaborative filtering approaches tend to fail when little knowledge about
the user is known or when no one has interests similar to the user’s. Although the
content-based method is capable of coping with the lack of knowledge, it fails to
account for community endorsement. As a result, a certain amount of research has
focused on combining the advantages of both collaborative filtering and content-
based methods [11, 36, 49].

The importance of contextual information has been recognized by researchers
and practitioners in many disciplines, including e-commerce personalization, infor-
mation retrieval, ubiquitous and mobile computing, data mining, marketing, and
management. Because of the influential role of contextual information to recom-
mendations, Context-Aware Recommender Systems (CARS) have recently attracted
the high attention of researchers. Currently, there are basically three paradigms to
make context-aware recommendations including the contextual pre-filtering, con-
textual post-filtering and contextual modeling [3].

Pre-filtering approaches typically apply certain context dependent criteria to filter
the list of items at first, and then select appropriate items to the given contextual
condition. As a consequence, only filtered items can be considered for further rec-
ommendations. Adomavicius et al. [1] presented a context-aware approach based
on the multidimensional reduction. They extended traditional collaborative filter-
ing recommendation methods by adding extra dimensions that represent contextual
information. The item splitting [7] was another pre-filtering approach based on the
idea that items experienced in two alternative contextual conditions are “split” into
two items. This means that the ratings of a split item, e.g., a place to visit, are
assigned (split) to two new fictitious items representing for instance the place in
summer and the same place in winter. Lately, user splitting, and user-item split-
ting [8] were proposed to run splitting in different manners. Splitting methods were
reported as the most efficient and effective context-aware algorithms [7, 8]. While in
post-filtering approaches, contextual information is usually used after some certain
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traditional recommendation approaches have been deployed. Items that are not suited
in the given condition should be neglected in the final recommendation. The exper-
imental comparison between different filtering methods was reported in [8]. They
found that there are no clear winners among these approaches. The pre-filtering and
post-filtering approaches all attempt to convert the problem of context-aware recom-
mendation into the traditional recommendation. They all try to filter out preferences
that do not match the current condition. On the contrary, contextual modeling meth-
ods model the contextual information directly into recommendation algorithms. For
instance, Oku et al. [48] utilized the SVM classifier for contextual dependent recom-
mendations. Lately, the well-known matrix factorization technique, which is most
popular for traditional recommender systems, has been adopted to CARS [6]. In
addition, Karatzoglou et al. [35] proposed a multiverse factorization model, in which
the preferencematrix wasmodeled as a user-item-context n-dimensional tensor. Ten-
sor factorization technique was then applied to CARSs. These factorization methods
suffer from sparsity and scalability issues in training parameters [6, 51, 54]. One
possible solution to alleviate the scalability issue is to partition the original matrix
before applying any factorization models [79].

All existing CAR methods treat multiple contexts equally and ignore the fact that
different contexts (e.g., social context, spatial context, and temporal context) have
different characteristics. One-fit-all method is not a good solution to exploit multiple
context information. Different strategies should be adopted for different contexts. In
this book, we study the unique characteristics of temporal context and spatial context
information, as the spatial and temporal context information are more easier to auto-
matically collect from social media systems and play a more important role in the
era of mobile internet and smart phones, compared with other contextual informa-
tion. Based on the characteristics of the temporal and spatial contextual information,
different strategies are proposed to leverage them to improve the recommendation
results. Besides, all existing context-aware recommendation methods assume that
the contextual information is discrete, while the methods developed in this book can
deal with both discrete and continuous contextual information.

1.4.2 Temporal Recommendation

Being different from traditional recommendation, temporal recommendation takes
the time factor into account and aims to provide dynamic recommendation. Many
successful temporal collaborative filteringmethods are based on latent factormodels.
For example, the Netflix award winning algorithm timeSVD++ [38] assumes that the
latent features consist of components that evolve over time and a dedicated bias for
each user at each specific time point. Thismodel can effectively capture local changes
to user preferences which the authors claim to be vital for improving performance.
Xiong et al. proposed a Bayesian probabilistic tensor factorization model (BPTF)
in [60]. BPTF represents users, items and time in a shared low-dimensional space,
and predicts the rating score that a user u will assign to item v at time t using the inner
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product of their latent representations. Demonstrated by the experimental results on
Netflix data, both BPTF and time SVD++ perform well on the rating prediction
task because they incorporate time effects into models. One main disadvantage with
these models is that the learnt latent low-dimensional space is difficult to interpret.
Recently, Liu et al. [42] addressed a new problem—online evolutionary collaborative
filtering, which tracks user interests over time for the purpose of making timely
recommendations. They extended the widely used neighborhood based algorithms
by incorporating temporal information and developed an incremental algorithm for
updating neighborhood similarities with new data. However, most of the existing
temporal recommendation models [38, 42, 60] are designed for the task of rating
prediction rather than top-k recommendation. Diao et al. [23] assumed that user
behaviors are influenced by both user interests and global topic trends, and proposed
mixture latent topic models to capture these factors. But, these models make use of
one set of shared topics to model two factors. The estimated topics are confusing
and difficult to interpret, which causes the recommendation results to degenerate.
To improve the topic discovery process, Yin et al. [66] recently proposed a unified
model to detect both stable and temporal topics simultaneously from social media
data.

1.4.3 Spatial Item Recommendation

Spatial item recommendation, consisting of POI recommendation and event
recommendation [45, 74], has been considered as an essential task in the domain of
recommender systems. It was first investigated and studied on trajectory data. Due
to the lack of mapping relationship between geographical coordinates and specific
real-world POIs, a POI is usually defined as the stay points extracted from users’ tra-
jectory logs [77, 78]. Because of the unavailability of content information associated
with POIs, spatial and temporal patterns are commonly integrated into collaborative
filtering methods to make POI recommendation. Recently, with the development of
location-based social networks, it is easy for users to check-in at POIs, resulting in
easy access of large-scale user check-in records. Based on the LBSNs data, many
recent works have tried to improve POI recommendation by exploiting and integrat-
ing geo-social, temporal, and semantic information associated with users’ activities.

Geo-Social Information. Many recent studies [19, 20, 26, 62, 73, 80] showed
that there is a strong correlation between user check-in activities and geographical
distance as well as social connections, so most of current POI recommendation work
mainly focuses on leveraging the geographical and social influences to improve rec-
ommendation accuracy. For example, Ye et al. [62] delved into POI recommendation
by investigating the geographical influences among locations and proposed a frame-
work that combines user preferences, social influence, and geographical influence.
Cheng et al. [17] investigated the geographical influence through combining a mul-
ticenter Gaussian model, matrix factorization and social influence together for loca-
tion recommendation. Lian et al. [39] incorporated spatial clustering phenomenon
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resulted by geographical influence into a weighted matrix factorization framework
to deal with the challenge frommatrix sparsity. However, all of them do not consider
the current location of the user. Thus, no matter whether the user is located in the
home town or traveling out of town, they will recommend the same POIs to the
user. In light of this, Ference et al. [26] designed a collaborative recommendation
framework which not only investigates the roles of friends in POI recommendation,
but also considers the current location of the user.

Temporal Information. The temporal effect of user check-in activities in LBSNs
has also attracted much attention from researchers. POI recommendation with tem-
poral effectmainly leverage temporal cyclic patterns and temporal sequential patterns
on LBSNs. Gao et al. [28] investigated the temporal cyclic patterns of user check-ins
in terms of temporal non-uniformness and temporal consecutiveness. Yuan et al. [71]
incorporated the temporal cyclic information into a user-based collaborative filtering
framework for time-aware POI recommendation. Cheng et al. [18] introduced the
task of successive personalized POI recommendation in LBSNs by embedding the
temporal sequential patterns.

As described above,while there aremany studies to improve POI recommendation
by exploiting geographical-social influence and temporal effect, they did not address
the challenges (e.g., data sparsity) arising from user travel locality for the out-of-
town recommendation. Most of the above work assumed that users are in their home
towns, they did not consider users’ real-time locations, nor their interest drift across
geographical regions.

Semantic Information. Most recently, researchers explored the content informa-
tion of POIs to alleviate the problem of data sparsity. Hu et al. [33] proposed a spatial
topic model for POI recommendation considering both spatial aspect and textual
aspect of user posts from Twitter. Liu et al. [41] studied the effect of POI-associated
tags for POI recommendation with an aggregated LDA and matrix factorization
method. Yin et al. [67] exploited both personal interests and local preferences based
on the contents associated with spatial items. Gao et al. [29] and Zhao et al. [76]
studied both POI-associated contents and user sentiment information into POI rec-
ommendation. However, all of them do not consider the time information associated
with the contents of POIs.

Although some recent literatures [10, 47] used classification-based method to
predict the next place a user will move by extracting multiple features from users’
movement history, their problem definition is different from ours. They assumed
that the querying user is currently located at a POI, and exploited sequential pattern
information to predict the next POI.

1.4.4 Real-Time Recommendation

Recently, real-time recommendation has attracted a lot of attention from both
industry and academia [15, 24, 34, 44, 56, 57]. Traditional recommender algo-
rithms focus on large user-itemmatrixes applying the collaborative filtering ormatrix
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factorization models. In stream-based real-time recommendation scenarios, these
models cannot be applied due to tight time-constraints and limited resources. To
support real-time recommendation, various incremental online matrix factorization
or collaborative filtering models are proposed [15, 24, 34, 44, 56, 57], and the effi-
ciency of matrix factorization models has also been extensively studied [30, 70].
However, these conventional recommendation models based on collaborative filter-
ing and matrix factorization do not perform well in the out-of-town recommendation
setting, as analyzed in [26, 67]. Meanwhile, the developed online model training
techniques for matrix factorization cannot be used to train our developed spatio-
temporal recommender models. This book focuses on the efficiency of LDA-like
model training.

Most existing researches on LDA-like model utilize various inference algorithms,
such as variational Bayesian [13, 27], Gibbs sampling [31], expectation propaga-
tion [46] and belief propagation [72] to obtain the parameters. Unfortunately, most
of them are batch algorithms. Recently, a host of online learning methods have been
developed for topic models. Some of them focus on modeling large amount of docu-
ments efficiently based on LDA. Typical researches include TM-LDA [59], On-Line
LDA [4] and so on. Byminimizing the error between predicted topic distribution and
the real distribution generated by LDA, TM-LDA captures the latent topic transitions
in temporal documents. On-Line LDA uses topics learned from previous documents
by LDA as the prior of the following topics. It was designed by Alsumait et al. to
detect and track topics in an online fashion. Some other work tries to improve infer-
ence algorithms themselves. Banerjee et al. [9] presented online variants of vMF,
EDCM, and LDA. Their experiments illustrated faster speed and better performance
on real-world streaming text. Homan et al. developed an online variational Bayesian
algorithm [32] for LDA based on online stochastic optimization. In their approach,
they thought of LDA as a probabilistic factorization of the matrix of word counts
into a matrix of topic weights and a dictionary of topics. Thus, they used online
matrix factorization techniques to obtain an online fashion schema of LDA. Canini
et al. also proposed an online version algorithm [14] using Gibbs sampling. Yao et al.
compared several batch methods mentioned above, and introduced a new algorithm,
SparseLDA [61], to accelerate learning process.

In summary, a large number of prior works have made great effort on designing
appropriate online algorithms for LDA to process documents. However, less work
focuses on the users’ activity (e.g., check-ins) stream and tracking changing user
interests and mobility patterns. In this book, we propose a novel online learning
model TRM-Online to process check-in stream and track changing user interests
and mobility patterns for supporting mobile recommendation in a real-time manner.

1.4.5 Online Recommendation Efficiency

Tree Indexing-based Retrieval Algorithms. In most of the latent factor models for
recommendation, such as matrix factorization and LDA-Like models, the ranking
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score of an itemw.r.t. a query is computed as the inner product between their vectors.
To the best of our knowledge, RamandGray [50]were the first to propose and address
the problem of fast maximum inner-product search. They proposed to organize the
item vectors in a cone ball tree, in which each node is associated with a sphere
that covers the item vectors below the node. Given a query vector, the spheres are
exploited to avoid processing subtrees that cannot contribute to the result. The cone
ball tree itself is constructed by repeatedly splitting the set of item vectors into two
partitions (based on Euclidean distances). In the subsequent work [21], the cone ball
tree is replaced by a cover tree [12]. Both approaches effectively prune the item
search space, but they suffer from high tree construction costs and from random
memory access patterns during tree traversal. Moreover, according to the analysis
in [43], the speedup techniques using pure tree structures suffer from the curse of
the dimensionality, and their time cost is O(A12) (A is the dimension of items). Our
experimental study also demonstrates that tree indexing-based algorithms are not
effective for items with high dimensionality in practice.

TA-Based Algorithms. Yin et al. [64, 67] extended the popular threshold algo-
rithm (TA) [25] for top-k recommendation for monotonic functions. TA arranges the
values of each coordinate of the item vectors in a sorted list, one per coordinate.
Given a query, TA repeatedly selects a suitable list from a dynamically maintained
priority queue, retrieves the next vector from the top of the list, and maintains the set
of the top-k results seen so far. TA uses a termination criterion to stop processing as
early as possible. Note that TA usually focuses on vectors of low dimensionality or
medium size (A < 200). TA needs to frequently update the threshold for each access
of sorted lists and to maintain the dynamic priority queue of sorted lists. These extra
computations reduce down the efficiency of TA when the dimensionality is high.

Approximate Algorithms. Approximate methods for fast retrieval of top-k rec-
ommendation have also been studied in the literature. We categorize them as non-
hashingmethods and hashingmethods.Wefirst reviewnon-hashingmethods. In [40],
Linden et al. discussed the idea of item-space partitioning, which makes recommen-
dation from some subsets of all items. They concluded such a naive strategy would
produce recommendations of low quality. User clustering was adopted in [22, 37]
so that similar users share the same recommendation results. Although this strategy
essentially reduces the user space, it also degrades the performances of personalized
recommendation.Yin et al. [67] extendedTA to aρ-approximation algorithm to speed
up the online recommendation and achieved a good trade-off between recommenda-
tion effectiveness and efficiency.Another line ofworkmakes use of asymmetric trans-
formations of user and item vectors to obtain an equivalent nearest-neighbor problem
in Euclidean space; this problem is then solved approximately using LSH [55] or
modified PCA-trees [5]. An alternative approach is taken by [75], which modifies
the classic matrix factorization model such that all vectors are (approximately) unit
vectors and the inner product of user and item vectors can be approximated by stan-
dard cosine similarity search. However, this modification affects the quality of the
recommendations.
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Chapter 2
Temporal Context-Aware Recommendation

Abstract Users’ behaviors in social media systems are generally influenced by
intrinsic interest as well as the temporal context (e.g., the public’s attention at that
time). In this chapter, we focus on analyzing user behaviors in social media systems
and designing a latent class statistical mixturemodel, named temporal context-aware
mixture model (TCAM), to account for the intentions and preferences behind user
behaviors. TCAM simultaneously models the topics related to users’ intrinsic inter-
ests and the topics related to temporal context, and then combines the influences
from the two factors to model user behaviors in a unified way. To further improve
the performance of TCAM, an item-weighting scheme is proposed to enable TCAM
to favor items that better represent topics related to user interests and topics related
to temporal context, respectively. Extensive experiments have been conducted to
evaluate the performance of TCAM on four real-world datasets crawled from differ-
ent social media sites. The experimental results demonstrate the superiority of the
TCAM models.

Keywords Dynamic user behavior ·Temporal recommendation ·Temporal context
modeling · Entropy filtering

2.1 Introduction

With the rising popularity of social media, a better understanding of users’ rating
behaviors1 is of great importance for the design of many applications, such as per-
sonalized recommendation, information filtering, behavioral targeting, and compu-
tational advertising. Research efforts [12, 15] have been undertaken to model users’
interests to help them find interesting items by analyzing their historical behaviors.
However, existing work [12, 15, 17] simply assumes that users prefer items based
on their intrinsic interests, which may not be accurate in many social application
scenarios. For example, when choosing a book to read or a movie to watch, the users
are likely to prefer books/movies that interest them. In contrast, when selecting news

1We use the term “rating behavior” to denote general user actions on items in social media systems,
such as rating and viewing.
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to read or users to follow in a social network (e.g., Twitter), it is most likely that users
will be attracted, respectively, by breaking news or famous users who are followed
by the general public [4, 10, 20]. Therefore, users’ rating behaviors on items may
not necessarily indicate users’ intrinsic interests. New models are desired to better
account for user behaviors in social medias to learn user preferences more precisely.

After investigating multiple social media systems, we observe that user rating
behaviors are generally influenced by two factors: the intrinsic interest of the user
and the attention of the general public. While the user’s intrinsic interest is relatively
stable, the attention of the general public changes from time to time; for example,
the hot topics on a microblogging site evolve over time. Hence, in our work, we refer
to the attention of the public during a particular time period as temporal context.

The two factors have different degrees of influence on user rating behaviors for
different types of social media platforms as a result of the different characteristics
(e.g., life cycles and updating rates) of various types of social media items. For
instance, news is a type of time-sensitive item with a short life cycle—few people
want to read outdated news; while the life cycle of movies is relatively longer, with
many classic old movies being highly ranked in the popularity list. For time-sensitive
social media items, users aremore easily influenced by the temporal context, whereas
they tend to make decisions based on their intrinsic interests when choosing less
time-sensitive items such as books and movies.

To model user rating behaviors in social media systems, therefore, it is critical to
identify users’ intrinsic interests as well as the temporal context (i.e., the attention of
the general public during a particular time period). Moreover, it is essential to model
the influence degrees of the two factors in different social media systems.

To this end, we proposed TCAM to mimic user rating behaviors in a process of
decision making in [21, 22]. As shown in Fig. 2.1, TCAM is a latent class statistical
mixture model that simultaneously models the topics [1, 8] related to users’ intrinsic
interests and the topics related to temporal context, and then combines the influences
from the user interest and the temporal context to model user behaviors in a unified
manner. Specifically, the model discovers (1) users’ personal interest distribution
over a set of latent topics; (2) the temporal context distribution over a set of latent
topics; (3) an item generative distribution for each latent topic; and (4) the mixing
weights that represent the influence probabilities of users’ personal interest and the
temporal context. It is worth mentioning that the set of latent topics used to model
user interest is different from the topics used to model the temporal context. The
former are called user-oriented topics and the latter are referred to as time-oriented
topics.

The generative process of user rating behaviors in TCAM is briefly illustrated as
follows. Suppose a user u selects an item v in a time interval t. TCAM first tosses a
coin, based on the influence probabilities of the two factors, to decide whether this
behavior results from the influence of the user’s personal interest or the influence of
the temporal context. If it results from the influence of the user’s personal interest,
TCAM chooses a user-oriented topic for u based on the user’s intrinsic interest (with
a certain probability). The selected topic in turn generates an item v following on
from the topic’s item generative distribution. Otherwise, if the influence from the
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Fig. 2.1 An example of TCAM model [22] c©2015 Association for Computing Machinery, Inc.
Reprinted by permission

temporal context is sampled, TCAM chooses a time-oriented topic according to the
general public’s interest during t, which in turn generates an item v.

Similar to traditional topic models where popular words in a document corpus
are usually ranked high in each topic [3, 4], popular social media items tend to be
estimated as having high generation probability by TCAM,which impairs the quality
of the discovered user-oriented topics and time-oriented topics. User-oriented topics
are supposed to capture user intrinsic interests, but a popular item favored by many
users conveys less information about a user’s intrinsic interest than an item favored
by few users (i.e., a salient item) [23]. Similarly, a popular item constantly favored
by users cannot well represent a time-oriented topic because the public’s attentions
change over time. Hence, to improve the performance of TCAM, we devise an item-
weighting scheme to promote the importance of salient items and bursty items, which
enhances the quality of the underlying topics detected by TCAM.

The remainder of this chapter is organized as follows. Section2.2 details the
TCAM. We deploy TCAM to temporal recommendation in Sect. 2.3. We carry out
extensive experiments and report the experimental results in Sect. 2.4, and conclude
the chapter in Sect. 2.5.
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2.2 User Rating Behavior Modeling

In this section, we first introduce relevant definitions and notations used throughout
this chapter. We then present the novel temporal context-aware mixture model for
modeling user rating behaviors in social media systems.

2.2.1 Notations and Definitions

The notations used in this chapter are summarized in Table2.1.

Definition 2.1 (User Rating) A user rating is a triple (u, t, v) that denotes a rating
behavior (e.g., purchasing, clicking and tagging) made by user u on item v during
time interval t.

Definition 2.2 (User Document) Given a user u, the user document, Du, is a set
of pairs {(v, t)} representing the rating behaviors on items during different time
intervals made by u.

Definition 2.3 (Rating Cuboid) A rating cuboid C is an N × T × V cuboid, where
N is the number of users, T is the number of time intervals and V is the number of
items. A cell indexed by (u, t, v) stores the rating score that user u assigned to item
v during time interval t.

Table 2.1 Notations used in this model

Symbol Description

u, t, v User u, time interval t, item v

N,T , V Number of users, time intervals, and items

Mu Number of items rated by user u

λu The mixing weight specific to user u

K1 Number of user-oriented topics

θu,z Probability that user-oriented topic z is chosen by user u

θu Intrinsic interest of user u denoted by θu = {θu,z}K1
z=1

φz Item proportions of user-oriented topic z, denoted by φz = {φz,v}Vv=1

φz,v Probability that item v is generated by user-oriented topic z

K2 Number of time-oriented topics

θ ′
t The temporal context during time interval t denoted by θ ′

t = {θ ′
t,x}K2

x=1

θ ′
t,x Probability that time-oriented topic x is generated by time interval t

φ′
x Item proportions of time-oriented topic x denoted by φ′

x = {φ′
x,v}Vv=1

φ′
x,v Probability that item v is generated by time-oriented topic x
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User actions on items, such as tagging, downloading, purchasing, and clicking,
can be represented as a user rating. Either explicit feedback or implicit feedback
can be used to compute the value of rating score. For example, given a user u who
frequently uses a tag v during time interval t, the usage frequency can be used as the
rating score to reflect the user’s preference on the tag during that time period.

Definition 2.4 (Topic)Given a collectionof items I = {vi}Vi=1, a topic z is represented
by a topic model φz, which is a multinomial distribution over items φz = {P(vi|φz)

or φz,vi}Vi=1.

To illustrate the semantic meaning of a topic, we choose top-k items that have the
highest probability under the topic, as shown in Fig. 2.2. In our work, we distinguish
between user-oriented topics φz and time-oriented topics φ′

x although both of them
are represented by a multinomial distribution over items. User-oriented topics are
used to model user interest, which is assumed to be generally stable over time. In
contrast, time-oriented topics are used tomodel the temporal context (i.e., the public’s
attention during a particular time), which has a clear temporal feature. For example,
the popularity of the topics may increase or decrease over time and reach a peak
during a certain period of time, as shown in Fig. 2.2.

Definition 2.5 (User Interest) Given a user u, her/his intrinsic interest, denoted as
θu, is a multinomial distribution over user-oriented topics.

Definition 2.6 (Temporal Context) Given a time interval t, the temporal context
during t, denoted as θ ′

t , is a multinomial distribution over time-oriented topics or
items.

Fig. 2.2 An Example of two
types of topics in
delicious [22] c©2015
Association for Computing
Machinery, Inc. reprinted by
permission
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2.2.2 Temporal Context-Aware Mixture Model

Given a rating cuboid C which stores users’ rating histories, we aim to model user
rating behaviors by exploiting the information captured in C. Before presenting the
devisedmodel, we first describe an example to illustrate themotivation of our design.

As mentioned before, users’ rating behaviors in social media systems are influ-
enced by not only intrinsic interest but also the temporal context. It is crucial to
distinguish between user-oriented topics and time-oriented topics, because the two
have very different characteristics. For example, Fig. 2.2 shows an example of a user-
oriented topic and a time-oriented topic detected by TCAM model from Delicious.
For demonstration, we present only the top eight tags that have the highest probabil-
ity under each topic. We can easily tell the difference between the two topics from
both their temporal distributions and the content descriptions. For the time-oriented
topic, the items (i.e., tags) are related to a certain event (e.g.,“Boston Marathon
bombings”). The popularity of the topic experiences a sharp increase during a par-
ticular time interval (e.g., in April 2013). For the user-oriented topic, the items are
about the user’s regular interest (e.g., “Pet Adoption”). The temporal distribution of
the topic does not show any spike-like fluctuation. Hence, our TCAM models the
user-oriented topics and the time-oriented topics simultaneously.

To consider the influence of the user intrinsic interest and the temporal context in
a unified manner, TCAM computes the likelihood that a user u will rate an item v
during a time interval t as follows.

P(v|u, t, Ψ ) = λuP(v|θu) + (1 − λu)P(v|θ ′
t ) (2.1)

where Ψ denotes the model parameter set, P(v|θu) is the probability that item v is
generated fromu’s intrinsic interest, denoted as θu, andP(v|θ ′

t )denotes the probability
that item v is generated from the temporal context during time interval t, i.e., θ ′

t . The
parameter λu is the mixing weight which represents the influence probability of the
user interest. That is, user u is influenced by personal interest θu with probability λu,
and is influenced by the temporal context θ ′

t with probability 1 − λu, for decision
making. It is worth mentioning that TCAM holds personalized mixing weights for
individual users, considering the differences between users in personalities (e.g.,
openness and agreeableness).

The user interest component θu is modeled by a multinomial distribution over
user-oriented topics, and each item is generated from a user-oriented topic z. Thus,
P(v|θu) is computed as follows.

