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Abstract Biodiesel produced from renewable feedstocks represents a sustainable
source of energy and will therefore play a significant role in providing the energy
requirements for transportation in the near future. Biodiesel offers many benefits
over conventional petroleum fuels, including the wide regional distribution of
biomass feedstocks, high greenhouse gas reduction potential, biodegradability and a
significant contribution to sustainability. Chemically, all biodiesels are fatty acid
methyl esters (FAME), produced from raw vegetable oil and animal fat. However,
clear differences in chemical structure are apparent when comparing one feedstock
to the next in terms of chain length, degree of unsaturation and number of double
bonds—all of which determine the fuel properties and quality of biodiesel as a
diesel engine fuel. In this chapter, biodiesel feedstocks, production processes,
chemical compositions, standards, physicochemical properties and in-use perfor-
mance are discussed. A correlation study between the properties of biodiesel and its
chemical composition is analysed using principal component analysis (PCA). The
necessary data regarding the chemical composition and fuel properties of biodiesel
were obtained from more than 100 papers published in recognised international
journals. The PCA indicated that individual biodiesel properties have a complex
correlation with the parameters of chemical composition. The average chain length
and average number of double bonds are the most influential parameters that affect
all biodiesel properties. The results of this analysis are presented graphically and
discussed in this chapter. Therefore, this chapter will provide the reader a clearer
understanding of the physicochemical properties of biodiesel.
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1 Introduction

Globally, the transport sector occupies third place when total energy consumption
and greenhouse gas emissions are considered (following the trade and building
sectors). It is also the fastest growing sector. By 2030, the energy consumption and,
therefore, the CO2 emissions of this sector are predicted to be eight percent higher
than current levels [86]. In addition, the energy supply depends heavily on
non-renewable petroleum fuel (for production of gasoline and diesel) and currently
consumes 30% of the world’s petroleum oil, increasing to 60% by 2030 [85].
Furthermore, the supply of petroleum oil is geographically restricted, and the era of
low-cost and secure oil is almost over. These facts have forced automobile
researchers to look for alternative carbon-neutral transport fuels that promise a
harmonious correlation with sustainable development, energy conversion, energy
potency and environmental preservation [59]. However, such an alternative fuel for
the transportation sector is yet to be developed. Moreover, cars with no greenhouse
gas emissions (electric, solar, hydrogen, etc.) are far away from changing into
mainstream vehicles. Therefore, development of a sustainable long-run alternative
fuel has become essential, and biodiesel is receiving significant attention and is
coming to the forefront as a sustainable alternative to standard fossil fuels [85].

Biodiesel is liquid fuel created from various oilseed crops and animal fat.
Biodiesels offer many socio-economic advantages over petroleum-based fuels in
automobile engine applications, in particular the fact that they are renewable,
biodegradable, non-toxic and eco-friendly [61]. However, the majority of current
vehicle engines are not optimised for the utilisation of biodiesel. Therefore, these
engines are unlikely to be efficient when using biodiesel and show several technical
issues such as carbon deposition, corrosion, high lubricating oil contamination,
poor low-temperature performance and heavy gum and wax formation when
compared to petroleum diesel [50]. The distinctions between petroleum diesel and
biodiesel could be attributed to the variation of physical properties and chemical
compositions. Petroleum diesel consists of hundreds of compounds boiling at
completely different temperatures (determined by the petroleum refining method
and crude oil raw material), whereas biodiesel contains compounds that are pri-
marily eight to twenty-four carbon chain length alkyl esters (determined entirely by
the feedstock) [57, 78]. Besides the main fatty ester components, the minor con-
stituents of biodiesel embrace intermediary glycerides and free fatty acids resulting
from the transesterification reaction, methanol, free fatty acids, etc. As engines are
manufactured for petroleum diesel, original equipment makers (OEMs) and
industry associations have shown a cautious response in their acceptance of bio-
diesel, especially those from new sources and the concept of using biodiesel blends
as fuel [78].
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2 Biodiesel

