
Chapter 7
Orbital Rule for Electron Transport
of Molecular Junctions

Tomofumi Tada

Abstract Constructive and destructive interference are typical features of electron
transport in molecular junctions, which appear as parabolic curves and sharp dips
of transmission functions, respectively. To understand the quantum interference
properties in molecular junctions, the Green’s function method with tight-binding
models was adopted, and the quantum interference was analyzed in terms of
orbitals, which leads to an efficient orbital rule for qualitative predictions of electron
transport in molecular junctions. A minimum model, a two-site tight-binding model,
was used to explain the orbital rule for electron transport without ambiguity. The
orbital bases in tight-binding models are typically atomic orbitals, and thus the
tight-binding model can be easily extended to larger molecules by simply adding
atomic sites. As the next example, a three-site triangular tight-binding model was
introduced. The quantum interference that appears in the three-site model can
be easily understood using the orbital rule. With regard to the orbital bases as
molecular orbitals, the triangular tight-binding model could efficiently explain the
destructive interference recently observed in a large molecular unit. In the final part,
we also examine the applicability of the orbital rule for molecular spin systems
including spin-flip processes.

Keywords Electron transport • Green’s function • Tight-binding model • Orbital
rule

7.1 Introduction

Quantum interference that appears as the result of superposition between possible
electronic propagations is a typical phenomenon in quantum mechanics. The
simplest picture of quantum interference can be explained with the concept of path-
interference. Let us assume that only the left- and right-pathways are allowed for
conduction electrons in the ring system shown in Fig. 7.1. When the difference
of the transport distance between the two pathways is an integral multiple of the
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Fig. 7.1 Schematic of two
different electron pathways in
a ring-shaped apparatus. We
can easily expect that no
interactions occur between
the two propagating states at
dotted mid-points in a large
ring, but such interaction will
appear in molecular-sized
rings

Left-way

Right-way

1 μm

wavelength of conduction electrons, the two propagation states are superposed in a
constructive manner, whereas when half of the wavelength remains in the distance
difference, the two propagation states are superposed in a destructive manner. It
is well known that quantum interference is a key in the quantum physics of the
Aharonov-Bohm (AB) effect [1, 2], and the AB-ring is a very efficient apparatus
for quantum physics. This explanation assumes that the two electron pathways
are absolutely distinct; therefore, the size of the ring must be sufficiently large to
avoid unexpected interactions1 between the two propagations at mid-points (e.g.,
dotted points in Fig. 7.1). However, what happens when the macroscopic size of
the ring is decreased to a molecular size? In molecular rings, the assumption
(i.e., no interactions between the two propagations at mid-points) will be broken.
Thereby, the emergence of quantum interference in molecular rings as a result of
path interference may become ambiguous.

Theoretical investigations on the quantum interference effect in molecular junc-
tions began from 1988 to the early 2000s [3–6], mainly with the use of ring-shaped
molecules. The first report on the quantum interference effect in molecular junctions
by Sautet and Joachim was based on the benzene molecule [3], and the constructive
or destructive interference in electron transport via the benzene ring was obtained

1The so-called measurement problem in quantum mechanics is still not resolved; therefore, we
cannot deny the presence of any suspicious interactions between two propagating states that
are separated by large distances. The term interaction used in this chapter denotes an apparent
interaction that is explicitly represented in Hamiltonian.
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Fig. 7.2 Carbon molecular junctions theoretically investigated and the calculated transmission
functions by Baer and Neuhauser (Reprinted with permission from Ref. [6]. Copyright 2002
American Chemical Society)

using scattering state theory. In addition, the model junctions introduced by Baer and
Neuhauser [6] were probably designed for investigation of the quantum interference
effect in molecular junctions along the concept of path-interference. Figure 7.2
shows their molecular junctions and calculated transmission functions in which
parabolic curves and abrupt drops of transmission functions appear depending of
the junction structures and energy of the transmitted electrons. However, quantum
interference was also confirmed in larger complicated molecules where the electron
pathways cannot be identified. To understand the quantum interference in molecular
junctions, the concept of interorbital interference rather than path-interference was
proposed based on the Green’s function approach [7]. According to interorbital
interference, the key quantity of the quantum interference in molecular junctions
is not the distance differences but the orbital-phase differences between connection
points.

7.2 Tight-Binding Model for Molecular Junctions

In this section, the Green’s function method based on a single-orbital per single-site
model, the simplest tight-binding (TB) model, is introduced, and an orbital-phase
rule to achieve a qualitative understanding of electron transport in single molecular
junctions is explained. The model corresponds to the Hückel approximation when a
single orbital is regarded as a � atomic orbital (AO) in a planar molecule composed
of carbon atoms. The simplest TB model can also be useful for more general systems
by considering that the base of the single orbital is given in the molecular orbital
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(MO) space or in the AO-and-spin direct product space, as shown in the latter part of
this section. Here, a qualitative relationship between orbitals and quantum transport
is explained as a result of constructive or destructive interference, regardless of the
base type for the orbitals.

Quantum interference is typically understood in terms of phase-related matters,
and thus the interference effect may not be expected to appear in a phase-broken
process (i.e., incoherent transport). However, a similar quantum interference effect
can appear even for spin-dependent transport including spin-flip processes (i.e.,
incoherent transport). The key factor that leads to the quantum interference effects
in many different cases is the similarity of the matrix form used to represent the
junctions.