P(v|θu) =
K1∑

z=1

P(v|φz)P(z|θu) (2.2)

As for the temporal context component θ ′
t , it is modeled as a multinomial distri-

bution over a set of latent time-oriented topics, and each item is generated from a
time-oriented topic x. Then, P(v|θ ′

t ) is formulated as follows:
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P(v|θ ′
t ) =

K2∑

x=1

P(v|φ′
x)P(x|θ ′

t ). (2.3)

As an illustrative example in Fig. 2.1, the user is influenced by personal interest
and the temporal context with probabilities 0.64 and 0.36, respectively. Four user-
oriented topics and three time-oriented topics are also shown, respectively, where
the weights representing the user’s interest distribution over the user-oriented topics
as well as the temporal context distribution over the time-oriented topics are labeled
in the corresponding edges. We can see that user-oriented topic U1 dominates the
user’s interest, and time-oriented topic T1 attracts most attentions from the general
public at time t. The probabilities of topics’ generating items are also labeled in the
corresponding edges. For example, the weight b on the edge linking topic U1 and
item v2 represents the probability of U1 generating item v2.

Figure2.3 illustrates the generative process of TCAM with a graphical model.
The structure of TCAM is similar to the PLSA model, but TCAM has additional
machinery to handle the mixing weight λu. In particular, a latent random variable s,
associated with each item, is adopted as a switch to determine whether the item is
generated according to the temporal context θ ′

t or the user’s interest θu. s is sampled
from a user-specific Bernoulli distribution with the mean λu. N indicates the number
of users; K1 is the number of user-oriented topics; K2 is the number of time-oriented
topics; T is the number of time slices andMu is the number of items rated by u. The
generative process of TCAM is summarized as follows.

Fig. 2.3 The graphical
representation of TCAM [22]
c©2015 Association for
Computing Machinery, Inc.
reprinted by permission
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For each item v rated by u at time slice t:

1. Sample s from Bernoulli(λu)

2. If s = 1

a. Sample user-oriented topic z fromMultinomial(θu)
b. Sample item v from Multinomial(φz)

c. Repeat the above two steps C[u, t, v] times

3. Otherwise

a. Sample time-oriented topic x from Multinomial(θ ′
t )

b. Sample item v from Multinomial(φ′
x)

c. Repeat the above two steps C[u, t, v] times

2.2.3 Model Inference

Given a rating cuboid C, the learning procedure of our model is to estimate the
unknown model parameter set Ψ = {θ, φ, θ ′, φ′, λ}. The log-likelihood is derived
as follows:

L(Ψ |C) =
N∑

u=1

T∑

t=1

V∑

v=1

C[u, t, v] logP(v|u, t, Ψ ), (2.4)

where P(v|u, t, Ψ ) is defined in Eq. (2.1).
The goal of parameter estimation is tomaximize the log-likelihood in Eq. (2.4). As

this equation cannot be solved directly by applying maximum likelihood estimation
(MLE), we apply an EM approach instead. In the expectation (E) step of the EM
approach, we introduce P(s|u, t, v; Ψ̂ )which is the posterior probability of choosing
personal interest θu (i.e., s = 1) or temporal context θ ′

t (i.e., s = 0), respectively,
given user rating behavior (u, t, v) and the current estimations of the parameters Ψ̂ .
In the maximization (M) step, parameters are updated by maximizing the expected
complete data log-likelihood Q(Ψ ) based on the posterior probability computed in
the E-step.

In the E-step, P(s|u, t, v; Ψ̂ ) is updated according to Bayes formulas as in
Eq. (2.5).

P(s|u, t, v; Ψ̂ ) = sλuP(v|θu) + (1 − s)(1 − λu)P(v|θ ′
t )

λuP(v|θu) + (1 − λu)P(v|θ ′
t )

, (2.5)

where P(v|θu) and P(v|θ ′
t ) are defined as in Eqs. (2.2) and (2.3), respectively. To

obtain the updated parameters P(z|θu) and P(v|φz), the posterior probability P(z|s =
1, u, t, v; Ψ̂ ) is computed as:

P(z|s = 1, u, t, v; Ψ̂ ) = P(v|φz)P(z|θu)∑K1
z′=1 P(v|φz′)P(z′|θu)

. (2.6)
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Based on P(z|s = 1, u, t, v; Ψ̂ ) and P(s = 1|u, t, v; Ψ̂ ), we introduce the notation
P(z|u, t, v; Ψ̂ ) as follows:

P(z|u, t, v; Ψ̂ ) = P(z|s = 1, u, t, v; Ψ̂ )P(s = 1|u, t, v; Ψ̂ ). (2.7)

To obtain the updated parameters P(x|θ ′
t ) and P(v|φ′

x), we update the posterior
probability P(x|s = 0, u, t, v; Ψ̂ ) as follows:

P(x|s = 0, u, t, v; Ψ̂ ) = P(v|φ′
x)P(x|θ ′

t )∑K2
x′=1 P(v|φ′

x′)P(x′|θ ′
t )

. (2.8)

Based on P(x|s = 0, u, t, v; Ψ̂ ) and P(s = 0|u, t, v; Ψ̂ ), we introduce the notation
P(x|u, t, v; Ψ̂ ) as follows:

P(x|u, t, v; Ψ̂ ) = P(x|s = 0, u, t, v; Ψ̂ )P(s = 0|u, t, v; Ψ̂ ). (2.9)

With simple derivations [8], we obtain the expectation of complete data log-
likelihood for TCAM:

Q(Ψ ) =
N∑

u=1

V∑

v=1

T∑

t=1

C[u, t, v]{P(s = 1|u, t, v; Ψ̂ )

K1∑

z=1

P(z|s = 1, u, t, v; Ψ̂ ) log[λuP(v|φz)P(z|θu)]

+ P(s = 0|u, t, v; Ψ̂ )

K2∑

x=1

P(x|s = 0, u, t, v; Ψ̂ ) log [(1 − λu)P(v|φ′
x)P(x|θ ′

t )]}.

(2.10)

In the M-step, we find the estimation Ψ that maximizes the expectation of
the complete data log-likelihood Q(Ψ ) with the constraints

∑V
v=1 P(v|φz) = 1,∑V

v=1 P(v|φ′
x) = 1,

∑K1
z=1 P(z|θu) = 1 and

∑K2
x=1 P(x|θ ′

t ) = 1, using the following
updating formulas.

P(z|θu) =
∑V

v=1

∑T
t=1 C[u, t, v]P(z|u, t, v; Ψ̂ )

∑K1
z′=1

∑V
v=1

∑T
t=1 C[u, t, v]P(z′|u, t, v; Ψ̂ )

(2.11)

P(v|φz) =
∑T

t=1

∑N
u=1 C[u, t, v]P(z|u, t, v; Ψ̂ )

∑V
v′=1

∑T
t=1

∑N
u=1 C[u, t, v′]P(z|u, t, v′; Ψ̂ )

(2.12)

P(x|θ ′
t) =

∑V
v=1

∑N
u=1 C[u, t, v]P(x|u, t, v; Ψ̂ )

∑K2
x′=1

∑V
v=1

∑N
u=1 C[u, t, v]P(x′|u, t, v; Ψ̂ )

(2.13)

P(v|φ′
x) =

∑T
t=1

∑N
u=1 C[u, t, v]P(x|u, t, v; Ψ̂ )

∑V
v′=1

∑T
t=1

∑N
u=1 C[u, t, v′]P(x|u, t, v′; Ψ̂ )

(2.14)
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With an initial random guess of Ψ , we alternately apply the E-step and
M-step until a termination condition is met. To adapt to different users, we esti-
mate the parameter λu in M-step, instead of picking a fixed λ value for all users. This
personalized treatment can automatically adapt the model parameter estimation for
various users. Specifically, λu is estimated as follows.

λu =
∑T

t=1

∑V
v=1 C[u, t, v]P(s = 1|u, t, v; Ψ̂ )

∑T
t=1

∑V
v=1

∑1
s=0 C[u, t, v]P(s|u, t, v; Ψ̂ )

(2.15)

2.2.4 Discussion About TCAM

A number of relevant issues of the proposed TCAM model are discussed in this
subsection.

Hyperparameter setting. In our model, we still have four hyperparameters to
tune manually, including the number of user-oriented topics K1, the number of time-
oriented topics K2, the number of time slices T and the number of EM iterations.
K1 and K2 are the desired numbers of user-oriented topics and time-oriented topics,
respectively,which need to be tuned empirically.T is the number of time slices used in
our model to generate time-oriented topics, which provides users with the flexibility
to adjust the granularity/length of the time slice. The largerT is, themore fine-grained
time slices are. Regarding the number of EM iterations, we observe that convergence
can be achieved in a few iterations (e.g., 50) because the model inference procedure
using the EM approach is fast. The time cost of each iteration isO(NK1V + TK2V ),
which is very similar to the time cost required for PLSA implementation [8]. It
is worth mentioning that EM algorithms can be easily expressed in MapReduce
[6, 18], so the inference procedure ofTCAMcanbe naturally decomposed for parallel
processing, which is scalable to large-scale datasets.

Guidance with Dirichlet Priors. Prior knowledge can be integrated into TCAM
models to guide the topic discovery process. For example, in the MovieLens dataset,
we can introduce prior knowledge and guide the user-oriented topics so that they
are related to the genres of movies, such as action and comedy. Another example
is the Digg dataset, where we can integrate prior knowledge to guide the time-
oriented topics so that they are aligned with breaking events. Specifically, we define
a conjugate prior (i.e., Dirichlet prior) on each multinomial topic distribution. Let
us denote the Dirichlet prior βz for user-oriented topic z and β ′

x for time-oriented
topic x. βz(v) and β ′

x(v) can be interpreted as the corresponding pseudo counts for
item v when we estimate the topic distributions P(v|φz) and P(v|φ′

x), respectively.
With these conjugate priors, we can use the maximum a posteriori (MAP) estimator
for parameter estimation, which can be computed using the same EM algorithm
except that we should replace the Eqs. (2.12) and (2.14) with the following formulas,
respectively:
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P(v|φz) =
∑

t

∑
u C[u, t, v]P(z|u, t, v; Ψ̂ ) + βz(v)∑

v′
∑

t

∑
u (C[u, t, v′]P(z|u, t, v′; Ψ̂ ) + βz(v′))

,

P(v|φ′
x) =

∑
t

∑
u C[u, t, v]P(x|u, t, v; Ψ̂ ) + βx(v)∑

v′
∑

t

∑
u (C[u, t, v′]P(x|u, t, v′; Ψ̂ ) + βx(v′))

.

Advantages of TCAM. The advantages of the TCAM model are summarized as
follows. (1) We unify the influences from the user interest and the temporal con-
text to model user rating behaviors. (2) We distinguish between user-oriented topics
and time-oriented topics. Two different types of latent topics are proposed to model
user interest and the temporal context, respectively. By taking away the influence of
the temporal context, user-oriented topics can capture user intrinsic interests more
precisely. Likewise, without the influence of user interests, time-oriented topics can
better reflect the temporal context because the noise induced by a wide variety of
user interests could contaminate the time-oriented topics. (3) TCAM can generate
interpretable individual user profiles that can be presented alongside item recom-
mendations to allow users to understand the rationale behind the recommendations.
We will show sample user profiles in Sect. 2.4.6.

2.2.5 Item-Weighting for TCAM

In this section, we propose an item-weighting scheme to improve TCAM’s per-
formance. Similarly to traditional topic models, TCAM assumes that all items are
equally important in computing generation probabilities. As a result, popular items
with more ratings tend to be estimated with high generation probability and ranked
in top positions in each topic, which impairs the quality of both the user-oriented
topics and the time-oriented topics.

For user-oriented topics, popular items are not good indicators of user intrinsic
interests. A popular item rated by many users conveys less information about a user’s
interest than an item rated by few users. For time-oriented topics, it is expected that
items representing the public’s attention at a given time should be highly ranked, such
as items with bursty temporal distributions, since bursts of items are generally trig-
gered by breaking news or events that attract the public’s attention. Unfortunately,
bursty items are most likely to be overwhelmed by long-standing popular items.
Figure2.4 shows the temporal frequency of the top six tags of a sample time-oriented
topic discovered from Delicious. It can be observed that the topic concerns swine
flu. The temporal distributions of three bursty tags, “flu,” “mexico,” and “swineflu”,
undergo sharp spikes. Although the trends of the three tags do not always synchro-
nize, they each go through a drastic increase and reach a peak in July 2009. The
bursts in these curves are triggered by a real-world event, i.e., the swine flu outbreak
in Mexico. The other three tags, “news,” “health,” and “death”, maintain high fre-
quency throughout the year. However, they convey little information about the event.
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Fig. 2.4 An example of
bursty tags and popular
tags [22] c©2015
Association for Computing
Machinery, Inc. reprinted by
permission
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Although they are relevant to the event, they are also related to many other topics.
Hence, it is desirable to rank bursty items higher than popular itemwhen representing
time-oriented topics.

To address the challenge posed by the popular items, we propose an item-
weighting scheme to reduce the importance of popular itemswhile promotingweights
for salient, but infrequent, and bursty items in computing generation probability.
From the viewpoint of information theory [5], the entropy of an item v is defined as
follows:

E(v) = −
∑

u

P(u|v) logP(u|v).

Suppose that the item v is preferred by users with equal probability P(u|v) = 1
N(v) ,

the maximum entropy is,
E(v) = logN(v).

Generally, the entropy of an item tends to be proportional to its frequency/
popularity N(v). Hence, in the following analysis, we use the maximum entropy
to approximate the exact entropy to simplify the calculation.

To allow salient items to be ranked higher in use-oriented topics, the weights of
items should be inversely proportional to the entropy, as discussed above. Hence, we
propose a concept called inverse user frequency to measure the ability of items to
represent salient information. LetN be the total number of users in the entire dataset;
the inverse user frequency (IUF) for the item v is defined as follows:

iuf (v) = logN − logN(v) = log
N

N(v)
, (2.16)

which is similar to the inverse document frequency for a term in text mining.
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To take into account the bursty information of items, we propose to compute the
bursty degree of an item v using the following equation:

B(v, t) = Nt(v)

Nt

N

N(v)
, (2.17)

where Nt(v) represents the popularity of item v at time slice t, i.e., the number of
users who rate item v at time slice t, Nt is the number of active users at time slice t,
N(v) is the overall popularity of v across all time slices, and N is the total number of
users in the dataset.

Combining the inverse user frequency and the bursty degree of items, we assign
weight to the item v as follows.

w(v, t) = iuf (v) × B(v, t) (2.18)

Integrating the weights of items defined in Eq. (2.18), we obtain the weighted user-
time item cuboid C̄ from the original C as follows:

C̄[u, t, v] = C[u, t, v]w(v, t). (2.19)

It should be noted that the item-weighting scheme makes TCAM no longer cor-
respond to a well-defined probabilistic generative process since the values stored in
the cuboid C are no longer integers, but it actually improves the empirical perfor-
mance of TCAM in the tasks of both temporal recommendation and topic discovery
by inserting IUF and bursty weights as heuristic factors into the model inference
procedures, as shown in the experiment section. From the perspective of information
theory, an item with lower entropy conveys more information about a user’s intrinsic
interests, and the one with higher bursty degree is more capable of representing the
temporal context at some specific time. The TCAM model enhanced by IUF and
bursty weights incorporate these observations and intuitions.

2.3 Temporal Recommendation

The conventional top-k recommendation task can be stated as follows: given a user,
the recommender system should recommend a small number, say k, of items from
all the available items. Note that the conventional top-k recommendation task does
not consider the temporal information. However, in reality, user rating behaviors,
influenced by both user interests and the temporal context, are dynamic. For example,
user u rating item v in time interval t does not mean that u still favors v in time interval
t + 1. Besides, each itemhas its own lifespan, especially for time-sensitive items such
as news. It is undesirable to recommend outdated news.Hence, an ideal recommender
system is expected to have the ability to recommend the right item v to user u in the
right time interval t, rather than in other time intervals. In this chapter, we propose



30 2 Temporal Context-Aware Recommendation

the task of temporal top-k recommendation as follows: given a query q = (u, t),
i.e., a querying user u with a time interval t, the recommender model recommends k
items which match u’s interests and the temporal context at t.

Below, we will present how to deploy TCAM to facilitate temporal recommen-
dations. Once we have inferred model parameters of TCAM, such as user interest
θ , temporal context θ ′, user-oriented topics φ, time-oriented topics φ′ and mixing
weights λ, given a query q = (u, t), a ranking score S(u, t, v) for each item v can
be computed according to Eq. (2.21), and then the top-k items with highest rank-
ing score will be returned. Specifically, when receiving a query q = (u, t), a new
multinomial distribution for the query, ϑq, is first constructed by combining θu and
θ ′

t . More specifically, we expand the user interest and temporal context spaces to
be of the same dimension. For example, if there are K1 user-oriented topics and
K2 time-oriented topics, the expanded topic space will have K = K1 + K2 topics.
The expanded user interest distribution is defined as θ̃u =< θu, 0, · · · , 0 >, where
we set 0 on the time-oriented topics. Similarly, we define the expanded temporal
context distribution to be θ̃ ′

t =< 0, . . . , 0, θ ′
t >. The new distribution is defined as

ϑq = λuθ̃u + (1 − λu)θ̃
′
t . Correspondingly, we renumber the time-oriented topic x

and change its range from [1, . . . ,K2] to [K1 + 1, . . . ,K]. Then, we use ϕ̃z,v to
denote the weight of item v on dimension z̃ that corresponds to user-oriented topic z
or time-oriented topic x, which depends on the value of z̃, as shown in Eq. (2.20).

ϕ̃z,v =
⎧
⎨

⎩

φz,v z̃ ≤ K1

φ′
x,v z̃ > K1

(2.20)

S(u, t, v) =
K∑

z̃=1

ϑq,̃zϕ̃z,v (2.21)

2.4 Experiments

In this section, we experimentally evaluate the performance of our proposed models.

2.4.1 Datasets

Our experiments are conducted on four real datasets: Digg, MovieLens, Douban
Movie, and Delicious. The basic statistics of the four datasets are shown in Table2.2.
Only the implicit feedback data can be available in Digg and Delicious datasets,
so we compute the cell value C[u, t, v] for these two datasets according to the fre-
quency/number of the interaction between user u and item v at time t. For Douban
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Table 2.2 Basic statistics of the four datasets

Digg MovieLens Douban movie Delicious

# of users 139,409 71,567 33,561 201,663

# of items 3,553 10,681 87,081 2,828,304

# of ratings 3,018,197 10,000,054 5,257,665 36,966,661

time span(year) 2009–2010 1998–2009 2005–2010 2008–2009

Movie andMovieLens datasets, the explicit feedback information is available.Hence,
the user-time item rating cuboid C can be directly derived from users’ star ratings.

• Digg. Digg is a popular social news aggregator, which allows users to vote news
stories up or down, calleddiggingorburying, respectively. TheDiggdataset used in
our experiment is Digg2009 [9], a publicly available dataset containing 3,018,197
votes on 3553 popular stories cast by 139,409 distinct users. This dataset also
records the friendship network of these Digg users. Although this dataset contains
only the IDs of news stories (the titles and the contents of stories are excluded), it
is sufficient to evaluate the effectiveness of user behavior modeling in our work.

• Douban Movie. Douban2 is the largest movie review website in China. In total,
we crawled 33,561 unique users and 87,081 unique movies with 5,257,665 movie
ratings.

• MovieLens. MovieLens is a publicly available movie dataset from the web-based
recommender system MovieLens. The dataset contains 10M ratings on a scale
from 1 to 5 made by 71567 users on 10681 movies. We selected users who had
rated at least 20 movies.

• Delicious. Delicious is a collaborative tagging system where users can upload and
tag web pages. We collected 201,663 users and their tagging behaviors during
the period Feb. 2008–Dec. 2009. The dataset contains 2,828,304 tags. Topics on
technology and electronics account for about half of all web pages. Most of the
other web pages are about breaking news with strong temporal features.

Note that the Douban Movie and Delicious datasets are collected by ourselves,
and we make them publicly available.3

2.4.2 Comparisons

The temporal context-aware mixture model (TCAM) was outlined in Sect. 2.2.
TCAM can be enhanced by the item-weighting scheme, which leads to a weighted
TCAM, called WTCAM. We compare them with four categories of competitor
approaches.

2http://douban.com.
3http://net.pku.edu.cn/daim/hongzhi.yin/.

http://douban.com
http://net.pku.edu.cn/daim/hongzhi.yin/
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• User-Topic Model (UT). We implemented a user-topic model following the pre-
vious works [12, 15]. This model is similar to the classic author-topic model
(AT model) [14] which assumes that topics are generated according to user inter-
ests. A user document Du is regarded as a sample of the following mixture model:

P(v|u;Ψ ) = λBP(v|θB) + (1 − λB)
∑

z

P(z|θu)P(v|φz),

where v is an item (or word) in user document Du, P(z|θu) is the probability of
user u choosing the zth topic φz. θB is a background model and λB is the mixing
weight for it. The purpose of using a background model θB is to make the topics
learned from the dataset more discriminative; since θB gives high probabilities
to nondiscriminative and noninformative items or words, we expect such items or
words to be accounted for by θB and thus the topicmodels to bemorediscriminative.
In a nutshell, the background model θB is used to capture common items or words.

• Time-Topic Model (TT). Following previous works [11, 16], we implemented a
time-topicmodel. This model considers only the temporal information and ignores
user interests. TT assumes that topics are generated by the temporal context, and
that user behaviors are influenced by the temporal context. The probabilistic for-
mula of the time-topic model is presented as follows:

P(v|t;Ψ ) = λBP(v|θB) + (1 − λB)
∑

x

P(x|θ ′
t )P(v|φ′

x),

where P(x|θ ′
t ) is the probability of the general public choosing xth topic during

time period t, and θB is a background model that plays the same role with the one
in the above UT model.

• BPRMF. This is a state-of-the-art matrix factorization model for item ranking
that is optimized using BPR [13]. This model outperforms most of the existing
recommender models in the task of top-k item recommendation. We used the
BPRMF implementation provided byMyMediaLite, a free software recommender
system library [7].

• BPTF. This is a state-of-the-art recommender model for rating prediction that uses
a probabilistic tensor factorization technique by introducing additional factors for
time [19]. This model outperforms most of the existing recommender models that
consider time information.

2.4.3 Evaluation Methodology

To make the evaluation process fair and reproducible, we adopt the methodological
description framework proposed in [2] to describe our evaluation conditions. We
will present our evaluation conditions by answering the following methodological
questions:
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1. What base set is used to perform the training-test building?
2. What rating order is used to assign ratings to the training and test sets?
3. How many ratings comprise the training and test sets?
4. Which items are considered as target items?
5. Which items are considered as relevant items for each user?

Base set condition. The base set conditions state whether the splitting procedure
of training and test sets is based on the whole set of ratings C, or on each of the sub-
datasets of C independently. We adopt the user-centered base set condition where
we perform the splitting independently on each user’s ratings, ensuring that all users
will have ratings in both the training and test sets.

Rating order and size conditions. We adopt the time-dependent rating order
condition. Specifically, for each user u, his/her ratings S(u) are ranked according to
their rated timestamps. We use the 80-th percentile as the cut-off point so that ratings
before this point will be used for training and the rest are for testing, i.e., S(u) is
divided into the training set Strain(u) and test set Stest(u).

Target item condition. To simulate a real-world setting, we require each tested
recommender system to rank all the items except the target user’s training items. In
other words, given a target user u, each tested recommender system has to find top-k
items from all available items except those in the set Strain(u).

Relevant item condition. Relevant item conditions select the items to be inter-
preted as relevant for the target user. The notion of relevance is central for information
retrieval metrics applied to evaluate top-k recommendations.We adopt the test-based
relevant items condition in which the set of relevant items for target user u is formed
by the items in u’s test set Stest(u).

The above condition combination is also called “uc_td_prop” for short. We repeat
our experiments on four different social media datasets for increasing the general-
ization of the evaluation results, and we use a hold-out procedure on each dataset.