Fatty acid methyl or ethyl esters, commonly referred to as “biodiesel”, are a liquid
fuel alternative to diesel. They are made of agricultural products, forest organic
matter and animal fat feedstocks. Biodiesel is the only currently available alter-
native transport fuel made from oilseed crops and animal fat which can be used
directly in conventional, unmodified diesel engines. Biodiesel is safer to handle,
store and transport compared to petroleum diesel because it is biodegradable,
non-toxic and has a higher flashpoint than diesel [61]. One of the major advantages
of biodiesel is that it has a potential to reduce dependency on imported petroleum
through the use of domestic feedstocks for production [51].

In fuel property terms, biodiesel has a higher cetane rating than petroleum diesel,
which improves engine performance. Also, it has better lubricant properties than
petroleum diesel, which can extend engine life [50]. The use of biodiesel reduces
particulate emissions by up to 75% when compared with conventional diesel fuel.
Biodiesel also substantially reduces unburned hydrocarbons, carbon monoxides and
particulate matters, including an elimination of sulphur dioxide in exhaust emis-
sions. The exhaust emissions of particulate matter from biodiesel have been found
to be 30% lower than overall particulate matter emissions from fossil diesel. The
exhaust emissions of total hydrocarbons are up to 93% lower for biodiesel than for
diesel fuel [105].

As a fuel, there are currently several disadvantages to using biodiesel in diesel
engine applications. These mainly result from the differences in chemical compo-
sition between petroleum diesel and biodiesel. These major disadvantages are lower
energy density, higher viscosity, higher copper strip corrosion and issues with the
degradation of fuel in storage for prolonged periods. Biodiesel also has a higher
cold-filter plugging point temperature than fossil diesel, which means it will
crystallise into a gel at lower temperatures when used in its pure form. Biodiesel can
also cause dilution of engine lubricant oil, requiring more frequent oil changes than
when using petroleum diesel fuels in conventional diesel engines. This increase in
dilution and polymerisation of engine sump oil is due to the higher viscosity at
lower temperatures of biodiesel when compared to petroleum diesel.

3 Biodiesel Feedstock

Feedstocks for biodiesel production can be classified into four groups. These are
(1) virgin vegetable oil feedstocks such as rapeseed, soya bean, sunflower and palm
oil; (2) waste vegetable oils; (3) animal fats including beef tallow, lard and yellow
grease; and (4) non-edible oils such as jatropha, neem oil and castor oil. The
prevalence of these feedstocks varies around the world (Fig. 1). The regional
availability of feedstocks for biodiesel production depends greatly on climate, soil
conditions and options for alternate land use [83]. Consequently, different regions
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are focussing their efforts on different feedstocks. As an example, the widespread
use of soya beans in the USA as a food product has led to the emergence of soya
bean biodiesel in that country. In Europe, rapeseed is the most common source of
biodiesel production. In India and south-east Asia, the jatropha tree is used in
biodiesel production, and in Malaysia and Indonesia, palm oil is used as a signif-
icant biodiesel source.

4 Biodiesel Production

More than 100 years ago, Rudolf Diesel (1858–1913) demonstrated the operation
of a diesel engine using vegetable oil as a fuel, so the potential of using these
feedstocks has been long recognised. However, vegetable oils are extremely vis-
cous, with viscosity ranging from 10 to 17 times higher than that of petroleum
diesel [57]. This makes vegetable oil unsuitable to use as a direct fuel in the modern
diesel engine. As a consequence, researchers and scientists have developed various
methods to reduce the viscosity of bio-oils to make them suitable for diesel engine
use. Some of these methods include dilution with other fuels, esterification,
micro-emulsification, pyrolysis and catalytic cracking. Of these techniques, esteri-
fication is the most promising and widely used solution due to its high conversion
efficiency, simplicity, low conversion cost and the fuel qualities of the product.

