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Abstract In this paper we discuss full-rate quasi-orthogonal space-time block code
with a low decoding problem. Based on the traditional Bilateral Jacobi transfor-
mation, we propose a new decoding algorithm which can reduce the multiplication
and root computation complexity at the Multiple Input Multiple Output (MIMO)
receivers. Simulation results show that the bit error probability of our scheme is
comparable to that of the traditional algorithms but its computation complexity is
much lower than the traditional algorithms.

Keywords QO-STBC (quasi-orthogonal space time block codes) � Low
complexity decoding algorithm � Matrix jacobi transformation

1 Introduction

Ever since H. Jafarkhani, Choi and Nimmagadda proposed the Quasi-Orthogonal
Space-Time Block Codes (QO-STBC) [1–3], there has been considerable interest in
codes with low decoding complexity. A variety of methods have been proposed to
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reduce decoding complexity [4]. M.Y. Chen constructs a class of QO-STBCs based
on symbol-by-symbol maximum likelihood detection by Chen [5], but the com-
plexity of this decoding method is still high. Leuschner stated a kind of QO-STBCs
using a sphere decoding algorithm to reduce decoding complexity [6]. However,
this detection method sometime has high decoding latency at low SNR (Signal to
Noise Ratio), so the complexity still remains high.

However, those algorithms cannot attain full-diversity, full rate transmission.
A QO-STBC with full-diversity, full-rate transmission and double-symbol decoding
has been proposed for a four transmit antennas system [7, 8]. However, the
decoding complexity is high due to the nonlinear characteristic [9–12]. To reduce
the complexity, a class of three- and four-antenna QO-STBCs based on a given
rotation scheme is proposed, and the decoding complexity is linear [13], because
some element of channel matrix are canceled. However, these algorithms need 16
times the multiplication and double the square root operations which are relative to
the channel matrix procedure, still maintain high complexity. So a fast decoding
algorithm using a Jacobi transform is proposed to reduce the computation com-
plexity at the receiver. Simulation results are provided to compare the bit error
probability between the proposed scheme and the conventional method.

2 System Model

Consider a MIMO wireless communication system with N transmits antennas and
one receive antenna. The number of transmit time slots is T. The received signal is
given by

r ¼ Shþ n ð1Þ

where r = (r1, r2, …, rT)
T is a received signal vector. rt(t = 1, …, T) is a received

signal at t time slot, [.]T represents transpose. N × 1 matrix h = (h1 h2 … hN)
represents the channel gain between the N transmitters and the receiver, and
hm(m = 1, …, N) is assumed to be independent and identically distributed (i.i.d)
complex Gaussian random sample, whose real and imaginary variance are both 0.5,
n = (n1 n2 … nT)

T is the addictive noise matrix, where nt (t = 1, 2, …, T) denotes
the i.i.d zero-mean and unit-variance complex Gaussian random noise variable.
According to [1], the 4 × 4 transmitted code matrix S(2) denotes a full-rate
quasi-orthogonal space-time block codes matrix.

S ¼
~s1 0 ~s3 0
�~s�3 0 ~s�1 0
0 ~s2 0 ~s4
0 �~s�4 0 ~s�2

0
BB@

1
CCA ð2Þ

20 X.-P. Jin et al.



where ~s1 ¼ as1 þ bs3; ~s2 ¼ as2 þ bs4; ~s3 ¼ bs1 � as3; ~s4 ¼ bs2 � as4. Here, a ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðP=2Þ � k
p

and b ¼ ffiffiffi
k

p
; 0\k\P=2ð Þ are the power scaling of M-ary constella-

tion si (i = 1, 2, 3, 4), P is the total transmit power of the N transmit antennas in
each slot, which is normalize t to be 1.[.]* represents the conjugate.

3 Decoding Algorithm

Conducting an appropriate transformation of the receiving signal r at the
receiver-end, we take conjugate of r2, r4, which are vectors of the received signal in
the second time slot and fourth time slot, respectively. Then we transform matrix
S with drawing sent signal vector s = (s1 s2 s3 s4)

T, and channel gain vector h be-
comes channel matrix H. The received signal becomes r′ = Hs + n′. Next both
sides of the equation are left multiplied by HH, �½ �H represents conjugate and
transpose, the receiver signal becomes as

r̂ ¼
ea 0 eb 0
0 f a 0 fb
eb 0 �ea 0
0 fb 0 �f a

0
BB@

1
CCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A

s1
s2
s3
s4

0
BB@

1
CCAþ

h�1n1 þ h3n�2
h�2n3 þ h4n�4
h�3n1 � h1n�2
h�4n3 � h2n�4

0
BB@

1
CCA ¼¼ Asþ n̂ ð3Þ

where e ¼ h1j j2 þ h3j j2; f ¼ h2j j2 þ h4j j2, and

H ¼
h1 0 h3 0
h�3 0 �h�1 0
0 h2 0 h4
0 h�4 0 �h�2

0
BB@

1
CCA ð4Þ

Matrix A in (3) can be expressed by (aij). It is found that if a13 and a24 both
equal to 0, the self-interference terms can be totally avoided. So we need to
transform symmetric matrix A in formula (3) into a diagonal matrix A′ with
bilateral Jacobi methods.