To make the experimental results comparable and reproducible, we use multiple
well-known metrics to measure the ranked results. Similar to evaluations in informa-
tion retrieval,wefirst use Precision@k to assess the quality of the top-k recommended
items as follows:

Precision@k = #relavances

k
,

where #relavances is the number of relevant items in the top-k recommended items.
We also consider NDCG, a widely used metric for a ranked list. NDCG@k is
defined as:

NDCG@k = 1

IDCG
×

k∑

i=1

2ri − 1

log(i + 1)
,

where ri is 1 if the item at position i is a “relevant” item and 0 otherwise. IDCG is
chosen for the purpose of normalization so that the perfect ranking has an NDCG
value of 1. Considering that some users may have a large number of items in the test
data while some have just a few, we also adopt the F1 score as our metric.
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2.4.4 Recommendation Effectiveness

Tables2.3, 2.4, 2.5 and 2.6 report the performance of the proposed models and other
competitors in terms of Precision@k, NDCG@k and F1@k on Digg, MovieLens,
Douban Movie and Delicious datasets, respectively. From the reported results, we
observe that:

1. Our proposed models TCAM and W-TCAM consistently outperform other com-
petitors such as UT, TT, BPRMF and BPTF on all four datasets. This observation
shows that recommendation accuracy, especially temporal recommendation accu-

Table 2.3 Temporal recommendation accuracy on digg dataset

Methods Precision NDCG F1 Score

P@1 P@5 P@10 N@1 N@5 N@10 F1@1 F1@5 F1@10

UT 0.091 0.086 0.084 0.093 0.091 0.088 0.007 0.028 0.044

TT 0.182 0.149 0.126 0.178 0.148 0.139 0.017 0.041 0.071

BPRMF 0.048 0.045 0.040 0.048 0.040 0.037 0.002 0.015 0.022

BPTF 0.194 0.166 0.152 0.195 0.176 0.165 0.017 0.050 0.080

TCAM 0.237 0.210 0.179 0.234 0.203 0.188 0.017 0.056 0.093

W-TCAM 0.258 0.220 0.201 0.252 0.224 0.208 0.019 0.063 0.098

Table 2.4 Temporal Recommendation Accuracy on MovieLens Dataset

Methods Precision NDCG F1 Score

P@1 P@5 P@10 N@1 N@5 N@10 F1@1 F1@5 F1@10

UT 0.343 0.252 0.211 0.338 0.257 0.234 0.036 0.099 0.136

TT 0.260 0.193 0.168 0.248 0.198 0.186 0.024 0.070 0.093

BPRMF 0.342 0.239 0.192 0.303 0.229 0.195 0.034 0.084 0.119

BPTF 0.383 0.270 0.224 0.365 0.290 0.261 0.035 0.103 0.141

TCAM 0.385 0.304 0.259 0.406 0.325 0.286 0.037 0.115 0.155

W-TCAM 0.401 0.324 0.264 0.427 0.350 0.313 0.040 0.123 0.165

Table 2.5 Temporal Recommendation Accuracy on Douban Movie Dataset

Methods Precision NDCG F1 Score

P@1 P@5 P@10 N@1 N@5 N@10 F1@1 F1@5 F1@10

UT 0.141 0.104 0.087 0.139 0.106 0.097 0.015 0.041 0.056

TT 0.105 0.078 0.068 0.101 0.080 0.075 0.010 0.028 0.038

BPRMF 0.138 0.101 0.085 0.136 0.103 0.094 0.015 0.040 0.055

BPTF 0.158 0.111 0.092 0.151 0.119 0.108 0.015 0.043 0.058

TCAM 0.168 0.133 0.113 0.177 0.142 0.125 0.016 0.050 0.068

W-TCAM 0.175 0.141 0.115 0.186 0.153 0.137 0.018 0.054 0.072
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Table 2.6 Temporal Recommendation Accuracy on Delicious Dataset

Methods Precision NDCG F1 Score

P@1 P@5 P@10 N@1 N@5 N@10 F1@1 F1@5 F1@10

UT 0.086 0.076 0.073 0.082 0.081 0.078 0.006 0.025 0.039

TT 0.104 0.085 0.072 0.102 0.085 0.080 0.010 0.024 0.041

BPRMF 0.065 0.059 0.051 0.064 0.062 0.060 0.005 0.019 0.030

BPTF 0.111 0.095 0.087 0.112 0.101 0.095 0.010 0.029 0.046

TCAM 0.136 0.120 0.103 0.134 0.116 0.108 0.010 0.032 0.053

W-TCAM 0.148 0.126 0.113 0.144 0.128 0.119 0.011 0.036 0.056

racy, can be improved by simultaneously considering both user intrinsic interests
and the temporal context.

2. BPTF performs better than other competitor methods such as BPRMF,UT and TT
because it also exploits the temporal context information when recommending
items, but our proposed TCAM and W-TCAM consistently outperform BPTF.
This may be because BPTF is designed for rating prediction rather than the top-
k recommendation. It relies on high quality explicit feedback data (e.g., users’
explicit star rating for items), however, which is not always available [13]. In
contrast, our proposed TCAM and W-TCAM are suitable for both explicit and
implicit user feedback data.

3. W-TCAM achieves higher temporal recommendation accuracy than TCAM,
which demonstrates the benefits gained by the item-weighting scheme.

4. ComparingUTandTT,wefind thatUTperforms better thanTTon theMovieLens
and Douban Movie datasets, while TT beats UT on the Digg dataset. This may
be because news is a type of time-sensitive item while movies are not so time-
sensitive and have longer life-span.

2.4.5 Temporal Context Influence Study

This section studies the influence degrees of users’ personal interests and the temporal
context on users’ decision making. The user interest influence probability λu and the
temporal context influence probability 1 − λu are learnt automatically in the TCAM
model. We are interested in how significantly the temporal context influences the
user’s decisions on different social media platforms.

Since different people have different mixing weights, we plot the distributions of
both the personal interest and the temporal context influence probabilities across all
users. The results on the MovieLens data set are shown in Fig. 2.5, where Fig. 2.5a
plots the cumulative distribution of personal interest influence probabilities, and
Fig. 2.5b shows the temporal context influence probabilities. It is observed that, in
general, people’s personal interest influence is significantly higher than the influence
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Fig. 2.5 Temporal context influence result (MovieLens). a Personal interest influence. b Temporal
context influence

of the temporal context. For example, Fig. 2.5a shows that the personal interest influ-
ence probability of more than 76% of users is higher than the 0.82. This observation
indicates that most movies consumed by users are selected in accordance with their
interests and tastes.

Figure2.6a, b show, respectively, the personal interest influence probabilities and
temporal context influence probabilities learnt from the Digg data. As shown in
Fig. 2.6a, the personal interest influence probability is smaller than the temporal
context influence probability. For example, the temporal context influence probability
of more than 70% of users is higher than 0.5. The implication of this finding is that
people are mainly influenced by the temporal context when choosing news to read.
By comparing the analysis results obtained from the two datasets, we observe that the
temporal context influence on users’ choice of news to read is much more significant
than it is on the selection of movies to watch. This is probably because news is a
time-sensitive item that is driven by offline social events, while movies are not so
time-sensitive.
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Fig. 2.6 Temporal context influence result (Digg). a Personal interest influence.bTemporal context
influence
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2.4.6 User Profile Analysis

Both the user interests and temporal context, as well as their influences on users’
decision making, can be learnt by our TCAM model to build user profiles. This
section first analyzes two sample user profiles to enable a better interpretation of
user rating behaviors. Figure2.7 shows the profiles of user 102 and user 384 learnt
by TCAM from the Digg dataset. As shown in the figure, users 102 and 384 are
influenced by the temporal context with influence probability values 0.88 and 0.76,
respectively. We also show top-4 user-oriented topics with highest probabilities in
θu. The weights on the edges indicate users’ preferences for the topics. Note that
we only choose top-4 user-oriented topics for demonstration, thus the sum of the
weights on the edges is not equal to 1. There is only one overlapping user-oriented
topic for users 102 and 384, and the dominating user-oriented topics for them are
different (i.e., U1 vs. U8).

We also show two sample temporal context profiles for time slices 6 and 7 in
Fig. 2.8. We present the top-4 time-oriented topics with highest probabilities in each
θ ′
t . The weights on the edges indicate the preference degrees of the general public for
the chosen four time-oriented topics. We choose two temporal context profiles learnt
by TCAM from Digg dataset for demonstration. By comparing the two adjacent
temporal context profiles, we observe that the general public’s preferences for time-
oriented topics evolve over time. While the two adjacent time slices share the time-
oriented topics T1 and T16, the general public focus more on topic T1 at time slice
6 and show more interest in topic T6 at time slice 7.

Fig. 2.7 Sample user profiles and temporal context influence learnt by TCAM
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Fig. 2.8 Sample temporal context profiles

2.5 Summary

In this chapter, we focused on the problem of user behavior modeling in social media
systems and its applications in temporal recommendation. Based on the intuition and
observations that users’ rating behaviors are influenced by two factors: user intrinsic
interests as an internal factor, and the temporal context (i.e., the public’s attention
during a time period) as an external factor, we proposed a temporal context-aware
mixture model (TCAM) that explicitly introduces two types of latent topics to model
user interests and temporal context, respectively. An item-weighting scheme was
developed to enhance the TCAM models by exploiting the frequency distribution
and temporal distribution information of items. To demonstrate the applicability of
TCAM, we deployed this model to facilitate temporal recommendation. We con-
ducted extensive experiments on four large-scale real social media datasets, and the
results and analysis demonstrated the superiority of our TCAM model over existing
methods in the task of temporal recommendation, which verified our motivation. We
also explored other applications for our TCAM model beyond time-aware recom-
mendation, such as user profiling and temporal context modeling in an illustrative
way in the experiment section.
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Chapter 3
Spatial Context-Aware Recommendation

Abstract As a user can only visit a limited number of venues/events and most of
them are within a limited distance range, the user-item matrix is very sparse, which
creates a big challenge for traditional collaborative filtering-based recommender
systems. The problem becomes more challenging when people travel to a new city
where they have no activity history. In this chapter, we propose LCARS, a location-
content-aware recommender system that offers a particular user a set of venues (e.g.,
restaurants) or events (e.g., concerts and exhibitions) by giving consideration to
both personal interest and local preference. This recommender system can facilitate
people’s travel not only near the area in which they live, but also in a city that is new
to them. We evaluate the performance of our recommender system on two large-
scale real datasets, DoubanEvent, and Foursquare. The results show the superiority
of LCARS in recommending spatial items for users, especially when traveling to
new cities.

Keywords Location-based service · New city recommendation · Transferring user
interest · Local preference

3.1 Introduction

Newly emerging event-based social network services (EBSNs), such as Meetup
(www.meetup.com), Plancast (www.plancast.com) andDoubanEvent (www.douban.
com/events/) have provided convenient online platforms for users to create, spread,
track, and attend social events which are going to be held in some physical loca-
tions [12]. On these web services, users may propose social events, ranging from
informal get togethers (e.g., movie night and dining out) to formal activities (e.g.,
culture salons and business meetings) by specifying when, where and what the event
is.After the created event is available to the public, other usersmayexpress their intent
to join event by replying “yes,” “no,” or “maybe” online. Meanwhile, the advances in
location-acquisition and wireless communication technologies enable users to add
a location dimension to traditional networks, fostering a growth of location-based
social networking services (LBSNs), such as Foursquare (https://foursquare.com)

© Springer Science+Business Media Singapore 2016
H. Yin and B. Cui, Spatio-Temporal Recommendation in Social Media,
SpringerBriefs in Computer Science, DOI 10.1007/978-981-10-0748-4_3
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and Gowalla (www.gowalla.com) which allow users to “check-in” at spatial venues
(e.g., restaurants in New York) via mobile devices.

In this chapter, we aim to mine more knowledge from the user activity history
data in LBSNs and EBSNs to answer two typical types of questions that we often
ask in our daily: (1) If we want to visit venues in a city such as Beijing, where should
we go? (2) If we want to attend local events such as dramas and exhibitions in a city,
which events should we attend? In general, the first question corresponds to venue
recommendations, and the second question corresponds to event recommendations.
By answering these two questions, we can satisfy the personalized information needs
for many users in their daily routines and trip planning. For simplicity, we propose
the notion of spatial items to denote both venues and events in a unified way, so that
we can define our problem as follows: given a querying user u with a querying city
lu , find k interesting spatial items within lu , that match the preference of u.

However, inferring user preferences for spatial items is very challenging using
users’ activity history in an EBSN or LBSN. First, a user can only visit a limited
number of physical venues and attend a limited number of social events. This leads
to a sparse user-item matrix for most existing location-based recommender systems
[7, 10], which directly use collaborative filtering-based methods [14] over spatial
items. Second, the observation of travel locality [10]makes the taskmore challenging
considering that a user travels to a new place where he/she does not have any activity
history. The observation of travel locality made on EBSNs and LBSNs shows that
users tend to travel a limited distance when visiting venues and attending events.
An investigation shows that the activity records generated by users in their non-
home cities are very few and only take up 0.47% of the activity records they left
in their home cities. This observation of travel locality is quite common in the real
world [16], aggravating the data sparsity problem with personalized spatial item
recommendations (e.g., if we want to suggest spatial items located in Los Angeles
to people from New York City). In this case, solely using a CF-based method is
not feasible any more, especially when coping with the new city problem, because a
querying user usually does not have enough activity history of spatial items in a city
that is new to him/her.

Let us assume, for example, that querying user u is a Shopaholic and often visits
shopping mall v′ in his/her home city; v is a popular local shopping mall in city lv
that is new to u. Intuitively, a good recommender system should recommend v to
u when he/she travels to lv. However, the pure CF-based methods fail to do so. For
the item-based CF [11, 15], there are few common users between v and v′ according
to the property of travel locality, resulting in the low similarity between the two
items’ user vectors. For the user-based CF [1], it is most likely that all the k nearest
neighbors of user u live in the same city as u, and that few of them have visited v
according to the property of travel locality.

To this end,weproposed a location-content-aware recommender system (LCARS)
in [21, 22] that exploits both the location and content information of spatial items
to alleviate the data sparsity problem, especially the new city problem. As is shown
in Fig. 3.1, LCARS consists of two main parts: offline modeling and online recom-
mendation. The offline model, LCA–LDA, is designed to model user preferences to

www.gowalla.com
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Fig. 3.1 The architecture framework of LCARS [21] c© 2014 Association for Computing
Machinery, Inc. Reprinted by permission

spatial items by simultaneously considering the following two factors in a unified
manner. (1) User Interest: Music lovers may be more interested in concerts while
Shopaholicswould paymore attention to shoppingmalls. (2)LocalPreference:When
users visit a city, especially a city that is new to them, they are more likely to see
local attractions and attend events that are popular in the city. Thus, the preferences
of local people are a valuable resource for making a recommendation, especially
when people travel to an unfamiliar area where they have little knowledge about
the neighborhood. LCA–LDA can automatically learn both user interest and local
preference from the user activity history. Exploiting local preference can address the
issue of data sparsity to some extent. To further alleviate the data sparsity problem,
LCA–LDA exploits the content information (e.g., item tags or category words) of
spatial items to link content-similar spatial items together, facilitating people’s travel
not only near their home regions but also to cities that are new to them. It is worth
mentioning that LCA–LDA can also capture the item cooccurrence patterns to link
relevant items together, just like item-based collaborative filtering methods. To our
best knowledge, ideas for unifying the influence of local preferences, collaborative
filtering and content-based recommendation are unexplored and very challenging.

Given a querying user u with a querying city lu , the online recommendation part
computes a ranking score for each spatial item vwithin lu by automatically combining
u’s interest and the local preference of lu , and select top-k ones with highest ranking
score as recommendation results. To speed up the process of online recommenda-
tion, we propose a scalable query processing technique for top-k recommendations
which separates the offline scoring computation from online scoring computation to
minimize the query time. Specifically, we partition all spatial items into regions at a
given level such as cities. For each region, as is shown in Fig. 3.1, we store K lists
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of spatial items that fall into the location and each list is sorted by the items’ offline
score in the corresponding dimension z. At query time, we retrieve all spatial items
within lu by running fast online recommendation algorithms (e.g., TA) to compute
the top-k spatial items by combining the score of each candidate item from K scorers.

The remainder of the chapter is organized as follows. Section3.2 details the
location-content-aware recommender system LCARS. We report the experimental
results in Sect. 3.3 and conclude the chapter in Sect. 3.4.

3.2 Location-Content-Aware Recommender System

In this section, we first introduce the key data structures and notations used in this
chapter, and then present the offline modeling part and online recommendation part
of our proposed location-content-aware recommender system.

3.2.1 Preliminary

For ease of the following presentation, we define the key data structures and notations
used in this chapter. Table3.1 lists the relevant notations used in this chapter.

Definition 3.1 (Spatial Item) A spatial item v refers to either an event or venue
generated in various EBSNs or LBSNs.

Definition 3.2 (User Activity) A user activity is a triple (u, v, lv) that means user u
selects a spatial item v in geographical region lv. Information about the user activity
history is given by S ⊆ U ×V ×L , where user activities are positive observations
in the past.

The dataset D used for our model learning consists of four elements, and they are
users, spatial items, geographical regions and content words, i.e., (u, v, lv, cv) ∈ D
where u ∈ U , v ∈ V , lv ∈ L , and cv ∈ Cv (i.e., Cv denotes the content word set
associated with spatial item v). Note that a spatial item may contain multiple content
words. For an activity history record of a user u selecting a spatial item v located in
lv, we have a set of four-tuples, i.e., Duv = {(u, v, lv, cv) : cv ∈ Cv}.
Definition 3.3 (User Profile) For each user u in the dataset D, we create a user
profile Du , which is a set of four-tuples (i.e., (u, v, lv, cv)) associated with u. Clearly,
Duv ⊆ Du .

Definition 3.4 (Topic) A topic z in a spatial item collection V is represented by a
topic model φz , which is a probability distribution over spatial items, i.e., {P(v|φz) :
v ∈ V } or {φzv : v ∈ V }. By analogy, a topic in a content word collection C is
represented by a topic model φ′

z , which is a probability distribution over content
words, i.e., {P(c|φ′

z) : c ∈ C } or {φ′
zc : c ∈ C }.
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Table 3.1 Notations used in the chapter

Symbol Description

N , V, M,C The number of users, spatial items, regions, content words

U ,V ,L ,C The set of users, spatial items, regions, content words

Vl The set of spatial items located in region l

K The number of topics

Du The profile of user u

vui The spatial item of i th record in user profile Du

θu The interest of user u, expressed by a multinomial distribution over topics

θ ′
l The local preference of region l, expressed by a multinomial distribution over

topics

φz A multinomial distribution over spatial items specific to topic z

φ′
z A multinomial distribution over content words specific to topic z

zui The topic assigned to spatial item vui
lui The region of spatial item vui
lu The querying region of the querying user u

cui A content word describing spatial item vui
Cui The set of content words describing spatial item vui
sui If spatial item vui is generated by θu or θ ′

lui

β, β ′ Dirichlet priors to multinomial distributions φz, φ
′
z

α, α′ Dirichlet priors to multinomial distributions θu , θ
′
l

λu The mixing weight specific to user u

γ, γ ′ Beta priors to generate λu

It is worth mentioning that each topic z corresponds to two topic models in our
work, i.e., φz and φ′

z . This design enables φz and φ′
z to be mutually influenced and

enhanced during the topic discovery process, facilitating the clustering of content-
similar spatial items into the same topic with high probability.

Definition 3.5 (User Interest) The intrinsic interest of user u is represented by θu ,
a probability distribution over topics.

Definition 3.6 (Local Preference) The local preference of geographical region l is
represented by θ ′

l , a probability distribution over topics. This modeling method can
capture local folk-customs.

3.2.2 Model Description

In this subsection, we first describe the offline modeling part of LCARS, a proba-
bilistic generative model called LCA–LDA.
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Fig. 3.2 Example of LCA–LDA Model [21] c© 2014 Association for Computing Machinery, Inc.
Reprinted by permission

The proposed offlinemodeling part, LCA–LDA, is a location-content-aware prob-
abilistic mixture generative model that aims to mimic the process of human decision
making on spatial items. As shown in Fig. 3.2, LCA–LDA considers both user’s
personal interest and the influence of local preference in a unified manner, and auto-
matically leverages the effect of the two factors. Specifically, given a querying user
u with a querying city lu , the likelihood that user u will prefer item v when traveling
to city lu , is computed according to the following LCA–LDA model.

P(v|θu, θ ′
lu , φ, φ′) = λu P(v|θu, φ, φ′) + (1 − λu)P(v|θ ′

lu , φ, φ′) (3.1)

where P(v|θu, φ, φ′) is the probability that spatial item v is generated according to the
personal interest of user u, denoted as θu , and P(v|θ ′

lu
, φ, φ′) denotes the probability

that spatial item v is generated according to the local preference of lu , denoted as θ ′
lu
.

The parameter λu is the mixing weight which controls the motivation choice. That is,
when deciding individual preference on v, user u is influenced by personal interest
with probability λu , and is influenced by the local preference of lu with probability
1 − λu . It is worth mentioning that LCA–LDA holds personalized mixing weights
for individual users, considering the differences between users in personality (e.g.
openness, agreeableness).
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To further alleviate the data sparsity problem, LCA–LDA incorporates the content
information of spatial items. Thus, we reformulate Eq. (3.1) as follows:

P(v|θu, θ ′
lu , φ, φ′) =

∑

c∈Cv

P(v, c|θu, θ ′
lu , φ, φ′) (3.2)

P(v|θu, φ, φ′) =
∑

c∈Cv

P(v, c|θu, φ, φ′) (3.3)

P(v|θ ′
lu , φ, φ′) =

∑

c∈Cv

P(v, c|θ ′
lu , φ, φ′) (3.4)

where Cv is a set of content words describing spatial item v. In LCA–LDA, both user
interest θu and local preference θ ′

lu
are modeled by a multinomial distribution over

latent topics. Each spatial item v is generated from a sample topic z. LCA–LDA also
parameterizes a distribution over content words associated with each topic z, and
thus topics are responsible for simultaneously generating both spatial items and their
content words. As shown in Fig. 3.2, the weight (a, b) on the edge linking topic T 1
and item v2 represents the probabilities of T 1 generating item v2 and its associated
content word “Sculptures,” respectively. It should be noted that here we assume
that items and their content words are independently conditioned on the topics. So,
P(v, c|θu, φ, φ′) and P(v, c|θ ′

lu
, φ, φ′) can be computed according to Eqs. (3.5) and

(3.6). Parameter estimation inLCA–LDA is thus driven to discover topics that capture
both item cooccurrence and content word cooccurrence patterns. This encodes our
prior knowledge that spatial items having many common users or similar content
should be clustered into the same topic with high probability.

P(v, c|θu, φ, φ′) =
∑

z

P(v, c|z, φz, φ
′
z)P(z|θu)

=
∑

z

P(v|z, φz)P(c|z, φ′
z)P(z|θu) (3.5)

P(v, c|θ ′
lu , φ, φ′) =

∑

z

P(v, c|z, φz, φ
′
z)P(z|θ ′

lu )

=
∑

z

P(v|z, φz)P(c|z, φ′
z)P(z|θ ′

lu ) (3.6)

The proposed LCA–LDA is a latent class statistical mixture model. It can be
represented by a graphical model in Fig. 3.3 and a generative process in Algorithm 1.
The model discovers (1) user’s personal interest distribution over latent topics, θu ;
(2) local preference distribution over latent topics, θ ′

lu
; (3) topic distribution over

items, φz; (4) topic distribution over content words, φ′
z ; (5) the mixing weight λu . The

generative model aims to capture the process of human behaviors and/or reasoning
for decision making. For example, a querying user u wants to choose a venue v in
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Algorithm 1: Probabilistic generative process in LCA–LDA

Input: a user profile dataset D;
Output: estimated parameters θ , θ ′, φ, φ′, and λ;

1 for each topic z do
2 Draw φz ∼ Dirichlet (·|β);
3 Draw φ′

z ∼ Dirichlet (·|β ′);
4 end
5 for each Du in D do
6 for each record (u, vui , lui , cui ) ∈ Du do
7 Toss a coin sui according to bernoulli(sui ) ∼ beta(γ, γ ′);
8 if sui = 1 then
9 Draw θu ∼ Dirichlet (·|α);

10 Draw a topic zui ∼ multi(θu) according to the interest of user u;
11 end
12 if sui = 0 then
13 Draw θ ′

lui
∼ Dirichlet (·|α′);

14 Draw a topic zui ∼ multi(θ ′
lui

) according to the local preference of lui ;

15 end
16 Draw an item vui ∼ multi(φzui ) from zui -specific spatial item distribution;
17 Draw a content word cui ∼ multi(φ′

zui ) from zui -specific content word distribution;
18 end
19 end

Fig. 3.3 The graphical
representation of
LCA–LDA [21] c© 2014
Association for Computing
Machinery, Inc. Reprinted by
permission

city lu to visit. The person may choose one based on personal interest or choose
the one that is most popular in lu . In the case that u wants to choose the venue
based on personal interest (with a certain probability λu), a topic z is first chosen
according to the personal interest distribution θu , and then the selected topic z in
turn generates a venue v and relevant content words Cv following on the topic’s
item and content word generative distributions (i.e., φz and φ′

z), respectively. In the
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case that user u follows the local preference of lu , lu would generate an item and its
content words following on lu’s preference distribution θ ′

lu
similarly. Thus, this model

simulates the process that how u picks the spatial item v, including how the local
preference of lu influences u’s decision. As a running example in Fig. 3.2, the user is
influenced by personal interest and the local preference with probabilities 0.64 and
0.36, respectively. The top-4 topics of the user’s interest and the local preference
are also shown, respectively, where the weights representing user’s personal interest
and the local preference in the topics are labeled in the corresponding edges. We can
see that there is only one overlapped topic for the user and the local preference, and
their dominated topics are different (i.e., T1:0.801 vs. T8:0.756). The probabilities
of topic generating items and their associated content words are also labeled in the
corresponding edges. For example, the weights (a, b) on the edge linking topic T1
and item v2 represent the probabilities of T1 generating item v2 and its associated
content word “Sculptures”, respectively.

With the model hyperparameters α, α′, β, β ′, γ , and γ ′, the joint distribution of
the observed and hidden variables v, cv, z and s can be written as below.

P(v, cv, z, s|α, α′, β, β ′, γ, γ ′)

=
∫

· · ·
∫

P(v|φ, z)P(φ|β)P(cv|φ′, z)P(φ′|β ′)

P(z|θ, θ ′, s)P(θ |α)P(θ ′|α′)P(s|λ)P(λ|γ, γ ′)
dφ dφ′ dθ dθ ′ dλ (3.7)

3.2.3 Model Inference

The computation of the posterior distribution of the hidden variables is intractable
for the LCA–LDAmodel. Therefore, we follow the studies [17, 18] and use approx-
imate method collapsed Gibbs sampling to obtain samples of the hidden variable
assignment and to estimate unknown parameters {θ, θ ′, φ, φ′, λ} in the LCA–LDA.
As for the hyperparameters α, α′, β, β ′, γ , and γ ′, for simplicity, we take a fixed
value (i.e., α = α′ = 50/K , β = β ′ = 0.01, γ = γ ′ = 0.5). Note that Gibbs
sampling allows the learning of a model by iteratively updating each latent variable
given the remaining variables. In the sampling procedure, we begin with the joint
probability of all user profiles in the dataset. Next, using the chain rule, we obtain the
posterior probability of sampling topics for each four-tuple (u, v, lv, cv). Specifically,
we employ a two-step Gibbs sampling procedure.