Fig. 1 Biodiesel feedstocks around the world [55]
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Transesterification of bio-oils with alcohols to produce esters is a widely used
technique for commercial biodiesel production [83].

Transesterification is a chemical reaction in which oils (triglycerides) are con-
verted into esters as shown in Fig. 2. Triglycerides react with alcohols (e.g.
methanol and ethanol) under acid- or base-catalysed conditions, producing fatty
acid alkyl esters and glycerol. A catalyst is used to improve the reaction rate and
yield. Because the transesterification reaction is reversible, excess alcohol is used to
shift the equilibrium to favour production of the ester. The yield of biodiesel in
transesterification is affected by several process parameters. These include the
reaction temperature, the molar ratio of alcohol to oil, the type and concentration of
catalyst and the reaction time [58]. After the reaction is complete, glycerol is
removed as a by-product. The biodiesel produced may be denominated by the
feedstock used and the ester formed including fatty acid methyl ester (FAME), fatty
acid ethyl ester (FAEE), soya bean methyl ester (SME) and rapeseed methyl ester
(RME). The total ester content in biodiesel is the measure of the completeness of
the transesterification reaction [106].

Alkali-catalysed transesterification cannot be directly used to produce
high-quality biodiesel from feedstocks containing high levels of free fatty acids
(FFAs). This is because FFAs react with the catalyst to form soap (Fig. 3), resulting
in emulsification and separation problems. To overcome this problem, a
pre-esterification process may be used to reduce the content of FFAs in the feed-
stock. A typical pre-esterification process uses homogeneous acid catalysts, such as
sulphuric acid, phosphorous acid combined with sulphonic acid, or heterogenous
“solid-acid” catalysts, to esterify the free fatty acids as shown in Fig. 4.

Fig. 2 Transesterification reaction [55]
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5 Biodiesel Standards

Quality standards are crucial for the commercial use of any fuel product. They serve
as guidelines for production, assure customers that they are buying high-quality
fuels and provide authorities with approved tools for a common approach to
transport, storage and handling. Modern diesel engines using common rail fuel
injection systems are more sensitive to fuel quality. Therefore, engine and auto-
motive manufacturers rely on fuel standards in determining consumer warranties.
However, the chemical compositions of biodiesel and petroleum diesel are very
different, and these differences result in varying physicochemical properties. To
improve the viability of biodiesel for use as a commercial fuel for direct replace-
ment of petroleum diesel, the properties of biodiesel need to reflect a functional
equivalence with diesel.

Biodiesel can be used as a pure fuel (B100) or blended with petroleum diesel in
varying concentrations. For B100, the most internationally recognised standards are
EN14214 (Europe) and ASTM D-6751 (USA). Both standards are similar in
content, with only minor differences in some parameters. Many other countries
have defined their own standards, which are frequently derived from either
EN14214 or ASTM D-6751 [51]. As a part of the Fuel Quality Standards Act 2000,

Fig. 3 Soap formation during biodiesel production [55]

Fig. 4 Acid pre-esterification [55]
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the Australian government released a biodiesel fuel standard, “Fuel Standard
(Biodiesel) Determination 2003”. A summary of the major fuel quality parameters
in these standards is detailed in Table 1.

6 Data Collection

Data were collected from more than 150 papers, mostly published in the last
decade, and which contain experimental results of the chemical composition of
biodiesel along with corresponding fuel properties. During data collection, special
care was taken to ensure the quality of the data and to eliminate duplication. Data
have been taken only from literature in which the experiments were conducted
following recognised international standards. Some extreme data have been
excluded from the database due to unexpected results contained therein. Data were
also eliminated from the database if it was found to differ greatly to fuel properties
in the primary data collection results. Furthermore, the experimental results for
density and kinematic viscosity of biodiesel are highly dependent on temperature.
Although 15 and 40 °C temperatures are recommended for density and kinematic
viscosity respectively, some researchers did not mention the test temperature.
Therefore, those data have also been excluded from the database. Since the prop-
erties of particular biodiesels can be varied depending on the type of alcohol
(methyl, ethyl, etc.) used in the production process, this study only considers the
methyl esters for inclusion in the database. The list of papers including feedstock
use and the country of the authors is given in Table 2.

