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Preface

Since the start of the present century, climate change has been the topic of dis-
cussion in varied fields. In the same line, the topic gained its importance in the areas
of water resources and agriculture. The climate with its various important variables,
i.e., climatological variables, has a direct or indirect impact on agricultural pro-
duction. There is a need to study the effect of climatological variables and their
dominance in crop yield estimation. Downscaling techniques in general and sta-
tistical downscaling method in particular and principal component analysis in detail
are discussed. This book will be helpful to the students and researchers, who are
starting their works on climate and agriculture with a special focus on estimation
models. The flow of chapters takes the readers in a smooth path, starts in under-
standing climate and weather and impact of climate change, and gradually proceeds
towards downscaling techniques and then finally towards development of principal
component regression models, and applies the same for the crop yield estimation.

Chapter 1 starts with differentiation of climate and weather and then discussions
on climate change and its impact on global context, and mainly on agriculture, are
highlighted. The various climatological parameters affecting crop yield are then
discussed. This is followed by a brief description of downscaling techniques and
their application. This chapter concludes with the brief introduction to multiple
linear regression and principal component analysis, followed by the objectives of
study.

Chapter 2 explores the transfer function in detail, with multiple linear regres-
sions, and principal component analysis. Furthermore, it contains a brief description
of various types of regression and emphasizes on the principal component analysis
and the calculations of principal components (PCs) in detail.

Chapter 3 covers the various research works carried out in the field of analyzing
climatic variability induced due to climate change scenarios and its impact on
agriculture. The reviews of works are classified into four domains, viz., climate
change, downscaling techniques, multiple linear regression, and principal compo-
nent analysis and principal component regression.
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Chapter 4 contains a brief overview of agroclimatic zones of India followed by
the sub agroclimatic zones of Gujarat. Thereafter, a brief description of the study
area and the data required for the study are provided.

Chapter 5 gives an overview on the methodology to predict the yield of cotton
using multiple linear regression and principal component regression, which is
followed by the description of the performance indices to estimate the best model.
The methodology of MLR and PCR models to predict the crop yield for the study
area, considering the climatological parameters as input and yield as output, is
discussed.

Chapter 6 illustrates the results and analysis of the study. The MLR models are
developed and the performance indices for the MLR model are analyzed. This is
followed by the development and evaluation of PCR model using the performance
indices. The outcomes are statistically analyzed and their accuracy is assessed and
discussed during training and validation.

Chapter 7 summarizes the results obtained during the study, the comparisons
of the results by MLR and PCR are focused, and the conclusions of the study are
drawn.
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Chapter 1
Introduction

Abstract This chapter starts from differentiating climate and weather and then
climate change and its impact on global context and mainly on agriculture. The
various climatological parameters affecting crop yield are then discussed. This is
followed by the slight description of downscaling techniques and its application.
This chapter concludes with the brief introduction of multiple linear regression
(MLR) and principal component analysis, followed by the objectives of the study.

Keyword Climate and Weather � Climatological parameters � Crop yield �
Downscaling � MLR � PCR

1.1 Climate and Weather

Climate is generally defined as the average weather, and so, climate change and
weather are intertwined. Observations can show that there have been changes in
weather, and it is the statistics of changes in weather over time that identifies
climate change. While weather and climate are closely related, there are important
differences. A common confusion between weather and climate arises, when sci-
entists are asked how they can predict climate 50 years from now when they cannot
predict the weather a few weeks from now. The chaotic nature of weather makes it
unpredictable beyond a few days. Projecting changes in climate (i.e., long-term
average weather) due to changes in atmospheric composition or other factors is a
very different and much more manageable issue. There are always hot and cold
extremes, although their frequency and intensity change as climate changes. But
when weather is averaged over space and time, the fact that the globe is warming
emerges clearly from the data (Climate Change 2007: Working Group I: The
Physical Science Basis, FAQ 1.2).

Climate is one of the key parameters in the earth’s environment. Climate is
usually defined as the average weather and in broad sense, it is the statistical
description in terms of the mean and variability of relevant quantities over a period
of time, ranging from months to thousands or millions of years. Human activities
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that could possibly result in change of the climate include the emission of gases into
the atmosphere, industrial activities, development of extensive cities, pollution of
water ways and cities, creation of thousands of dams and lakes, conversion of
grassland or forest to cropland, agricultural activities.

The average global temperature rises by 0.74 °C over the last hundred years
(1906–2005), with more than half of these rises, 0.44 °C, in the last 25 years. Most
of the warming over the last 50 years is very likely to have been caused by
anthropogenic increases in Green House Gases (GHGs). Since 1750, atmospheric
concentrations of GHGs have increased significantly. Carbon dioxide has increased
by 31 %, Methane by 151 %, and Nitrous oxide by 17 %. Higher carbon dioxide
concentration is caused due to burning of fossil fuels (coal, oil, and natural gas) and
deforestation (Gautam 2010).

1.2 Climate Change

Climate change is a long-term shift or alteration in the climate of a specific location,
region, or the entire planet. The shift is measured by changes in some or all of the
features associated with average weather, such as temperature, wind patterns, and
precipitation. It can involve both changes in average weather conditions and
changes in how much the weather varies about these averages. “Climate Change” is
distinguished from “Climate Variability” by the persistence of the change over
time, so that a measurable difference is observed between two periods of time.

At the global scale, climate change occurs in response to a change in the amount
of energy flowing into or out of the earth’s climate system. This occurs when
something alters either the amount of the sun’s radiation absorbed by the earth’s
atmosphere and surface, or the amount of heat radiation emitted from the earth’s
surface and atmosphere to space. The climate system responds to this imbalance in
energy input versus output by warming or cooling, until a radiation energy balance
is restored. Since the factors that cause the initial change in the energy balance push
or “force” the climate to change, these factors are generally referred to as “climate
forcing.” Colloquially, positive forcing are often referred to as “warming factors”
while negative forcing are called “cooling factors.” Climate forcing can be a natural
phenomena or canaries from human activities. The factors that affect regional cli-
mate change are much more complex. That is because, in addition to being affected
by global climate change, regional climates are also affected by a myriad of other
factors operating on smaller time and space scales, and by changes in wind and
ocean patterns due to internal fluctuations of the climate system (A.2: FAQ on
Science of Climate Change).

Climate change is a complex problem that has increased the need for an inte-
grated, multisectoral, and multidisciplinary response. Apart from the normal water
domain, decision-makers in other spheres, i.e., finance, trade, energy, housing,
regional planning, agriculture must use and consume water efficiently. Sustainable
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management and development of water resources will play a pivotal role in
preparing societies’ ability to adapt to climate change in order to increase resilience
and achieve development goals. This calls for policy and governance shifts,
investments and changes in the way water concerns are addressed in development
strategies and budgets (Climate Change Adaptation: The Pivotal Role of Water).

1.3 Impact of Climate Change in Global Context

Impact of climate change can be categorized through positive and negative aspects.
Less chilly winters and greenery in high altitudinal areas can be considered as some
positive impacts due to global temperature rise. However, the adverse (negative)
impacts are seen very high in compared to the positive impacts. Some of the
adverse impacts caused by climate change especially related to water in global and
Asian context can be categorized as follows (Gautam 2010):

• It is seen that the global temperature has been on the rising trend since
mid-twentieth century.

• Hot days and hot nights have become more frequent in most parts of the world.
• Due to rising temperature, it causes abrupt glacier ablation. The formation of

lakes is occurring as glaciers retreat from several steep mountain ranges,
including the Himalayas. These lakes thus have a high potential for glacial lake
outburst floods (GLOFs).

• Climate change has induced changes in surface and groundwater systems. At the
global scale, there is evidence of a broadly coherent pattern of change in annual
runoff.

• In some regions like China, higher latitude regions experience an increase in
runoff while West Africa, southern Europe, and southern Latin America expe-
rience the decrease in runoff (Bates et al. 2008).

• Many natural systems on all continents and oceans are affected due to global
warming.

• Diseases related to warming and mosquito problems are seen even in the high
altitudinal regions.

• Changes in water quantity and quality due to climate change, effects on food
production, leading to decrease in food security.

• It is found that the rate of sea-level rise during the twentieth century was about
10 times higher than average rate during the last 3000 years.

• Sea-level rise is projected to extend areas of salinization of groundwater,
resulting in a decrease of freshwater availability for humans and ecosystems in
coastal areas (Bates et al. 2008).

The observed effects of climate change and its observed/possible impacts on
water services in global perspectives are shown in Table 1.1.
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1.4 Impact of Climate Change on Agriculture

Climate is an important factor of agricultural productivity. Concerns have been
expressed by many organizations and others regarding the potential effects of cli-
mate change on the same. Interest in this matter has motivated a substantial body of
research on climate change and agriculture over the past decade. Climate change is
expected to affect agricultural and livestock production, hydrologic balances, input
supplies, and other components of agricultural systems.

Climate change is caused by the release of “greenhouse” gases into the atmo-
sphere. These gases accumulate in the atmosphere and result in global warming.
The changes in global climate related parameters such as temperature, precipitation,
soil moisture, and sea level are observed. However, the reliability of the predictions
on climate change is uncertain. There are no hard facts about what will definitely be
the result of increase in the concentration of greenhouse gases within the atmo-
sphere and no firm timescales are known. Agriculture is one sector, which is
important to consider in terms of climate change. The agriculture sector will con-
tribute to climate change, and also be affected by the changing climate.

The climate change effects on agriculture will differ across the world. To
determine how the climate change affects agriculture is complex, and varieties of
effects are likely to occur. Changes in temperature as well as changes in rainfall
patterns and the increase in carbon dioxide levels projected to accompany climate
change will have important effects on global agriculture, especially in the tropical
regions. It is expected that crop productivity will alter due to the changes in
climate/weather events and changes in patterns of pests and diseases. The suitable
land areas for cultivation of key staple crops could undergo geographic shifts in
response to climate change (Aydinalp and Cresser 2008).

Table 1.1 Observed effects of climate change and its observed/possible impacts on water services
in global perspectives

Observed effect Observed/possible impacts

Increase in atmospheric
temperature

Reduction in water availability in basins fed by glaciers that
are shrinking, as observed in some cities along the Andes in
South America

Increase in surface water
temperature

Reductions in dissolved oxygen content, mixing patterns, and
self-purification capacity
Increase in algal blooms

Sea-level rise Salinization of coastal aquifers

Shifts in precipitation patterns Changes in water availability due to changes in precipitation
and other related phenomena (e.g., groundwater recharge,
evapotranspiration)

Increase in interannual
precipitation variability

Increase the difficulty of flood control and reservoir utilization
during the flooding season

Increased evapotranspiration Water availability reduction Salinization of water resources
Lower groundwater levels
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1.5 Climatological Parameters Affecting Crop Yeild

The climatological parameters affecting the crop yield are mainly considered as
maximum and minimum temperature, relative humidity, wind speed, and sunshine
hours. The importance of the same is discussed hereafter.