Tobeginwith,weneed to compute the conditional probabilities P(sui |s¬ui , z, v, c)
and P(zui |s, z¬ui , v, c), where s¬ui and z¬ui represent the s and z assignments for
all the spatial items except vui , respectively. According to the Bayes rule, we can
compute these conditional probabilities in terms of the joint probability distribution
of the latent and observed variables shown in Eq. (3.7). Next, to make the sampling
procedure clearer, we factorize this joint probability as:
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P(v, cv, z, s) = P(v|z)P(cv|z)P(z|s)P(s) (3.8)

By integrating out the parameter φ in Eq. (3.7) we can obtain the first term in
Eq. (3.8):

P(v|z) =
(

Γ (
∑

v βv)∏
v Γ (βv)

)K ∏

z

∏
v Γ (nzv + βv)

Γ (
∑

v(nzv + βv))
(3.9)

where nzv is the number of times that spatial item v has been generated by topic z.
Γ (·) is the gamma function. Similarly, for the second term P(cv|z) in Eq. (3.8), we
integrate out the parameter φ′ and get

P(cv|z) =
(

Γ (
∑

c β ′
c)∏

c Γ (β ′
c)

)K ∏

z

∏
c Γ (nzc + β ′

c)

Γ (
∑

c(nzc + β ′
c))

(3.10)

where nzc is the number of times that content word c has been generated by topic z.
Next, we evaluate the third term P(z|s) in Eq. (3.8). By integrating out the para-

meters θu and θ ′
l , we compute:

P(z|s) =
(

Γ (
∑

z αz)∏
z Γ (αz)

)|U | ∏

u

∏
z Γ (nuz + αz)

Γ (
∑

z(nuz + αz))

·
(

Γ (
∑

z α′
z)∏

z Γ (α′
z)

)|L| ∏

l

∏
z Γ (nlz + α′

z)

Γ (
∑

z(nlz + α′
z))

(3.11)

where |U | is the number of users, and |L| is the number of locations (e.g., cities); nuz
is the number of times that topic z has been sampled from themultinomial distribution
specific to user u; nlz is the number of times that topic z has been sampled from the
multinomial distribution specific to location l.

Last, we need to derive the fourth term P(s). By integrating out λu we have:

P(s) =
(

Γ (γ + γ ′)
Γ (γ )Γ (γ ′)

)|U | ∏

u

Γ (nus1 + γ )Γ (nus0 + γ ′)
Γ (nus1 + nus0 + γ + γ ′)

(3.12)

where nus1 is the number of times that s = 1 has been sampled in the user profile
Du ; nus0 is the number of times that s = 0 has been sampled in the user profile Du .

Now, the conditional probability can be obtained by multiplying and canceling of
terms in Eqs. (3.9)–(3.12). Thus, we first sample the coin s according to the posterior
probability:

P(sui = 1|s¬ui , z, .)

∝ n¬ui
uzui + αzui∑
z(n

¬ui
uz + αz)

× n¬ui
us1 + γ

n¬ui
us0 + n¬ui

us1 + γ + γ ′ (3.13)
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P(sui = 0|s¬ui , z, .)

∝ n¬ui
lui zui

+ α′
zui∑

z(n
¬ui
lui z

+ α′
z)

× n¬ui
us0 + γ ′

n¬ui
us0 + n¬ui

us1 + γ + γ ′ (3.14)

where the number n¬ui with superscript¬ui denotes a quantity, excluding the current
instance.

Then, we sample topic z according to the following posterior probability, when
sui = 1:

P(zui |sui = 1, z¬ui , v, c, .)

∝ n¬ui
uzui + αzui∑
z(n

¬ui
uz + αz)

n¬ui
zui vui + βvui∑
v(n

¬ui
zui v + βv)

n¬ui
zui cui + β ′

cui∑
c(n

¬ui
zui c + β ′

c)
(3.15)

when sui = 0:

P(zui |sui = 0, z¬ui , v, c, .)

∝ n¬ui
lui zui

+ α′
zui∑

z(n
¬ui
lui z

+ α′
z)

n¬ui
zui vui + βvui∑
v(n

¬ui
zui v + βv)

n¬ui
zui cui + β ′

cui∑
c(n

¬ui
zui c + β ′

c)

(3.16)

After a sufficient number of sampling iterations, the approximated posterior can
be used to get estimates of parameters by examining the counts of (s, z) assignments
to four-tuple (u, v, l, c). Specifically, during the parameter estimation, the algorithm
keeps track of a K × |V | (topic by spatial item) count matrix, a K × |C | (topic by
content word) count matrix, an |U |×2 (user by coin) count matrix, an |U |×K (user
by topic) count matrix and an |L| × K (location by topic) count matrix. Given these
matrices, we can estimate the parameters θ , θ ′, φ, φ′, and λ as follows:

θ̂uz = nuz + αz∑
z′(nuz′ + αz′)

(3.17)

θ̂ ′
lz = nlz + α′

z∑
z′(nlz′ + α′

z′)
(3.18)

φ̂zv = nzv + βv∑
v′(nzv′ + βv′)

(3.19)

φ̂′
zc = nzc + β ′

c∑
c′(nzc′ + β ′

c′)
(3.20)

λ̂u = nus1 + γ

nus1 + nus0 + γ + γ ′ (3.21)
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3.2.4 Online Recommendation

In this subsection, we present the online recommendation part of our recommender
system LCARS. Given a querying user u with a querying region lu to which u is
going to travel, the online part of LCARS will efficiently compute ranking scores
for all spatial items within lu and then return the top-k items as the recommendation
results.

The ranking scores of spatial items are computed using the knowledge, such as
user interest θ , local preference θ ′, mixing weight λ, topics φ, and φ′, learned by
the offline model LCA–LDA. To improve the online query performance, we propose
a ranking framework in Eq. (3.22) which separates the offline scoring computation
from the online scoring computation. Specifically, F(lu, v, z) represents the offline
part of the scoring, denoting the score of spatial item v with respect to location lu on
topic z which is learnt in the LCA-LDAmodel. Note that F(lu, v, z) is independent of
querying users. The weight scoreW (u, lu, z) is computed in the online part, denoting
the preference weight of query (u, lu) on topic z. It is worth mentioning that the main
time-consuming components of W (u, lu, z) are also computed offline (e.g., θ̂uz , λu ,
and θ̂ ′

lu z
), and the online computation is just a simple linear fusion process, as is

shown in Eq. (3.23). This design enables maximum precomputation for the problem
considered, and in turn minimizes the query time. At query time, the ranking score
S(u, lu, v) in Eq. (3.22) only needs to aggregate F(lu, v, z) over K topics by a simple
weighted sum function, in which the weight is W (u, lu, z). From Eqs. (3.23) and
(3.24), we can see that W (u, lu, z) consists of two components, designed to model
user interest and local preference, respectively, and each component is associatedwith
a kind of user motivation. F(lu, v, z) takes into account both the item co-occurrence
information and the similarity of item contents to produce recommendations.

S(u, lu, v) =
∑

z

F(lu, v, z)W (u, lu, z) (3.22)

W (u, lu, z) = λ̂u θ̂uz + (1 − λ̂u)θ̂
′
lu z (3.23)

F(lu, v, z) =
⎧
⎨

⎩

φ̂zv
∑

cv∈Cv
φ̂′
zcv v ∈ Vlu

0 v /∈ Vlu

(3.24)

3.3 Experiments

In this section, we first describe the settings of experiments including the datasets,
comparative approaches, and the evaluation method. We then report major experi-
mental results on both the recommendation effectiveness and efficiency of our rec-
ommender system, followed by their tradeoff. We also study the interpretability of
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Fig. 3.4 User and Event distributions over cities

our LCARS by analyzing the learnt user profiles, the effect of users’ personal inter-
ests and the local preferences in users’ decision making for traveling, and the latent
topics learnt by LCARS.

3.3.1 Datasets

In this chapter, we utilize one synthetic dataset with 10 million spatial items and two
real-life datasets for the performance evaluation. The detailed description for two
real datasets are listed as follows.

• DoubanEvent: DoubanEvent is China’s largest event-based social networking
site where users can publish and participate in social events. On DoubanEvent, a
social event is created by a user by specifying what, when and where the event
is. Other users can express their intent to join events by checking-in online. This
dataset consists of 100,000 users, 300,000 events and 3,500,000 check-ins. Most
of check-in records are located in China’s four largest cities: Beijing, Shanghai,
Guangzhou and Shenzhen. To guarantee the validity of the experimental results,
each user in our dataset has provided at least 10 check-ins. Figure3.4 describes the
distribution information of both users and events over cities. For instance, 22%
of users live in the city of Beijing and 24% of events are held in Beijing. The
following information is recorded when collecting the data: (1) user information,
including user-id, user-name, and user-home city; (2) event information, consisting
of event-id, event-name, event-latitude, event-longitude, event-summary, and its
category; (3) user feedback information, including user-id and event-id. We make
the dataset publicly available.1

• Foursquare: Another publicly available LBSNs dataset, Foursquare [6], is also
used in our experiment. Foursquare is one of the most popular online LBSNs.
It has more than 30 million users and 3 billion check-ins as of January, 2013.2

1https://sites.google.com/site/dbhongzhi/.
2https://foursquare.com/about/.

https://sites.google.com/site/dbhongzhi/
https://foursquare.com/about/
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The web site itself does not provide a public API to access users’ check-in data;
however, it provides an alternative way for users to link their twitter accounts with
Foursquare, and then share the check-in message as tweets to Twitter. This dataset
contains 11,326 users, 182,968 venues, and 1,385,223 check-ins. Note that this
dataset does not contain item content information.

To utilize these two datasets in our proposed models, we preprocess them as
follows: (1) We first employ Google Maps API3 to partition all the spatial items into
cities according to their latitudes and longitudes. (2) For the DoubanEvent dataset,
we then use NLP toolkits4 to extract a set of content words for each event from its
summary and category description. To guarantee the quality of content words, we
use tf-idf techniques to rank all content words associated with each event and finally
keep top five ranked ones.

Note that, although we only utilize the city granularity to generate recommenda-
tion to end-users for evaluation in this chapter, our approach can be easily extended
to facilitate the recommendation task at various granularities, by dividing the space
into multiscale regions, inferring their local preferences offline, and automatically
selecting proper region when making recommendations.

3.3.2 Comparative Approaches

Wecompare our proposed LCARSwith the following six competitormethods, where
the first four approaches are the existing recommender systems, and the last two
recommendermodels correspond to the twomain components of our proposed LCA–
LDA.

• User interest, social, and geographical influences (USG): Following recent
location-based recommendation work [19], a unified location recommendation
framework is implemented which linearly fuses user interest, along with the social
and geographical influences. The user interest component of USG is implemented
by a traditional user-based collaborative filtering technique, and the geographical
influence is computed by a power-law probabilistic model that aims to capture the
geographical clustering phenomenon that points of interest visited by the same
user tend to be clustered geographically.

• Social Trust Ensemble (STE): Social Trust Ensemble, proposed in [13], is a
probabilistic matrix factorization framework which linearly fuses the users’ tastes
and their friends’ favors together to produce recommendations. It should be noted
that the mixing weights in STE are manually set rather than learnt automatically
from the data. Besides, the mixing weights in BTE are not personalized (i.e., all
users in a dataset share the samemixingweights), ignoring the differences between
users.

3https://developers.google.com/maps/.
4http://nlp.stanford.edu/software/index.shtml.

https://developers.google.com/maps/
http://nlp.stanford.edu/software/index.shtml
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• Category-based k-Nearest Neighbors Algorithm (CKNN): Following recently
proposed location-based recommendation technique [2] for dealing with the prob-
lem of data sparsity, a category-based KNN algorithm is implemented as our
competitor. CKNN first projects a user’s activity history into a well-designed cate-
gory space and models each user’s preference with a weighted category hierarchy.
Meanwhile, it infers the authority of each user in a city with respect to different
category of spatial items according to their activity histories using HITS model.
When receiving a query q = (u, l), CKNN first selects a set of high-quality users
Nu in the querying city who have the same or similar preferences with the querying
user u. Then CKNN constructs a user-item matrix using the selected users Nu and
their visited spatial items. Finally, CKNN employs a traditional user-based CF
model over the user-item matrix to infer the querying user’s rating of a candidate
item. The general intuition behind a user-based CF model is that similar users rate
the same items similarly. Formally, the rating that the querying user u would give
to spatial item v is calculated as follows.

S(u, v) =
∑

u′∈Nu

Sim(u, u′) × r(u′, v) (3.25)

where Sim(u, u′) denotes the similarity between u and u′ which is computed
according to their weights in the category hierarchy rather than the traditional
Cosine value between two users’ item vectors; r(u′, v) represents the rating that
u′ gave to item v.

• Item-based k-Nearest Neighbors Algorithm (IKNN): IKNN is the most com-
monway that people comeupwith,which applies the collaborativefilteringmethod
directly over the spatial items. This method utilizes the user activity history to cre-
ate a user-item matrix. When receiving a query, IKNN retrieves all users to find k
nearest neighbors in the querying city by computing the Cosine similarity between
the querying user’s and other users’ item vectors. Finally, the spatial items in the
user-specific querying city that have a relatively high ranking score will be recom-
mended. It should be noted that when IKNN cannot help the querying user find
k nearest neighbors in the querying city, we recommend the most popular local
ones.

• LDA: Following previous works [3, 8], a standard LDA-based method is imple-
mented as one of our baselines. In this model, each user is viewed as a document,
and spatial items visited by the user are viewed as the words appeared in the doc-
ument. Compared with our proposed LCA–LDA, this method neither considers
the content information of spatial items, nor their location information. For online
recommendation, the ranking score is computed using our ranking framework in
Eq. (3.22) where F(lu, v, z) = φ̂zv, W (u, lu, z) = θ̂uz .

• Location-Aware LDA (LA–LDA): As a component of the proposed LCA–LDA
model, LA–LDA means our method without considering the content informa-
tion of spatial items. For online recommendation, the ranking score is computed
using our proposed ranking framework in Eq. (3.22) where F(lu, v, z) = φ̂zv and
W (u, lu, z) = λ̂u θ̂uz + (1 − λ̂u)θ̂

′
lu z
.
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• Content-Aware LDA (CA–LDA): As another component of the LCA–LDA
model, CA–LDA means our method without exploiting the location information
of spatial items, i.e., local preference. It can capture the prior knowledge that spa-
tial items with the same or similar contents are more likely to belong to the same
topic. This model is similar to the ACTmodel [18] in the methodology. For online
recommendation, the ranking score is computed using our ranking framework in
Eq. (3.22) where F(lu, v, z) = φ̂zv

∑
cv∈Cv

φ̂′
zcv and W (u, lu, z) = θ̂uz .

3.3.3 Evaluation Methods

To make an overall evaluation of the recommendation effectiveness of our proposed
LCA–LDA, we first design the following two real settings: (1) querying cities are
new cities to querying users; (2) querying cities are the home cities of querying users.
We then divide a user’s activity history into a test set and a training set. We adopt two
different dividing strategies with respect to the two settings. For the first setting, we
select all spatial items visited by the user in a non-home city as the test set and use
the rest of the user’s activity history in other cities as the training set. For the second
setting, we randomly select 20% of spatial items visited by the user in personal home
city as the test set, and use the rest of personal activity history as the training set.

According to the above designed dividing strategies, we split the user activity
history S into the training dataset Straining and the test set Stest . To evaluate the rec-
ommender models, we adopt the similar testing methodology and the measurement
Recall@k applied in [3, 5, 9, 20]. Specifically, for each test case (u, v, lv) in Stest :

1. We compute the ranking score for item v as well as all other spatial items located
in city lv and unvisited by u before.

2. We form a ranked list by ordering all these spatial items according to their ranking
scores. Let p denote the rank of the test item v within this list. The best result
corresponds to the case where the test item v precedes all the unvisited items (i.e.,
p = 0).

3. We form a top-k recommendation list by picking the k top ranked items from the
list. If p < k we have a hit (i.e., the test item v is recommended to the user).
Otherwise we have a miss. The probability of a hit increases with the increasing
value of k. When k is equal to the number of spatial items located in lv, we always
have a hit.

The computation of Recall@k proceeds as follows. We define hit@k for a single
test case as either the value 1 if the test spatial item v appears in the top-k results, or
else the value 0. The overall Recall@k are defined by averaging all test cases:

Recall@k = #hit@k

|Stest | (3.26)



3.3 Experiments 57

where #hit@k denotes the number of hits in the test set, and |Stest | is the number
of all test cases. It should be noted that both DoubanEvent and Foursquare datasets
have a low density, which usually results in relatively low recall values. In addition,
the spatial items visited by user u may represent only a small portion of spatial
items that u is interested in, so the hypothesis that all the unvisited spatial items
are nonrelevant to user u tends to underestimate the computed recall with respect
to the true recall. However, this experimental setting and evaluation are fair to all
comparison approaches. So, we focus on the relative improvements we achieve,
instead of the absolute values in this chapter.

3.3.4 Recommendation Effectiveness

In this part, we first present the optimal performance with well-tuned parameters and
then study the impact of model parameters.

Figure3.5 reports the performance of the recommendation algorithms onDouban-
Event dataset. We show only the performance where k is in the range [1 . . . 20],
because a greater value of k is usually ignored for a typical top-k recommendation
task. It is apparent that the algorithms have significant performance disparity in terms
of top-k recall. As shown in Fig. 3.5a where querying cities are new cities, the recall
of LCA–LDA is about 0.1 when k = 10, and 0.126 when k = 20 (i.e., the model
has a probability of 10% of placing an appealing event within the querying city
in the top-10 and 12.6% of placing it in the top-20). Clearly, our proposed LCA–
LDAmodel outperforms other competitor recommendation algorithms significantly.
First, IKNN and USG perform the worst in the new city setting. Both of them are
traditional location-based recommendation algorithms and cannot alleviate the data
sparsity problem in new cities. Specifically, without exploiting the content/category
information of spatial items to build a bridge, they cannot transfer the users’ prefer-
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ences learnt in home cities to new cities, and hence fail to find k preference-similar
users for the querying user in the new city setting. Second, STE and USG perform
better than LDA and IKNN, respectively, due to the benefits brought by considering
social influence from friends. Besides, STE and LDA outperform both USG and
IKNN consistently, showing the advantages of latent factor models which overcome
the data sparsity problem, to some extent, by dimension reduction. But STE performs
worse than CKNN and our LCA–LDA, which shows that exploiting social influences
and dimension reduction are not enough to alleviate the new city problem although
they can alleviate the data sparsity problem to some extent. As is analyzed in [4],
most of a querying user’s friends live in the same city with the querying user, and
they also have few footprints in the querying city that is new to the querying user
due to the property of travel locality. That is why exploiting social and geographical
influence cannot help much when alleviating the new city problem. Third, CKNN,
which was proposed for solving the new city problem [2], performs better than STE,
IKNN, USG, and LDA, as is expected. CKNN depends on a well-designed category
hierarchy to facilitate users’ preferences across cities. So, it can find k high-quality
users who have similar/same preferences with the querying user. But, this method
ignores the observation of the shift of users’ preferences, i.e., people’s preferences
or behavioral patterns may change when they travel in different cities, especially
in cities that are new to them. So, CKNN would fail to make accurate recommen-
dations in the case where users’ preferences shift, while our proposed LCA–LDA
and LA-LDA models can still work well in this case because they exploit the local
preferences/attractions of the querying city to produce recommendations, i.e., what
most of people have done when they travel in the querying city. That is why our
proposed LCA-LDA model performs much better than CKNN. Fourth, LA-LDA
outperforms LDA, justifying the benefit brought by considering local preferences,
and CA-LDA exceeds LDA due to the advantages of taking item contents into con-
sideration. Finally, LCA-LDA outperforms both LA-LDA and CA-LDA, showing
the advantages of combining local preferences and item contents in a unifiedmanner.

In Fig. 3.5b, we report the performance of all recommendation algorithms for the
second setting where querying cities are home cities of querying users. From the
figure, we can see that the trend of comparison result is similar to that presented in
Fig. 3.5a. The main differences are that (1) all recommendation algorithms perform
better in the home city setting than in the new city setting and (2) the performance
gaps between different recommendation methods narrow, because the data sparsity
problem is not so severe in the home city setting. Another observation is that USG
and STE almost performs as well as LA–LDA, and outperforms LDA, CKNN, and
IKNN in the home city setting, verifying the benefit brought by considering the social
and geographical influences. However, the performances of USG and STE are not so
well in the new city setting, as shown in Fig. 3.5a, which shows that exploiting social
and geographical influences is not enough to alleviate the new city problem although
it can alleviate the data sparsity problem to some extent. The third observation is
that CKNN outperforms LDA and STE in Fig. 3.5a while LDA and STE slightly
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Fig. 3.6 Top-k performance on Foursquare. a Users traveling in new cities. b Users traveling in
home cities

exceeds CKNN in Fig. 3.5b, showing that existing latent factor models (e.g., LDA
and STE) better suit the home city setting which is almost the same as the traditional
recommendation setting (e.g.,movie recommendation), and the hybridmethods (e.g.,
CKNN) are more capable of overcoming the difficulty of data sparsity, i.e., the new
city problem.

Figure3.6 reports the performance of the recommendation algorithms on the
Foursquare dataset. We only compare LA–LDA, one component of our LCA–LDA
model, with LDA, STE, USG, and IKNN since this dataset does not contain item
content information. From the figure, we can see that the trend of comparison result
is similar to that presented in Fig. 3.5, and LA–LDA performs best, showing the
advantage of exploiting the local preference.

3.3.5 Local Preference Influence Study

In this section, we study the effects of personal interest and local preference on users’
decision making. The self interest influence probability λu and the local preference
influence probability 1 − λu are learnt automatically in our proposed LCA–LDA
model. Since different people have differentmixingweights, we plot the distributions
of both self interest and local preference influence probabilities among all users. The
results on the DoubanEvent dataset are shown in Fig. 3.7, where Fig. 3.7a plots the
cumulative distribution of self interest influence probabilities, and Fig. 3.7b shows the
local preference influence probabilities. It can be observed that, in general, people’s
self interest influence is higher than the influence of the local preference. For example,
Fig. 3.7a shows that the self interest influence probability of more than 70% of users
is higher than 0.5. The implication of this finding is that people mainly attend social
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events based on their self interests, but they sometimes attend popular local events
regardless of their interests, especially when traveling in new cities. This finding
also explains the superiority of LCA–LDA and LA–LDA in the recommendation
performance (Sect. 4.2.1).

Figure3.8a, b show, respectively, the self interest influence probabilities and local
preference influence probabilities learnt from the Foursquare data by LA–LDA
model. We observe that the trend of the CDF curve in Fig. 3.8 is similar to that
in Fig. 3.7. As shown in Fig. 3.8, although the self-interest influence probability is
generally higher than that of the local preference, the local preference still plays an
important role in the user decision-making for visiting. For example, the local pref-
erence influence probability of about 40% of users is higher than 0.5. This finding
also shows the necessity of exploiting the local preference in spatial item recommen-
dation.

http://dx.doi.org/10.1007/978-981-10-0748-4_4
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Table 3.2 Latent topics learned by LCA–LDA
T8 T22 T9

Event ID Category Location Event ID Category Location Event ID Category Location

18852778 Seminar Beijing 14232509 Exhibition Beijing 18567203 Concert Shanghai

11177738 Seminar Shanghai 18833193 Exhibition Shanghai 18131435 Concert Beijing

18845712 Seminar Nanjing 18761132 Exhibition Beijing 18898584 Concert Shanghai

18833831 Seminar Beijing 18619185 Exhibition Xi’an 18825734 Concert Shanghai

18129058 Seminar Wuhan 18818656 Exhibition Shanghai 18710070 Concert Guangzhou

18840452 Seminar Beijing 18696716 Exhibition Beijing 18465268 Concert Chengdu

18867591 Seminar Guangzhou 18800412 Exhibition Beijing 18631346 Concert Beijing

18953054 Seminar Shanghai 12104434 Exhibition Shanghai 18394935 Concert Shanghai

Table 3.3 Latent topics learned by LDA
T9 T8 T16

Event ID Category Location Event ID Category Location Event ID Category Location

18825734 Concert Shanghai 18852778 Seminar Beijing 18020482 Exhibition Guangzhou

18830050 Film Shanghai 18840452 Seminar Beijing 18425473 Concert Guangzhou

18818656 Exhibition Shanghai 18629384 Film Beijing 18847061 Seminar Guangzhou

16578267 Film Shanghai 18432390 Drama Beijing 18937837 Party Guangzhou

18567203 Concert Shanghai 18668341 Concert Beijing 18847604 Film Guangzhou

17364244 Drama Shanghai 18041992 Exhibition Beijing 18829026 Concert Guangzhou

18053337 Concert Shanghai 18953054 Seminar Beijing 18412853 Drama Guangzhou

13892914 Culture
salon

Shanghai 18478314 Drama Beijing 17364134 Concert Guangzhou

3.3.6 Analysis of Latent Topic

To analyze why our proposed location-content-aware probabilistic generative model
LCA–LDAperformsbetter thanLDA in the task of top-k recommendation, especially
spatial item recommendation in new cities, we investigate the latent information
learnt from LCA–LDA and LDA.

Tables3.2 and 3.3, respectively, show three latent topics (e.g., T8, T22, and T9)
learned by LCA–LDA and LDA on the DoubanEvent dataset. For each topic, we
present the top eight events with the highest probabilities, including their IDs, cat-
egories and locations. For locations, we present only the cities rather than detailed
addresses because of space constraints. Each event can be browsed online by combin-
ing event-ID and the prefix URL.5 For example, the event 18852778 can be accessed
at www.douban.com/event/11177738/. By comparing the topics in Tables3.2 and
3.3, we observe that the events in each latent topic learned by LCA–LDA not only
share the same category, but are also located in different cities. In contrast, the topics
learnt by LDA are not category-consistent. For example, concerts, culture salons,

5http://www.douban.com/event/.

www.douban.com/event/11177738/
http://www.douban.com/event/
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films and exhibitions are mixed up in the topics T9, T8, and T16 learnt by LDA.
Besides, the events in each topic learnt by LDA take place in the same city. For
example, the events in topic T9 are located in Shanghai and the events in topic T8
are held in Beijing.