Table 1 International standards of biodiesel [18, 126]

Properties Units USA ASTM D-6751 Europe EN 14214 Australia

Viscosity, 40 °C mm2/s 1.9–6.0 3.5–5.0 3.5–5.0

Density gm/m3 n/a 0.86–0.90 0.86–
0.90

Cetane number – 47 min 51 min 51 min

Flashpoint °C 130 min 120 min 120 min

Cloud point °C Report Report Report

Acid number mg KOH/g 0.80 max 0.5 max 0.8 max

Free glycerine wt% 0.02 max 0.02 max 0.02 max

Total glycerine wt% 0.24 max 0.25 max 0.25 max

Iodine number – – 120 max n/a

Oxidation
stability

h – 6 min n/a

Monoglyceride Mass (%) – 0.8 max n/a

Diglyceride Mass (%) – 0.2 max n/a

Triglyceride Mass (%) – 0.2 max n/a
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Table 2 Biodiesel datasets investigated in this study

Feedstock References

Algae [37, 54]

Almond [10, 46]

Babassu [12, 89, 94, 114, 118]

Beauty leaf [56]

Camelina [27, 44, 91, 118, 129, 137]

Canola [2, 21–23, 31, 37, 40, 49, 52, 69, 73, 88, 118]

Coconut [6, 21, 40, 43, 75, 92, 114, 118, 131]

Coffee [32, 133]

Corn [29, 30, 81, 114, 123]

Cottonseeds [2, 35, 89, 111, 115, 132]

Fish oil [13, 82, 113]

Grape [29, 109]

Hazelnut [35, 73, 90]

Hepar [118]

Jatropha [8, 22–24, 26, 60, 76, 118, 120, 125, 133, 135]

Lard [15, 36, 69, 80, 138]

Linseed [41, 48, 79, 101, 103, 114, 117]

Mahua [34, 45, 47, 66]

Mustard [11, 62]

Neem [8, 103, 104, 119, 128]

Olive [21, 29, 38, 65, 109]

Palm [12, 14, 21, 28, 29, 37, 63, 64, 67, 74, 84, 88, 93, 97, 99, 109, 122, 134]

Peanut [12, 29, 31, 68, 81, 90, 99, 109, 130]

Poppyseed [35]

Rapeseed [21, 35, 44, 67, 79, 81, 97, 99, 109, 110, 116, 122, 133, 136]

Rice bran [127]

Rubber seed [53, 107]

Safflower [110]

Sesame [1, 16]

Soya bean [2–5, 9, 12, 17, 19–21, 31, 40, 43, 48, 69, 81, 87–89, 97–99, 102, 109, 114,
120, 121, 124, 132, 136, 138]

Soap nut [22, 23]

Sunflower [7, 12, 29, 35, 41, 65, 81, 88, 99, 109, 112, 115, 120, 123]

Tallow [3, 7, 12, 29, 35, 65, 79, 88, 95, 99, 108, 112]

Terebinth [96]

Terminalia [39]

Turnip [124]

Walnut [90]

Waste
cooking oil

[3, 21, 25, 33, 42, 48, 73, 77, 81, 82, 100]

Yellow grease [19, 69]

Pure methyl
ester

[70–72, 89, 114]
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7 Chemical Composition of Biodiesel