1.5.1 Maximum and Minimum Temperature

The degree of hotness or coldness of a substance is called temperature. It is com-
monly expressed in degree Celsius or Centigrade (°C) and degree Fahrenheit (°F).
This climatic factor influences all plant growth processes such as photosynthesis,
respiration, transpiration, breaking of seed dormancy, seed germination, protein
synthesis, and translocation. At high temperatures the translocation of photosyn-
thesis is faster so that plants tend to mature earlier.

In general, plants survive within a temperature range of 0–50 °C. The favorable
or optimal day and night temperature range for plant growth and maximum yields
varies among crop species.

Excessively low temperatures can also cause limiting effects on plant growth and
development. For example, water absorption is inhibited when the soil temperature
is low because water is more viscous at low temperatures and less mobile, and the
protoplasm is less permeable. At temperatures below the freezing point of water,
there is change in the form of water from liquid to solid. The expansion of water as
it solidifies in living cells causes the rupture of the cell walls.

1.5.2 Relative Humidity

The amount of water vapor that the air can hold depends on its temperature. Warm
air has the capacity to hold more water vapor than cold air. Relative humidity
(RH) is the amount of water vapor in the air, expressed as the proportion (in
percent) of the maximum amount of water vapor it can hold at certain temperature.
The amount of water vapor in the air ranges from 0.01 % by volume at the frigid
poles to 5 % in the humid tropics. In relation to each other, high RH means that the
air is moist while air with minimal content of moisture is described as dry air.
Compared to dry air, moist air has a higher RH with relatively large amounts of
water vapor per unit volume of air. The RH affects the opening and closing of the
stomata which regulates loss of water from the plant through transpiration as well as
photosynthesis. A substantial understanding of this climatic factor is likewise
important in plant propagation (Bareja 2011).
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1.5.3 Wind Speed

Wind Speed and direction have significant influence on crop growth.

Beneficial impact of wind

1. Wind increases the turbulence in atmosphere, thus increasing the supply of
carbon dioxide to the plants resulting in greater photosynthesis rates.

2. Wind alters the balance of hormones.
3. Wind increases the ethylene production in barley and rice.
4. Wind decreases gibberellin acid content of roots and shoots in rice.
5. Nitrogen concentration in both barley and rice increases with increase in wind

speed (TNAU Agricultural Portal).

1.5.4 Sunshine Hours

There are three intensities of sunlight that suit plants: full sun, partial sun/partial
shade, and shade. Plants requiring full sun will need at least six hours of direct sun
daily. Partial sun/partial shade plants need 3–4 h of direct sun, and shade-loving
plants will adapt to sites with less than two hours of direct sun or with filtered
sun/filtered shade. Generally, the lower the light, the slower the plant grows. Hence,
sunshine hours play an important role in context of the crop (HGIC1050).

1.6 Downscaling

It is a process of the development of climate data for a point or small area from
regional climate information. The regional climate data may originate either from a
climate model or from observations. Methodologies to model the hydrologic
variables (e.g., precipitation) at smaller scale based on large-scale Global Climate
Model (GCM) outputs are known as downscaling.

Downscaling, or regionalization, is the term given to the process of deriving
finer resolution data (e.g., for a particular site) from coarser resolution GCM data.
Most researchers feel that the horizontal resolution of most GCMs is generally too
coarse to be used in impact models in its original format. A lot of useful information
can be derived from GCMs without the need for downscaling, but it is recognized
that sometimes it is necessary to try and add value to a scenario by making it more
applicable for finer resolution studies (Barrow 2001).

Most concerns are related to the fact that regional climate is affected by forcing
and circulations, which occur at sub-grid scale and hence, are not explicitly taken
into account at the scales, at which GCMs operate. It may be possible to define a
relationship, or relationships, between site climate and large-scale (i.e., GCM grid
box scale) climate which can then be used to derive more realistic values of the
future climate at the site scale. The schematic diagram is shown in Fig. 1.1.
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Fig. 1.1 A schematic illustrating the general approach to downscaling
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Using an analogy borrowed, downscaling GCM is similar to improvements
made in digital photography. Early digital photographs were not sharp but rather
showed fuzzy outlines of the object in question because there was not enough
detailed information. As memory systems improved and more pixels were added,
the photographs became clearer and supplied a more in-depth perspective. The
additional pixels needed to show accurate information that fit into the overall
picture. Large-scale GCMs are a bit like early digital photography whereas
downscaled GCMs or RCMs (regional climate models) provide additional infor-
mation to make a clearer picture.

Downscaling methodologies fall into different categories, based on the very
different approaches used, to resolve climate parameters from regional to local
scales. These result in information at substantially finer resolutions (smaller areas)
than GCMs provide.

There are limitations in the use of this downscaling methodology, and while they
are becoming less serious, they are still important to note.

Past data must be available from several weather stations in the region of interest
and those stations must be sufficiently close together to allow estimating climatic
parameters over the area.

There can be no significant change in the statistical relationship between the
measurements of past weather and the future projections. Another issue associated
with the use of all models and their projections relates to uncertainties which can
come from three sources: uncertainty around future emissions; we do not know for
sure how people will behave in the future but until about 2040 all the warming
scenarios are very similar because of inertia in the system and past and present
emissions. Natural climate variability has some built-in chaos and will vary from
decade to decade in the future as it has in the past, and modeling uncertainties, e.g.,
different models represent the ocean/atmosphere interactions somewhat differently.

1.6.1 Uncertainty

Confidence in global-scale GCM projections is based on well-understood physical
processes and laws, the ability of GCMs to accurately simulate past climate, and the
agreement in results across models. Multiple model comparisons unanimously
project warming of globally averaged near-surface temperature over the next two
decades in response to increased greenhouse gas emissions. However, the magni-
tude of this increase varies from one model to another. Additionally, in certain
regions, different models project opposite changes in rainfall amount, which
highlights the uncertainty of future climate change projections even when sophis-
ticated state-of-the art GCM tools are used (Trzaska and Schnarr 2014).
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There are four main sources of uncertainty in climate projections:

1. Uncertainty in future levels of anthropogenic emissions and natural forcings
(e.g., volcanic eruptions).

2. Uncertainty linked to imperfect model representation of climate processes.
3. Imperfect knowledge of current climate conditions that serve as a starting point

for projections.
4. Difficulty in representing interannual and decadal variability in long-term

projections.

1.7 Downscaling Techniques and Their Application

Downscaling techniques have been developed, tested, and used through the efforts
of many climatologists and hydrologists. More recently, downscaling has found
wide application in hydroclimatology for scenario of construction, simulation, and
prediction of

(i) regional precipitation
(ii) low-frequency rainfall events
(iii) mean, minimum, and maximum air temperature
(iv) soil moisture
(v) runoff and stream flows
(vi) groundwater levels
(vii) transpiration, wind speed, and potential evaporation rates
(viii) soil erosion and crop yield
(ix) landslide occurrence
(x) water quality.

The approaches, which have been proposed for downscaling GCMs, could be
broadly classified into three categories:

Dynamical downscaling,
Statistical downscaling, and
Statistical—dynamical downscaling.

1.7.1 Dynamical Downscaling

Dynamical downscaling (DD) method involves the development of the regional
climate model which required the user to highly understand the atmospheric
physical behavior and local or regional interactions and feedback. Generally, DD
method is used for regions of complex topography, coastal, or island locations in
the regions of highly heterogeneous land cover.
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The advantages cited for DD are, they respond in physically consistent ways to
different external forcings, resolve the atmospheric process such as topographic
precipitation and consistency with GCM. The disadvantages of DD are that it
requires significant computing resources, dependent on the realism of GCM
boundary forcings and initial boundary conditions.

One of the strong features of DD is that it can resolve smaller scale atmospheric
features such as orographic precipitation. Complicated in design, inflexible in
practical use, and high computational cost are some drawbacks associated with
dynamic downscaling, and due to these drawbacks it is not highly applicable to
climate change impact studies (Harun et al. 2008).

The key features of DD methods are discussed below:

What it Provides?

• 20–50 km grid cell information.
• Information at sites with no observational data.
• Daily time series.
• Scenarios for extreme events.

What it Requires?

• High computational resources and expertise.
• High volume of data inputs.
• Reliable GCM simulations.

Its Advantages

• Based on consistent, physical mechanism.
• Resolves atmospheric and surface processes occurring at sub-GCM grid scale.
• Not constrained by historical record so that novel scenarios can be simulated.
• Experiments involving an ensemble of RCMs are becoming available for

uncertainty analysis.

Its Disadvantages

• Due to computational demands, RCMs are typically driven by only one or two
GMC emission scenario simulations.

• Limited number of RCMs are available.
• Results depend on RCM assumptions, different RCMs will give different results.
• Affected by bias of driving GCM.

Its Applications

• Country or regional-level (e.g., European Union) assessments with significant
government support and resources.

• Future planning by government agencies across multiple sectors.
• Impact studies that involve various geographic areas (Trzaska and Schnarr 2014).
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1.7.2 Statistical Downscaling

Statistical downscaling or empirical downscaling is a tool for downscaling climate
information from coarse spatial scales to finer scales. Statistical downscaling
methods rely on empirical relationships between local-scale predictand and
regional-scale predictors to downscale GCM scenarios. Successful statistical
downscaling is thus dependent on long reliable series of predictors and predictand.
Statistical downscaling (SD) methods are used to achieve the climate change
information at the fine resolution through the development of direct statistical
relationships between large-scale atmospheric circulation and local variables (such
as precipitation and temperature).

Compared to other downscaling methods (e.g., dynamical downscaling), the
statistical method is relatively easy to use and provides station-scale climate
information from GCM-scale outputs (Wilby et al. 2002). Thus, statistical down-
scaling methods are the most widely used in anticipated hydrologic impact studies
under climate change scenarios.

The main advantages of statistical downscaling are that they are cheap, com-
putationally undemanding, and readily transferable. It provides the local informa-
tion most needed in many climate change impact applications and ensembles of
climate scenarios.

The disadvantages of statistical downscaling are that it requires highly quality
data for model calibration. The predictor–predictand relationships are often non-
stationary and the empirically based technique does not account for possible sys-
tematic changes in regional forcing conditions or feedback processes.

Statistical downscaling methods are particularly useful in heterogeneous envi-
ronment with complex physiography or steep environment gradients (as in island,
mountainous, land, and sea contexts) where there are strong relationships to syn-
optic scale forcing. A further justification for statistical downscaling is the need for
better sub-GCM grid-scale information on extreme events such as heavy
precipitation.