The comparative results reveal that when we use existing topic model LDA to
analyze the user activity history, we are unable to discover the users’ interests in the
features (latent topics) of spatial items such as “exhibition” and “concert”, andmost of
the estimated topics describe the user’s spatial area of activity instead of user interests.
That is because (1) the user’s choice of spatial items is largely influenced by her/his
geographical coordinates, and spatial items in the user’s immediate neighborhood are
likely to be chosen; (2) traditional latent factor models (e.g., topic models and matrix
factorization methods) aim to capture item cooccurrence patterns. Another finding
is that exploiting the content information of spatial items facilitates the clustering
of items which are not only category-alike but also geodiversity, alleviating the new
city problem. The experimental results also explains the superiority of LCA–LDA
and CA–LDA in the recommendation performance (Sect. 3.3.4).

3.4 Summary

This chapter proposed a location-content-aware recommender system, LCARS,
which provides a user with spatial item recommendations within the querying city
based on the individual interests and the local preferences mined from the user’s
activity history. LCARS can facilitate people’s travel not only in their home area
but also in a new city where they have no activity history. By taking advantage of
both the content and location information of spatial items, our system overcomes
the data sparsity problem in the original user-item matrix. We evaluated our system
using extensive experiments based on two real datasets. According to the exper-
imental results, our approach significantly outperforms existing recommendation
methods in effectiveness. The results also justify each component proposed in our
system, such as taking local preferences and item content information into account,
and the proposed scalable query processing technique improves the efficiency of our
approach significantly.
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Chapter 4
Location-Based and Real-Time
Recommendation

Abstract Point-of-Interest (POI) recommendation has become an important means
to help people discover attractive and interesting places, especially when users travel
out of town. However, extreme sparsity of user-POI matrix creates a severe chal-
lenge. To cope with this challenge, we propose a unified probabilistic generative
model, Topic-Region Model (TRM), to simultaneously discover the semantic, tem-
poral and spatial patterns of users’ check-in activities, and to model their joint effect
on users’ decision-making for selection of POIs to visit. To demonstrate the applica-
bility and flexibility of TRM, we investigate how it supports two recommendation
scenarios in a unified way, i.e., hometown recommendation and out-of-town recom-
mendation. TRM effectively overcomes the data sparsity by the complementarity
and mutual enhancement of the diverse information associated with users’ check-in
activities (e.g., check-in content, time and location) in the processes of discovering
heterogeneous patterns and producing recommendation. To support real-time POI
recommendation, we further extend the TRM model to an online learning model
TRM-Online to track changing user interests and speed up the model training. We
conduct extensive experiments to evaluate the performance of our proposals on two
real-world datasets including recommendation effectiveness, overcoming cold-start
problem and model training efficiency. The experimental results demonstrate the
superiority of our TRM models, especially the TRM-Online, compared with the
state-of-the-art competitive methods, by making more effective and efficient mobile
recommendations. Besides, we study the importance of each type of patterns in
the two recommendation scenarios, respectively, and find that exploiting temporal
patterns is most important for the hometown recommendation scenario, while the
semantic patterns play a dominant role in improving the recommendation effective-
ness for out-of-town users.

Keywords Point of interest · Real-time recommendation · Online learning ·
Dynamic user interest modeling
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4.1 Introduction

With the rapid development of Web 2.0, location acquisition and wireless commu-
nication technologies, a number of location-based social networks (LBSNs) have
emerged and flourished, such as Foursquare, Loopt and Facebook Places, where
users can check-in at points of interest (POIs) and share life experiences in the
physical world via mobile devices. On the one hand, the new dimension of location
implies extensive knowledge about an individual’s behaviors and interests by bridg-
ing the gap between online social networks and the physical world, which enables
us to better understand user preferences and design optimal recommender systems.
On the other hand, it is valuable to develop the location recommendation service as
an essential function of LBSNs to encourage users to explore new locations [12].
Therefore, developing recommender systems for LBSNs to provide users with POIs
has recently attracted increasing research attention. This application becomes more
important and useful when a user travels to an unfamiliar area, where she has little
knowledge about the neighborhood. In this scenario, the recommender system is
proposed as recommendation for out-of-town users in [12]. In this chapter, we aim to
offer accurate recommendations for both hometown and out-of-town users bymining
their historical activity data in LBSNs.

One of the most important problems for POI recommendation is how to deal with
a severe challenge stemming from extreme sparsity of user-POI interaction matrix.
There are millions of POIs in LBSNs, but a user can only visit a limited number
of them. Moreover, the observation of travel locality exacerbates this problem. The
observation of travel locality [18] made on LBSNs shows that most of users’ check-
ins are left in their living regions (e.g., home cities). An investigation shows that
the check-in records generated by users in their non-home cities are very few and
only take up 0.47% of the check-in records left in their home cities [25]. This
observation of travel locality is quite common in the real world [25], aggravating the
data sparsity problem with POI recommendation for out-of-town users (e.g., if we
want to recommend POIs located at Los Angeles to people from New York City)
[12, 32].

The most popular approach in recommender systems is the collaborative filter-
ing [1]. There exists a considerable body of research [12, 14, 18, 20, 29] which
deposited people’s check-in history into user-POI matrix where each row corre-
sponds to a user’s POI-visiting history and each column denotes a POI. A collab-
orative filtering-based method is then employed by [12, 18, 29] to infer the user’s
preference regarding each unvisited POI. Based on the core idea of collaborative
filtering, similar users of the target user (i.e., those who exhibit similar POI visiting
behaviors) are chosen to provide clues for making recommendation. Due to travel
locality, most of these similar users are more likely to live in the same region with the
target user than other regions. As a recommendation is made by considering POIs
visited by the similar users, most of the recommended POIs would be located in
the target user’s home town. So, these CF-based methods cannot be directly applied
to the POI recommendation for out-of-town users [12, 32]. Besides, some recent
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literatures [14, 20] adopted latent factor models (e.g., matrix factorization) to a user-
POI matrix to alleviate the data sparsity. However, they do not perform well for the
out-of-town scenario because most of the check-ins in the training set are hometown
check-ins, and there are few common users between a hometown POI and an out-
of-town POI resulting in very weak correlation between them, thus the rating score
of a target user to an out-of-town POI predicted by the trained matrix factorization
model is not reliable. For example, the predicted rating score of a target user to an
out-of-town POI is very low, although the user potentially prefers that POI.

4.1.1 Joint Modeling of User Check-In Behaviors

To deal with the issue of data sparsity, especially for the out-of-town recommen-
dation scenario, we proposed a unified probabilistic generative model in our previ-
ous work [35], namely Topic-Region Model (TRM), to simultaneously discover the
semantic, temporal, and spatial patterns of users’ check-in activities, and model their
joint effect on users’ check-in behaviors. (1) Semantic Patterns. A recent analysis of
theWhrrl dataset shows that the check-in activities of users exhibit a strong semantic
regularity [30]. In the analysis, Ye et al. studied the diversity of POIs that individual
users visit by computing the entropy of semantic categories in their check-ins. The
results show that most of users have very small entropies. (2) Temporal Cyclic Pat-
terns. As observed in [14, 38], users’ activity contents exhibit strong temporal cyclic
patterns in terms of hour of the day or day of the week. For example, a user is more
likely to go to a restaurant rather than a bar at lunch time, and is more likely to go to a
bar rather than an office at midnight. (3) Spatial Patterns. Many recent studies show
that people tend to explore POIs near the ones that they have visited before [31].
So, POIs visited by users often form spatial clusters, i.e., people tend to check in
around several centers (e.g., “home” and “office”) [7, 20]. Note that while there are
some recent studies [7, 14, 20, 32, 38] that exploited one of the above patterns to
improve POI recommendation, they lack an integrated analysis of their joint effect
to deal with the issue of data sparsity, especially in the out-of-town recommendation
scenario, due to the difficulty of modeling heterogenous information and discovering
multiple types of patterns in a unified way.

As shown in Table4.1, a POI from Foursquare1 has both semantic and geographi-
cal attributes, thus two corresponding components are designed in TRM: User Inter-
est Component (UIC) and User Mobility Component (UMC). We adopt two basic
latent variables in these two components: topic and region, which are responsible for
generating semantic attributes (e.g., tags and categories) and geographical attributes
(e.g., geographical coordinates) of visited POIs, respectively.

UIC aims to exploit both the contents of POIs and their temporal cyclic effect to
model users’ interests. An individual’s interests (i.e., semantic patterns) are modeled

1https://foursquare.com/.

https://foursquare.com/
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Table 4.1 A POI and its
associated information

Name: Lone Pine Koala Sanctuary

Location: Longitude: 152.968, Latitude: −27.533

Categories: Zoo, Park

Tags: koala, platypus, kangaroo, zoos, wildlife, animal,
benches, show

as a distribution over topics. Specifically, we infer an individual’s interests according
to the semantic contents of her checked-in POIs, respectively. Thus, our model alle-
viates the data sparsity to some extent, especially for out-of-town recommendation
scenario, as the semantic contents play the role of medium which can transfer users’
interests inferred at their home regions to out-of-town regions where they are travel-
ing. As the quality of the learnt topics is very important for user interest modeling,
we exploit the temporal cyclic patterns of visiting POIs to improve the process of
topic discovery. For example, the POIs frequently visited at lunch and dinner time
are more likely to be restaurants, while the ones visited around midnight are more
likely to be nightlife spots.

UMC is developed to exploit the geographical influence to model users’ mobility
patterns. In this component, all POIs are divided into several geographical regions
according to their locations and check-in frequency. We first compute the probability
of each region that an individual user is likely to visit according to the location
distribution of her historical visited POIs or her current location. Then, we infer the
probability of each location generated from a region according to the public’s check-
in behaviors at that region. For example, if a POI v is very popular and frequently
checked-in at region r, then the probability of region r generating v’s geographical
coordinate lv is high. By integrating the region-level popularity of POIs, i.e., the
wisdom of crowds, TRM model can alleviate the issue of user interest drift across
geographical regions, to some extent, which indicates that user interests inferred at
one region (e.g., hometown) cannot always be applied to recommendation at another
region. For example, a user u never goes gambling when he lives in Beijing, China,
but when he travels to Macao or Las Vegas he is most likely to visit casinos.

As a user’s decision-making for the selection of POIs to visit is influenced by the
joint effect of personal interests and spatialmobility patterns,we propose a joint latent
factor topic-region to capture this joint effect, which is responsible for generating
the IDs of visited POIs. A topic-region represents a geographical area in which POIs
have the same or similar semantics.

4.1.2 Real-Time POI Recommendation

As the time goes on, users’ interests may change and need different POIs. This
requires producing recommendation results in a real-time manner. However, the cur-
rent TRM model developed in [35] is incapable of supporting real-time
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recommendation due to the following reasons. First, although TRM exploits the
temporal cyclic effect of the public visiting POIs to improve the topic discovery, it
assumes that the individuals’ interests are stable and ignores their dynamics in the
long term. In reality, they are changing over time, as analyzed in [34]. For instance,
users will naturally be interested in visiting parenting-related POIs (e.g., the play-
ground and amusement park) after they have a baby, and probably ignore their other
interests. For another example, when people move from a city to another city where
there are different urban compositions and cultures, their interests will be most likely
to change. Accurately capturing this change in a real-time manner has been proved
to be commercially very valuable since it indicates visiting and purchasing intents.
Second, it is difficult to apply the current TRM model for large-scale check-in data
which arrives in a stream, since the batch learning algorithm developed for the TRM
in [35] needs to run through all check-in data for many times (about 1000 iterations),
and it is very time-consuming and infeasible. Therefore, to support real-time POI
recommendation, we extend the batch TRM [35] to an online learning model TRM-
Online in this article, which can efficiently process the check-in stream and track
changing user interests.

To demonstrate the applicability of TRMmodels, we investigate how they support
two recommendation scenarios in a unified way: (1) hometown recommendation
which assumes that the target user is located in her hometown, i.e., to meet users’
information needs in their daily life, and (2) out-of-town recommendation that aims
to cater to users when they travel out of town, especially in an unfamiliar region.
The real-time recommendation requires that both of the recommendation scenarios
should be time-aware [38], location-based [12] and personalized, i.e., to recommend
different ranked lists of POIs for the same target user at different time and locations.
Given a querying user uq with the current location lq and time tq (i.e., q = (uq, lq, tq)),
the naive approach to produce online top-k recommendations is to first compute a
ranking score for each POIs and then select k ones with highest ranking scores.

The remainder of the chapter is organized as follows. Section4.2 details TRM
model and its batch learning algorithm. We present an online learning algorithm
for the TRM in Sect. 4.3. We present how to deploy TRM models to two typical
POI recommendation scenarios and overcome the cold-start problem in Sect. 4.4.
We describe the experimental setup and report the experimental results in Sect. 4.5.
We conclude the chapter in Sect. 4.6.

4.2 Joint Modeling of User Check-In Activities

In this section, we first formulate the problem definition, and then present our pro-
posed TRM.
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4.2.1 Preliminary

For the ease of presentation, we define the key data structures and notations used in
this chapter.

Definition 4.1 (POI) A POI is defined as a uniquely identified specific site (e.g., a
restaurant or a cinema). In our model, a POI has three attributes: identifier, location
and contents. We use v to represent a POI identifier and lv to denote its corresponding
geographical attribute in terms of longitude and latitude coordinates. It should be
noted that many different POIs can share the same geographical coordinate. Besides,
there is textual semantic information associated with a POI, such as the category and
tag words. We use the notation Wv to denote the set of words describing POI v.

Definition 4.2 (User Home Location) Following the recent work of [19], given a
user u, we define the user’s home location as the place where the user lives, denoted
as lu.

Note that, we assume a user’s home location is “permanent” in our problem. In
other words, a home location is a static location instead of a real-time location that is
“temporally” related to her (e.g., the places where she is traveling). Due to privacy,
users’ home locations are not always available. For a user whose home location is
not explicitly given, we adopt the method developed by [25]. This method discretizes
the world into 25km-by-25km cells and finds the one with most of her check-ins.
Then, her home location is defined as the average position of all her check-ins within
the cell.

Definition 4.3 (Check-in Activity) A check-in activity is represented by a five tuple
(u, v, lv,Wv, t) that means user u visits POI v at time t.

As suggested in [14, 38], human geographical movement exhibits significant
temporal cyclic patterns on LBSNs which are highly relevant to the POI contents,
and the daily pattern (hours of the day) is one of the most fundamental temporal
patterns that reflects a user’s visiting behavior. Therefore, we investigate the features
embedded in daily patterns in this work, and split a day into multiple equal time slots
based on hour. Time and time slot are used interchangeably in this chapter unless
noted otherwise.

Definition 4.4 (User Document) For each user u, we create a user document Du,
which is a set of check-in activities associated with user u. The dataset D used in
our model consists of user documents, i.e., D = {Du : u ∈ U} where U is the set of
users.

Definition 4.5 (Topic) Given a collection of words W , a topic z is defined as a
multinomial distribution over W , i.e., φz = {φz,w : w ∈ W} where each component
φz,w denotes the probability of topic z generating word w. Generally, a topic is a
semantic-coherent soft cluster of words.
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Given a datasetD as the union of a collection of user documents, we aim to provide
location-based and real-time recommendation for both hometown and out-of-town
users. We formulate our problem that takes into account both of the two scenarios in
a unified fashion as follows.

Problem 4.1 (Location-based andReal-timeRecommendation) Given a user check-
in activity dataset D and a target user uq with her current location lq and time tq (that
is, the query is q = (uq, tq, lq)), our goal is to recommend top-k new POIs that
uq would be interested in. Given a distance threshold d, the problem becomes an
out-of-town recommendation if the distance between the target user’s current loca-
tion and her home location (that is, |lq − luq |) is greater than d. Otherwise, the problem
is a hometown recommendation.

Following related studies [12, 24],we set d = 100km in ourwork, since a distance
around 100km is the typical radius of human “reach”—it takes about 1–2h to drive
such a distance.

4.2.2 Model Structure

Tomodel user check-in activities,we propose a unified probabilistic generativemodel
TRM to simulate the process of user’s decision-making for the selection of POIs.
Figure4.1 shows the graphical representation of TRM where N , K and R denote the
number of users, topics and regions, respectively. We first introduce the notations of
our model and list them in Table4.2. Our input data, i.e., users’ check-in records,
are modeled as observed random variables, shown as shaded circles in Fig. 4.1.
As a POI has both semantic and geographical attributes, we introduce two latent
random variables, topic z and region r, which are responsible for generating them,

Fig. 4.1 The graphical
representation of TRM
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Table 4.2 Notations of parameters used in TRM

Variable Interpretation

ϑu The spatial patterns of user u, expressed by a multinomial distribution over a
set of regions

θu The interests of user u, expressed by a multinomial distribution over a set of
topics

φz A multinomial distribution over words specific to topic z

ψz A multinomial distribution over time slots specific to topic z

ϕz,r A multinomial distribution over POI IDs specific to topic-region (z, r)

μr The mean location of region r

Σr The location covariance of region r

γ, α, β, η, τ Dirichlet priors to multinomial distributions ϑu, θu, φz, ψz and ϕz,r ,
respectively

respectively. Based on the two latent factors, TRM aims to model and infer users’
interests and spatial mobility patterns as well as their joint effect on users’ selection
of POIs.

User Interest Modeling. Intuitively, a user chooses a POI by matching her
personal interests with the contents of that POI. Inspired by the early work about user
interest modeling [16, 17, 23, 32], TRM adopts latent topics to characterize users’
interests to overcome the data sparsity of user-word matrix. Specifically, we infer
individual user’s interest distribution over a set of topics according to the contents
(e.g., tags and categories) of her checked-in POIs, denoted as θu. Thus, the quality
of topics is very important for accurately modeling users’ interests. To improve the
topic discovery process, we exploit the temporal patterns of visiting POIs, or more
exactly daily patterns. Intuitively, different types of POIs have different temporal
patterns of check-ins, and two POIs exhibiting similar temporal patterns are more
likely to have the same/similar functions and categories than two random ones. For
example, the POIs frequently visited at lunch and dinner time are more likely to be
restaurants, while the ones visited around midnight are more likely to be nightlife
spots. Based on this intuition, a topic z in TRM is responsible for simultaneously
generating semantic wordsWv and check-in time t. Thus, each topic z in TRM is not
only associated with a word distribution φz, but also with a distribution over timeψz.
This design enables φz and ψz to be mutually influenced and enhanced during the
topic discovery process, facilitating the clustering of the words of POIs with similar
temporal patterns into the same topic with high probability. To integrate the check-
in time information to the topic discovery process, we employ the widely adopted
discretization method in [14, 38] to split a day into hour-based slots.

In the standard topic models [4, 28], a document (i.e., a bag of words) contains
a mixture of topics, represented by a topic distribution, and each word has a hidden
topic label. While this is a reasonable assumption for long documents, for short
documentWv, it is most likely to be about a single topic. We therefore assign a single
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topic to the document Wv. Similar idea of assigning a single topic to a twitter post
has been used before [40].

User Mobility Modeling. Different from users’ online behaviors in the virtual
world, users’ check-in activities in the physical world are limited by travel distance.
So, it is also important to capture users’ spatial patterns (or activity ranges) according
to the location distributions of their historical checked-in POIs. The spatial clustering
phenomenon indicates that users are most likely to check-in a number of POIs which
are usually limited to some specific geographical regions [31] (e.g., “home” and
“office” regions). In this component, all POIs are divided into R regions according to
their geographical locations and check-in densities. Following literatures [21, 22],
we assume a Gaussian distribution for each region r, and the location for POI v is
characterized by lv ∼ N (μr,Σr), as follows:

P(lv|μr,Σr) = 1

2π
√|Σr | exp

(−(lv − μr)
TΣ−1

r (lv − μr)

2

)
(4.1)

where μr and Σr denote the mean vector and covariance matrix. Note that this
component can capture the local preference/attractions within each region. If a POI
v is very popular in region r and frequently checked-in by users, then the probability
of region r generating location lv is much higher than other locations which receive
few check-ins. We apply a multinomial distribution ϑu over regions to model u’s
spatial patterns.

Modeling The Joint Effect. As a POI has both semantic and geographical
attributes, the propensity of a user u for a POI v is determined by the joint effect
of u’s personal interests and spatial mobility patterns. To model this joint effect, we
introduce a joint latent factor topic-regionwhich is responsible for generating the IDs
of visited POIs, i.e., a topic-region (z, r) is associated with a distribution over POI
IDs (that is ϕz,r). This joint latent factor also serves to seamlessly unify user interest
modeling and user spatial pattern modeling. As a matter of fact, a topic-region rep-
resents a geographical area in which POIs have the same or similar semantics (e.g.,
categories or functions). It comprises two components: semantics and geo-location.
For example, POIs in Central Park and those on Wall Street, Manhattan may form
two different topic-regions. The ones in Central Park may have semantics like con-
cert, ticket, bird, running, etc., while the ones on Wall Street may be associated
with the topic of stocks and finances. Meanwhile, the introduction of topic-region
enables geographical clustering and topic modeling to influence and enhance each
other under a unified framework, since a good geographical division benefits the esti-
mation of topics, and a good topic model helps identify the meaningful geographical
segmentation, as analyzed in [37].
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Algorithm 2: Probabilistic generative process in TRM

for each user u do
Draw θu ∼ Dirichlet(·|α);
Draw ϑu ∼ Dirichlet(·|γ );

end
for each topic z do

Draw φz ∼ Dirichlet(·|β);
Draw ψz ∼ Dirichlet(·|η);

end
for each topic z do

for each region r do
Draw ϕz,r ∼ Dirichlet(·|τ);

end
end
for each Du in D do

for each check-in (u, v, lv, Wv, t) ∈ Du do
Draw a topic index z ∼ Multi(θu);
Draw a time t ∼ Multi(ψz);
for each token w ∈ Wv do

Draw w ∼ Multi(φz);
end
Draw a region index r ∼ Multi(ϑu);
Draw a location lv ∼ N (μr ,Σr);
Draw a POI ID v ∼ Multi(ϕz,r);

end
end

4.2.3 Generative Process

The generative process of TRM is summarized in Algorithm 2. To avoid overfitting,
we place a Dirichlet prior [4, 28] over each multinomial distribution. Thus, θu, ϑu,
φz, ψz and ϕz,r are generated by Dirichlet distributions with parameters α, γ , β, η

and τ , respectively.
Given a user u, when she plans to visit a POI v, she first selects a topic z according

to her interest distribution θu. With the chosen topic z, wordsWv are generated from
the topic’s word distribution φz, and time t is generated from the topic’s temporal
distributionψz. Besides the topic, she also needs to choose a region r according to her
spatial distributionϑu.With the chosen region r, the POI’s geographical coordinate lv
is generated by the region’s spatial distributionN (μr,Σr). Finally, with the chosen
topic z and region r, the POI indicator v is generated by the joint topic-region factor
ϕz,r which is a multinomial distribution over POI IDs.
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4.2.4 Model Inference

Our goal is to learn parameters that maximize the marginal log-likelihood of the
observed random variables v, lv,Wv and t. However, the exact marginalization is dif-
ficult due to the intractable normalizing constant of the posterior distribution. There-
fore, we follow the studies [27, 32] to use collapsed Gibbs sampling for approximate
inference, i.e., to maximize the complete data likelihood in Eq. (4.2). As a widely
used Markov chain Monte Carlo (MCMC) algorithm, Gibbs Sampling iteratively
samples latent variables (i.e., {z, r} in TRM) from a Markov chain, whose station-
ary distribution is the posterior. The samples can therefore be used to estimate the
distributions of interest (i.e., {θ, ϑ, φ,ψ, ϕ}). For simplicity and speed, we estimate
the Gaussian distribution parameters (μr,Σr) by the method of moments. As for the
hyperparametersα,β, γ , η and τ , for simplicity, we take fixed values, i.e.,α = 50/K ,
γ = 50/R and β = η = τ = 0.01, following the studies [27, 32]. Our algorithm is
easily extended to allow these hyperparameters to be sampled and inferred, but this
extension can slow down the convergence of the Markov chain.

In the Gibbs sampling procedure, we need to obtain the posterior probabilities
of sampling latent topic z and region r for each check-in record (u, v, lv, Wv, t),
i.e., we need to compute the conditional probabilities P(z|z¬, r, v, lv,Wv, t,u, ·) and
P(r|z, r¬, v, lv,Wv, t,u, ·), where z¬ and r¬ represents topic and region assignments
for all check-in records except the current one. According to the Bayes rule, we can
compute these conditional probabilities in terms of the joint probability distribution
of the latent and observed variables shown in Eq. (4.2).