Petroleum diesel fuels are saturated straight-chain hydrocarbons with carbon chain
lengths of 12–18, whereas vegetable oils and animal fats consist of 90–98%
triglycerides, small amounts of monoglycerides and free fatty acids. The fatty acid
compositions of triglycerides differ in chain length, the degree of unsaturation and
the presence of other functional groups. The fatty acid compositions are
feedstock-dependent and are affected by factors such as climatic conditions, soil
type, plant health and plant maturity upon harvest. Using the carboxyl reference
system, fatty acids are designated by two numbers: the first number denotes the
total number of carbon atoms in the fatty acid, and the second is the number of
double bonds indicating the degree of unsaturation. For example, 18:1 designates
oleic acid which has 18 carbon atoms and one C=C double bond. The most
common fatty acids found in biodiesels and their structures are listed in Table 3.

The biodiesels are mainly comprised of the methyl esters of various fatty acids.
The most common components found in biodiesel samples are mono-unsaturated
oleic acid (C18:1) and di-unsaturated linoleic acid (C18:2) methyl esters. These two
fatty acids (C18:1 and C18:2) were found in almost every biodiesel sample with an
average weight percentage of 34.9 and 24.7, respectively, as shown in Fig. 5. Also,
a significant amount of unsaturated erucic acid (22:1) and oleic acid (18:1) methyl
ester were found in biodiesels. Furthermore, the oleic (C18:1) and linoleic (C18:2)
are not only most commonly found in the biodiesel samples, but also showed
highest in average weight percentage in the biodiesel samples, at approximately 40
and 32%, respectively. By contrast, an average of 7.5 and 6.5% of linolenic acid
(C18:3) and stearic (18:0) acids methyl esters were present in the samples. Apart
from fatty acid methyl esters, other chemical compositions usually found in the
biodiesel are mainly unreacted monoglycerides and free fatty acids represented as
the acid value.

Table 3 Chemical structure of common fatty acids in biodiesels

Fatty acid Chemical structure

1. Caprylic (8:0) CH3(CH2)6COOH

2. Capric (10:0) CH3(CH2)8COOH

3. Lauric (12:0) CH3(CH2)10COOH

4. Myristic (14:0) CH3(CH2)12COOH

5. Palmitic (16:0) CH3(CH2)14COOH

6. Palmitoileic (16:1) CH3(CH2)6 CH=CH (CH2)6 COOH

7 Stearic (18:0) CH3(CH2)16COOH

8. Oleic (18:1) CH3(CH2)7 CH=CH (CH2)7 COOH

9. Linoleic (18:2) CH3(CH2)4 CH=CHCH2CH=CH (CH2)7 COOH

10. Linolenic (18:3) CH3(CH2)2CH=CHCH2CH=CHCH2CH=CH(CH2)7 COOH

11. Gondonic (20:1) CH3(CH2)7 CH=CH (CH2)9 COOH

12. Erucic (22:1) CH3(CH2)9 CH=CH (CH2)9 COOH
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8 Fuel Properties

The quality of biodiesel and its performance as an internal combustion engine
application is largely determined by the fuel properties. One important liquid fuel
property is kinematic viscosity (KV), which indicates the resistance or flow of
liquid fuel. It plays a dominant role in the fuel spray, fuel–air mixture formation and
the combustion process in diesel engine application. In a diesel engine, the liquid
fuel is sprayed into compressed air and atomised into small droplets near the nozzle
exit. In the engine combustion chamber, the fuel forms a cone-shaped spray at the
nozzle exit which is affected by the viscosity. In addition to that viscosity also
affects the fuel atomisation quality, penetration and size of the fuel droplet [18].
Higher viscosities result in higher drag in the fuel line and injection pump, higher
engine deposits, higher fuel pump duties and increased wear in the fuel pump
elements and injectors. Moreover, the mean diameter of the fuel droplets from the
injector and their penetration increases with an increase in fuel viscosity. Higher
pressure in the fuel line can cause early injection, moving the combustion of the
fuel closer to top dead centre, thus increasing the maximum pressure and temper-
ature in the combustion chamber [80]. Studies show that in a light-duty diesel
engine, the CO and UHC could increase by 0.02% (by volume) and 1 ppm (by
volume), respectively, with 1 cSt. increase of fuel viscosity [72]. On the other hand,
low fuel viscosity is undesirable because it does not provide sufficient lubrication
for the precision fit of fuel injection pumps, resulting in leakage or increased wear
[50]. Therefore, all biodiesel standards define the upper limit and lower limit of
viscosity. Heating value is another fuel property indicating the energy content in the
fuel, along with biodiesel density. It determines the amount of energy taken by the