The real pragmatic reason is when there are severe limitations on computational
resources, especially in developing nations where the greatest need exists, it has
been widely recognized that statistical downscaling methods offer several practical
advantages over DD procedures, especially in terms of flexible adaptation to
specific study purposes and inexpensive computing resource requirements (Harun
et al. 2008).

What It Provides?

• Any scale, down to station-level information.
• Daily time series (only some methods).
• Monthly time series.
• Scenarios for extreme events (only some methods).
• Scenarios for any consistently observed variable.
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What it Requires?

• Medium/low computational resources.
• Medium/low volume of data inputs.
• Sufficient amount of good quality observational data.
• Reliable GCM simulations.

Its Advantages

• Computationally inexpensive and efficient, which allows for many different
emission scenarios and GCM pairings.

• Methods range from simple to elaborate and are flexible enough to tailor for
specific purposes.

• The same method can be applied across regions or the entire globe, which
facilitates comparisons across different case studies.

• Tools are freely available and easy to implement and interpret; some methods
can capture extreme events.

Its Disadvantages

• High quality observed data may be unavailable for many areas or variables.
• Assumes that relationships between large and local-scale processes will remain

the same in the future (stationarity assumptions).
• The simplest methods may only provide projections at a monthly resolution.

Its Applications

• Weather generators in widespread use for crop yield, water, and other natural
resource modeling and management.

• Delta or change factor method can be applied for most adaptation activities
(Trzaska and Schnarr 2014).

1.7.3 Statistical–Dynamical Downscaling

Statistical–dynamical downscaling links global and regional model simulations
through statistics derived for large-scale weather types. The regional simulations are
initialized using representative vertical profiles for each weather type and then run
for a short period without lateral forcing by the global model. The statistical–
dynamical approach combines advantages of the other two methods. As in DD, a
regional model is used and as in statistical–empirical downscaling, the computa-
tional effort does not depend on the length of the period to be downscaled.
Statistical–dynamical downscaling consists of three steps which are described
below:
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I. A multiyear time series from a GCM simulation is classified into an adequate
amount of large-scale weather types characteristic for the region of interest.
These weather types are defined on a scale which is well resolved by the
GCM.

II. Regional model simulations are carried out once for each weather type. The
regional model calculates the mesoscale deviations from the large-scale state
due to the impact of the regional topography. The model domain is situated
within the area in which the frequencies of the large-scale weather types are
derived.

III. The regional model output is weighted with the respective frequencies of the
weather types and then is statistically evaluated to yield regional distributions
of climatological parameters (mean values, or frequency distributions) corre-
sponding to the global climate represented by the GCM data (Harun et al.
2008).

Statistical downscaling methodology can be broadly classified into three cate-
gories as follows:

Weather Generators
Weather generators are statistical models of observed sequences of weather vari-
ables. They are also known by stochastic weather generators. They can also be
regarded as complex random number generators, the output of which resembles
daily weather data at a particular location. There are two fundamental types of daily
weather generators based on the approach to model daily precipitation occurrence:
the Markov chain approach and the spell-length approach. In the Markov chain
approach, a random process is constructed which determines a day at a station as
rainy or dry, conditional upon the state of the previous day. In case of spell-length
approach, instead of simulating rainfall occurrences day by day, spell-length models
operate by fitting probability distribution to observed relative frequencies of wet
and dry spell lengths.

Weather Typing
Weather typing approaches involve grouping of local, meteorological variables in
relation to different classes of atmospheric circulation. Future regional climate
scenarios are constructed either by resampling from the observed variable distri-
bution (conditioned on the circulation pattern produced by a GCM), or by first
generating synthetic sequences of weather pattern using Monte Carlo techniques
and then resampling from the generated data. The mean or frequency distribution of
the local climate is then derived by applying weights to the local climate states with
the relative frequencies of the weather classes.

Transfer Function/Regression Method
The most popular approach of downscaling is the use of transfer function which is a
regression-based downscaling method. The transfer function method relies on direct
quantitative relationship between the local-scale climate variable (predictand) and
the variables containing the large-scale climate information (predictors) through
some form of regression. Individual downscaling schemes differ according to the

1.7 Downscaling Techniques and Their Application 13



T
ab

le
1.
2

St
at
is
tic
al

do
w
ns
ca
lin

g
ca
te
go

ry
,
m
et
ho

d,
pr
ed
ic
to
r
an
d
pr
ed
ic
ta
nd

va
ri
ab
le
s,
ad
va
nt
ag
es
,
an
d
di
sa
dv

an
ta
ge
s

C
at
eg
or
y
an
d
M
et
ho

d
Pr
ed
ic
to
r
an
d
Pr
ed
ic
ta
nd

A
dv

an
ta
ge
s

D
is
ad
va
nt
ag
es

L
in
ea
r

m
et
ho

ds
sp
at
ia
l

D
el
ta

m
et
ho

d
Sa
m
e
ty
pe

of
va
ri
ab
le

(e
.g
.,
bo

th
m
on

th
ly

te
m
pe
ra
tu
re
,
bo

th
m
on

th
ly

pr
ec
ip
ita
tio

n)
•
R
el
at
iv
el
y

st
ra
ig
ht
fo
rw

ar
d

to
ap
pl
y

•
E
m
pl
oy

s
fu
ll
ra
ng

e
of

av
ai
la
bl
e
pr
ed
ic
to
r

va
ri
ab
le
s

•
R
eq
ui
re
s
no

rm
al
ity

of
da
ta

(e
.g
.,
m
on

th
ly

te
m
pe
ra
tu
re
,
m
on

th
ly

pr
ec
ip
ita
tio

n,
lo
ng

-t
er
m

av
er
ag
e
te
m
pe
ra
tu
re
)

•
C
an
no

t
be

ap
pl
ie
d
to

no
n-
no

rm
al

di
st
ri
bu

tio
ns

(e
.g
.,
da
ily

ra
in
fa
ll)

•
N
ot

su
ita
bl
e
fo
r
ex
tr
em

e
ev
en
ts

Si
m
pl
e

an
d

m
ul
tip

le
lin

ea
r

re
gr
es
si
on

V
ar
ia
bl
es

ca
n
be

of
th
e
sa
m
e
ty
pe

or
di
ff
er
en
t

(e
.g
.,
bo

th
m
on

th
ly

te
m
pe
ra
tu
re

or
on

e
m
on

th
ly

w
in
d
an
d
th
e
ot
he
r
m
on

th
ly

pr
ec
ip
ita
tio

n)

C
C
A
&

SV
D

W
ea
th
er

cl
as
si
fi
ca
tio

n
Sp

at
ia
l
an

d
te
m
po

ra
l

A
na

lo
g

m
et
ho

d
V
ar
ia
bl
es

ca
n
be

of
th
e
sa
m
e
ty
pe

or
di
ff
er
en
t

(e
.g
.,
bo

th
m
on

th
ly

te
m
pe
ra
tu
re
,
on

e
la
rg
e-
sc
al
e
at
m
os
ph

er
ic

pr
es
su
re

fi
el
d
an
d

th
e
ot
he
r
da
ily

ra
in
fa
ll)

•
Y
ie
ld
s
ph

ys
ic
al
ly

in
te
rp
re
ta
bl
e
lin

ka
ge
s

to
su
rf
ac
e
cl
im

at
e

•
V
er
sa
til
e,

i.e
.,
ca
n
be

ap
pl
ie
d
to

bo
th

no
rm

al
ly

an
d

no
n-
no

rm
al
ly

di
st
ri
bu

te
d
da
ta

•
R
eq
ui
re
s
ad
di
tio

na
l
st
ep

of
w
ea
th
er
-t
yp

e
cl
as
si
fi
ca
tio

n
•
R
eq
ui
re
s
la
rg
e
am

ou
nt

of
da
ta

an
d
so
m
e

co
m
pu

ta
tio

na
l
re
so
ur
ce
s

•
In
ca
pa
bl
e
of

pr
ed
ic
tin

g
ne
w

va
lu
es

th
at

ar
e

ou
ts
id
e
th
e
ra
ng

e
of

th
e
hi
st
or
ic
al

da
ta

C
lu
st
er

an
al
ys
is

A
N
N

SO
M

W
ea
th
er

ge
ne
ra
to
r

Sp
at
ia
l
an

d
te
m
po

ra
l

LA
R
S-
W
G

Sa
m
e
ty
pe

of
va
ri
ab
le
,
di
ff
er
en
t
te
m
po

ra
l

sc
al
es

(e
.g
.,
pr
ed
ic
to
r
is
m
on

th
ly

pr
ec
ip
ita
tio

n
an
d
pr
ed
ic
ta
nd

is
da
ily

pr
ec
ip
ita
tio

n)

•
A
bl
e
to

si
m
ul
at
e

le
ng

th
of

w
et

an
d
dr
y

sp
el
ls

•
Pr
od

uc
es

la
rg
e
nu

m
be
r

of
se
ri
es
,
w
hi
ch

is
va
lu
ab
le

fo
r

un
ce
rt
ai
nt
y
an
al
ys
is

•
Pr
od

uc
tio

n
of

no
ve
l

sc
en
ar
io
s

•
D
at
a-
in
te
ns
iv
e

•
Se
ns
iti
ve

to
m
is
si
ng

or
er
ro
ne
ou

s
da
ta

in
th
e
ca
lib

ra
tio

n
se
t

•
O
nl
y
so
m
e
w
ea
th
er

ge
ne
ra
to
rs

ca
n
ch
ec
k

fo
r
th
e
co
he
re
nc
y
be
tw
ee
n
m
ul
tip

le
va
ri
ab
le
s
(e
.g
.,
hi
gh

in
so
la
tio

n
sh
ou

ld
no

t
be

pr
ed
ic
te
d
on

a
ra
in
y
da
y)

•
R
eq
ui
re
s
ge
ne
ra
tio

n
of

m
ul
tip

le
tim

e
se
ri
es

an
d
st
at
is
tic
al

po
st
pr
oc
es
si
ng

of
re
su
lts

M
ar
kS
im

G
C
M

N
H
M
M

V
ar
ia
bl
es

ca
n
be

of
th
e
sa
m
e
ty
pe

or
di
ff
er
en
t

(e
.g
.,
bo

th
m
on

th
ly

te
m
pe
ra
tu
re
,
on

e
la
rg
e-
sc
al
e
at
m
os
ph

er
ic

pr
es
su
re

an
d
th
e

ot
he
r
da
ily

ra
in
fa
ll)

14 1 Introduction



choice of mathematical transfer function, predictor variables, or statistical fitting
procedure (Gautam 2010).