P(v, lv,Wv, t, z, r|α, β, γ, τ, η, μ,Σ)

= P(z|α)P(Wv|z, β)P(t|z, η)P(r|γ )P(v|z, r, τ )P(lv|r, μ,Σ)

= P(z|α)
∏

w∈Wv

P(w|z, β)P(t|z, η)P(r|γ )P(v|z, r, τ )P(lv|r, μ,Σ)

=
∫

P(z|θ)P(θ |α)dθ
∏

w∈Wv

∫
P(w|z, φ)P(φ|β)dφ

∫
P(t|z, ψ)P(ψ |η)dψ

×
∫

P(r|ϑ)P(ϑ |γ )dϑ

∫
P(v|z, r, ϕ)P(ϕ|τ)dϕP(lv|r, μ,Σ) (4.2)

Sampling topic indicator z for check-in (u, v, lv, Wv, t) according to:

P(z|z¬, r, v, lv,Wv, t,u, ·) ∝ nu,z,¬ + α∑
z′(nu,z′,¬ + α)

× nz,t,¬ + η∑
t′(nz,t′,¬ + η)

nz,r,v,¬ + τ∑
v′(nz,r,v′,¬ + τ)

∏

w∈Wv

nz,w,¬ + β∑
w′(nz,w′,¬ + β)

(4.3)

where nu,z is the number of times that latent topic z has been sampled from user u;
nz,w is the number of times that word w is generated from topic z; nz,t is the number
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of times that time slot t is generated from topic z; nz,r,v is the number of times that
POI v is generated from topic-region pair (z, r); the number n¬ with subscript ¬
denotes a quantity excluding the current instance.

Sampling region indicator r for check-in (u, v, lv, Wv, t) according to:

P(r|r¬, z, v, lv,Wv, t,u, ·)
∝ nu,r,¬+γ∑

r′ (nu,r′ ,¬+γ )

nz,r,v,¬+τ∑
v′ (nz,r,v′ ,¬+τ)

P(lv|μr,Σr)
(4.4)

where nu,r is the number of times that region r has been sampled from user u. After
each sampling,we employ themethodofmoments to update theGaussian distribution
parameters (i.e., μ and Σ) according to the assigned regions r for simplicity and
speed. Specifically, parameters μr and Σr are updated as in Eqs. (4.5) and (4.6).

μr = E(r) = 1

|Cr |
∑

v∈Cr

lv (4.5)

Σr = D(r) = 1

|Cr | − 1

∑

v∈Cr

(lv − μr)(lv − μr)
T (4.6)

where Cr denotes the collection of POIs which are associated with the check-ins
assigned with latent region r. To speed up the process of Gibbs Sampling, we can
adopt a late update strategy, that is to update the model parameters (μ and Σ) after
a full iteration of Gibbs sampler.

Inference Framework. After a sufficient number of sampling iterations, the
approximated posteriors can be used to estimate parameters by examining the counts
of z and r assignments to check-in records. Thedetailed inference framework is shown
in Algorithm 2.We first initialize the latent geographical regions by a K-means algo-
rithm (Lines 3–4), and then randomly initialize the topic assignments for the check-in
records (Lines 5–9). Afterwards, in each iteration, Eqs. (4.3), and (4.4) are utilized
to update the region and topic assignments for each check-in record (u, v, lv, Wv, t)
(Lines 14–15). After each sampling, we update the Gaussian distribution parameters
(Lines 16). The iteration is repeated until convergence (Lines 11–23). In addition,
a burn-in process is introduced in the first several hundreds of iterations to remove
unreliable sampling results (Lines 19–22). We also introduce the sample lag (i.e.,
the interval between samples after burn-in) to sample only periodically thereafter to
avoid correlations between samples.

Time Complexity. We analyze the time complexity of the above inference frame-
work as follows. Suppose the process needs I iterations to reach convergence. In each
iteration, it requires to go through all user check-in records. For each check-in record,
it first requires O(K) operations to compute the posterior distribution for sampling
latent topic, and then needsO(R) operations to compute the posterior distribution for
sampling latent region. Thus, the whole time complexity is O(I(K + R)|D|), which
is linear to the size of the dataset (i.e., the number of check-ins D).
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4.3 Online Learning for TRM

In practice, users’ check-in records are generated in a real-time manner and con-
tinually arrive in the form of data stream. The batch learning algorithms such as
our developed Algorithm 3 usually suffer from the following two drawbacks when
dealing with the situation mentioned above: (1) Delay on model updates caused by
the expensive time cost of re-running the batch model; and (2) Disability to track
changing user interests and spatial mobility patterns due to the fact that latest check-
in records used for updating recommendation models are often overwhelmed by the
large data of the past. To enable our TRM model to adapt to the check-in streams
and support real-time POI recommendation, we develop an online learning model
TRM-Online using particle filter.

4.3.1 Feasibility Analysis

TRM can be viewed as a state space model, if we regard the latent variables z and r
as hidden state variables, and the check-in record (u, v, lv, Wv, t) as an observation
variable. Particle Filter is a kind of efficient Markov Chain Monte Carlo (MCMC)
sampling method for estimating parameters of state space model. Being different
from Gibbs sampling, it is an online algorithm.

Particle filter can be applied to solve the inference of TRM based on the following
two reasons. First, suppose x is the hidden state variable and y is the observation
variable in the particle filter. The objective of particle filter is to estimate the values
of hidden state variables given observations, that is P(x|y). On the other hand, our
objective in TRM is to estimate the posterior distribution P(r, z|v, lv,Wv, t, ·), which
is also the probability of state variables given observations. Second, particle filter
assumes that observations are conditionally independent, and observation yi is only
determined by xi. Obviously, based on the “bag of words” assumption, RTM meets
this requirement.

In this chapter, we employ Rao–Blackwellized particle filtering (RBPF), an
enhanced version of particle filtering [10] as our method. RBPF integrates out the
latent variables, and thus makes the solutions simpler. In our algorithm, we have
P particles, and each particle p represents an answer that we desire, i.e., the pos-
terior distributions of regions and topics. In our implementation, a particle p stores
all region and topic assignments for check-in records, together with an important
weight ω(p) that indicates the importance of particle p. What is more, a reassignment
process is added to enhance the quality of samples.
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Algorithm 3: Inference Framework of TRM

Input: user check-in collection D, number of iteration I , number of burnin Ib, sample lag Is,
Priors α, γ , β, η, τ

Output: estimated parameters θ̂ , ϑ̂ , φ̂, ϕ̂, ψ̂ , μ̂, and Σ̂

1 Create variables θ sum, ϑ sum, φsum, ϕsum, ψ sum, μsum and Σ sum, and initialize them with zero;
2 Create variables μ and Σ ;
3 Initialize the clustering of geographical locations using K-Means method.
4 Update μ and Σ according to Eqs. (4.5) and (4.6), respectively;
5 for each Du ∈ D do
6 for each check-in record (u, v, lv, Wv, t) ∈ Du do
7 Assign topic randomly;
8 end
9 end

10 Initialize variable count with zero;
11 for iteration = 1 to I do
12 for each Du ∈ D do
13 for each check-in record (u, v, lv, Wv, t) ∈ Du do
14 Update topic assignment using Eq. (4.3);
15 Update region assignment using Eq. (4.4);
16 Update μ and Σ according to Eqs. (4.5) and (4.6), respectively;
17 end
18 end
19 if (iteration > Ib) and (iteration mod Is == 0) then
20 count = count + 1;
21 Update θ sum, ϑ sum, φsum, ϕsum, ψ sum, μsum and Σ sum as follows:

θ sumu,z + = nu,z + α∑
z′ (nu,z′ + α)

ϑ sum
u,r + = nu,r + γ∑

r′ (nu,r′ + γ )

φsum
z,w + = nz,w + β∑

w′ (nz,w′ + β)

ϕsum
z,r,v+ = nz,r,v + τ∑

v′ (nz,r,v′ + τ)

ψ sum
z,t + = nz,t + η∑

t′ (nz,t′ + η)

μsum
r + = μr

Σ sum
r + = Σr

22 end
23 end

24 Return model parameters θ̂ = θ sum

count , ϑ̂ = ϑsum

count , φ̂ = φsum

count , ϕ̂ = ϕsum

count , ψ̂ = ψsum

count ,

μ̂ = μsum

count , and Σ̂ = Σsum

count ;
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4.3.2 Online Learning Algorithm

In this section, we present an online learning algorithm based on RBPF. We divide
user check-in records into epochs based on their time stamps to simulate the real-
world check-in stream. The epoch length depends on the nature of the application
and can range from a few days to a few weeks. We use Ds to denote the check-in
dataset generated by users at the sth epoch. As shown in Algorithm 4, the overall
algorithm consists of two phases: initialization phase and online phase. Initializa-
tion phase accomplishes the task of launching the online phase, while the online
phase continually processes the newly arrived check-in records generated by each
user and updates the parameter set Ψ̂ after processing these records.

In the initialization phase (Lines 1–12), for each particle, we apply TRM-Batch on
an initial dataset D0 that contains a small fraction of check-in records. After running
over, we get initial region and topic assignments of all initial check-in records, along
with sufficient statistics. These values are stored into each particle, which are useful
in the online phase.

In the online phase (Lines 13–41), we first initialize particle weights with equal
values and then process user documents in a check-in stream one after another.Model
parameters will be updated every time a check-in is processed. Two new sampling
equations are proposed as follows.

P(zp|zp¬, rp, v, lv,Wv, t,u, ·)

∝ mp,s
u,z + np,su,z,¬ + α

∑
z′ (m

p,s
u,z′ + np,su,z′,¬ + α)

× mp,s
z,t + np,sz,t,¬ + η

∑
t′ (m

p,s
z,t′ + np,sz,t′,¬ + η)

mp,s
z,r,v + np,sz,r,v,¬ + τ

∑
v′ (m

p,s
z,r,v′ + np,sz,r,v′,¬ + τ)

∏

w∈Wv

mp,s
z,w + np,sz,w,¬ + β

∑
w′ (m

p,s
z,w′ + np,sz,w′,¬ + β)

(4.7)

P(rp|rp¬, zp, v, lv,Wv, t,u, ·)

∝ mp,s
u,r + np,su,r,¬ + γ

∑
r′(m

p,s
u,r′ + np,su,r′,¬ + γ )

mp,s
z,r,v + np,sz,r,v,¬ + τ

∑
v′(m

p,s
z,r,v′ + np,sz,r,v′,¬ + τ)

P(lv|μr,Σr) (4.8)

where ¬ has a different meaning from that in Eqs. (4.3) and (4.4). In Eqs. (4.3) and
(4.4), it presents all check-ins except the current instance, but here it means excluding
the current one from theobserved check-ins so far. The difference is essential between
TRM-Batch and TRM-Online. Since we use all currently observed check-in records
including check-ins in the previous epoches, the check-in count in the above equations
includes two parts. The first part is the contribution of the previous epochs before
the sth one, denoted as mp,s. The second part denotes the contribution of the current
check-ins coming in a stream, denoted as np,s. The superscripts p and s in all notations
indicate the particle index and epoch index respectively. For example, np,su,z is the
number of times that topic z is assigned to user u by the particle p at the sth epoch.
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Algorithm 4: Online Inference of TRM

Input: user check-in collection D = ⋃
s D

s;
Output: estimated parameter set Ψ̂ = {θ̂ , ϑ̂, φ̂, ϕ̂, ψ̂, μ̂, Σ̂};

1 /* Initialization Phase: */
2 for p = 1 to P do
3 while burn-in point is not reached do
4 for each Du ∈ D0 do
5 for each check-in record (u, v, lv, Wv, t) ∈ Du do
6 Draw topic sample z using Eq. (4.3);
7 Draw region sample r using Eq. (4.4);
8 Update μp and Σp using Eqs. (4.5) and (4.6), respectively;
9 end

10 end
11 end
12 end
13 Calculate sufficient statistics for each particle p;
14 /* Online Phase: */
15 Initialize importance weights ωp = 1/P for any p ∈ {1, . . . ,P};
16 for s = 1 to S do
17 for each Du ∈ Ds do
18 for each check-in record (u, v, lv, Wv, t) ∈ Du do
19 for p = 1 to P do
20 Draw topic sample zp using Eq. (4.7);
21 Draw region sample rp using Eq. (4.8);
22 Update μp and Σp using Eqs. (4.10–4.13), respectively;
23 ωp = ωpP(v, lv, Wv, t|zp¬, rp¬, v, lv,Wv, t,u, ·);
24 end
25 Normalize ωp for any p ∈ {1, . . . ,P} as ωp = ωp

∑
p′ ωp′ ;

26 Calculate Neff using Eq. (4.15);
27 if Neff ≤ Nthresh then
28 Sampling Importance Resample process;
29 Randomly select a collection of check-in records D(i);
30 for each check-in (u, v, lv, Wv, t) ∈ D(i) do
31 for p = 1 to P do
32 Draw topic sample zp using Eq. (4.7);
33 Draw region sample rp using Eq. (4.8);
34 Update μp and Σp using Eqs. (4.10)–(4.13), respectively;
35 end
36 end
37 for p = 1 to P do
38 set ωp = 1/P;
39 end
40 end
41 end
42 end
43 end
44 Generate parameter set Ψ̂ ;
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Following the recent work [2], we use exponential decay with kernel parameter κ

defined as follows:

mp,s =
s−1∑

h=0

exp

(
h − s

κ

)
np,h, (4.9)

since tracking changing patterns such as user interests means forgetting old check-
ins quickly. We also tried different functions such as the linear function, but the
exponential decaying achieves the best performance in our experiment.

After each sampling, similar to Eqs. (4.5) and (4.6), we update the model para-
meters μ

p
r and Σ

p
r , as follows:

μp,s
r = 1

|Cp,s
r |

∑

v∈Cp
r

lv (4.10)

Σp,s
r = 1

|Cp,s
r | − 1

∑

v∈Cp
r

(lv − μr)(lv − μr)
T (4.11)

Then, they are smoothed by their estimated values in the previous epoches to prevent
over-fitting, as follows:

μp
r = μ

p,s
r + exp(−1

κ
)μ

p,s−1
r

1 + exp(−1
κ

)
(4.12)

Σp
r = Σ

p,s
r + exp(−1

κ
)Σ

p,s−1
r

1 + exp(−1
κ

)
(4.13)

In this algorithm, P(zp|zp¬, rp, v, lv,Wv, t,u, ·) and P(rp|rp¬, z, v, lv,Wv, t,u, ·)
in Eqs. (4.7) and (4.8) are selected as the proposal distributions, so the impor-
tance weights are updated as in Eq. (4.14), and then normalized to sum to 1.
P(v, lv, Wv, t|zp¬, rp¬, v, lv,Wv, t,u, ·) is the probability of user u generating the
current check-in record based on all sampled topic and region assignments so far.

ωp = ωpP(v, lv, Wv, t|zp¬, rp¬, v, lv,Wv, t,u, ·)
= ωp

∑
z θ

p
u,zψ

p
z,t

∏
w∈Wv

φ
p
z,w

∑
r ϑ

p
u,rϕ

p
z,r,vP(lv|μp

r ,Σ
p
r )

(4.14)

where θ
p
u,z, ϑ

p
u,r , φ

p
z,w, ψ

p
z,t and ϕ

p
z,r,v are computed as follows:

θp
u,z = mp,s

u,z + np,su,z,¬ + α
∑

z′(m
p,s
u,z′ + np,su,z′,¬ + α)

ϑp
u,r = mp,s

u,r + np,su,r,¬ + γ
∑

r′(m
p,s
u,r′ + np,su,r′,¬ + γ )



82 4 Location-Based and Real-Time Recommendation

φp
z,w = mp,s

z,w + np,sz,w,¬ + β
∑

w′(m
p,s
z,w′ + np,sz,w′,¬ + β)

ψ
p
z,t = mp,s

z,t + np,sz,t,¬ + η
∑

t′(m
p,s
z,t′ + np,sz,t′,¬ + η)

ϕp
z,r,v = mp,s

z,r,v + np,sz,r,v,¬ + τ
∑

v′(m
p,s
z,r,v′ + np,sz,r,v′,¬ + τ)

Next, effective sample size Neff is calculated as follows:

Neff = 1/
P∑

p=1

(ωp)2 (4.15)

Neff measures the efficiency of the method and controls the algorithm to avoid degen-
eracy [11]. A sampling importance resample procedure (Line 26) will be run if Neff

is no more than the threshold Nthresh. P particles are resampled with replacement
according to the importance weights. Then old particles are replaced with the new
ones. After this process, particles with small weight have high possibility to be elimi-
nated. This process reflects the “survival of the fittest” law, i.e., “excellent” solutions
should be inherited. Intuitively, Nthresh decides the frequency of resample, and thus
influences the effectiveness and speed of the algorithm.

In addition, we add a re-assignment process (Lines 28–34) to improve the quality
of samples. Since check-ins coming in online phase are only sampled once, the result
might be inaccurate. We solve this problem by picking up some check-ins randomly,
and re-assigning topics and regions to them. Di is a collection of randomly selected
check-in records whose number is nomore than i. For each check-in inDi, we sample
a new topic and a new region according to Eqs. (4.7) and (4.8). Obviously, when |Di|
is big enough, TRM-Online will degenerate to a batch learningmodel, since previous
check-ins will be re-assigned constantly.

Generally, our final objectives, the posterior distribution P(r, z|v, lv,Wv, t, ·) as
we mentioned in Sect. 4.3.1 is approximated as follows:

P(r, z|v, lv,Wv, t) ≈
P∑

p=1

ωpI(z, zp)I(r, rp) (4.16)

where I(z, zp) and I(r, rp) are indicator functions:

I(z, zp) =
{
1 if z equals zp

0 otherwise
(4.17)
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I(r, rp) =
{
1 if r equals rp

0 otherwise
(4.18)

In other words, particles with the same vectors z and r have the same P(r, z|v, lv,
Wv, t), and it is equal to the sum of weights of these particles. Then, the optimal topic
and region assignments z∗ and r∗ for parameter estimation are calculated as follows:

z∗, r∗ = argzp,rp maxP(rp, zp|v, lv,Wv, t) (4.19)

However, in reality, we found that it is very time-consuming to check whether two
particles share the same z and r, since their length is equal to the size of all check-ins.
We also observed that there are seldom same particles. Therefore, we modify this
procedure to choose the particle with biggest weight for model parameter estimation.
The modified z∗ and r∗ are as follows:

z∗ = zp
∗
, r∗ = rp

∗
, p∗ = argp maxωp (4.20)

With z∗ and r∗, we can easily estimate the model parameters Ψ̂ by examining the
counts of topic and region assignments to check-in records.

To be able to apply our TRM-Online to large-scale check-in data, we can use
a distributed implementation following the architecture in [2, 26]. The state of the
sampler comprises the topic-word, topic-time and topic-region-POI count matrixes
as well as user-topic and user-region count matrixes. The former are shared across
users and are maintained in a distributed hash table using memcached [26]. The
later are user-specific and can be maintained locally in each node. We can distribute
the users at epoch s across multiple nodes. One key advantage of our model is its
ability to process check-in data in an online and distributed fashion which allows us
to process data at a scale.

4.4 POI Recommendation Using TRM

Once we have learnt the model parameter set Ψ̂ = {θ̂ , ϑ̂, φ̂, ϕ̂, ψ̂, μ̂, Σ̂}, given a
target user uq with the current time tq and location lq, i.e., q = (uq, tq, lq), we compute
a probability of user uq checking-in each unvisited POI v as in Eq. (4.21), and then
select top-k POIs with the highest probabilities for the target user.

P(v|q, Ψ̂ ) = P(v,tq|uq,lq,Ψ̂ )∑
v′ P(v′,tq)|uq,lq,Ψ̂ )

∝ P(v, tq|uq, lq, Ψ̂ )
(4.21)
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where P(v, tq|uq, lq, Ψ̂ ) is calculated as follows:

P(v, tq|uq, lq, Ψ̂ ) =
∑

r

P(r|lq, Ψ̂ )P(v, tq|uq, r, Ψ̂ ) (4.22)

whereP(r|lq, Ψ̂ ) denotes the probability of user uq lying in region r given her current
location lq, and it is computed as in Eq. (4.23) according to Bayes rule, in which the
prior probability of latent region r can be estimated using Eq. (4.24), as follows.

P(r|lq, Ψ̂ ) = P(r)P(lq|r, Ψ̂ )
∑

r′ P(r′)P(lq|r′, Ψ̂ )
∝ P(r)P(lq|r, Ψ̂ ) (4.23)

P(r) =
∑

u

P(r|u)P(u) =
∑

u

Nu + κ∑
u′(Nu′ + κ)

ϑ̂u′,r (4.24)

where Nu denotes the number of check-ins generated by user u. In order to avoid
overfitting, we introduce the Dirichlet prior parameter κ to play the role of pseudo-
count. Note that to support dynamic real-time recommendation, we compute the
probability of uq choosing region r according to her real-time location lq instead
of the spatial patterns (i.e., ϑu,r) learnt from her historical check-in records, which
distinguishes this work from the static recommendation scheme adopted by most
POI recommendation work [14, 15, 17, 20, 31, 39].

P(v, tq|uq, r, Ψ̂ ) is computed as in Eq. (4.25) where we adopt geometric mean for
theprobability of topic z generatingword setWv, i.e.,P(Wv|z, Ψ̂ ) = ∏

w∈Wv
P(w|z, Ψ̂ ),

considering that the number ofwords associatedwith different POIsmay be different.

P(v, tq|uq, r, Ψ̂ ) = P(lv|r, Ψ̂ )
∑

z

P(z|uq, Ψ̂ )P(tq|z, Ψ̂ )

×
( ∏

w∈Wv

P(w|z, Ψ̂ )

) 1
|Wv |

P(v|z, r, Ψ̂ ) (4.25)

Based on Eqs. (4.22)–(4.25), the original Eq. (4.21) can be rewritten as in
Eq. (4.26).

P(v|uq, tq, lq, Ψ̂ )

∝
∑

r

⎡

⎢⎣P(r)P(lq|r, Ψ̂ )P(lv|r, Ψ̂ )
∑

z

P(z|u, Ψ̂ )P(tq|z, Ψ̂ )

×
⎛

⎝
∏

w∈Wv

P(w|z, Ψ̂ )

⎞

⎠

1
|Wv |

P(v|z, r, Ψ̂ )

⎤

⎥⎦
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=
∑

r

⎡

⎢⎣P(r)P(lq|μ̂r, Σ̂r)P(lv|μ̂r, Σ̂r)
∑

z

θ̂uq,zψ̂z,tq

⎛

⎝
∏

w∈Wv

φ̂z,w

⎞

⎠

1
|Wv |

ϕ̂z,r,v

⎤

⎥⎦

=
∑

r

∑

z

⎡

⎢⎣P(r)P(lq|μ̂r, Σ̂r)P(lv|μ̂r, Σ̂r)θ̂uq,zψ̂z,tq

⎛

⎝
∏

w∈Wv

φ̂z,w

⎞

⎠

1
|Wv |

ϕ̂z,r,v

⎤

⎥⎦

(4.26)

P(v|uq, tq, lq, Ψ̂ ) ∝
∑

r

[
P(r)P(lq|r, Ψ̂ )P(lv|r, Ψ̂ )

]

∑

z

⎡

⎢⎣P(z|uq, Ψ̂ )P(tq|z, Ψ̂ )

⎛

⎝
∏

w∈Wv

P(w|z, Ψ̂ )

⎞

⎠

1
|Wv |

⎤

⎥⎦

=
∑

r

[
P(r)P(lq|μ̂r, Σ̂r)P(lv|μ̂r, Σ̂r)

]

∑

z

⎡

⎢⎣θ̂uq,zψ̂z,tq

⎛

⎝
∏

w∈Wv

φ̂z,w

⎞

⎠

1
|Wv |

⎤

⎥⎦ (4.27)

4.4.1 Fast Top-k Recommendation Framework

In this subsection,we propose an efficient ranking framework according toEq. (4.26),
as follows:

S(q, v) =
∑

a=(z,r)

W(q, a)F(v, a) (4.28)

W(q, a) = θ̂uq,zψ̂z,tqP(lq|μ̂r, Σ̂r) (4.29)

F(v, a) = P(r)P(lv|μ̂r, Σ̂r)ϕ̂z,r,v

( ∏

w∈Wv

φ̂z,w

) 1
|Wv |

(4.30)

where S(q, v) represents the ranking score of POI v for query q. Each topic-region
pair (z, r) can be seen as an attribute (i.e., a = (z, r)), and W(q, a) represents the
weight of query q on attribute a, andF(v, a) represents the score of POI vwith respect
to attribute a. This ranking framework separates the offline computation from the
online computation. Since F(v, a) is independent of queries, it is computed offline.
Although the query weight W(q, a) is computed online, its main time-consuming
components (i.e., ψ̂z,tq , θ̂uq,z and (μ̂r, Σ̂r)) are also computed offline, the online
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computation is just a simple combination process. This design enables maximum
precomputation for the problem considered, and in turn minimizes the query time.
At query time, the offline scores F(v, a) only need to be aggregated over A = K × R
attributes by a simple weighted sum function.

4.4.2 Addressing Cold-Start Problem

Cold start is a critical problem in the domain of recommendation. POIs that have
been visited by few users or have not been visited by any user are called cold-
start POIs. Due to the lack of interaction information between the users and POIs,
collaborative-based methods perform poorly. We will show how our TRM models
can be applied to cold-start recommendation scenario. For a cold-start POI v along
with its location lv and content words Wv, it can be recommended to users who
may prefer it, according to its semantic and geographical attributes. Specifically,
the probability of user u checking-in cold-start POI v is computed still according to
Eq. (4.21), but the probability P(v, tq|uq, r, Ψ̂ ) is redefined as follows:

P(v, tq|uq, r, Ψ̂ )

= P(lv|r, Ψ̂ )
∑

z

P(z|uq, Ψ̂ )P(tq|z, Ψ̂ )

( ∏

w∈Wv

P(w|z, Ψ̂ )

) 1
|Wv |

Compared with Eq. (4.25), the probability P(v|z, r, Ψ̂ ) = ϕ̂z,r,v is not utilized in the
above equation, since the ID of cold-start POI v is not available in the training
dataset. Thus, for cold-start POI v, the original equation (4.21) can be reformulated
as in Eq. (4.27)which shows that TRMcan effectively alleviate the cold-start problem
by leveraging the semantic, temporal and spatial patterns.

4.5 Experiments

In this section,wefirst describe experimental settings including datasets, comparative
approaches and evaluation methods. Then, we demonstrate the experimental results
on recommendation effectiveness and model training efficiency.