Fig. 5 Average weight in percentages of fatty acid methyl esters found in the collected data
samples
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engine in certain volume. When injecting the fuel in a diesel engine, the fuel pumps
measure fuel on the basis of volume, not by mass. Therefore, the change in bio-
diesel density directly affects the engine output power and hence engine perfor-
mance. This property is also correlated with engine exhaust emissions, particularly
particulate matter (PM), nitrogen oxides (NOX) and carbon mono-oxides
(CO) [105]. This is because the higher density of biodiesel increases the diame-
ter of the fuel droplets in the combustion chamber, which consequently affects the
fuel atomisation, combustion process and exhaust emission formation. Another
significant fuel property that directly affects engine output power is the higher
heating value (HHV). It determines the suitability of biodiesel as an engine fuel, as
it indicates the energy content in the fuel. In general, biodiesels are approximately
10% less energy dense as compared with petroleum diesel, depending on the
oxygen content in the hydrocarbon molecules. Furthermore, of great concern when
considering biodiesels for engine fuel is oxidation stability (OS), which reflects
resistance to oxidation during long-term storage. Biodiesels from any sources
usually show very poor oxidation stability when compared with mineral diesel due
to their chemical composition. During the oxidation process, the quality of fuel
declines due to gum formation which remains in the biodiesel. This gum does not
combust completely, resulting in poor combustion, carbon deposits in the com-
bustion chamber and lubrication oil thickening. Therefore, high oxidation stability
is desirable for a good quality biodiesel.

The average fuel properties reported in the collected data were found to be
within the limits of European (EU), American (US) and Australian (AU) biodiesel
standards, except for oxidation stability (OS). The average OS was found to be
4.73 h, which is much lower than the minimum OS requirement (6 h minimum) of
EU and AU biodiesel standards. These results indicate that a vast number of the
investigated biodiesels were unlikely to fulfil EU biodiesel standards, and this may
be one of the major issues that restrict the widespread use of biodiesel in con-
ventional diesel engines. The biodiesels that showed poor OS and which were rich
in unsaturated FAME include soya bean, sunflower, safflower, corn, cottonseeds,
linseeds, jatropha and camelina. European and Australian biodiesel standards also
impose tight restrictions on kinematic viscosity (KV), limiting it to a minimum of
3.5 and a maximum of 5 cSt. However, the KV of biodiesels in the secondary data
ranged from 0.99 to 7.21 cSt, which means that many of them would be unlikely to
meet EU and AU biodiesel standards regarding KV. US biodiesel standards are
laxer regarding KV (1.9–6 cSt). However, they place tighter restrictions on other
biodiesel properties, which means that many biodiesels identified in the secondary
dataset would still be unlikely to meet US standards. Overall, most of the maximum
and minimum values for fuel properties were outside the range of biodiesel stan-
dards, demonstrating the significant level of variation in the data. This was not
unexpected because the data were collected from a large number of different bio-
diesels with a wide variety of chemical structures. Therefore, the collected sec-
ondary data were useful for conducting an in-depth correlation study between fuel
properties and the chemical composition of biodiesel (Table 4).
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9 Correlation of Chemical Composition and Fuel
Properties