The statistical downscaling advantages and disadvantages of methods, predictor,
and predictand variables are shown in Table 1.2.

1.8 Multiple Linear Regression

When one includes more than one predictor variable, we have what is now a
multiple linear regression (MLR) model. This new model is just an extension of the
simple model where we now include parameter (i.e., slope) estimates for each
predictor variable in the model. These coefficient values for each predictor are the
slope estimates. As with simple linear regression, we have one Y or response
variable (also called the dependent variable), but now have more than one
X variable, also called explanatory, independent, or predictor variables. The MLR
model is as follows:

Y ¼ b0 þ b1X1þ � � � þ bkXkþ e

where Y is the response variable and X1; . . .;Xk are independent variables.
b0; b1. . .bk are fixed parameters and are random variables representing the error, or
residuals, that is normally distributed with mean 0 and having a variance r2e .

1.9 Principal Component Analysis (PCA)

“PCA is a way of identifying patterns in data, and expressing the data in such a way
as to highlight their similarities and differences. Since patterns in data can be hard to
find in data of high dimension, where the luxury of graphical representation is not
available, PCA is a powerful tool for analyzing data” (Joilliffe 2002).

Often, the variables under study are highly correlated and as such they are
effectively “saying the same thing.” It may be useful to transform the original set of
variables to a new set of uncorrelated variables called principal components
(Agrawal and Rao).

1.10 Objectives

• To develop the models for the estimation of the crop yield using MLR con-
sidering climatological parameters such as maximum temperature, minimum
temperature, RH, wind speed, and sunshine hours.
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• To develop the models for the estimation of the crop yield using Principal
Component Regression (PCR) considering climatological parameters such as
maximum temperature, minimum temperature, RH, wind speed, and sunshine
hours.

• To study the MLR model developed for the estimation of crop yield by eval-
uating the models with the performance indices such as root mean square error
(RMSE), coefficient of correlation (r), coefficient of determination (R2), and
discrepancy ratio (D.R.).

• To study the PCR model developed for the estimation of crop yield by evalu-
ating the models with the performance indices such as root mean square error
(RMSE), coefficient of correlation (r), coefficient of determination (R2), and
discrepancy ratio (D.R.).

• To compare the results of developed MLR and PCR models.
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Chapter 2
Principal Component Analysis in Transfer
Function

Abstract This chapter explores the transfer function in detail, with multiple linear
regressions, and principal component analysis (PCA). Furthermore, it contains the
slight description of various types of regression and emphasizes on the PCA and the
calculations of principal components (PCs) in detail.

Keywords Transfer function � Regression methods � PCA � PCR

2.1 Transfer Function/Regression Method

The most popular approach of downscaling is the use of transfer function which is a
regression-based downscaling method. The transfer function method relies on direct
quantitative relationship between the local scale climate variable (predictand) and
the variables containing the large scale climate information (predictors) through
some form of regression. Individual downscaling schemes differ according to the
choice of mathematical transfer function, predictor variables, or statistical fitting
procedure. To date, linear and nonlinear regression, artificial neural network
(ANN), canonical correlation, etc., have been used to derive predictor–predictand
relationship. Among them, ANN-based downscaling techniques have gained wide
recognition owing to their ability to capture nonlinear relationships between pre-
dictors and predictand. The main strength of transfer function downscaling is the
relative ease of application. The main weakness is that the models often explain
only a fraction of the observed climate variability (especially in precipitation ser-
ies). Transfer methods also assume validity of the model parameters under future
climate conditions. The downscaling is highly sensitive to the choice of predictor
variables and statistical form. The schematic diagram of transfer function is given in
Fig. 2.1.

Large-scale values of particular climate variables (predictors) will be used to
predict the values of the site-specific variables (predictand). The large-scale area
should roughly correspond to the size of the GCM grid box. It may be necessary to

© The Author(s) 2016
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construct area-average values of, say, mean temperature or precipitation (usually
simple averaging of station data, or weighted averaging). First step is to define the
predictor variables—they must explain a high proportion of the variance in the
predictand and then construct the transfer function relating the site-specific variable
to the larger-scale predictors using an appropriate technique—being aware of the
constraints associated with the method being used. For example, in multiple linear
regressions it is assumed that the predictor variables are independent, i.e., the
correlation between them is effectively zero. If this is not the case then the
regression coefficients will not be a true estimate of the contribution of each of the
predictor variables to the variance of the predictand. Keep back some data in order
to test the performance of the model (validation).To derive the predictand values
under a future climate, the larger-scale predictors derived from GCM data are used
to drive the transfer function. The main advantages are firstly it is computationally
much less demanding and secondly, ensembles of high resolution climate scenarios
may be produced relatively easily (Barrow 2001).

Fig. 2.1 Schematic diagram of transfer function
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2.2 Types of Regressions

2.2.1 The Simple Linear Regression Model

The relationship between a response variable Y and a predictor variable X is pos-
tulated as a linear model

Y ¼ b0 þ b1X þE

where b0 and b1, are called the model regression coefficients, and E is a random
disturbance or error. It is assumed that in the range of the observations studied, the
linear equation above provides an acceptable approximation to the true relation
between Y and X. In other words, Y is approximately a linear function of X, and
E measures the discrepancy in that approximation.

In particular, E contains no systematic information for determining Y that is not
already captured in X. The coefficient b1, called the slope, may be interpreted as the
change in Y for unit change in X. The coefficient b0, called the constant coefficient
or intercept, is the predicted value of Y, when X = 0.

2.2.2 The Multiple Linear Regression Model

Multiple linear regressions are with two or more independent variables on the
right-hand side of the equation. Multiple linear regressions should be used, if more
than one cause is associated with the effect, one wish to understand.

The equation and the true plane for the case of two independent variables, we
can write the equation for a multiple regression model this way:

Y ¼ aþ bX þ cZþ error

Imagine that the X- and Z-axes are on a table in front of you, with the X-axis
pointing to the right and the Z-axis pointing directly away from you. The Y-axis is
standing vertically, straight up from the table.

Y ¼ aþ bX þ cZþ error is the formula for a flat plane, that is floating in the
three-dimensional space.

α is the height of the plane above the point on the table where X = 0 and Z = 0
β is the slope of the plane in the X direction, how fast the plane rises as one go to

the right

2.2 Types of Regressions 19



If you have more than two independent variables, it is conventional to go to a
subscript notation for the variables and the slope parameters as given in the
equation given below.

Y ¼ aþ b1X1 þ b2X2 þ b3X3 þ b4X4 . . .þ error

2.2.3 Polynomial Regression Models

A model is said to be linear when it is linear in parameters. So the model

Y ¼ b0 þ b1X þ b2X
2 þ error

Y ¼ aþ b1X1 þ b2X2 þ b11X
2
1 þ b22X

2
2 þ b12X1X2 þ error

are also the linear model. In fact, they are the second order polynomials with one
and two variables, respectively.

The polynomial models can be used in those situations, where the relationship
between the study and the explanatory variables is curvilinear. Sometimes, a
nonlinear relationship in a small range of explanatory variables can also be modeled
by the polynomials.

The Kth order polynomial model with one variable is given by the below given
equation.

Y ¼ b0 þ b1X þ b2X
2 þ � � � þ bkX

k þ error

2.2.4 Nonlinear Regression

In statistics, nonlinear regression is a form of analysis, in which observational data
are modeled by a function, which is a nonlinear combination of the model
parameters and depends on one or more independent variables. The data are fitted
by a method of successive approximations.

2.3 Principal Component Analysis (PCA)

Principal Component Analysis (PCA) involves a mathematical procedure that
transforms a number of possibly correlated variables into a smaller number of
uncorrelated variables called PC. Principal components are also known by gener-
ation of a new set of variables by PCA, and they have a linear combination of the
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original variables. In this study, due to large dimensionality of predictor variables, it
may be computationally unstable. Hence, PCA is performed to reduce the dimen-
sionality of the predictor variables. PCA is also used to downscale GCM outputs of
large-scale climatic variables to sub-divisional level.

PCA is a way of identifying patterns in data, and expressing the data in such a way as to
highlight their similarities and differences. Since patterns in data can be hard to find in data
of high dimension, where the luxury of graphical representation is not available, PCA is a
powerful tool for analyzing data.

Often, the variables under study are highly correlated and as such they are
effectively “saying the same thing”. It may be useful to transform the original set of
variables to a new set of uncorrelated variables called PC. These new variables are
linear combinations of original variables and are derived in decreasing order of
importance so that the first principal component accounts for as much as possible of
the variation in the original data. Also, PCA is a linear dimensionality reduction
technique, which identifies orthogonal directions of maximum variance in the
original data, and projects the data into a lower-dimensionality space formed of a
subset of the highest variance components (Agrawal and Rao).

2.3.1 Advantages and Disadvantages of PCA

Principal component analysis (PCA) is a standard tool in modern data analysis in
diverse fields from neuroscience to computer graphics—because it is a simple,
nonparametric method for extracting relevant information from confusing data sets.
With minimum effort, PCA provides a roadmap for how to reduce a complex data
set to a lower dimension to reveal the sometimes hidden, simplified structures that
often underlie it.

Another field of use is pattern recognition and image compression, therefore
PCA is suited for use in facial recognition software for example, as well as for
recognition and storing of other biometric data. PCA is also used in research of
agriculture, biology, chemistry, climatology, demography, ecology, food research,
genetics, geology, meteorology, oceanography, psychology, quality control, etc.
PCA has been used in economics and finance to study changes in stock markets,
commodity markets, economic growth, exchange rates, etc. Earlier studies were
done in economics, but stock markets were also under research already. “Principal
component or factor analysis has been used in several recent empirical studies
concerned with the existence of general movements in the returns from common
stocks.”

PCA is a special case of factor analysis that is highly useful in the analysis of
many time series and the search for patterns of movement common to several series
(true factor analysis makes different assumptions about the underlying structure and
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solves eigenvectors of a slightly different matrix). This approach is superior to
many of the bivariate statistical techniques used earlier, in that it explores the
interrelationships among a set of variables caused by common “factors,” mostly
economic in nature. PCA is a way of identifying patterns in data, and expressing the
data in such a way as to highlight their similarities and differences. A primary
benefit of PCA arises from quantifying the importance of each dimension for
describing the variability of a data set. PCA can also be used to compress the data,
by reducing the number of dimensions, without much loss of information. When
using PCA to analyze a data set, it is usually possible to explain a large percentage
of the total variance with only a few components. Principal components are selected
so that each successive one explains a maximum of the remaining variance; the first
component is selected to explain the maximum proportion of the total variance, the
second to explain the maximum of the remaining variance, etc. PCA is completely
nonparametric: any data set can be plugged in and an answer comes out, requiring
no parameters to tweak and no regard for how the data was recorded. From one
perspective, the fact that PCA is nonparametric (or plug-and-play) can be consid-
ered a positive feature because the answer is unique and independent of the user
(Kumar and chauhan 2014).