4.5.1 Datasets

Following the method developed in [13], we collected two large-scale real-life
datasets to conduct experiments: Foursquare and Twitter. Since we focus on new
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Table 4.3 Basic statistics of Foursquare and Twitter datasets

Foursquare Twitter

# of users 4,163 114,508

# of POIs 21,142 62,462

# of total check-ins 483,813 1,434,668

# of hometown check-ins 445,107 1,408,886

# of out-of-town check-ins 38,706 25,782

Time span Dec 2009–Jul 2013 Sep 2010–Jan 2011

POI recommendation, we removed the repeated check-ins from the two datasets.
Their basic statistics are shown in Table4.3.

Foursquare. This dataset contains the check-in history of 4,163 users who live
in the California, USA. For each user, it contains her social networks, check-in POI
IDs, location of each check-in POI in terms of latitude and longitude, check-in time
and the contents of each check-in POI. The total number of check-in records in
this dataset is 483,813. Each check-in record is stored as user-ID, POI-ID, POI-
location, POI-contents, check-in time. Each record in social networks is stored as
userID, friendID and the total number of social relationship is 32,512. All users
in this dataset are active users who have at least 10 check-ins. The distribution of
the check-in activities is described in Fig. 4.2a. We can see from the distribution
that although most of the check-ins are located in California for users who live in
California, a number of check-ins nevertheless occur in other states. This is a sound
proof of the significance of out-of-town recommendation.

Twitter. This dataset is based on the publicly available twitter dataset [8]. Twitter
supports third-party location sharing services like Foursquare and Gowalla (where
users of these services can share their check-ins on Twitter). But the original dataset
does not contain the category and tag information about each POI. So, we crawled
the category and tag information associated with each POI from Foursquare with
the help of its publicly available API.2 The enhanced dataset contains 114,058 users
and 1434,668 check-ins. Each check-in record has the same format with the above
Foursquare dataset.But, this dataset does not contain user social network information.
Figure4.2b illustrates the distribution of the check-in activities across USA. In this
dataset, 18.22% of check-in activities are located in California, and fewer than 7%
of activity records remain in each of the other states.

Note that users’ home locations are not explicitly available in the above two
datasets. Thus, we employ thewidely adoptedmethod in [9, 25, 36]which discretizes
the world into 25km-by-25km cells and defines the home location as the average
position of check-ins in the cell with most of her check-ins. To make the experiments
repeatable, we make the two datasets publicly available.3

2https://developer.foursquare.com/.
3https://sites.google.com/site/dbhongzhi/.

https://developer.foursquare.com/
https://sites.google.com/site/dbhongzhi/
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Fig. 4.2 Distribution of user check-in activities. a Foursquare dataset. b Twitter dataset

4.5.2 Comparative Approaches

Recommendation Effectiveness. We first compare our TRM models (TRM-Batch
and TRM-Online) with the following four competitive methods which represent
state-of-the-art POI recommendation techniques.

SVDFeature. SVDFeature [6] is a machine learning toolkit designed to solve the
feature-based matrix factorization. Based on this toolkit, we build a factorization
model incorporating more side information beyond the user-POI matrix, including
POI content, POI geographical location and temporal dynamics (i.e., check-in time),
to compare with our models fairly. The limitation of SVDFeature is that it cannot
deal with continuous time and location, thus we adopt the discretization methods
developed in [33, 38] to segment them into bins and grid squares.

Category-based KNN (CKNN). CKNN, developed in [3], first projects a user’s
activity history into a well-designed category space and models each user’s prefer-
ences with a weighted category hierarchy. Meanwhile, it infers the authority of each
user in a city using HITS model. When receiving a query q, CKNN first selects a set
of users who have both high authority at the target city and similar preferences with
the querying user u, and then recommendations are produced according to check-in
records of these selected users.

LCA–LDA. LCA–LDA is a location-content-aware recommender model which
is developed to support POI recommendation for users traveling in new cities [32].
This model takes into account both personal interests and local preferences of each
city by exploiting both POI co-visiting patterns and semantic information. Compared
with TRM, it does not consider the temporal and spatial patterns of users’ check-in
activities.

UPS-CF. UPS-CF, proposed in [12], is a collaborative recommendation frame-
work which incorporates social influence to support out-of-town recommendation.
This framework integrates user-based collaborative filtering and social-based collab-
orative filtering, i.e., to recommend POIs to a target user according to the check-in
records of both her friends and similar users with her.

To further validate the benefits brought by exploiting the semantic, temporal and
spatial patterns, respectively, we design three variant versions. TRM-S1 is the first
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simplified version of TRM where we remove content information of check-in POIs,
and the latent variable z only generates the check-in time t for each check-in record.
In TRM-S2, we remove the check-in time information, and the latent variable z
only generates the word setWv for each check-in record; and as the third simplified
version, TRM-S3 does not consider the geographical information of check-in POIs,
and the latent variable r are thus removed.

4.5.3 Evaluation Methods

Recommendation Effectiveness To make the evaluation process fair and repro-
ducible, we adopt the methodological description framework proposed in [5, 34]
to describe our evaluation conditions. We will present our evaluation conditions by
answering the following methodological questions:

1. What base set is used to perform the training-test building?
2. What rating order is used to assign ratings to the training and test sets?
3. How many ratings comprise the training and test sets?
4. Which items are considered as target items?

Base set condition. The base set conditions state whether the splitting procedure
of training and test sets is based on the whole collection of check-insD, or on each of
the sub-datasets of D independently. We adopt the user-centered base set condition.
Specifically, for each user u, her check-in records Du are first divided into home-
town check-ins Dhome

u and out-of-town check-ins Dout
u , since our TRM is designed

for both hometown and out-of-town recommendation, and we need to evaluate the
recommendation effectiveness under the two scenarios. To decide whether a check-
in record occurs at hometown or out of town, we measure the distance between the
user’s home location and the POI (i.e., |lu − lv|). If the distance is less than d, then we
assume the check-in occurs at hometown. Otherwise, the check-in record is assumed
to be generated out of town. Note that the distribution of check-ins generated at
the hometown and out-of-town settings is highly imbalanced, as shown in Table4.3.
Then, we perform the splitting independently on each user’s hometown check-in
document Dhome

u and out-of-town check-in document Dout
u , ensuring that all users

will have check-ins in both the training and test sets for the two recommendation
scenarios.

Rating order and size conditions. To simulate a more real recommendation
scenario, we adopt the time-dependent rating order condition. The check-in records
in bothDhome

u andDout
u are first ranked according to their check-in timestamps. Then,

we use the 80th percentile as the cut-off point so that check-ins before this point will
be used for training and the rest are for testing. In the training dataset, we choose the
last 10% check-ins as the validation data to tune the model hyper-parameters such
as the numbers of topics and regions (i.e., K and R).

Target item condition. To simulate a real-world setting, given a target user u and
a ground truth POI v, we require each tested recommender system to rank all the
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POIs within the circle of radius d centered at lv except those in the user’s training set,
instead of all available POIs, since only those POIs which are geographically close to
v are comparable with v. This design can effectively simulate the local competition
effect and user behavior of choices.

The above condition combination is also called “uc_td_prop” for short. According
to the above evaluation conditions, the whole dataset D is split into the training set
Dtrain and the test set Dtest . To simulate a more real POI recommendation scenario,
especially out-of-town recommendation, we have to choose a location coordinate as
the target user’s current standing position before visiting v. Specifically, for each test
case (u, v, lv,Wv, t) ∈ Dtest , we use a Gaussian function with the center lv to generate
a geographical coordinate l to represent the current standing point of user u. Thus, a
query q = (u, l, t) is formed for the test case.

To evaluate the recommendation methods, we adopt the evaluation methodology
and measurement Accuracy@k proposed in [17, 32]. Specifically, for each check-in
(u, v, lv, Wv, t) in Dtest :

1. We compute the ranking score for POI v and all other POIs which are within the
circle of radius d centered at lv and unvisited by u previously.

2. We form a ranked list by ordering all of these POIs according to their ranking
scores. Let p denote the position of the POI v within this list. The best result
corresponds to the case where v precedes all the unvisited POIs (i.e., p = 1).

3. We form a top-k recommendation list by picking the k top ranked POIs from the
list. If p ≤ k, we have a hit (i.e., the ground truth v is recommended to the user).
Otherwise, we have a miss.

The computation of Accuracy@k proceeds as follows. We define hit@k for a
single test case as either the value 1, if the ground truth POI v appears in the top-k
results, or the value 0, if otherwise. The overall Accuracy@k is defined by averaging
over all test cases:

Accuracy@k = #hit@k

|Dtest|
where #hit@k denotes the number of hits in the test set, and |Dtest| is the number of
all test cases.

4.5.4 Recommendation Effectiveness

In this subsection,we report the comparison results between our proposedTRMmod-
els and other competitive methods with well-tuned parameters. Figures4.3 and 4.4
report the performance of the recommendation methods on the Foursquare and Twit-
ter datasets, respectively. It is apparent that these different recommendation methods
have significant performance disparity in terms of top-k accuracy. We only show
the performance where k is set to 1, 5, 10, 15, 20, as a greater value of k is usually
ignored for a typical top-k recommendation task.
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Fig. 4.3 Top-k performance on Foursquare dataset. a Out-of-town recommendation. b Hometown
recommendation
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Fig. 4.4 Top-k performance on Twitter dataset. a Out-of-town recommendation. b Hometown
recommendation

Out-of-Town Recommendation On Foursquare. Figure4.3a presents the rec-
ommendation accuracy in the scenario of out-of-town recommendation, where the
accuracy of TRM-Online is about 0.141 when k = 10, and 0.174 when k = 20 (i.e.,
the model has a probability of 14.1% of placing an appealing POI in the top-10
and 17.4% of placing it in the top-20). Clearly, our proposed TRM models outper-
forms other competitive models significantly, and the advantages of TRM models
over other competitive methods are very obvious in this scenario, showing the ben-
efits of jointly exploiting the semantic patterns, temporal patterns and geographical
patterns of users’ check-in activities. Several observations are made from the results:
(1) UPS-CF drops behind other five methods, showing the advantages of exploiting
the content information of users’ visited POIs to capture their interests. Through
the medium of content, TRM-Online, TRM-Batch, LCA–LDA, CKNN and SVD-
Feature transfer the users’ interests inferred at hometown to out-of-town regions. In
contrast, UPS-CF is a mixture of collaborative filtering and social filtering, which
ignores the effect of content. (2) TRM models achieve much higher accuracy than
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LCA–LDA and CKNN, showing the benefits of considering both temporal and geo-
graphical patterns. (3) TRMmodels performmuch better than SVDFeature although
they use the same types of features and information, showing the advantage of the
well-designed probabilistic generative model incorporating domain knowledge over
the general feature-based matrix factorization. (4)TRM-Online performs better than
TRM-Batch, because TRM-Online can capture the dynamics of user interests while
TRM-Batch assumes that users’ interests θu are stable. That is to say, changes in user
interests are not taken into consideration in TRM-Batch. However, users’ interests
are not always stable and may change as the time goes by or they move from a city
to another. For instance, users will naturally be interested in parenting venues after
they have a baby. For another, when a Google employee transfers from Beijing of
China to Mountain View of the USA, she is most likely to change her interests. In
our TRM-Online model, a POI that was visited recently by a user has a bigger impact
on the prediction of her future visiting behaviors than an POI that was visited a long
time ago.

Hometown Recommendation On Foursquare. In Fig. 4.3b, we report the per-
formance of all recommendation models for the hometown scenario, and our TRM-
Online achieves the highest recommendation accuracy. From the results, we observe
that the recommendation accuracies of all methods are higher in Fig. 4.3b than that in
Fig. 4.3a. Besides, CKNN outperforms UPS-CF in Fig. 4.3a while UPS-CF slightly
exceeds CKNN in Fig. 4.3b, showing that the collaborative filtering better suits the
hometown recommendation setting where the user-POI matrix is not sparse, and the
content-based filtering such as CKNN is more capable of overcoming the issue of
data sparsity in the out-of-town scenario. TRM, SVD-Feature and LCA–LDA are
hybrid recommendation methods which take advantage of different dimension infor-
mation, thus they perform well consistently in both recommendation settings. The
comparison between Fig. 4.3a and Fig. 4.3b also reveals that the two recommendation
scenarios are intrinsically different, and should be separately evaluated.

Recommendation on Twitter. Figure4.4 reports the performance of the rec-
ommendation models on the Twitter dataset. We do not compare our models with
UPS-CF since this dataset does not contain user social network information. From
the figure, we can see that the trend of comparison result is similar to that presented in
Fig. 4.3, and the main difference is that all recommendation methods achieve lower
accuracy. This may be because users in the Foursquare dataset have more check-in
records than users in the Twitter dataset on average, which enables the models to
capture users’ interests and preferences more accurately.

4.5.5 Impact of Different Factors

In this subsection, we carry out an ablation study showing the benefits of exploiting
semantic, temporal and spatial patterns, respectively. We compare our TRM mod-
els (TRM-Batch and TRM-Online) with three variant versions, TRM-S1, TRM-S2
and TRM-S3, and the comparison results are shown in Tables4.4 and 4.5. From the
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Table 4.4 Recommendation accuracy on Foursquare dataset

Methods Out-of-town scenario Hometown scenario

Ac@1 Ac@10 Ac@20 Ac@1 Ac@10 Ac@20

TRM-Batch 0.062 0.119 0.148 0.124 0.239 0.295

TRM-Batch-S1 0.049 0.095 0.117 0.117 0.225 0.278

TRM-Batch-S2 0.055 0.107 0.132 0.106 0.203 0.252

TRM-Batch-S3 0.059 0.113 0.140 0.110 0.210 0.261

TRM-Online 0.073 0.141 0.174 0.136 0.261 0.322

TRM-Online-S1 0.058 0.112 0.138 0.128 0.245 0.303

TRM-Online-S2 0.065 0.126 0.156 0.115 0.222 0.274

TRM-Online-S3 0.069 0.133 0.165 0.119 0.229 0.284

Table 4.5 Recommendation accuracy on Twitter dataset

Methods Out-of-town scenario Hometown scenario

Ac@1 Ac@10 Ac@20 Ac@1 Ac@10 Ac@20

TRM-Batch 0.041 0.081 0.101 0.099 0.191 0.236

TRM-Batch-S1 0.033 0.063 0.078 0.094 0.180 0.223

TRM-Batch-S2 0.037 0.071 0.088 0.085 0.163 0.201

TRM-Batch-S3 0.039 0.075 0.093 0.088 0.168 0.209

TRM-Online 0.049 0.094 0.117 0.108 0.208 0.258

TRM-Online-S1 0.039 0.075 0.093 0.102 0.196 0.243

TRM-Online-S2 0.044 0.084 0.104 0.092 0.177 0.220

TRM-Online-S3 0.046 0.089 0.110 0.096 0.184 0.227

results, we first observe that TRMmodels consistently outperform the three variants
in both out-of-town and hometown recommendation scenarios, indicating that our
TRM models benefit from simultaneously considering the three factors and their
joint effect on users’ decision-making. Second, we observe that the contribution of
each factor to improving recommendation accuracy is different. Besides, another
observation is that the contributions of the same factor are different in the two differ-
ent recommendation scenarios. Specifically, according to the importance of the three
factors in the out-of-town recommendation scenario, they can be ranked as follows:
Semantic Patterns > Temporal Patterns > Spatial Patterns, while in the hometown
recommendation scenario they can be ranked as: Temporal Patterns > Spatial Pat-
terns > Semantic Patterns. Obviously, the semantic patterns play a dominant role
in overcoming the issue of data sparsity in the out-of-town recommendation sce-
nario, while the temporal cyclic patterns are most important to improve hometown
recommendation. This is because the two recommendation scenarios have different
characteristics: (1) most of users have enough check-in records in their hometowns
while fewcheck-in activities are left in out-of-town regions; (2) the limitation of travel
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distance in the out-of-town scenario does not matter as much as that in hometown;
and (3) users’ daily routines may change when they travel out of town.

4.5.6 Test for Cold-Start Problem

We further conduct experiments to study the effectiveness of different recommenda-
tion algorithms handling the cold start problem. We test the recommendation effec-
tiveness for cold-start POIs on both Foursquare and Twitter datasets and present the
results in Figs. 4.5 and 4.6. We define those POI that are visited by less than 5 users
as cold-start POIs. To test the performance of cold-start POI recommendations, we
select users who have at least one cold-start check-in as test users. For each test user,
we first choose her check-in records associated with cold-start POIs as test dataDtest ,
and the remaining check-in records as training data Dtraining. We aim to measure
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Fig. 4.5 Recommendation accuracy for cold-start POIs on Foursquare dataset. a Out-of-town
recommendation. b Hometown recommendation
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Fig. 4.6 Recommendation accuracy for cold-start POIs on Twitter dataset. a Out-of-town recom-
mendation. b Hometown recommendation



4.5 Experiments 95

whether the marked-off cold-start POIs in Dtest can be accurately recommended to
the right users in the top-k results.

From the results, we have the following observations: (1) our proposed TRMmod-
els perform best consistently in recommending cold-start POIs; and (2) compared
with the results in Figs. 4.3 and 4.4, the recommendation accuracy of all algorithms
decreases, to different degrees, for cold-start POIs, e.g., the recommendation accu-
racy of UPS-CF drops drastically while our TRMmodels deteriorate slightly; (3) all
TRM, SVDFeature, LCA–LDA, CKNN perform significantly better than UPS-CF
in both out-of-town and hometown recommendation scenarios, which demonstrates
that the recommendation methods that incorporate semantic contents of POIs per-
form significant better than both collaborative filtering and social filtering methods.
This is because cold-start POIs lacks interaction information which is the essential
foundation of both collaborative filtering and social filtering methods. The superior
performance of TRM models in recommending cold-start POIs shows that exploit-
ing and integrating semantic, temporal, and spatial patterns can effectively alleviate
cold-start problem.

4.5.7 Model Training Efficiency

In this experiment, we evaluate the model training efficiency for both TRM-Batch
and TRM-Online. We simulated the situation that check-ins are coming in a stream,
and recorded the training time using currently observed check-ins at each decile
point. When new check-ins arrive, TRM-Batch has to run over all check-ins for
many iterations again. Since the time for each iteration grows with the number of
check-in records, the total time for TRM-Batch grows fast. However, TRM-Online
does not need to do this, it only needs to process the new coming check-ins and update
parameters to get a newmodel. As Fig. 4.7 shows, TRM-Batch costs muchmore time
to get the new parameters compared with TRM-Online, especially when the number

(a) (b)

Fig. 4.7 Training time on two datasets. a On the Foursquare dataset. b On the Twitter dataset
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of observed check-ins is large. When running on the Foursquare dataset, the training
time of TRM-Online is less than 1000s, while TRM-Batch takes more than 6,500s,
which is about 6.5 times longer. On the Twitter dataset, TRM-Batch takes more
than 16,000s, while TRM-Online takes less than 3,000s. From the results, we also
observe that the training time cost of our TRM-Online model linearly increases with
the increasing number of check-ins, and thus it is scalable to large-scale datasets.

In summary, besides the benefit of the higher recommendation accuracy as shown
in Sect. 4.5.4, another advantage of TRM-Online is that it needs less training time.

4.6 Summary

In this article, we proposed a unified probabilistic generative model TRM to simul-
taneously discover the semantic, temporal and spatial patterns of users’ check-in
activities, and to model their joint effect on users’ decision-making for selection of
POIs to visit. To demonstrate the applicability and flexibility of TRM, we investi-
gated how it supports two recommendation scenarios in a unifiedway, i.e., hometown
recommendation and out-of-town recommendation. TRM can effectively overcome
the data sparsity and cold-start problems, especially when users travel out of town.
To support real-time POI recommendation, we further extended the TRM model to
an online learning model TRM-Online to capture the dynamics of user interests and
accelerate the model training. To evaluate the performance of our proposals in the
real-time POI recommendation, we conducted extensive experiments on two real-
world datasets including recommendation effectiveness, recommendation efficiency
and model training efficiency. The experimental results demonstrated the superiority
of our proposals such as the TRM-Online model, compared with the state-of-the-
art competitors, by making more effective and efficient mobile recommendations.
Besides, we studied the importance of each type of patterns in the two recommenda-
tion scenarios, respectively, and found that semantic patterns play a dominant role
in overcoming the data sparsity in out-of-town recommendation, while temporal
patterns are most important to improve hometown recommendation.
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Chapter 5
Fast Online Recommendation

Abstract Based on the spatiotemporal recommender models developed in the
previous chapters, the top-k recommendation task can be reduced to an simple task of
finding the top-k itemswith themaximumdot-products for the query/user vector over
the set of item vectors. In this chapter, we build effective multidimensional index
structures metric-tree and Inverted Index to manage the item vectors, and present
three efficient top-k retrieval algorithms to speed up the online spatiotemporal rec-
ommendation. These three algorithms are metric-tree-based search algorithm (MT),
threshold-based algorithm (TA), and attribute pruning-based algorithm (AP).MTand
TA focus on pruning item search space, while AP aims to prune attribute space. To
evaluate the performance of the developed techniques, we conduct extensive experi-
ments on both real-world and large-scale synthetic datasets. The experimental results
show that MT, TA, and AP can achieve superior performance under different data
dimensionality.

Keywords Recommendation efficiency · Indexing structure · Top-k query
processing · Metric tree · TA

5.1 Introduction

The spatiotemporal recommender systems based on latent-class models such as topic
models and matrix factorization have demonstrated better accuracy than other meth-
ods such as nearest-neighbor models and graph-based models in the previous chap-
ters. However, the online computational cost of finding the top-ranked items for
every query/user in the system, once the models have been trained, has been rarely
discussed in the academic literature.

In the latent-class models, the predicted ranking score of an itemw.r.t. a query/use
can often boil down to a dot-product between two vectors representing the query/user
and the item, as shown in the previous three chapters. Given a query/user, the straight-
forward method of generating top-k recommendation needs to compute the ranking
scores for all items and select the k oneswith highest ranking scores, which is compu-
tationally inefficient, especially when the number of items or items’ latent attributes
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is large. Moreover, constructing the entire #QUERI ES × #I T EMS preference
matrix requires heavy computational (and space) resources. For example, the recently
published Yelp’s Challenge Dataset,1 which contains 366,000 users and 61,000 busi-
ness items. Generating the optimal recommendations in this dataset requires over
2.2 × 1011 dot-products using a naive algorithm. A 100-dimensional model required
56h to find optimal recommendations for all the queries. In terms of storage, saving
the whole preference matrix requires over 1TB of disk-space. Moreover, this dataset
is just a small sample of the actual Yelp dataset and the problem worsens with larger
numbers.

The online top-k recommendation can be formulated as: given a query q, we aim
to find k top-ranked items with highest ranking scores over a set of items V , and the
ranking score is computed as follows:

S(q, v) =
∑

a

W (q, a)F(v, a) = qT v = ‖q‖‖v‖ cos(�q,v) ∝ ‖v‖ cos(�q,v)

(5.1)

where a denotes a latent attribute of items, and W (q, a) represents the weight of
query q on attribute a, and F(v, a) represents the score of item v on attribute a. We
use q and v to denote the vectors of query q and item v, respectively, and �q,v is the
angle between the two vectors. Unfortunately, there is not any existing technique to
efficiently solve this problem; a linear search over the set of points appears to be the
state of the art.

5.1.1 Parallelization

The online computational cost of recommendation retrieval can be mitigated by par-
allelization. One possible way of parallelizing involves dividing the queries/users
across cores/machines—each worker can compute the recommendations for a single
query/user (or a small set of queries/users). Although the parallelization method can
reduce the expensive time cost brought by multiple queries, this form of paralleliza-
tion does not mitigate the high latency of computing recommendations for a single
query/user. Our proposed techniques are orthogonal to parallelization, and can be
parallelized to improve the scalability. The MT, TA, and AP techniques presented in
this chapter aim reducing the single query latency.

5.1.2 Nearest-Neighbor Search

Efficiently finding the top-k recommendation using the dot-product Eq. (5.1) appears
to be very similar to the widely studied problem of k-nearest-neighbor search in

1http://www.yelp.com.sg/dataset_challenge/.

http://www.yelp.com.sg/dataset_challenge/
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metric spaces [6]. The k-nearest-neighbor search problem (in metric space) can be
solved approximately with the popular Locality-sensitive hashing (LSH)method [3].
LSH has been extended to other forms of similarity functions (as opposed to the
distance as a dissimilarity function) like the cosine similarity [1]. In this section, we
show that our problem is different from these existing problems.

The problem of k-nearest-neighbor search in metric space is defined as: given a
query q, the aim is to find k points v ∈ V with least Euclidean distance to the query
point q, and the Euclidean distance is computed as follows:

‖ q − v ‖2 =‖ q ‖2 + ‖ v ‖2 −2qT v ∝‖ v ‖2 /2 − qT v �= −qT v (5.2)

Obviously, if all the points in V are normalized to the same length, then the problem
of top-k recommendation with respect to the dot-product is equivalent to the problem
of k-nearest-neighbor search in any metric space. However, without this restriction,
the two problems can yield very different answers.

Similarly, the problem of k-nearest-neighbor search w.r.t. cosine similarity is
defined as: given a query q, the aim is to find k points v ∈ V with maximum cosine
similarity for the query q, and the cosine similarity is computed as follows:

cos(�q,v) = qT v
‖ q ‖‖ v ‖ ∝ qT v

‖ v ‖ �= qT v (5.3)

From the above equation, we can see that our problem of top-k recommendation
w.r.t. the dot-product is equivalent to the problem of k-nearest-neighbor search w.r.t.
cosine similarity, if all the points in the set V are normalized to the same length.
Under general conditions, the two problems can be very different.