For electrodes, a one-dimensional (1D) metallic chain is adopted for simplicity.
The base adopted for the orbitals of 1D electrodes does not have any limitations,
that is, AO, MO, spin-spin direct product, etc. are acceptable, depending on the
orbital base of the system sandwiched between the electrodes. It is also assumed
that the interaction between the sandwiched system and the left/right 1D electrode is
represented by a single hopping parameter (Fig. 7.3). Although these conditions are
extensively simplified compared with the realistic conditions for nanojunctions, they
are rather efficient for the derivation of a qualitative relationship between orbitals
and conductance.

-t -t -t -t-tc-tc

-tm

(a)   L-junction

-tc -tc

-tm

-t -t -t -t
(b)   T-junction

1

2

1 2

Fig. 7.3 1D tight-binding molecular junctions for the two-site model. The sandwiched diatomic
molecule is composed of atoms 1 and 2. We adopted the nearest-neighbor hopping; �t in the
electrode, �tc for electrode-molecule hopping, and �tm for intramolecular hopping parameters.
Atoms 1 and 2 are respectively connected to the left- and right-electrodes in (a) a L-junction (Line-
contact), and atom 1 is only connected to both electrodes in (b) a T-junction (T-shaped contact)
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Let us start from the matrix representation of the 1D tight-binding model. The
Hamiltonian of the system can be represented as

H D

0
B@

HL t�

L 0
tL HM t�

R

0 tR HR

1
CA ; (7.1)

where HM represents the Hamiltonian of a sandwiched molecule and the Hamilto-
nian matrices HL and HR for the electrodes are shown as

HL D

0
BBBBBBBBBBBBB@

� � � m�4 m�3 m�2 m�1

:::
: : :

: : :
: : :

: : :

m�4
: : : "0 �t 0 0

m�3
: : : �t "0 �t 0

m�2
: : : 0 �t "0 �t

m�1 0 0 �t "0

1
CCCCCCCCCCCCCA

; (7.2)

HR D

0
BBBBBBBBBBBBB@

nC1 nC2 nC3 nC4 � � �

nC1 "0 �t 0 0

nC2 �t "0 �t 0
: : :

nC3 0 �t "0 �t
: : :

nC4 0 0 �t "0

: : :

:::
: : :

: : :
: : :

: : :

1
CCCCCCCCCCCCCA

; (7.3)

tL D

0
BBBBBB@

� � � m�3 m�2 m�1

m � � � 0 0 �t

mC1 0 0

mC2 0

:::
:::

1
CCCCCCA

; (7.4)
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and

tR D

0
BB@

� � � n�2 n�1 n

nC1 � � � 0 0 �t
nC2 0 0

nC3 0
:::

:::

1
CCA; (7.5)

where the base index of HM is running from m to n (i.e., the matrix size of Hs is
n � m C 1). For the coupling matrices, tL and tR in Eqs. 7.4 and 7.5, it was assumed
that the atoms connecting with the left and right electrodes are different, and the
matrix indices for the two atoms are defined as m and n in HM. When the atoms
connecting with the left and right electrodes are identical (i.e., the index is m in
HM), the coupling matrix tR is changed as

tR D

0
BB@

m mC1 � � � n

nC1 �t 0 � � � 0

nC2 0 0 � � � 0

nC3 0 0
:::

:::
:::

1
CCA; (7.6)

Note that the matrix forms of HM are dependent on the sandwiched molecule.
Examples for the matrices are given in the following sections.

7.2.1 Two-Site Model

A two-site TB model (i.e., diatomic molecule) connected to 1D electrodes is
introduced first. Figure 7.3 shows two typical contact structures (i.e., L- and T-
junctions) in the two-site TB model. The matrix elements for the two contact models
are given as

HL D

0
BBBBBBBBBBBBB@

� � � 1 2 � � �
:::

: : :
: : :

: : : "0 �t
�t "0 �tc

1 �tc "˛ �tm
2 �tm "˛ �tc

�tc "0 �t

�t "0

: : :
:::

: : :
: : :

1
CCCCCCCCCCCCCA

; (7.7)
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and

HT D

0
BBBBBBBBBBBBB@

� � � 1 2 � � �
:::

: : :
: : :

: : : "0 �t
�t "0 �tc

1 �tc "˛ �tm �tc
2 �tm "˛ 0

�tc 0 "0 �t

�t "0

: : :
:::

: : :
: : :

1
CCCCCCCCCCCCCA

; (7.8)

where the base indices of Hs are 1 and 2, and "0 and "˛ are the on-site energies of
atoms in the electrodes and in the molecule, respectively. The hopping parameters,
�tm and �tc, correspond to those for the sandwiched molecule itself and molecule-
electrode coupling, respectively.