The fuel properties of biodiesel are generally controlled by its chemical composi-
tion. Due to variations in the chemical structure in fatty acid methyl esters, the fuel
properties of biodiesel significantly differ from one another. Figure 6 shows the
effect of average chain length (ACL) on kinematic viscosity (KV), density, higher
heating value (HHV) and oxidation stability (OS). The ACL was correlated with all
the fuel properties investigated in this study. There was a very strong positive
correlation with KV, as shown in Fig. 4a. This is mainly due to the increase in
carbon content, as well as random intermolecular interaction in the FAME, which
consequently increased the KV. For the same reason, ACL was also found to have a
strong positive correlation with density and HHV. It is also interesting to found that
biodiesels with an ACL less than 14 were unlikely to meet the lower limit of both
US and EU standards. On the other hand, biodiesel with a very high ACL (over 19)
is more likely to exceed the upper limit of biodiesel standards regarding KV.

The average number of double bonds (ANDB) in the biodiesel (which indicates
the concentration of unsaturated fatty acid methyl esters) was found to be another
influential factor affecting most of the biodiesel properties investigated in this study.
Figure 7 shows the effect of ANDB on the kinematic viscosity (KV), density,
higher heating value (HHV) and oxidation stability (OS). Oxidation stability
(OS) may have a slight negative correlation with ACL, as shown in Fig. 4d.
However, this property has a very strong negative correlation with ANDB.
Figure 5d indicates that the OS of biodiesel decreased rapidly with an increase in
ANDB. This is because a higher number of double bonds in the fatty acid chain of
biodiesel make it much more susceptible to oxidation. ANDB also has a moderate

Table 4 Summary of data for biodiesel properties

Properties Biodiesel standard Max.a Min.a Ave.a

ASTM
D7651

EN
4214

Australian

Kinematic viscosity
(cSt.)

1.9–6 3.5–5 3.5–5 6 2.15 4.42

Density (kg/l) n/a 0.86–0.9 0.86–0.90 0.924 0.829 0.876

Higher heating value
(Mj/kg)

n/a n/a n/a 41.6 35.86 39.91

Oxidation stability (h) 3 min 6 min 6 min 11.4 0.2 4.73
aMax. = maximum value; Min. = minimum value; Ave. = average value
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positive correlation with density and HHV, but no correlation was found between
ANDB and KV, as shown in Fig. 5a.

The result of this analysis indicated that ACL and ANDB have certain effects on
the four biodiesel properties investigated in this study. However, with a close look
at Figs. 4 and 5, it can be seen that ACL and ANDB are the only parameters that
control all fuel properties of biodiesel, rather other parameters and their combined
effect may involve in determining the properties. Therefore, a multicriteria data
analysis is required to investigate the correlation of biodiesel’s properties with its
chemical composition, and this is investigated in the next section.

Fig. 6 Effect of ACL on biodiesel a kinematic viscosity (KV), b density, c higher heating value
(HHV) and d oxidation stability (OS)
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10 Principal Component Analysis

The findings of the correlation study reported in the previous section indicate a
complex relationship between biodiesel quality and its chemical composition.
A particular fuel property does not depend on a single chemical parameter; rather it
is influenced by multiple parameters and factors. Therefore, multivariate data
analysis is required to gain a detailed understanding of this relationship. Principal
component analysis (PCA) is one of the popular multivariate data analysis tech-
niques used by almost all scientific disciplines. PCA is used to analyse datasets with
highly intercorrelated dependent variables. It reduces the complexity and dimen-
sionality of the problem, thereby extracting the most important information and
analysing the structure of the observations and variables. PCA changes the input
variables into principal components (PCs) that are an independent and linear
combination of input variables. PCA also represents patterns in the observations
and variables by displaying them as points on a diagram. In this study, PCA was
conducted using Microsoft XLSTAT software to observe the influence of chemical
composition on individual fatty acid compositions. The variables used for the