2.3.2 Applications of Principal Components

The most important use of PCA is reduction of data. It provides the effective
dimensionality of the data. If first few components account for most of the variation
in the original data, then first few components’ scores can be utilized in subsequent
analysis in place of original variables.

Plotting of data becomes difficult with more than three variables. Through PCA,
it is often possible to account for most of the variability in the data by first two
components, and it is possible to plot the values of first two components scores for
each individual. Thus, PCA enables us to plot the data in two dimensions.
Particularly, detection of outliers or clustering of individuals will be easier through
this technique. Often, use of PCA reveals grouping of variables, which would not
be found by other means.

Reduction in dimensionality can also help in analysis, where number of variables
is more than the number of observations, for example, in discriminant analysis
and regression analysis. In such cases, PCA is helpful by reducing the dimen-
sionality of data.

Multiple regressions can be dangerous, if independent variables are highly
correlated. PCA is the most practical technique to solve the problem. Regression
analysis can be carried out using PC as regressors in place of original variables.
This is known as principal component regression (Agrawal and Rao).
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2.4 Principal Component Regression (PCR)

In order to conduct principal component regression, PCA is carried out as follows:

Principal Component Analysis
When starting a research, students as well as researchers, often collect a lot of data
or sometimes come across large datasets that are available. But when having lots of
data, especially when it is secondary data, it is often very easy to get confused. It is
hard to find the variables that are really important for the research when there are
so many variables to consider. This is where principal components analysis (PCA)
can help.

Principal components analysis (PCA) was invented by Karl Pearson in 1901 and
is now used in many fields of science. PCA is mostly used as a tool in exploratory
data analysis because what it essentially does is to find the most important variables
(a combination of them) that explain most of the variance in the data. So, when
there is lots of data to be analyzed, PCA can make the task a lot easier. PCA also
helps to construct predictive models (Chen et al. 2011).

2.4.1 Calculating Principal Components

The Principal components (PCs) can be found using purely mathematical argu-
ments—they are given by an orthogonal linear transformation of a set of variables
optimizing a certain algebraic criterion. An overview how to perform PCA is given
hereafter.

Let x1; x2; x3 . . . xp are variables under study, and then first principal component
may be defined as

z1 ¼ a11x1 þ a12x2 þ � � � þ a1PxP

Such that variance of z1 is as large as possible subject to the condition that

a211 þ a212 þ � � � a21p ¼ 1

This constraint is introduced because if this is not done, then Var (z1) can be
increased simply by multiplying any a1js by a constant factor. The second principal
component is defined as

z2 ¼ a21x1 þ a22x2 þ � � � þ a2PxP
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Such that Var (z2) is as large as possible next to Var (z1) subject to the constraint
that

a221 þ a222 þ � � � þ a22p ¼ 1 and cov z1; z2ð Þ ¼ 0 and so on:

It is quite likely that first few PC accounts for most of the variability in the
original data. If so, these few PC can then replace the initial p variables in sub-
sequent analysis, thus reducing the effective dimensionality of the problem. An
analysis of PC often reveals relationships that were not previously suspected and
thereby allows interpretation that would not ordinarily result. However, PCA is
more of a means to an end rather than an end in itself because this frequently serves
as intermediate steps in much larger investigations by reducing the dimensionality
of the problem and providing easier interpretation. It is a mathematical technique,
which does not require user to specify the statistical model or assumption about
distribution of original variants. It may also be mentioned that, PCs are artificial
variables and often, it is not possible to assign physical meaning to them. Further,
since PCA transforms original set of variables to the new set of uncorrelated
variables, it is worth stressing that, if original variables are uncorrelated, and then
there is no point in carrying out PCA (Agrawal and Rao).

2.4.2 Rules for Retaining Principal Components

In the initial extraction process, PCA will derive as many components as the
number of measured variables. After the initial components are extracted, the
analyst must decide on how many components should be retained to meaningfully
represent the original correlation matrix. The initial component eigenvalues, percent
of variance accounted for, and cumulative variance accounted for are provided.
According to Stevens, “Probably the most widely used criterion is that of: Retain
only those components whose eigenvalues are greater than 1”.

A fairly common technique noted in the literature combines the two approaches.
Eigen values greater than one is initially retained and the screen test is used sub-
sequently to assess the tenability of the model. Because Eigen values represent
reproduced variance, this is equivalent to setting a minimum level of acceptable
variance reproduced by a component. The second stage evaluates the parsimony of
the solution relative to the contribution of each component to reproducing the
original variance in the data. A potential disadvantage of this approach is the
arbitrary criterion of retaining eigenvalues greater than one in the first stage.
Because PCA studies typically rely on sample data, eigenvalues (reproduced
variance) should be expected to change (even with large samples) slightly from
sample to sample. In addition, the interpretation of what constitutes a “meaningful”
amount of variance accounted for (which eigenvalues represent) is inherently
subjective (Kellow 2006).
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2.4.3 Development of Principal Component Regression
(PCR)

Principal component regression (PCR) is a type of regression analysis, which
considers PC as independent variables, instead of adopting original variables. The
PCs are the linear combination of the original variables which can be obtained by
PCA. The PCA transforms the original set of intercorrelated independent variables
to a new set of uncorrelated variables (i.e., PCs). The use of these PCs as inde-
pendent variables is quite useful in the multiple regression models to avoid the
multicollinearity problem and to identify the variables which are the most signifi-
cant in making the prediction. The PCR models have been developed using PCs as
inputs to predict and to compare the same with multiple linear regression models. It
has been found that that the incorporation of PCs as independent variables in the
regression models improved the model prediction as well as reduced the model
complexity by eliminating multicollinearity.

Principal components regression (PCR) is a method for combating multi-
collinearity and results in estimation and prediction better than ordinary least
squares, when used successfully. With this method, the original k climatic variables
are transformed into a new set of orthogonal or uncorrelated variables called PC of
the correlation matrix. This transformation ranks the new orthogonal variables in
order of their importance and the procedure, and then involves eliminating some of
the PC to effect a reduction in variance (Fekedulegn et al. 2002).
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Chapter 3
Review of Literature

Abstract This chapter covers the various research works carried out in the field of
analyzing climatic variability induced due to climate change scenarios and its
impact on agriculture. The review of works is classified into four domains, viz.
climate change, downscaling techniques, multiple linear regression, and principal
component analysis and regression.

Keywords Review � Climate change � Downscaling techniques � MLR � PCA �
PCR

3.1 Review of Works on Climate Change

The predictions of climate change under various emission scenarios were highly
uncertain but it was expected to affect agricultural crop production in the twenty-first
century. However, we know very little about future changes in specific cropping
systems under climate change in California’s Central Valley. Lee and Six (2010)
used DAYCENT to simulate changes in yield and fluxes of greenhouse gases under
A2 (medium-high) and B1 (low) emission scenarios. In total, 18 climate change
predictions for the two scenarios were considered by applying different climate
models and downscaling methods. The following crops were selected: alfalfa (hay),
cotton, maize, winter wheat, tomato, rice, and sunflower. The simulations suggest
that future climate change under the different emission scenarios will lead to a broad
range of impacts on crop yields. By 2007, yields under A2 decreased in comparison
to the 2009 baseline in the following order: cotton (29 %) > sunflower
(27 %) > wheat (17 %) > rice (12 %) > tomato (9 %) > maize (8 %). Yields were
between 5 (alfalfa) and 21 % (cotton) lower under A2 compared to B1. Under A2,
soil carbon (C) storage tended to decrease under climate change due to a decrease in
C inputs to the soil and an increase in soil C decomposition. However, differences in
nitrous oxide (N2O) flux between A2 and B1 were not clear.

Global warming, climate change, and tourism of late have taken the center stage
of academic research. A raging debate was on, apart from the popular writings and
research articles published on the theme. According to the Intergovernmental Panel
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on Climate Change “Warming of the climate system is unequivocal as is now
evident from observations of increases in global average air and ocean tempera-
tures, widespread melting of snow and ice since the mid-20th century.” The con-
ceptual paper by Ramasamy and Swamy (2012) is carried out by the contributions
of 30 selected papers published in tourism-related journals. The approaches of this
manuscript are conceptual and are self-oriented to bring readers an all-encompassed
state of the art. The purpose of this study was to identify and understand the extent
of research carried out to assess the impact of global warming and climate change
on tourism. A three-pronged approach was adopted to collect data. First, a literature
search was conducted on Google search engine; second, referred research journals
in the areas of global warming, climate change, and tourism are consulted, and
third, published reports of national and international scientific organizations and
government organizations are examined. The fortunes of tourism industry, given
the nature of activity, obviously depend on the magnitude and impact of global
warming and climate change. Countries like USA, China, Russia, India, and
Australia are largely attributed for the growing pollution and the consequent
changes in the global climate. Sector- wise, aviation accounts for 40 %, automobiles
32 %, accommodations 21 %, and others 7 % are found to be the major contrib-
utors. Incidentally, all these sectors are related both directly and indirectly to the
tourism industry.

Kumar and Sharma (2013) analysed the impact of climate change on agricultural
productivity in quantity terms, value of production in monetary terms, and food
security in India. The study undertook state-wise analysis based on secondary data
for the duration of 1980–2009. Climate variation affects food grain and non-food
grain productivity and both these factors along with other socioeconomic and
government policy variables affect food security. Food security and poverty are
interlinked with each other as cause and effect and vice versa, particularly, for a
largely agrarian economy of India. Regression results for models proposed in this
study show that for most of the food grain crops, non-food grain crops in quantity
produced per unit of land, and in terms of value of production, climate variation
causes negative impact. The adverse impact of climate change on the value of
agricultural production and food grains indicates food security threat to small and
marginal farming households. The state-wise food security index was also gener-
ated in this study; and econometric model estimation reveals that the food security
index itself also gets adversely affected due to climatic fluctuations.

3.2 Review of Works on Downscaling Techniques

The impact of global warming on the temperature regime of a single site is explored
by Trigo and Palutikof (1999) with reference to Coimbra in Portugal. The basis of
the analysis is information taken from a climate change simulation performed with a
state-of-the-art general circulation model (the Hadley Centre model). First, it is
shown that the model is unable to reproduce accurately the statistics of daily

28 3 Review of Literature



maximum and minimum temperature at the site. Second, using a reanalysis data set,
downscaling models are developed to predict site temperature from large-scale free
atmosphere variables derived from the sea-level pressure and 500 hPa geopotential
height fields. In particular, the relative performances of linear models and nonlinear
artificial neural networks are compared using a set of rigorous validation techniques.
It is shown that even a simple configuration of a two-layer nonlinear neural network
significantly improves the performance of a linear model. Finally, the nonlinear
neural network model is initialized with general circulation model output to con-
struct scenarios of daily temperature at the present day (1970–1979) and for the
future decade (2090–2099). These scenarios are analyzed with special attention to
the comparison of the frequencies of heat waves (days with maximum temperature
greater than 35 °C) and cold spells (days with minimum temperature below 5 °C).