In the non-equilibrium Green’s function method for electron transport [8], the
transmission probability T, which is related to conductance as G = 2e2=h in
Landauer’s formula [9], is expressed with the advanced/retarded Green’s functions,
GA=R of the molecule and the local density of states � of the apex atom in each
electrode, as follows [10]:

Trs.E/ D .2�t2c/2

2
GA

sr.E/GR
rs.E/�.E/�.E/: (7.9)

The orbital index r=s corresponds to the AO connected to the left-/right-electrode.
GA=R.E/ is the advanced/retarded Green’s function GA=R.E/, which is represented
as GA=R.E/ D ŒE1 � Hmol � †

A=R
L � †

A=R
R ��1, where Hmol is the 2 � 2 Hamiltonian

matrix in the basis of AOs in the two-site models, and †L=R is the 2 � 2 self-
energy matrix of the left-/right-electrode. The interaction between the sandwiched
molecule and each electrode is represented with a single hopping parameter tc so
that only a single element takes a non-zero value in the 2 � 2 self-energy matrix
(e.g., .†L/i;j = t2c gelecıijıi1 and .†R/i;j = t2c gelecıijıi2 for the Line-contact, where
gelec is the Green’s function for the electrodes). The transmission probability in
the matrix-based Green’s function for electron transport is generally represented
as T.E/ D TrŒif†R

L.E/ � †A
L.E/gGR.E/if†R

R.E/ � †A
R.E/gGA.E/� [8]. Using the

matrix elements for the two-site TB model, the expression of T.E/ shown in Eq. 7.9
is easily obtained.

Figure 7.4 shows the calculated transmission probabilities for L- and T-junctions.
In both cases, the transmission probabilities have sharp peaks at energies of �0:5t
and 0.5t, which are the orbital levels of the highest occupied MO (HOMO) �0:5t,
and lowest unoccupied MO (LUMO) 0.5t, of the diatomic molecule. However,
at the mid-gap between the HOMO and LUMO, the two contacts show a clear
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Fig. 7.4 Calculated transmission probabilities for the two contact cases, L- and T-junctions. The
tight-binding parameters used in these calculations are tc D 0:1t, tm D 0:5t, and "˛ D "0 D 0

difference in the transmission probabilities; the transmission of the T-junction drops
sharply to zero (i.e., anti-resonance), whereas that for the L-junction has a parabolic
shape without anti-resonance. Analysis of Green’s function Grs.E/ is quite useful to
elucidate the clear difference in the transmission curves at the mid-gap. According
to the pioneering study for electron tunneling by Caroli and co-workers [10], the
Green’s function Grs.E/ is given in terms of the unperturbed Green’s function
G.0/

rs .E/, as

Grs D G.0/
rs

D
; (7.10)

where

D D .1 � t2c G.0/
ss gelec/.1 � t2c G.0/

rr gelec/ � t4c G.0/
rs G.0/

sr gelecgelec: (7.11)

Here the notation for retarded/advanced and the energy E is left off for simplicity.
To derive a qualitative relationship between the orbitals and conductance, a weak
coupling condition between the electrodes and sandwiched molecule is convenient;
therefore, a weak coupling case was adopted in this section (i.e., the hopping
parameter tc between electrodes and a molecule is small with respect to tm and
t). According to Eq. 7.11, the renormalization term D in the weak coupling case
can be clearly approximated as 1. The calculated renormalization term D for the
T-junction is shown in Fig. 7.5. In weak coupling cases (i.e., smaller tc than t), the
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Fig. 7.5 Calculated real (Re) and imaginary (Im) parts of the renormalization term D for the T-
junction. Electrode-molecule coupling tc of 0.1, 0.3, and 0.5t are adopted as weak coupling cases,
and tc of 1.0 and 1.5t are adopted as strong coupling cases. Other TB parameters are the same as
those used in the transmission calculation for the T-junction

real part of the renormalization term D (Re[D]) is almost equal to 1 at any energy;
although some peaks and dips are confirmed at around eigenlevels (�0.5t and 0.5t),
Re[D] at the mid-gap is apparently close to 1. In addition, the deviation of Re[D]
from 1 at the mid-gap is not so large, even for strong coupling cases (i.e., larger tc
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than t), and the imaginary part of D is perfectly zero at the mid-gap, regardless of
the strength of the electrode-molecule coupling tc. We therefore unambiguously use
the unperturbed Green’s function G.0/ instead of the perturbed Green’s function G to
figure out the relationship between the Green’s function and transmission function.

We are interested in the electronic states of molecules in terms of eigenlevels
(e.g., molecular orbitals of molecules); therefore, the following unperturbed Green’s
function expanded in terms of molecular orbitals is quite efficient:

G.0/
rs .E/ D

X
k

CrkCsk

E � "k
; (7.12)

where the k-th eigenvalue of the isolated molecule is "k, and its eigenvector (i.e.,
orbital coefficient) on the site r is Crk. Here the orbital representation of Eq. 7.12 is
valid because the coefficients C0s of the molecule are real numbers. At the mid-gap
between the HOMO and LUMO of the molecule, the contributions from the HOMO
and LUMO in the summation of Eq. 7.12 are clearly significant. In the present two-
site model, this situation is exactly true because we have only the two MOs, HOMO,
and LUMO, and we have confirmed that the assumption also works quite well for
multi-orbital systems, even with degenerate orbitals [11].