To perform the transformation, first decompose matrix A to find a diagonal
matrix K = diag(k1, k2, k3, k4) satisfying A = KBK. Because matrix K is a diag-
onal matrix, after decomposition of matrix A, matrix B is a symmetric matrix too.
According to the traditional decomposition method, we find a diagonal matrix
K′ = diag(k1

′ , k2
′ , k3

′ , k4
′ ) to decompose unitary matrix R, and make R = K′TK−1.

Next, multiply the right side of this formula by KT−1. Then we get the relationship
between matrix T and matrix K, K′ = RKT−1, where T meets the following for-
mula: T = I − (1 − tii)eiei

T − (1 − tjj)ejei
T + tijeiej

T + tjiejei
T, and tii and tjj are
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diagonal elements of matrix T. tij and tji are non-diagonal elements of matrix
T. Which yields:

R ¼ K0TK�1 ¼

k01
k1
t11 0 k01

k3
t13 0

0 k02
k2

0 0

� k03
k1
t31 0 k03

k3
t33 0

0 0 0 k04
k4

0
BBBBB@

1
CCCCCA

¼
c 0 s 0
0 1 0 0
�s 0 c 0
0 0 0 1

0
BB@

1
CCA ð5Þ

Now we have A′ = RART = K′TBTTK′ = K′B′K′. From the equation, we can
see that the transformation from symmetric matrix A to diagonal matrix A′ is
equivalent to the transformation from symmetric matrix B to diagonal matrix B′. In
other words, in order to figure out how many steps in the transformation of sym-
metric matrix A, we only need to solve the step number in the transformation of
symmetric matrix B.

According to Jia’s paper [10], setting the proper value of matrix K′, the multipli-
cation and the operation number of square root will cut in half through transforming
matrix B We find from the above process that the computational complexity has been
reduced by half when using this fast algorithm. Now we examine the case where a13
turns to zero, and turns into A′. The received signal of (3) has the following expression

~r ¼ K0B0K0sþK0B0K0A�1n̂

¼

l01b
0
11 0 0 0

0 l02b
0
22 0 a24

0 0 l03b
0
33 0

0 a24 0 l04b
0
44

0
BBB@

1
CCCA

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
A0

sþ ~n ð6Þ

Similarly, transform matrixA′with Jacobi methods can make a24 = a42 = 0. Then the
matrix A′ turns into diagonal matrix A″. Thus we can use maximum likelihood decoding
algorithm to decode the received signals. It can be found out that we use the Jacobi
transform twice, but only need 16 multiplications and 16 additions and one square root
operation when computing c and s. The comparison of computational complexity
between Park’s paper [13] and the fast algorithm is shown in Table 1. The expression of
maximum likelihood estimation is given by (7), �k k denotes the norm of a matrix.

Table 1 Comparison of complexity for the two algorithms

Algorithm type Addition Multiplication Open square

The algorithm proposed by Park [13] 16 32 2

Fast algorithm 16 16 1
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Ŝ ¼ arg min
S

r� Shk k2¼ arg min
s

HH r̂� As
�� ��2

¼ arg min
s

HH r̂� ðK0Þ2B0s
�� ��2 ð7Þ

4 Simulation

In all simulations, we consider four transmit antennas and one receive antenna. The
whole transmit slot T = 4. We provide simulation results to verify the efficiency of
our proposed algorithm at the different signal power P and λ (which denote p and q
values respectively in Fig. 1). Assuming that the communication system utilizes
QPSK (Quadrature Phase Shift Key) to modulate and demodulate. The receiver
uses fast Jacobi decoding algorithm to detect the received signals. The bit error rate
(BER) of the proposed algorithm with the traditional decoding algorithm proposed
by Park et al., Jia and Xiao, Xiao and Dai at different signal-to-noise ratio (SNR) is
compared in Fig. 1. [10, 11, 13].

Fig. 1 BER comparison of algorithm proposed by Park et al., Jia and Xiao, Xiao and Dai
[10, 11, 13] and proposed algorithm against T = 4 and QPSK
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From these figures, we see that the BER performance of the system using the fast
Jacobi decoding algorithm is improving with the increasing the signal power P than
the algorithms in [10, 11, 13]. The proposed decoding algorithm can improve the
performance but with lower computation complexity. Furthermore, the number of
Multiplication and Open Square decreases by about 50 % compared to the algo-
rithm proposed by Park et al. [13]. Furthermore, the algorithm proposed by Xiao
and Dai [11] requires the computation of the inverse of the matrix, so it is more
complex than the fast algorithm, which is approximately equal to the algorithm
proposed by Jia and Xiao [10].

5 Conclusion

In this paper, we construct a new full-rate quasi-orthogonal space-time block code.
Based on the traditional Bilateral Jacobi transformation decoding algorithm, we
propose a new fast algorithm, which can reduce the multiplication and rooting
computation complexity at the receiver. Simulation results show that the system bit
error probability of our scheme is comparable to the previously proposed algorithm
while the computation complexity is much lower. This has important significance
for the signal processing of the MIMO communication system.
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