Schoof and Pryor (2001) had carried out study with comparison of two statistical
downscaling methods for daily maximum and minimum surface air temperature,
total daily precipitation, and total monthly precipitation at Indianapolis, in USA.
The analysis is conducted for two seasons, the growing season and the nongrowing
season, defined based on variability of surface air temperature. The predictors used
in the downscaling are indices of the synoptic scale circulation derived from rotated
principal components analysis (PCA) and cluster analysis of variables extracted
from an 18-year record from seven rawinsonde stations in the Midwest region of the
United States. PCA yielded seven significant components for the growing season
and five significant components for the nongrowing season. These PCs explained
86 and 83 % of the original rawinsonde data for the growing and nongrowing
seasons, respectively. Cluster analysis of the PC scores using the average linkage
method resulted in 8 growing season synoptic types and 12 non-growing synoptic
types. The downscaling of temperature and precipitation are conducted using PC
scores and cluster frequencies in regression models and artificial neural networks
(ANNs). Regression models and ANNs yielded similar results, but the data for each
regression model violated at least one of the assumptions of regression analysis. As
expected, the accuracy of the downscaling models for temperature was superior to
that for precipitation. The accuracy of all temperature models was improved by
adding an autoregressive term, which also changed the relative importance of the
dominant anomaly patterns as manifest in the PC scores. Application of the transfer
functions to model daily maximum and minimum temperature data from an inde-
pendent time series resulted in correlation coefficients of 0.34–0.89. In accord with
previous studies, the precipitation models exhibited lesser predictive capabilities.
The correlation coefficient for predicted versus observed daily precipitation totals
was less than 0.5 for both seasons, while that for monthly total precipitation was
below 0.65. The downscaling techniques are discussed in terms of model perfor-
mance, comparison of techniques, and possible model improvements.

Researchers are aware of certain types of problems that arise when modeling
interconnections between general circulation and regional processes, such as pre-
diction of regional, local-scale climate variables from large-scale processes, e.g., by
means of general circulation model (GCM) outputs. A statistical downscaling
approach to monthly total precipitation over Turkey, which is an integral part of
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system identification for analysis of local-scale climate variables, is investigated by
Tatli et al. (2004). Based on perfect prognosis, a new computationally effective
working method is introduced by the proper predictors selected from the National
Centers for Environmental Prediction–National Center for Atmospheric Research
reanalysis data sets, which are simulated as perfectly as possible by GCMs during
the period of 1961–1998. The Sampson correlation ratio is used to determine the
relationships between the monthly total precipitation series and the set of
large-scale processes (namely 500 hPa geopotential heights, 700 hPa geopotential
heights, sea-level pressures, 500 hPa vertical pressure velocities, and 500–1000 hPa
geopotential thicknesses). In the study, statistical preprocessing is implemented by
independent component analysis rather than principal component analysis or
principal factor analysis. The proposed downscaling method originates from a
recurrent neural network model of Jordan that uses not only large-scale predictors,
but also the previous states of the relevant local-scale variables. Finally, some
possible improvements and suggestions for further study are mentioned.

Monthly mean temperatures at 562 stations in China are estimated using a
statistical downscaling technique. The technique used by Li-Jun (2009) was mul-
tiple linear regressions (MLRs) of principal components (PCs). A stepwise
screening procedure is used for selecting the skilful PCs as predictors used in the
regression equation. The predictors include temperature at 850 hPa (T), the com-
bination of sea-level pressure and temperature at 850 hPa (P + T), and the com-
bination of geopotential height and temperature at 850 hPa (H + T). The
downscaling procedure is tested with the three predictors over three predictor
domains. The optimum statistical model is obtained for each station and month by
finding the predictor and predictor domain corresponding to the highest correlation.
Finally, the optimum statistical downscaling models are applied to the Hadley
Centre Coupled Model, version 3 (HadCM3) outputs under the Special Report on
Emission Scenarios (SRES) A2 and B2 scenarios to construct local future tem-
perature change scenarios for each station and month. The results show that
(1) statistical downscaling produces less warming than the HadCM3 output itself;
(2) the downscaled annual cycles of temperature differ from the HadCM3 output,
but are similar to the observation; (3) the downscaled temperature scenarios show
more warming in the north than in the south; and (4) the downscaled temperature
scenarios vary with emission scenarios, and the A2 scenario produces more
warming than the B2, especially in the north of China.

Ojha et al. (2010) studied downscaling models using a linear multiple regression
(LMR) and artificial neural networks (ANNs) for obtaining projections of mean
monthly precipitation to lake-basin scale in an arid region in India. The effective-
ness of these techniques was demonstrated through application to downscale the
predict and (precipitation) for the Pichola lake region in Rajasthan state in India,
which was considered to be a climatically sensitive region. The predictor variables
are extracted from (1) the National Centers for Environmental Prediction (NCEP)
reanalysis dataset for the period 1948–2000, and (2) the simulations from the
third-generation Canadian Coupled Global Climate Model (CGCM3) for emission
scenarios A1B, A2, B1, and COMMIT for the period 2001–2100. The scatter plots
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and cross correlations were used for verifying the reliability of the simulation of the
predictor variables by the CGCM3. The performance of the linear multiple
regression and ANN models was evaluated based on several statistical performance
indicators. The ANN-based models are found to be superior to LMR-based models
and subsequently, the ANN-based model was applied to obtain future climate
projections of the predict and (i.e., precipitation). The precipitation is projected to
increase in future for A2 and A1B scenarios, whereas it is least for B1 and
COMMIT scenarios using predictors. In the COMMIT scenario, the emissions are
held the same as in the year 2000.

An extensive statistical ‘downscaling’ study is done to relate large-scale climate
information from a general circulation model (GCM) to local-scale river flows in
SW France for 51 gaging stations ranging from nival (snow-dominated) to pluvial
(rainfall-dominated) river systems. Tisseuil et al. (2010) studied to select the
appropriate statistical method at a given spatial and temporal scale to downscale
hydrology for future climate change impact assessment of hydrological resources.
The four proposed statistical downscaling models use large-scale predictors
(derived from climate model outputs or reanalysis data) that characterize precipi-
tation and evaporation processes in the hydrological cycle to estimate summary
flow statistics. The four statistical models used are generalized linear (GLM) and
additive (GAM) models, aggregated boosted trees (ABT), and multi-layer percep-
tron neural networks (ANN). These four models were each applied at two different
spatial scales, namely at that of a single flow gaging station (local downscaling) and
that of a group of flow gaging stations having the same hydrological behavior
(regional downscaling). For each statistical model and each spatial resolution, three
temporal resolutions were considered, namely the daily mean flows, the summary
statistics of fortnightly flows, and a daily “integrated approach.” The results show
that flow sensitivity to atmospheric factors is significantly different between nival
and pluvial hydrological systems which are mainly influenced, respectively, by
shortwave solar radiations and atmospheric temperature. The non-linear models
(i.e., GAM, ABT, and ANN) performed better than the linear GLM when simu-
lating fortnightly flow percentiles. The aggregated boosted trees method showed
higher and less variable R2 values to downscale the hydrological variability in both
nival and pluvial regimes. Based on GCM cnrm-cm3 and scenarios A2 and A1B,
future relative changes of fortnightly median flows were projected based on the
regional downscaling approach. The results suggest a global decrease of flow in
both pluvial and nival regimes, especially in spring, summer, and autumn, whatever
the considered scenario. The discussion considers the performance of each statis-
tical method for downscaling flow at different spatial and temporal scales as well as
the relationship between atmospheric processes and flow variability.

Aksornsingchai and Srinilta (2011) studied three statistical downscaling methods
to predict temperature and rainfall at 45 weather stations in Thailand. Methods
under consideration are multiple linear regressions (MLR), support vector machine
with polynomial kernel (SVM-POL), and support vector machine with radial basis
function kernel (SVM-RBF). Large-scale data are from Geophysical Fluid
Dynamics Laboratory (GFDL). Five predictor variables are chosen: (1) temperature,
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(2) pressure, (3) precipitation, (4) evaporator, and (5) net short wave. Accuracy is
assessed by tenfold cross-validation in terms of root-mean-squared error (RMSE)
and correlation coefficient (R). SVM-RBF is the most accurate model. Prediction
accuracy of monthly average rainfall and temperature is satisfying in most part of
the country. Lastly, downscaling models can project long-term trends of monthly
average rainfall and temperature.

The summer rainfall over the middle-lower reaches of the Yangtze River valley
(YRSR) has been estimated by Yan et al. (2011) with a multi-linear regression
model using principal atmospheric modes derived from a 500 hPa geopotential
height and a 700 hPa zonal vapor flux over the domain of East Asia and the West
Pacific. The model was developed using data from 1958 to 1992 and validated with
an independent prediction from 1993 to 2008. The independent prediction was
efficient in predicting the YRSR with a correlation coefficient of 0.72 and a relative
root-mean-square error of 18 %. The downscaling model was applied to two
general circulation models (GCMs) of Flexible Global Ocean-Atmosphere-Land
System Model (FGOALS) and Geophysical Fluid Dynamics Laboratory coupled
climate model version 2.1 (GFDL-CM2.1) to project rainfall for present and
future climate under B1 and A1B emission scenarios. The downscaled results
provided a closer representation of the observation compared to the raw models in
the present climate. In addition, compared to the inconsistent prediction directly
from different GCMs, the downscaled results provided a consistent projection for
this half-century, which indicated a clear increase in the YRSR. Under the B1
emission scenario, the rainfall could increase by an average of 11.9 % until 2011–
2025 and 17.2 % until 2036–2050 from the current state; under the A1B emission
scenario, rainfall could increase by an average of 15.5 % until 2011–2025 and
25.3 % until 2036–2050 from the current state. Moreover, the increased rate was
faster in the following decade (2011–2025) than the latter of this half-century
(2036–2050) under both emissions.