Let us consider the relationship between the MOs and Green’s function. The
energy differences E � "k appear in the denominator and the orbital coefficients in
the numerator in G.0/; therefore, we can readily derive the following orbital relation
for electron transport [7]: (i) large orbital coefficients at the contact sites, Crk and Csk

for k = HOMO or LUMO, lead to a large transmission probability, and (ii) opposite
signs between the two terms, CrHOMOCsHOMO and CrLUMOCsLUMO, are required for
constructive interference from the HOMO and LUMO in the transmission function
at the mid-gap due to the sign difference in the denominator E � "k in G.0/ for the
HOMO and LUMO. Using the mathematical notation Sgn(a), which returns the sign
of the quantity a, the second condition is written as

Constructive.HOMO W LUMO/ W Sgn.CrHOMOCsHOMOCrLUMOCsLUMO/ D �;

(7.13)

On the other hand, when the two terms, CrHOMOCsHOMO and CrLUMOCsLUMO, have
the same sign, the contributions from the HOMO and LUMO are canceled out at the
mid-gap. In the notation using “Sgn”, the relation is

Destructive.HOMO W LUMO/ W Sgn.CrHOMOCsHOMOCrLUMOCsLUMO/ D C:

(7.14)

Although we have focused on the HOMO and LUMO in Eqs. 7.13 and 7.14 as a
frontier orbital rule for electron transport, the interference relationship between two
neighboring energetically non-degenerate orbitals "k and "kC1 can be represented as

Constructive.k W k C 1/ W Sgn.CrkCskCrkC1CskC1/ D �; (7.15)

Destructive.k W k C 1/ W Sgn.CrkCskCrkC1CskC1/ D C: (7.16)
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Fig. 7.6 Orbital phases of
the HOMO and LUMO for
the two-site molecule. The
black and white symbols
represent positive and
negative coefficients,
respectively

HOMO

LUMO

1 2

According to the orbital rule, the clear difference of the transmission functions at
the mid-gap in L- and T-junctions can be readily understood. The orbital phases
(i.e., the sign of MOs) of the HOMO and LUMO of the two-site molecule are
shown in Fig. 7.6. In this model, the amplitude of the orbital coefficients is 1=

p
2

for both sites. Thus, the orbital rule to consider is rule (ii). In the L-junction,
the sites connected to the electrodes are sites 1 and 2. The numerator in G.0/ for
HOMO, C1HOMOC2HOMO, is a positive number, but for the LUMO, C1LUMOC2LUMO

is a negative number. This is the case for constructive interference of the electron
transmission at the Fermi level, which leads to the parabolic transmission at the
Fermi level without anti-resonance, as shown in Fig. 7.4. However, in the T-junction,
the only site connected to the electrodes is site 1, and the terms C1HOMOC1HOMO and
C1LUMOC1LUMO have the same sign (i.e., positive) and the same value. Therefore, the
unperturbed Green’s function G.0/ at the Fermi level for the T-junction is exactly
zero, which results in the sharp drop of the transmission function at the Fermi
level, as shown in Fig. 7.4. This is the molecular orbital rule available for the
understanding of electron transport. Application of the orbital rules for electron
transport in more complicated molecules can be found elsewhere [7, 12–26].

7.2.2 Three-Site (Triangular) Model

Figure 7.7 shows ƒ- and V-junctions adopted as typical three-site TB junctions,
in which only a single site is connected with the left/right electrode. Figure 7.8
shows the calculated transmission functions for the ƒ- and V-junctions. There are
two peaks of transmission in both junctions that correspond to the eigenlevels of
the triangular molecule shown in Fig. 7.9 (i.e., �1.0t and 0.5t). When the triangular
system is regarded as a planar �-molecule, the molecule has three �-electrons, and
the HOMO is the degenerate "2 or "3. In that sense, the mid-gap position must be
recognized at the degenerate orbital level (0.5t), but no pronounced feature appears
at this position, just a single transmission peak. On the other hand, transmission
functions between �1.0t and 0.5t show a clear difference between the ƒ- and V-
junctions; the ƒ-junction shows a parabolic transmission, whereas the V-junction
shows a sharp drop (i.e., anti-resonance) of transmission at �0.5t. The V-junction
has only one site for coupling with the electrodes (i.e., site 3); therefore, the same
explanation for the sharp drop in the T-junction also holds for the V-junction. On
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Fig. 7.7 1D tight-binding molecular junctions for the three-site triangular model. The sand-
wiched triangular molecule is composed of atoms 1, 2, and 3. �t in the electrode, �tc for
electrode-molecule hopping, and �ta and �tb for intramolecular hopping were adopted as the
nearest-neighbor hopping parameters. Atoms 1 and 2 are respectively connected to the left- and
right-electrodes in (a) the ƒ-junction, and only atom 3 is connected to both electrodes in (b) the
V-junction

the other hand, the orbital pairs of focus in the ƒ- junction are ("1, "2) and ("1, "3).
Considering the orbital phases of "1, "2, and "3, the pair of ("1, "2) is a constructive
type of interference, whereas the pair of ("1, "3) represents destructive interference.
However, according to the additive property in the Green’s function of Eq. 7.12,
a parabolic transmission from the constructive interference remains. In this sense,
observation of the sharp drop of transmission (anti-resonance) is more difficult than
that of the parabolic type of transmission.