Fig. 7 Effect of ANDB on biodiesel a kinematic viscosity (KV), b density, c higher heating value
(HHV) and d oxidation stability (OS)
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principal components were individual fatty acid methyl esters chain length ranging
from 8 to 22, while the interaction terms included average chain length (ACL),
average number of double bonds (ANDB) and weight percentages of oxygen (O2),
hydrogen (H), carbon (C), saturation (percentage of saturated fatty acid),
mono-unsaturated fraction (MUFA) and poly-unsaturated fraction (PUFA). The
variables also included the most commonly found impurities in biodiesel, namely
monoglyceride and free fatty acid contents regarding acid number (AN). In general,
variables which lie close to (±45°) an observation are correlated, those lying in
opposite directions (135°–225°) are anti-correlated, and those lying in an orthog-
onal direction have less or no influence. The direction and length of the variables
are indicative of their influence on the observation, with a short length indicative of
little influence. The results of four fuel properties are graphically shown in Figs. 8,
9, 10 and 11.

As discussed earlier, the results of principal component analysis as shown in
Fig. 8 also indicate a strong positive correlation between KV and ACL. Therefore,
fatty acid methyl esters (FAME) with a carbon chain length 18 or above increase
the KV, and the inverse is true for short chain fatty acids (<C16). Moreover, the
presence of unsaturated FAME also had a moderate positive influence on KV.
Among the unsaturated FAME, MUFA has more influence compared to PUFA on
KV. The presence of other parameters that increase the KV of biodiesel are
impurities and carbon content. On the other hand, an increase in the oxygen per-
centage reduces the KV of biodiesel. The influence of free fatty acid and hydrogen

Fig. 8 Principal component analysis and correlation of kinematic viscosity with chemical
composition of biodiesel
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Fig. 9 Principal component analysis and correlation of density with chemical composition of
biodiesel

Fig. 10 Principal component analysis and correlation of higher heating value with chemical
composition of biodiesel
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content on KV is insignificant. In contrast, the density of biodiesels is significantly
affected by ANDB, and PUFA is shown in Fig. 9. In the PCA plan, the line for
linolenic (C18:3) FAME lies very close to the density line which indicates a strong
positive relationship between them. The other parameter which strongly influences
the density of biodiesel is the percentage of hydrogen and AN with opposite cor-
relations. The presence of saturated FAME significantly reduces the HHV of bio-
diesel as shown in Fig. 10. This figure also shows that ACL and ANDB have a
positive correlation with HHV. Therefore, biodiesel with a high content of
long-chain unsaturated FAME always shows a higher HHV. But the opposite
correlation is evident in Fig. 11, where long-chain unsaturated FAME significantly
reduces the OS of the biodiesel. It can be argued that biodiesel with a higher HHV
may have less OS and vice versa.

11 Conclusion

In this chapter, a detailed investigation of key physicochemical properties of bio-
diesel has been carried out. During the last few decades, numerous types of bio-
diesel have been investigated. Formulated from a wide variety of sources,

Fig. 11 Principal component analysis and correlation of oxidation stability with chemical
composition of biodiesel
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biodiesels differ from one to another as regards fuel properties and chemical
composition. The aim of this chapter was to investigate the correlation between the
fuel properties of biodiesel and its chemical composition, based on data collected
from published literature. The fuel properties considered in this study were kine-
matic viscosity, density, higher heating value and oxidation stability. An investi-
gation was conducted using principal component analysis (PCA) data analysis tool.
A complex relationship was found between chemical composition and biodiesel
properties. PCA indicated that the fuel properties of biodiesels are determined by a
number of parameters and by the combination of different chemical compositions.
An average number of double bonds (ANDB) and an average chain length
(ACL) may well be the most influential parameters affecting most of the properties
of biodiesels. Parameters relating to biodiesel production and purification, such as
free fatty acids and glycerol content, also influence certain biodiesel properties
found in this study. Thus, the future challenge is to develop an accurate model for
estimating biodiesel properties and to find an optimum combination of the chemical
composition of biodiesel for enhanced performance in automotive applications.
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