Downscaling is a technique for obtaining local-scale hydrological variables from
coarser-scale atmospheric variables that are generated by general circulation
models. Mainly there are two downscaling methods, i.e., dynamic downscaling and
statistical downscaling. Statistical downscaling offers less computational work
compared to dynamic downscaling and it also provides a platform to use ensemble
GCM outputs. Devak and Dhanya (2014), in their paper, compared the results
generated from two methods, i.e., by support vector machine (SVM) and k-Nearest
Neighbor (KNN), which covers some parts of Chhattisgarh, Orissa, Bihar, and
Maharashtra state. The above two models are applied at five different locations in
Mahanadi Basin. Bias correction by equidistant CDF matching method is also
applied to the future projection. Calibration and validation of the model incorpo-
rates the result from Canadian global climate model (CanCM4) for historical sce-
nario and future projections are done using predictors from RCP 4.5 scenario.
Various performance measures like, normalized mean square error (NMSE) and
correlation coefficient is also taken into account. Kolmogorov Smirnov test is also
performed for the two models.
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3.3 Review of Works on Multiple Linear Regressions

Meteorological data mining is a form of data mining concerned with finding hidden
patterns inside largely available meteorological data, so that the information
retrieved can be transformed into usable knowledge. Weather is one of the mete-
orological data that is rich in important knowledge. The most important climatic
element which impacts on agricultural sector is rainfall. Thus, rainfall prediction
becomes an important issue in agricultural country like India. Dutta and Tahbilder
(2014) used data mining technique in forecasting monthly rainfall of Assam. This
was carried out using traditional statistical technique—multiple linear regression.
The data include six-year period (2007–2012) collected locally from Regional
Meteorological Center, Guwahati, Assam, India. The performance of this model is
measured in adjusted R-squared. Our experiment results show that the prediction
model based on multiple linear regression indicates acceptable accuracy.

Agrarian sector in India is facing rigorous problem to maximize the crop pro-
ductivity. More than 60 % of the crop still depends on monsoon rainfall. Recent
developments in information technology for agriculture field has become an
interesting research area to predict the crop yield. The problem of yield prediction is
a major problem that remains to be solved based on available data. Data mining
techniques are the better choices for this purpose. Different data mining techniques
are used and evaluated in agriculture for estimating the future year’s crop pro-
duction. Ramesh and Vardhan (2015) presented a brief analysis of crop yield
prediction using multiple linear regression (MLR) technique and density-clustering
technique for the selected region, i.e., East Godavari district of Andhra Pradesh in
India.

3.4 Review of Works on Principal Component Analysis
and Principal Component Regression

Tenderness is the most important factor affecting consumer prediction of eating
quality of meat. Park et al. (2001) developed the principal component regression
(PCR) models to relate near-infrared (NIR) reflectance spectra of raw meat to
Warner–Bratzler (WB) shear force measurement of cooked meat. NIR reflectance
spectra with wavelengths from 1100 to 2498 nm were collected on 119 longissimus
dorsi meat cuts. The first principal component (or factor) from the absorption
spectra log(1/R) showed that the most significant variance from the spectra of tough
and tender meats were due to the absorptions of fat at 1212, 1722, and 2306 nm and
water at 1910 nm. The distinctive fat absorption peaks at 1212, 1722, 1760, and
2306 nm were found in the second factor of the second derivative spectra of meat.
In addition, the local minima in the second principal component of the second
derivative spectra showed the importance of water absorption at 1153 nm and
protein absorption at 1240, 1385, and 1690 nm. When the absorption spectra
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between 1100 and 2498 nm were used, the coefficient of determination (R2) of the
PCR model to predict WB shear force tenderness was 0.692. The R2 was 0.612
when the spectra between 1100 and 1350 nm were analysed. When the second
derivatives of the spectral data were used, the R2 of the PCR model to predict WB
shear force of the meat was 0.633 for the full spectral range of 1100–2498 nm and
0.616 for the spectral range of 1100–1350 nm.

Webster (2001) studied principal component regression analysis to examine the
relative contributions of 11 ranking criteria used to construct the U.S. News &
World Report (USNWR) tier rankings of national universities. The main finding of
the study was that the actual contributions of the 11 ranking criteria examined
difference substantially from the explicit USNWR weighting scheme because of
severe and pervasive multicollinearity among the ranking criteria. USNWR assigns
the greatest weight to academic reputation. However, generated first principal
component eigenvalues of tier rankings indicate that the most significant ranking
criterion was the average SAT scores of enrolled students. This result was signif-
icant since admission requirements are policy variables that indirectly affect, for
example, admission applications, yields, enrollment, retention, tuition-based rev-
enues, and alumni contributions.

Principal component analysis is one of the most widely applied tools in order to
summarize common patterns of variation among variables. Several studies have
investigated the ability of individual methods, or compared the performance of a
number of methods, in determining the number of components describing common
variance of simulated data sets. Peres Neto et al. (2005) identified a number of
shortcomings related to these studies and conducted an extensive simulation study
where they compared a larger number of rules available and developed some new
methods. In total, we compare 20 stopping rules and propose a two-step approach
that appears to be highly effective. First, a Bartlett’s test is used to test the sig-
nificance of the first principal component, indicating whether or not at least two
variables share common variation in the entire data set. If significant, a number of
different rules can be applied to estimate the number of non-trivial components to
be retained. However, the relative merits of these methods depend on whether data
contain strongly correlated or uncorrelated variables. Also estimated the number of
non-trivial components for a number of field data sets so that, one can evaluate the
applicability of our conclusions based on simulated data.

As a useful alternative to the Cox proportional hazards model, the linear
regression survival model assumes a linear relationship between the covariates and
a known monotone transformation, for example, logarithm of an event time of
interest. Ma (2007), in their article, studied the linear regression survival model
with right censored survival data, when high-dimensional microarray measurements
are present. Such data may arise in studies investigating the statistical influence of
molecular features on survival risk. They proposed using the principal component
regression (PCR) technique for model reduction based on the weight least squared
Stute estimate. Compared with other model reduction techniques, the PCR
approach was relatively insensitive to the number of covariates and hence suitable
for high-dimensional microarray data. Component selection based on the
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nonparametric bootstrap, and model evaluation using the time-dependent ROC
(receiver operating characteristic) technique are investigated. They demonstrated
the proposed approach with datasets from two microarray gene expression profiling
studies of lymphoma cancers.

The main purpose of this study by Mendes (2011) was to show that how one can
use multivariate multiple linear regression analysis (MMLR) based on principal
component scores to investigate relations between two data sets (i.e., pre- and posts
laughter traits of Ross 308 broiler chickens). Principal component analysis
(PCA) was applied to predictor variables to avoid multicollinearity problem.
According to results of the PCA, out of 7 principal components, only the first three
components (PC1, PC2, and PC3) with eigenvalue greater than 1 were selected
(explained 89.45 % of the variation) for MMLR analysis. Then, the first three prin-
cipal component scores were used as predictor variables in MMLR. The results of
MMLR analysis showed that shank width, breast circumference, and body weight
had a similar linear effect on predicting the post-slaughter traits (P = 0.746). As a
result, since the animals had high value of shank width, breast circumference, and
body weight, it might be probable that their post-slaughter traits namely heart weight,
liver weight, gizzard weight, and hot carcass weight were also expected to be high.

Principal component analysis (PCA) and multiple linear regressions were applied
on the surface water quality data by Mustapha and Abdu (2012) with the aim of
identifying the pollution sources and their contribution toward water quality varia-
tion. Surface water samples were collected from four different sampling points along
Jakara River. Fifteen physico-chemical water quality parameters were selected for
analysis: dissolved oxygen (DO), biochemical oxygen demand (BOD5), chemical
oxygen demand (COD), suspended solids (SS), pH, conductivity, salinity, temper-
ature, nitrogen in the form of ammonia (NH3), turbidity, dissolved solids (DS), total
solids (TS), nitrates (NO3), chloride (Cl), and phosphates (PO4

3). PCA was used to
investigate the origin of each water quality parameters and yielded five varimax
factors with 83.1 % total variance, and in addition PCA identified five latent pol-
lution sources namely: ionic, erosion, domestic, dilution effect, and agricultural
run-off. Multiple linear regressions identified the contribution of each variable with
significant values.

In recent decades, particulate matter is one of the prevalent pollutants recorded
throughout Malaysia. The development of models to predict particulate matter less
than and equal 10 μm (PM10) concentration is thus very useful because it can
provide early warning to the population and for input into decision regarding
abatement measures and air quality management. The aim of the study by Ul-Saufie
et al. (2011) was to improve the predictive power of multiple linear regression
models using principal components as input for predicting PM10 concentration for
the next day. The developed model was compared with multiple linear regression
models. Performance indicator such as prediction accuracy (PA), coefficient of
determination (R2), index of agreement (IA), normalized absolute error (NAE) and
root-mean-square rrror (RMSE) were used to measure the accuracy of the models.
Results showed that the use of principal component as inputs improved multiple
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linear regression models prediction by reducing their complexity and eliminating
data collinearity.

Kelechi (2012), in their paper, used the regression analysis and principal com-
ponent analysis (PCA) to examine the possibility of using few explanatory variables
to explain the variation in the dependent variable. It applied regression analysis and
principal component analysis (PCA) to assess the yield of turmeric, from National
Root Crop Research Institute Umudike in Abia State, Nigeria. This was done by
estimating the coefficients of the explanatory variables in the analysis. The
explanatory variables involved in this analysis show a multiple relationship
between them and the dependent variable. A correlation table was obtained from
which the characteristic roots were extracted. Also, the orthonormal basis was used
to establish the linearly independent relationships of the variables. The regression
analysis shows in details the constant and the coefficients of the three explanatory
variables. On the other hand, the principal component analysis estimates the first
principal component and second principal component, and both components
accounted for 71.4 % of the total variation. The regression analysis and principal
component analysis (PCA) yielded good estimates, which lead to the structural
coefficient of the regression model. The study shows that regression analysis and
principal component analysis (PCA) use few explanatory variables to explain
variations in a dependent variable and are therefore efficient tools for assessing
turmeric yield depending on the set objective. But that PCA is more efficient, since
it uses fewer variables to achieve the same result.