Using the three-site triangular system, let us consider an orbital engineering
for electron transport. Figure 7.10a shows the triangular system with three-fold
rotational symmetry identical to the sandwiched molecule in Figs. 7.7, 7.8, and 7.9;
the system is renamed as ƒs. When the on-site parameters are changed depending
on the atoms (e.g., the on-site parameters of atoms 1 and 2 are changed to negative
and that of atom 3 to positive), the three-fold rotational symmetry is easily broken,
and thus, the orbital degeneracy for "2 and "3 is also broken, which leads to
three different energy levels, the ƒa-junction in Fig. 7.10b. In the ƒ-junction (i.e.,
the connecting atoms are 1 and 2), the orbital relationship between "1 and "2

corresponds to the constructive case, and that between "2 and "3 is also constructive.
Thus, the calculated transmission function shows parabolic transmission in both the
("1:"2) and ("2:"3) regions, as shown in Fig. 7.11. When the base of the Hamiltonian
matrix of the triangular system is �-AO, the system corresponds exactly to a
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Fig. 7.8 Calculated transmission probabilities for the three-site models, ƒ- and V-junctions. The
tight-binding parameters used in the calculations are tc D 0:1t, ta D tb D 0:5t, and "˛ D "0 D 0
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ε2(0.5t) ε3(0.5t)
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3

Fig. 7.9 Orbital phases of "1, "2, and "3 for the three-site triangular molecule. The black and white
symbols represent positive and negative coefficients, respectively. The dotted circle indicates the
zero orbital amplitude
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Fig. 7.10 Orbital schematics for orbital engineering in the triangular system. (a) ƒs junction: TB
parameters maintain the threefold rotational symmetry, and this junction is identical to the original
triangular junction in Fig. 7.9. (b) ƒa junction: the threefold rotational symmetry is broken by
changing the on-site parameters. (c) ƒx junction: the sign of the hopping parameter in ƒa junction
is changed from negative to positive (red). The dotted circles represent the zero orbital amplitudes

planar triangular molecule, and thus the intramolecular hopping parameter (i.e., �ta
and �tb) is a negative value because of the � – � orbital interactions. Thus, the
resultant transmission functions in the triangular molecular system have basically
the same features as the transmission functions of the ƒs- and ƒa-junctions shown
in Fig. 7.11.

However, when the Hamiltonian matrix is given as an MO base, the hopping
parameters between the neighboring sites (MOs) can be both positive and negative,
whereby an intrinsically different transmission appears, compared with those of the
ƒs- and ƒa-junctions. When the hopping parameter between sites 1 and 2 is changed
to a positive number, the orbital order for "1 and "2 in the ƒs- and ƒa-junctions can
be exchanged, as shown in Fig. 7.10c, ƒx-junction. As a result of the orbital order
exchange in the ƒx-junction, the orbital relationship between "2 and "3 becomes
destructive, and a clear drop of transmission appears in between the orbital "2 and
"3 (i.e., �0.58t and 1.2t), as shown in Fig. 7.11. In this way, orbital engineering
based on the orbital rule for electron transport is useful to predict the qualitative
properties of transport.



7 Orbital Rule for Electron Transport of Molecular Junctions 179

10-4

10-5

10-6

10-7

10-8

10-9

10-10

10-11

10-12

10-3

0.01

0.1

1

-2.0 -1.0 0 1.0 2.0

Λs-junction
Λa-junction
Λx-junction

Fig. 7.11 Calculated transmission probabilities for the ƒs, ƒa, and ƒx junctions. The tight-
binding parameters used in the calculations are given in Fig. 7.10

7.2.3 Orbital Rule from Experimental Observations

Now that the relationship between orbitals and transmission functions from a
theoretical perspective is explained, the next concern is the experimental validation
of the orbital rule. In the experimental observation of electron transport in molecular
junctions, sulfur atoms are typically introduced as an alligator clip with gold
electrodes because Au-S bonding is sufficiently strong (strong coupling) to trap a
single molecule between electrodes; dithiolate molecules are frequently adopted
to make single molecular junctions. Therefore, whether the orbital rule using the
simplest TB model can be applicable to such realistic Au-dithiole-Au junctions
must be discussed first. As for this point, basic analysis and more sophisticated
calculations based on density functional theory (DFT) for electron transport have
been successful for validation of the orbital rules [25]. In addition, analysis of the
renormalization term D in a strong coupling case, as shown in Fig. 7.5, supports the
applicability of the orbital rule derived in a weak coupling case.