As analyzed above, our problem is not equivalent to the classic k-nearest-neighbor
search problem in metric space or cosine similarity, thus existing solutions (e.g.,
the LSH family) to the knn problem cannot be straightforwardly applied to our
problem. Actually, our problem is much harder than the knn problem. Unlike the
distance functions in metric space, dot-products do not induce any form of triangle
inequality.Moreover, this lack of any induced triangle inequality causes the similarity
function inducedby the dot-products to haveno admissible family of locality sensitive
hashing functions. Any modification to the similarity function to conform to widely
used similarity functions (like Euclidean distance or Cosine-similarity) will create
inaccurate results.

Moreover, dot-products lack the basic property of coincidence the self similarity
is highest. For example, the Euclidean distance of a point to itself is 0; the cosine-
similarity of a point to itself is 1. The dot-product of a point q to itself is ‖ q ‖2. There
can possibly bemany other points vi (i =1, 2,…) in the set V such that qT vi >‖ q ‖2.
Without any assumption, the problem of top-k recommendation with respect to the
dot-product is inherently harder than the previously addressed similar problems.
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Algorithm 5: Make-Metric-Tree-Split

Input: Item Set V ;

1 Pick a random item v ∈ V ;
2 a ← arg maxv′∈V ‖ v − v′ ‖;
3 c ← arg maxv′∈V ‖ a − v′ ‖;
4 w ← c − a;
5 b ← −1

2 (‖ c ‖2 − ‖ a ‖2);
6 return (w, b);

Algorithm 6:Make-Metric-Tree

Input: Item Set V ;
Output: Metric Tree T ;

1 T .V ← V ;
2 T .center ← mean(V );
3 T .radius ← arg maxv∈V ‖ T .center − v ‖;
4 if |V | ≤ N0 then
5 return T ; //leaf node
6 end
7 else
8 //else split the set;
9 (w,b) ← Make-Metric-Tree-Split(V);

10 Vl ← {v ∈ V : wT v + b ≤ 0};
11 Vr ← V − Vl ;
12 T .le f t ← Make-Metric-Tree(Vl );
13 T .right ← Make-Metric-Tree(Vr );
14 return T ;
15 end

5.2 Metric Tree

In this section, we describe metric tree and develop a novel branch-and-bound algo-
rithm to provide fast top-k recommendations.

Metric trees [4] are binary space-partitioning trees that are widely used for the task
of indexing datasets in Euclidean spaces. The space is partitioned into overlapping
hyper-spheres (balls) containing the points. We use a simple metric tree construction
heuristic that tries to approximately pick a pair of pivot points farthest apart from
each other [4], and splits the data by assigning points to their closest pivot. The tree
T is built hierarchically and each node in the tree is defined by the mean of the data
in that node (T .center ) and the radius of the ball around the mean enclosing the
points in the node (T .radius). The tree has leaves of size at most N0. The splitting
and the recursive tree construction algorithm is presented in Algorithms 5 and 6.

The tree is space efficient since every node only stores the indices of the item
vectors instead of the item vectors themselves. Hence, the matrix for the items is
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never duplicated. Another implementation optimization is that the vectors in the
items’ matrix are sorted in place (during the tree construction) such that all the items
in the same node are arranged serially in the matrix. This avoids random memory
access while accessing all the items in the same leaf node.

5.2.1 Branch-and-Bound Algorithm

Metric trees are used for efficient nearest-neighbor search and are fairly scalable [5].
The search employs a depth-first branch-and-bound algorithm. A nearest-neighbor
query is answered by traversing the tree in a depth-first manner—going down the
node closer to the query first and bounding the minimum possible distance to items
in other branches with the triangle-inequality. If this branch is farther away than
the current neighbor candidate, the branch is removed from computation. Since the
triangle inequality does not hold for the dot-product, we present a novel analytical
upper bound for the maximum possible dot-product of a query vector with points (in
this case, items) in a ball. We then employ a similar branch-and-bound algorithm for
the purposes of searching for the k-highest dot-products (as opposed to the minimum
pairwise distance in k-nearest-neighbor search).

Deriving the Upper Bound. Let Br
vc be the ball of items centered around vc with

radius r . Suppose that v∗ is the best possible recommendation in the ball Br
vc for the

query represented by the vector q, and r∗ be the Euclidean distance between the ball
center vc and the best possible recommendation v∗ (by definition, r∗ ≤ r ). Let � be
the angle between the vector vc and the vector v∗ − vc,�q,vc and�v∗,vc be the angles
between the vector vc and vectors q and v∗, respectively, as shown in Fig. 5.1. The
distance of v∗ from vc is (r∗sin�) and the length of the projection of v∗ onto vc is
‖ vc ‖ +r∗cos�. Therefore, we have:

‖ v∗ ‖ =
√

(‖ vc ‖ + r∗ cos�)2 + (r∗ sin�)2 (5.4)

Fig. 5.1 Bounding with a
ball



104 5 Fast Online Recommendation

Algorithm 7: Search-Metric-Tree

Input: Item Tree Node T , query q;

1 if q.ub < qTT.center + T .radius· ‖ q ‖ then
2 if isLea f (T ) then
3 for v ∈ T .V do
4 if qT v > q.ub then
5 v′ ← arg minvi∈q.candidates qT vi;
6 q.candidates ← (q.candidates − {v′}) ⋃{v};
7 q.ub ← minvi∈q.candidatesqT vi;
8 end
9 end

10 end
11 else
12 //best depth first traversal
13 if qTT.left.center < qTT.right.center then
14 Search-Metric-Tree(q, T .right);
15 Search-Metric-Tree(q, T .le f t);
16 end
17 else
18 Search-Metric-Tree(q, T .le f t);
19 Search-Metric-Tree(q, T .right);
20 end
21 end
22 end

cos�v∗,vc = ‖ vc ‖ + r∗ cos�
‖ v∗ ‖ , sin�v∗,vc = r∗ sin�

‖ v∗ ‖ . (5.5)

Let �q,v∗ be the angle between the vectors q and v∗. This gives the following
inequality regarding the angle between the query and the best possible recommen-
dation (we assume that the angles lie in the range of [−π,+π ] instead of the usual
range [0, 2π ]):

|�q,v∗ | ≥ |�q,vc − �v∗,vc |,

which implies

cos�q,v∗ ≤ cos(�q,vc − �v∗,vc) (5.6)

since cos(·) is monotonically decreasing in the range [0, π ]. Using this equality we
obtain the following bound for the highest possible affinity between the user and any
item within that ball:
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max
v∈Br

vc

qT v = qT v∗ =‖ q ‖‖ v∗ ‖ cos�q,v∗ ≤‖ q ‖‖ v∗ ‖ cos(�q,vc − �v∗,vc)

where the last inequality follows from Eq. (5.6). Substituting Eqs. (5.4) and (5.5) in
the above inequality, we have:

max
v∈Br

vc

qT v ≤‖ q ‖ (cos�q,vc(‖ vc ‖ +r∗ cos�) + sin�q,vc(r
∗ sin�))

≤‖ q ‖ max� (cos�q,vc(‖ vc ‖ +r∗ cos�) + sin�q,vc(r
∗ sin�))

=‖ q ‖ (cos�q,vc(‖ vc ‖ +r∗ cos�q,vc) + sin�q,vc(r
∗ sin�q,vc))

≤‖ q ‖ (cos�q,vc(‖ vc ‖ +r cos�q,vc) + sin�q,vc(r sin�q,vc))

The second inequality comes from the definition of maximum, and the next equality
comes from maximizing over � giving us the optimal value for � = �q,vc . The last
inequality follows the r∗ ≤ r . Simplifying the final inequality gives us the following
upper bound:

max
v∈Br

vc

qT v ≤ qT vc + r ‖ q ‖ . (5.7)

The Retrieval Algorithm. Using this upper bound in Eq. (5.7) for the maxi-
mum possible dot-product, we present the depth-first branch-and-bound algorithm
to search for the k-highest dot-products in Algorithm 7. In the algorithm, the object
q.candidates contains the set of current best k candidate items and q.ub denotes
the lowest affinity between the query and its current best candidates. The algorithm
begins at the root of the tree of items. At each subsequent step, the algorithm is at
a tree node. Using the bound in Eq. (5.7), the algorithm checks if the best possible
item in this node is any better than the current best candidates for the query. If the
check fails, this branch of the tree is not explored any more. Otherwise, the algorithm
recursively traverses the tree, exploring the branch with the better potential candi-
dates in a depth-first manner. If the node is a leaf, the algorithm just finds the best
candidates within the leaf with the simple naive search. This algorithm ensures that
the exact solution (i.e., the best candidates) is returned by the end of the algorithm.

5.3 TA-Based Algorithm

The straightforwardmethod of generating the top-k items needs to compute the rank-
ing scores for all items according to Eq. (5.1), which is computationally inefficient,
especially when the number of items becomes large. To speed up the process of
producing recommendations, we extend the Threshold-based Algorithm (TA) [7, 8],
which is capable of finding the top-k results by examining the minimum number of
items.
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Algorithm 8: Threshold-based algorithm

Input: An item set V , a query q and A ranked lists La ;
Output: List L with all the k highest ranked items;

1 Initialize priority lists PQ, L and the threshold score STa ;
2 for a = 1 to A do
3 v = La .get f irst ();
4 Compute S(q, v) according to Eq. (5.1);
5 PQ.insert (a, S(q, v));
6 end
7 Compute STa according to Eq. (5.8);
8 while true do
9 next ListT oCheck = PQ.get f irst ();

10 PQ.remove f irst ();
11 v = Lnext ListT oCheck .get f irst ();
12 Lnext ListT oCheck .remove f irst ();
13 if v /∈ L then
14 if L .si ze() < k then
15 L .insert (v, S(q, v));
16 end
17 else
18 v′ = L .get (k);
19 if S(q, v′) > STa then
20 break;
21 end
22 if S(q, v′) < S(q, v) then
23 L .remove(k);
24 L .insert (v, S(q, v));
25 end
26 end
27 end
28 if Lnext ListT oCheck .hasMore() then
29 v = Lnext ListT oCheck .get f irst ();
30 Compute S(q, v) according to Eq. (5.1);
31 PQ.insert (next ListT oCheck, S(q, v));
32 Compute STa according to Eq. (5.8);
33 end
34 else
35 break;
36 end
37 end

We first precompute the ordered lists of items, where each list corresponds to
a latent attribute learned by the latent-class models. For example, given A latent
attributes, we will compute A lists of sorted items (i.e., inverted indices), La , a ∈
{1, 2, . . . , A}, where items in each list La are sorted according to F(v, a). Given a
query q, we run Algorithm 8 to compute the top-k items from the A sorted lists and
return them in the priority list L . As shown in Algorithm 8, wemaintain a priority list
PL of the A sorted lists where the priority of a list La is determined by the ranking
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score (i.e., S(q, v)) of the first item v in La (Lines 2–6). In each iteration, we select
the most promising item (i.e., the first item) from the list that has the highest priority
in PL and add it to the resulting list L (Lines 9–16). When the size of L is no less
than k, we will examine the kth item in the resulting list L . If the ranking score of
the kth item is higher than the threshold score (i.e., STa), the algorithm terminates
early without checking any subsequent items (Lines 18–21). Otherwise, the kth item
v′ in L is replaced by the current item v if v’s ranking score is higher than that of v′
(Lines 22–25). At the end of each iteration, we update the priority of the current list
as well as the threshold score (Lines 28–33).

Equation (5.8) illustrates the computation of the threshold score, which is obtained
by aggregating the maximum F(v, a) represented by the first item in each list La

(i.e., maxv∈La F(v, a)). Consequently, it is the maximum possible ranking score that
can be achieved by the remaining unexamined items. Hence, if the ranking score
of the kth item in the resulting list L is higher than the threshold score, L can be
returned immediately because no remaining item will have a higher ranking score
than the kth item.

STa =
A∑

a=1

W (q, a)max
v∈La

F(v, a) (5.8)

5.3.1 Discussion

Being different from the metric tree-based algorithm, the TA-based algorithm
requires the ranking function defined in Eq. (5.1) to be monotone given a query.
Both the ranking functions in the nonnegative matrix factorization models and the
probabilistic generative models developed in the previous three chapters meet this
requirement, since the query weight on each attributeW (q, a) is nonnegative in these
models. It is easy to understand that Algorithm 8 is able to correctly find the top-k
items if the ranking function S(q, v) defined in Eq. (5.1) is monotone. Below, we will
prove it formally.

Theorem 5.1 Algorithm 8 is able to correctly find the top-k items if the ranking
function S(q, v) defined in Eq. (5.1) is monotone.

Proof Let L be a ranked list returned by Algorithms 8 which contains the k spatial
items that have been seen with the highest ranking scores. We only need to show
that every item in L has a ranking score at least as high as any other item v not in
L . By definition of L , this is the case for each item v that has been seen in running
Algorithm 8. So assume that v was not seen, and the score of v in each attribute a is
F(v, a). For each ranked list La , let ṽa be the last item seen in the list La . Therefore,
F(v, a) ≤ F (̃va, a), for every a. Hence, S(q, v) ≤ STa where STa is the threshold
score. The inequality S(q, v) ≤ STa holds because of themonotonicity of the ranking
function S(q, v) defined in Eq. (5.1). But by definition of L , for every v′ in L we have
S(q, v′) ≥ STa . Therefore, for every v′ in L we have S(q, v′) ≥ STa ≥ S(q, v), as
desired.
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Besides, Algorithm 8 has another nice property that it is instance optimal with
accessing the minimum number of items, and no deterministic algorithm has a lower
optimality ratio [2]. We use the word “optimal” to reflect the fact that Algorithm 8
is best deterministic algorithm. Intuitively, instance optimality corresponds to opti-
mality in every instance, as opposed to just worst case or the average case. There are
many algorithms that are optimal in a worst-case sense, but are not instance optimal.

Below, we will investigate the instance optimality of Algorithm 8 by an intuitive
argument. If P is an algorithm that stops earlier than Algorithm 8 in a certain case,
before P finds k itemswhose ranking score is at least equal to the threshold score STa ,
then P must make a mistake, since the next unseen item vmight have a ranking score
equal to F (̃va, a) in each attribute a, and hence have ranking score S(q, v) = STa .
This new item, which P has not even seen, has a higher ranking score than some
item in the top-k list that was output by P , and so P erred by stopping too soon.

5.4 Attribute-Pruning Algorithm

Both metric-tree and TA algorithms focus on pruning item search space, and they
cannot reduce the time cost of computing the ranking score for a single item. More-
over, they cannot adapt to the high-dimension data, i.e., the number of latent attributes
is large. When the dimensionality of items is high (e.g., A > 500), the tree index
structures and tree-based search algorithms (e.g., metric-tree and R-tree) will lose
their pruning ability, as analyzed in [5], which is also validated in our experiments.
As for TA, it needs to frequently update the threshold for each access of sorted lists
and to maintain the dynamic priority queue of sorted lists. These extra computations
reduce down the efficiency of TA when the dimensionality is high.

Toovercome the curse of dimensionality and speed up the online recommendation,
we propose an efficient algorithm to prune the attribute space and facilitate fast
computation of the ranking score for a single POI, inspired by TA algorithm [8]
and Region Pruning strategy [9]. Our algorithm is based on three observations that
(1) a query q only prefers a small number of attributes (i.e., the sparsity of query
preferences) and the query weights on most attributes are extremely small; (2) items
with high values on these preferred attributes are more likely to become the top-
k recommendation results; and (3) the attribute values of most items also exhibit
sparsity, i.e., each POI has significant values for only a handful of attributes.

The above three observations indicate that only when a query prefers an attribute
and the item has a high value on that attribute, will the score W (q, a)F(v, a) con-
tribute significantly to the final ranking score. Thus, we first pre-compute ordered
lists of items, where each list corresponds to a latent attribute. For example, given
A latent attributes, we will compute A lists of sorted items, Laj , 1 ≤ j ≤ A, where
items in each list Laj are sorted according to F(v, a j ). Different from the threshold
algorithm (TA) developed in [8], each sorted list Laj only stores k items with highest
F(v, a j ) values instead of all items. Hence, it is space-saving. Besides, for each item
v, its attributes are preranked offline according to the value of F(v, a j ). Given an
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Algorithm 9: Attribute Pruning Algorithm

Input: An item set V , a query q and A ranked lists La ;
Output: Result list L with k highest ranking scores;

1 Initialize L as ∅;
2 Sort the query attributes by W (q, a);

3 Choose top m attributes satisfying:
∑m

j=1 W (q, a j ) > 0.9
∑A

j=1 W (q, a j );
4 for j = 1 to m do
5 for v ∈ La j and v /∈ L do
6 Compute S(q, v) according to Eq. (5.1);
7 if L .si ze() < k then
8 L .add(< v, S(q, v) >);
9 end

10 else
11 v′ = L .top();
12 if S(q, v) > S(q, v′) then
13 L .removeTop();
14 L .add(v, S(q, v));
15 end
16 end
17 end
18 end
19 for v ∈ V and v /∈ L do
20 PS = 0, PW = 0, Skip = f alse, and v′ = L .top();
21 while there exists attribute a not examined for v do
22 a = v.next Attribute();
23 PS = PS + W (q, a)F(v, a);
24 PW = PW + W (q, a);

25 if PS + (
∑A

j=1 W (q, a j ) − PW )F(v, a) ≤ S(q, v′) then
26 Skip = true;
27 break;
28 end
29 end
30 if Skip == f alse then
31 if S(q, v) > S(q, v′) then
32 L .removeTop();
33 L .add(< v, S(q, v) >);
34 end
35 end
36 end
37 L .Reverse();
38 Return L;

online query q, we develop a branch and bound algorithm, as shown in Algorithm 9,
to prune the search space of the attributes in the computation of the ranking score,
i.e., after we have scanned a small number of significant attributes for an item, it
may not be necessary to examine the remaining attributes. The algorithm is called
AP (Attribute Pruning) and contains two components: initialization and pruning.
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In the initialization component (Lines 1–18), we select k candidate items that
are potentially good for recommendation. Specifically, we pick top m attributes
which cover most the query’s preferences with smallest m, i.e.,

∑m
j=1 W (q, a j ) >

ρ
∑A

j=1 W (q, a j ), where ρ is a predefined constant between 0 and 1 (Line 3). In our
experiment, AP achieves its best performance for ρ = 0.9. For each of the top m
attributes a, we choose top ranked items from La as candidates (Lines 4–18).

In the pruning component (Lines 19–36), we check whether we can avoid travers-
ing unnecessary attributes for item v according to the descending order of F(v, a).
Suppose we have traversed attributes {a1, . . . , ai−1}. The partial score we have com-
puted for the traversed attributes is

PS(q, v) =
i−1∑

j=1

W (q, a j )F(v, a j ).

When we explore the i th attribute, we compute the upper bound of ranking score for
the item v as:

UB(q, v) = PS(q, v) +
A∑

j=i

W (q, a j )F(v, ai ) (5.9)

Because we check the attributes in the descending order of F(v, a), the actual value
of F(v, a) for the remaining attributes should be less than the value for the current
attribute, i.e., F(v, ai ). Therefore, we have a partial ranking score for the rest of the
attributes, which is at most

A∑

j=i

W (q, a j )F(v, ai ), (5.10)

where
∑A

j=i W (q, a j ) is the portion of query preferences for the rest attributes. The

upper bound of
∑

a W (q, a) F(v, a) for all attributes is PS(q, v) + ∑A
j=i W (q, a j )

F(v, ai ), which results in Eq. (5.9).
We employ a binary min-heap to implement L so that the top item v′ has the

smallest ranking score in L (Line 20). If the upper bound is smaller than the ranking
score of v′, we skip the current item (no need to check the remaining attributes) (Lines
25–28). Otherwise, we continue to check the remaining attributes. If all attributes
are examined for the item and the item is not pruned by the aforementioned upper
bound, we obtain the full score of the item to compare with v′ (Lines 30–35). We
remove the item v′ and add the current item to the list if its full score is larger than
v′ (Lines 31–34).

Note that our proposed AP algorithm in this section also requires the ranking
function S(q, v) to be monotone, e.g., the query weight on each attribute W (q, a) is
nonnegative.
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5.5 Experiments

In this section, we evaluate the top-k recommendation efficiency of metric tree (MT),
TA, and attribute pruning (AP) algorithms on both real-world and large-scale syn-
thetic datasets. There are 114,508 users, 62,462 spatial items and 1,434,668 check-
ins in the real-world dataset Twitter. Every user has approximately 13 check-ins and
every spatial item is associated with 23 check-ins on average. The users’ check-ins
display the power-law distribution. To keep the sparsity property on the synthetic
dataset, we generate a dataset with 23 million check-ins, 1 million spatial items and
1.77 million users to simulate the distribution of the check-ins on the real-world
dataset.

5.5.1 Experimental Results

This experiment is to evaluate the efficiency of our proposed online recommendation
algorithms MT, TA, and AP on both the real-life and large-scale synthetic datasets.
We compare themwith a baseline algorithms. The baseline is a brute-force algorithm
(BF) that needs to compute a ranking score for each item and selects top-k ones with
highest ranking scores. All the online recommendation algorithmswere implemented
in Java (JDK 1.7) and run on a Windows Server 2008 with 256G RAM.

Figure5.2 shows the time costs of producing top-10 recommendation on the large-
scale synthetic dataset. We control the number of available items to vary from 0.1
million to 1 million to test the scalability, and the dimensionality is set to be 10,
50, 100, 500, 1000, and 1500. From the results, we can observe that these four
algorithms have significant performance disparity when the dimensionality increases
from 10 to 1500. Obviously, AP exhibits highly desirable scaling characteristics—
sub-linear time complexity to both data size and data dimensionality, while other
competitor methods, MT and TA, are very sensitive to the data dimensionality, and
they perform better than BF only for low-dimensionality setting (e.g., less than 100
dimensionality). The test results also provide important insights to choose online
recommendation algorithms: when the data dimensionality is not larger than 10, MT
is the best choice; when 10 < A ≤ 50, TA can achieve best performance; and when
A > 50, we suggest to choose AP algorithm.

To further analyze these algorithms in the high-dimension setting, we test them
on the Twitter dataset. Table5.1 shows the performance with 1500 latent dimensions
(i.e., A = 1500) and k (i.e., the number of recommendations) set to 1, 5, 10, 15,
and 20.A greater value of k is not necessary for the top-k recommendation task.
Obviously, the AP algorithm outperforms others significantly and consistently for
different number of recommendations. For example, on average the AP algorithm
finds the top-10 recommendations from about 62,000 items in 67.57ms, and achieves
1.65 times faster than the brute-force algorithm (BF).
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Fig. 5.2 Recommendation Efficiency on the Synthetic Dataset with Varying Dimensionality (A).
a A = 10. b A = 50. c A = 100. d A = 500. e A = 1000. f A = 1500

Specifically, from the results, we observe that: (1) AP outperforms BF signifi-
cantly, justifying the benefits brought by pruning attribute space. It only needs to
access very few attributes for each item to compute its partial score, about 145
attributes on average (that is less than 10%) for k = 10, and 120 attributes for k = 5,
sinceAP algorithm takes full advantage of the sparsity of both query and POI vectors.
(2) Although the time cost of AP increases with the increasing number of recom-
mendations (i.e., k), it is still much lower than that of BF in the recommendation task
even when k = 20. (3) The time cost of MT is higher than that of the naive linear
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Table 5.1 Recommendation efficiency on twitter dataset

Methods Online recommendation time cost (ms)

k=1 k=5 k=10 k=15 k=20

AP 50.91 61.75 67.57 72.13 75.32

BF 110.83 111.40 111.81 111.95 112.94

MT 130.90 131.46 131.87 132.39 132.99

TA 880.92 1055.68 1144.82 1221.49 1265.58

scan method (BF) in this task, although it achieves better performance than BF in the
low-dimension setting. This is becauseMT loses its ability to prune item search space
and needs to scan all items in the leaf nodes when the dimensionality is high. (4) The
threshold algorithm (TA) performs worse than the brute-force algorithm, since it still
needs to accessmany items (around 40%of the items on average for k = 10 and 35%
for k = 5). Moreover, TA needs to frequently update the threshold for each access
of sorted lists and to maintain the dynamic priority queue of sorted lists. These extra
computations reduce down the efficiency of TA when the dimensionality is high. In
summary, although both TA and MT can achieve better performance than BF due to
their ability of pruning POI search space when the dimensionality is not very high,
they cannot overcome the curse of dimensionality when the items have thousands of
attributes. In contrast, the AP algorithm is designed for pruning attribute space, thus
it can still achieve superior performance for the setting of high dimensionality.

5.6 Summary

In this chapter, we proposed three techniques for efficient spatiotemporal recommen-
dation: (i) metric tree (MT).We index the item vectors in a binary spatial partitioning
metric tree and used a simple branch-and-bound algorithm with a novel bounding
scheme to prune the item search space. (ii) TA. We precomputes an inverted list for
each latent attribute a in which items are sorted according to their values on attribute
a, and alsomaintains a priority queue of the inverted lists that controls which inverted
list to access in the next. The algorithm has the nice property of terminating early
without scanning all items. (iii) Attribute Pruning (AP). Being different from metric
tree and TAwhich focus on pruning item search space, the AP aims to reduce the time
cost of computing the ranking score for a single item by pruning the attribute space.
We evaluated our algorithms on both real-world and large-scale synthetic datasets,
demonstrating the superiority of MT, TA, and AP over the linear-scan algorithm.
Moreover, we found that these three techniques show different performances with
varying the data dimensionality (i.e., the number of items’ latent attributes): when
the data dimensionality is not larger than 10, MT is the best choice; when the number
of latent attributes is between 10 and 50, TA can achieve best performance; and when
the data dimensionality exceeds 50, we suggest to choose the AP.
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