Let’s move on to the experimental observations related to the orbital rule. The
direct observation of the transmission function requires a more careful handling
of junctions than in current measurements; therefore, the electrical current would
be an easier quantity available for such validation. In fact, validation of the orbital
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rule was performed based on the observed current first, and validation using the
observed transmission (i.e., derivative conductance) was then accomplished. The
first experimental validation was conducted by Taniguchi and co-workers [27],
in which naphthalenedithiole (ND) molecules were adopted in current measure-
ments. In the experimental work, four ND molecules, shown in Fig. 7.12a, were
synthesized, and the tunneling current of the junctions using gold electrodes was
calculated and measured. According to the orbital phases of the ND molecules
(Fig. 7.12a), four molecules appear to have the constructive pattern of MOs at first
inspection; however, 2,7-ND is the exception because only 2,7-ND has two singly-
occupied MOs (SOMOs), i.e., a case of degenerate frontier MOs. The two SOMO
can be transformed into another two pairs of MOs by unitary transformation, and
the resultant MOs can be perfectly localized frontier MOs, left-edge localized MO
and right-edge localized MO. Orbital rule I for electron transport tells us that non-
zero orbital amplitudes at the connecting atoms are required in frontier orbitals.
Therefore, the zero amplitudes at the connecting atoms cannot be used for transport,
and 2,7-ND is an undesirable molecule in terms of the orbital amplitudes, which
results in extremely low transmission (Fig. 7.12b). The details of the orbital rule for
the degenerate case, which is not addressed in the chapter, has been described in a
recent work using a benzene molecular junction [11]. Figure 7.12c shows the clear
correspondence with the theoretical predictions based on the orbital rule.

After the experiment using ND molecules, Guédon and co-workers accomplished
more direct observations of constructive/destructive interference [28] using the
anthraquinone molecular unit shown in Fig. 7.13. According to their explanation,
the anthraquinone molecular unit can be regarded as a three-site model, in which the
interorbital interactions correspond to the ƒx triangular system shown in Fig. 7.10c.2

Therefore, destructive interference is expected to appear in the molecular junction,
and a sharp drop of the transmission function at the Fermi level was actually
observed. In this way, the validity of the orbital rule was successfully confirmed
from indirect/direct measurements of the transmission probabilities in molecular
junctions.

7.2.4 Spin-Dependent Transport in Molecular Spin Junctions

In this section, we discuss the applicability of the orbital rule for spin-dependent
transport. When a sandwiched molecule has a localized spin and the molecular-
spin junction shows a spin-dependent transport without spin-flip processes, the
orbital rule introduced in the previous part is straightforwardly applicable for the

2According to their three-site model, the hopping parameters between sites 1 and 3 (2 and 3)
are also positive, whereas ƒx-junction is negative for these. However, it was confirmed that the
intrinsic property (anti-resonance) in the ƒx-junction was not sensitive to the sign of the 1–3 and
2–3 hopping parameters. The key parameter for the anti-resonance is the sign for hopping between
sites 1 and 2 because the key factor is the orbital exchange between "1 and "2 from ƒa to ƒx
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Fig. 7.12 (a) Naphthalene dithiolate (ND) molecules, (b) calculated transmission functions of the
ND molecules, and (c) measured current reported by Taniguchi and co-workers (Reprinted with
permission from Ref. [27]. Copyright 2011 American Chemical Society)
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Fig. 7.13 Anthraquinone molecular unit showing an anti-resonance transmission of the Fermi
level, and the measured transmission function (i.e., derivative conductance) by Guédon and co-
workers (Reprinted with permission from Ref. [28]. Copyright 2012 Nature Publishing Group)

J

-tc-tc -t-t-t-t-t-t

S

Fig. 7.14 Tight-binding 1D model including a localized electron spin. The gray atom (or
molecule) indexed with s is coupled to electrodes and to a localized spin (red) through the spin-spin
exchange coupling, J. The nearest-neighbor hopping integrals are represented by t and tc

spin-dependent transport because the matrix elements for each spin can be written
independently. Thus, we can discuss the transmission properties in both spin cases
(e.g., up- or down-spin) separately. However, when spin-flip processes are allowed
by the spin exchange coupling between a conduction electron and localized spin,
the matrix elements are not divided into submatrices in terms of up- or down-spin.
For example, the 1D system shown in Fig. 7.14 corresponds to such a spin system,
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and the Hamiltonian matrix is written as

Hspin D

0
BBBBBBBBBBBBBBBBBBBB@

s�2# s�1" s�1# s"+ s#* sC1" sC1# sC2"

s�2# "0 0 �t

s�1" 0 "0 0 �tc

s�1# �t 0 "0 0 �tc

s"+ �tc 0 �J
4

J
2

�tc

s#* �tc J
2

�J
4

0 �tc

sC1" �tc 0 "0 0 �t

sC1# �tc 0 "0 0

sC2" �t 0 "0

1
CCCCCCCCCCCCCCCCCCCCA

;

(7.17)

where " and # are the spin directions of conduction electrons and * and + are
the spin directions of the localized spin (red arrow in Fig. 7.14). The spin exchange
coupling J, between the conduction and localized electron spins, was taken into
account through the s-d tight-binding Hamiltonian in Eq. 7.17. In this sense, the
spin-junction is a mimic of an aromatic molecule including a d-metal center, such
as the metal-phthalocyanine molecular junction with gold chains fabricated by
Nazin and co-workers (see Fig. 7.15) [29]. The presence of the spin-spin coupling
term J=2 with the matrix elements (s"+, s#*) and (s#*, s"+) of Hspin means
that the incoming up-spin electron can be transmitted/reflected as up- or down-
spin; the same situation is also observed for the incoming down-spin. Thus, the
Hamiltonian Hspin cannot be divided into spin-dependent Hamiltonians. In this case,
a straightforward method for the transport calculation is a wave-packet propagation;
the simulation is useful to calculate the transport processes including spin-flip, and
multiple spin-flip processes can also occur at the spin site s, which corresponds to
incoherent transport. Although the wave-packet propagation method is a very useful
method, the calculation for the transmission curves from wave-packet dynamics
requires numerical propagations of the wave-packet for each energy level, and thus
it could be time consuming, depending on the system size and the required energy
width and resolution. Therefore, if the Green’s function method is also applicable
for the present spin-flip case, then it would be better to use it.

7.2.4.1 Coherent Approach for the Spin-Flip Process

For the Green’s function approach, the first step is a division of the entire process
into coherent and incoherent processes because the transport process including spin-
flip is a mixture of coherent and incoherent processes. Let us consider a simple
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Fig. 7.15 Scanning tunneling microscopy (STM) image of a gold-Cu phthalocyanine-gold junc-
tion on a NiAl substrate taken by Nazin, Qiu, and Ho (Reprinted with permission from Ref. [29].
Copyright 2003 AAAS)

case, in which the incoming electron is initially spin polarized as up-spin. Under
this condition, there are two coherent processes:

[Spin-Flip case:] � � � "s�2!"s�1!"s!#s!#sC1!#sC2 � � �
[No Flip case:] � � � "s�2!"s�1!"s!"sC1!"sC2 � � � .
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The corresponding submatrices for the spin-flip (SF) and no-flip (NF) processes
are respectively given as

H.SF/

s"�# D

0
BBBBBBBBBBBBBB@

� � � s�2" s�1" s"+ s#* sC1# sC2# � � �
:::

: : :
: : :

s�2"
: : : "0 �t

s�1" �t "0 �tc
s"+ �tc

�J
4

J
2

0

s#* J
2

�J
4

�tc
sC1# 0 �tc "0 �t

sC2# �t "0

: : :

:::
: : :

: : :

1
CCCCCCCCCCCCCCA

;

(7.18)
and

H.NF/

s"�" D

0
BBBBBBBBBBBBBB@

� � � s�2" s�1" s"+ s#* sC1" sC2" � � �
:::

: : :
: : :

s�2"
: : : "0 �t

s�1" �t "0 �tc
s"+ �tc �J

4
J
2

�tc
s#* J

2
�J
4

0

sC1" �tc 0 "0 �t

sC2" �t "0

: : :

:::
: : :

: : :

1
CCCCCCCCCCCCCCA

:

(7.19)

These matrices clearly have the same matrix form already introduced in the two-
site TB model, L-, and T-junctions. Replacement of the tight-binding parameters "˛

in Eqs. 7.7 and 7.8 with �J=4 and �tm in Eqs. 7.7 and 7.8 with J=2 leads to the
matrices H.SF/

s"�# and H.NF/

s"�" being easily determined as exactly equal to HL and HT,
respectively. Therefore, the coherent spin-flip process corresponds to constructive
transport, and the coherent no-flip process corresponds to destructive transport. We
can understand the validity of the consideration in another point of view as follows.
As for the coherent no-flip process, the Hamiltonian matrix can be expressed in
a spin-dependent form because spin-exchange does not occur, and the junction
structure in Fig. 7.14 is the same as that of the T-junction where a single atom is
connected to both electrodes. Therefore, destructive transport must appear in the
no-flip transport of the junction in Fig. 7.14.

Figure 7.16 shows the calculated transmission probabilities for the "-to-" and
"-to-# processes using the matrices of Eqs. 7.18 and 7.19. The eigenlevels of the
spin junction system are �0.15t singlet state, and 0.05t triplet state (0.2t of J
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10-4

10-3

0.01

0.1

1
Coherent: up-to-up

Incoherent: up-to-up
Coherent: up-to-down

Incoherent: up-to-down

Fig. 7.16 Calculated transmission probabilities for the "-to-" and "-to-# processes with the
coherent two-probes Green’s function and incoherent four-probes Green’s function approaches.
The tight-binding parameters adopted in the calculations are 0:1t of tc and 0:2t of J

was used in Fig. 7.16); therefore, two transmission peaks appear at the positions
in both processes. As expected in the matrix forms, the spin-flip process shows
a parabolic transmission between the two peaks, and the no-flip process shows a
clear drop at the mid-gap of the two eigenlevels. This confirms that the process-
dependent matrix division is a useful way to understand the intrinsic transport
properties (i.e., constructive or destructive). The next point to be considered
is the influence of the incoherent processes that are neglected in the previous
framework. In order to discuss this point, the differences between the results from
the Green’s function based only on coherent processes and wave-packet propagation
have to be recognized, and the relationship between the results from the wave-
packet method and Green’s function including incoherent processes has to be
discussed. These comparisons were made in the previous study [24], and excellent
correspondence between the Green’s function with incoherent processes and the
wave-packet method was confirmed. Therefore, in the next section, the Green’s
function including incoherent processes is introduced. The simulations for charge
transport using wave-packet dynamics can be found in applications for organic
molecular systems [30–33].



7 Orbital Rule for Electron Transport of Molecular Junctions 187

7.2.4.2 Incoherent Approach for the Spin-Flip Process

The coherent approximation made in the previous part includes a clear shortcoming
in that the division of the entire process into "-to-# and "-to-" processes eliminates
the interference between the two processes. Thus, the missing processes in the
coherent "-to-# are i) the escape (transmission) of an electron with up-spin at site
s to the right-electrode s C 1 with the same spin, and ii) the reflection back effect
of this process into the "-to-" process. This is related to the hopping integrals �tc
at (s"+, sC1") and (sC1", s"+) of Hspin, which are neglected in H.SF/

s"�#. To take
the missing effects into account in the Green’s function approach, an excess probe
can be introduced using an appropriate self-energy [8]. The incoherent effect to be
included is the interaction �tc between site s and the right electrode site sC1 with
the same spin; therefore, the 2 � 2 self-energy matrix can be written as

.†s
s"+/i;j D t2c gelecıijıi1: (7.20)

Similarly, the missing processes in the coherent "-to-" are iii) the escape (transmis-
sion) of an electron with down-spin at site s to the right-electrode s C 1 with the
same down-spin, and iv) the reflection back effect of this process into the "-to-#
process. This is related to the hopping integrals �tc at (s#*, sC1#) and (sC1#, s#*)

of Hspin, which are neglected in H.NF/

s"�". The related 2 � 2 self-energy matrix is3:

.†s
s#*/i;j D t2c gelecıijıi2: (7.21)

Therefore, the Green’s function including the incoherent processes (i.e., the four-
probe Green’s function) can be written as

GA=R
4 .E/ D ŒE1 � H.s1/ � †

A=R
L � †

A=R
R � †

s;A=R
s"+ � †

s;A=R
s#* ��1; (7.22)

where H.s1/ is the 2�2 matrix at site s (s"+ and s#*) in Eqs. 7.18 and 7.19.
The solid blue and red lines in Fig. 7.16 are the calculated transmission functions

using the four-probe Green’s function, which show almost perfect correspondence
with the results obtained with the WP dynamics (not shown). The peak height at the
resonance position (i.e., eigenlevels) is slightly decreased as a result of the additional
escape processes (incoherent processes). In addition, the anti-resonance observed in
the coherent no-flip process is slightly weakened, although it is still recognizable.
Thus, the coherent approximation is confirmed as reasonable to capture the transport
properties qualitatively, and a quantitative description for the incoherent processes
is possible using the Green’s function including additional appropriate self-energies.

3The explanations for the neglected incoherent processes given in this part are originally from Ref.
[24]. However, there is a typographical error in Eq. (21) of Ref. [24]; the equations shown here in
this section are correct.



188 T. Tada

7.3 Summary

In this chapter, the orbital rule (or HOMO-LUMO rule) to achieve a qualitative
understanding of electron transport in molecular junctions was introduced on the
basis of the Green’s function method. There is no limitation in the orbital basis used
for the orbital rule; AOs, MOs, and spin-spin direct product bases are available
for an understanding of the constructive and destructive interference effects in
electron transport. In the AO picture, the two-site tight-binding model was adopted
to determine the key factor in constructive and destructive interference. This model
is a minimum model because only the HOMO and LUMO appear as the orbital
levels of the two-site model. Many examples of the orbital rule applied to other
large molecules (i.e., multi-orbital systems) can be found in the literature; for
example, nanographite with armchair and zigzag edges [7, 12, 14], DNA molecules
[13], aromatic dithiolate molecules [16], metal-phthalocyanine molecules [17],
photochromic molecules [18], and �-stacked molecules [11, 34–37]. In a recent
work, a concept for a conductance decay-free junction was derived from the orbital
rule. In the molecular orbital picture, the triangular three-site model was used to
explain the observed destructive interference of an anthraquinone molecular unit in
a recent experiment. The key is the orbital-phase exchange that originates from the
sign-change of the hopping parameters between neighboring sites.

In the final part of this chapter, the spin-flip transport in a simple 1D tight-
binding chain including a localized spin was discussed using the Green’s function
with and without incoherent spin-flip processes on the basis of the spin-spin direct
product base. The spin exchange coupling J, between the conduction and localized
electron spins, was taken into account through the s-d tight-binding Hamiltonian.
In this sense, the spin-junction is a mimic of an aromatic molecule that includes a
d-metal center. The transmission probabilities that depend on the spin directions at
the drain electrode were analyzed; the "-to-" process for the incoming up-spin is
transmitted as the outgoing up-spin, and the "-to-# process for the incoming up-
spin is transmitted as the outgoing down-spin. The Green’s function calculations
show that the transmission probabilities for both processes have large peaks at
the eigenlevels of the spin singlet (�3J=4) and triplet (J=4) states and that the
transmission probabilities exhibit different properties, depending on the spin-flip
processes at the mid-gap (anti-resonance level) of the two eigenlevels; the "-to-
" process shows an abrupt drop, whereas the "-to-# process shows a parabolic
transmission. The similarity of the matrix forms for "-to-# transport and a two-
site constructive junction (i.e., L-junction) was easily confirmed with reference to
the orbital rule for coherent electron transport in a molecular junction; the similarity
between "-to-" transport and a two-site destructive junction (i.e., T-junction) was
also recognized.

It should be emphasized that the orbital rule is a qualitative rule for the
understanding of transport properties; however, the concepts derived from the rule
will lead to a wide range of applications for molecular- and nanojunctions.
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