Accurate forecast of water demand is very crucial in developing a water resource
management strategy to check the balance of future water supply and demand to
ensure proper water supplies to the people. In order to forecast water demand,
different models have been adopted in the literature. Among these the multiple
regression analysis was quite popular for long term water demand forecasting. In
spite of their evident success in modeling water demands, it can face difficulties in
the case of multicollinearity, which implies highly correlated variables. Since water
demand depends on many factors such as population, household size, rainfall,
temperature, age of population, education, water price, and policy, a multi-
collinearity problem may arise during the development of a multiple regression
model which may lead to the incorrect estimation of future water demand. To avoid
multicollinearity problem, principal component regression analysis has been used in
several environmental studies which demonstrated its ability to eliminate the
multicollinearity problem and to produce better model results. However, application
of principal component regression in water demand forecasting is limited. In their
study, Haque et al. (2013) developed principal component regression model by
combining multiple linear regression and principal component analysis to forecast
future water demand in the Blue Mountains Water Supply systems in New South
Wales, Australia. In addition, performances of the developed principal component
regression model were compared with multiple linear regression models by
adopting several model evaluation statistics such as relative error, bias, Nash-
Sutcliffe efficiency, and accuracy factor. It was found that the developed principal
component regression model was able to predict future water demand with a higher
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degree of accuracy with an average relative error, bias, Nash-Sutcliffe efficiency,
and accuracy factor values of 3.4, 2.92, 0.44, and 1.04 %, respectively. Moreover, it
was found that the principal component regression model performed better than the
multiple linear regression models and could be used to eliminate the multi-
collinearity problem. The method presented in their paper can be adapted to other
cities in Australia and the world.

Application of principal component analysis in developing statistical models for
forecasting crop yield has been demonstrated. The time series data on wheat yield
and weekly weather variables, viz., minimum and maximum temperature, relative
humidity, wind- velocity and sunshine hours pertaining to the period 1990–2010 in
Faizabad district of Uttar Pradesh have been used in this study. Weather indices
have been constructed using weekly data on weather variables. Yadav et al.
(2014) developed four models using principal component analysis as regressor
variables including time trend and wheat yield as regressand. The model 1 and 3
have been found to be most appropriate on the basis of R2adj, percent deviation of
forecast, RMSE (%), and PSE for the forecast of wheat yield 2 months before the
harvest of the crop.
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Chapter 4
Study Area and Data Collection

Abstract This chapter contains the brief overview of agroclimatic zones of India
followed by the subagroclimatic zones of Gujarat. Thereafter, the slight description
of the study area and the data required for the study are provided.

Keywords Agroclimatic zones � Subagroclimatic zones

4.1 Agroclimatic Zones by the Planning Commission

The Planning Commission, as a result of the midterm appraisal of the planning
targets of the Seventh Plan, has divided the country into 15 broad agroclimatic
zones based on physiography, soils, geological formation, climate, cropping pat-
terns, and development of irrigation and mineral resources for broad agricultural
planning and developing future strategies. Fourteen zones were in the main land
and the remaining one in the islands of Bay of Bengal and the Arabian Sea. The
agroclimatic zones of India are illustrated in Fig. 4.1.

4.2 Subagroclimatic Zones of Gujarat

Gujarat lies in the agroclimatic zone-XIII, which is called as “Gujarat Plains and
Hills region”. Traditionally Gujarat was divided into three regions, namely, (i) the
mainland plains extending from the Rann of Kutch and the Aravalli Hills in the
north to Damanganga in the south, (ii) the hilly peninsular region of Saurashtra and
the rocky areas of Kutch and (iii) the northeastern hill tract. Now it is divided into
seven subagroclimatic zones: Southern Hills (Dangs, Valsad), Southern Gujarat,
Middle Gujarat, North Gujarat, Northwest Arid, North Saurashtra and South
Saurashtra. Most of Gujarat falls under mega thermic category with mean soil
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temperature exceeding 28 °C. Air temperature in January normally remains over
10 °C. Maximum temperature in May goes over 40 °C in north and Northwest
Gujarat. It is more moderate in the coastal area of Saurashtra and South Gujarat.
Rainfall is the most dominant climatic factor. Average rainfall is 828 mm which is
received in 35 days mostly from June to September with a coefficient of variation
(CV) of 50 %. Spatially it ranges from 300 mm in northwest to 2000 mm in
southeast. 12 out of 26 districts of Gujarat are drought prone. In years of poor
rainfall, the yields of important crops like groundnut which are mainly rainfed can
reduce by 70 % or more. The details of the subagroclimatic zones are given in
Fig. 4.2 and discussed thereafter.

Fig. 4.1 Agroclimatic zones of India
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4.2.1 Southern Hills

This is small but largely a tribal belt covering the districts of the Dangs and Valsad.
The area receives about 1793 mm of rains and the climate is semiarid, dry, sub-
humid, and the soil is deep black, coastal alluvium. About 43 % of the area is under
forests and a similar proportion is cultivated. Irrigation is spread over about 24 % of
the cultivated area.

4.2.2 Southern Gujarat

This subzone, covering the districts of Surat and Bharuch, has seen rapid industrial
development in the recent decade or so. Over half of the land is cultivated and about
a fifth of the cultivated area is irrigated. The area receives little less than 974 mm of
annual rainfall. The climate is semiarid, dry, subhumid, and the soil is deep black,
coastal alluvium.

Fig. 4.2 Subagroclimatic zones of Gujarat
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4.2.3 Middle Gujarat

Although this area is well developed industrially, it is also the most agrarian in
Gujarat. Nearly two-thirds of the area is under cultivation and nearly a third of this
is irrigated. Rains reduce progressively as one moves into North Gujarat. In the
middle areas, which include Vadodara, Panch Mahals, and Kheda districts, the
precipitation is of the order of 904 mm annually. The climate is semiarid and the
soil is medium black.

4.2.4 North Gujarat

This subzone covers Banaskantha, Mehsana, Sabarkantha, Gandhinagar, and
Ahmedabad districts. Land productivity is very low. Rainfall is only around
735 mm per annum. The climate is arid to semiarid and the soil is gray brown
coastal alluvium. About 63 % of the area is cultivated and a little over a third of this
is irrigated. The chief source of irrigation is ground water. However, in some areas,
there is overdrawal of ground water.

4.2.5 Northwest Arid

This is the vast expanse of the Kachchh district. Rainfall is only about 340 mm per
annum, the climate is arid to semiarid and the soil is gray brown, deltaic alluvium.
Less than 13 % of the area is cultivated. Nearly one-third of the geographical area is
wastelands.

4.2.6 North Saurashtra

This subzone includes the districts of Amreli, Bhavnagar, Jamnagar, Rajkot, and
Surendranagar. The region receives 537 mm of rainfall and the climate is dry,
subhumid. The soil is medium black calcareous. About 63 % of the area is culti-
vated, of which 24 % is irrigated. Agricultural productivity is relatively high in
Saurashtra essentially because of the cultivation of groundnut in this region.

4.2.7 South Saurashtra

The South Saurashtra subzone includes only the district of Junagadh at the
southwestern end of the state. This area receives little better rain than the nonsouth
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Gujarat parts of the state. The annual precipitation is about 844 mm, the climate is
dry, subhumid, and the soil is coastal alluvium, medium black. About 56 % of the
region is cultivated.

The selected agroclimatic features of subzones of Gujarat Plains and hills region
are shown in Table 4.1.

4.3 Study Area

Gujarat is located on the west coast of India surrounded by the Arabian Sea in the
west, Rajasthan in the north and northeast, Madhya Pradesh in the east, and
Maharashtra in the south and southeast. It is situated between 20° 1′ and 24° 7′
north latitudes and 68° 4′ and 74° 4′ east longitudes.

Gujarat is a vibrant state in agricultural sector in terms of gross production of
agricultural produce, productivity per hectare, adoption of new technology and
innovations, crop diversification, introduction of new crops, postharvest technology
and management. Gujarat has a diversified cropping pattern which includes the
food grains and pulses, cash crops, and oil seeds. Major food grain crops are wheat,
paddy, bajara, maize, etc., and pigeon pea, gram, greengram are the major pulses
grown in the state. Cotton, castor, groundnut, mustard are the important oilseed
crops of the state and the state has notable achievement in production and pro-
ductivity scenario in cotton, castor, and groundnut. Cotton is an important crop of
the state, which covers 26.33 lakh hectare area under cultivation and produced
98.25 lakh bales during 2010–11, which is 1/3rd production of the country. This
state has recognition for highest productivity in the world for castor which is
1984 kg/ha. This state produced 84 % of the total castor production of the country,

Table 4.1 Selected agroclimatic features of subzones of Gujarat plains and hills region

No. Subzone Rainfall Climate Soil Crops

1 Southern
hills

1793 Semiarid to
dry subhumid

Deep black,
coastal alluvium

Rice, ragi,
sugarcane, jowar

2 Southern
Gujarat

974 Semiarid to
dry subhumid

Deep black,
coastal alluvium

Jowar, arhar,
cotton, wheat

3 Middle
Gujarat

904 Semiarid Medium black Rice, maize,
bajra, cotton

4 South
Saurashtra

844 Dry subhumid Coastal alluvium,
medium black

Groundnut,
wheat, bajra,
cotton

5 North
Gujarat

735 Arid to
semiarid

Gray brown,
coastal alluvium

Bajra, cotton,
jowar, wheat

6 North
Saurashtra

537 Dry subhumid Medium black Bajra, jowar,
groundnut, cotton

7 Northwest
Arid

340 Arid to
semiarid

Gray brown,
deltaic alluvium

Bajra, groundnut,
jowar, cotton
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with an area of 4.91 lakh hectare and 9.71 lakh MT production. This state has a
30 % share in the country for production of groundnut, with 33.76 lakh MT
production through area coverage of 18.05 lakh hectare and has achieved 100 lakh
MT food grain production first time in a year, too.

The entire state of Gujarat is divided into the various agroclimatic zones.
Vallabh Vidyanagar is located in the Anand district and lies in Middle Gujarat
agroclimatic zone-III of Gujarat state. Vallabh Vidyanagar is located at 22° 32′ N
latitude, 72° 54′ E longitude at an altitude of 34 m above mean sea level. It is
bounded on the north by the Kheda district, on the south by the Gulf of Khambhat,
on the West by Ahmedabad district, and on the East by Vadodara district. The
climate of Vallabh Vidyanagar is semiarid with fairly dry and hot summer. Winter
is fairly cold and sets in, in the month of November and continues till the middle of
February. Summer is hot and dry which commences from mid of February and ends
by the month of June. May is the hottest month with mean maximum temperature
around 40.08 °C. The average rainfall is 853 mm. The soil of the region is popularly
known as Goradu soil. It is alluvial in origin. The texture of the soil is sandy loam
and black. The soil is deep enough to respond well to anuring and variety of crops
of the tropical and subtropical regions. The soil is low in organic carbon and
nitrogen, medium in available phosphorus and available sulfur. In this area paddy,
tur, cotton, groundnut, and til are grown in kharif season. In Rabi season wheat,
gram, and jowar are grown. Especially, in summer season bajara and groundnut are
grown. Tobacco is grown from August and harvested in March. In last few years,
there is an increase in amount of rainfall which facilitated in agriculture production
and various irrigation schemes.

4.4 Data Collection

The data required for study are collected from state water data centre and Krishi
Bhavan, Gandhinagar. Long term climatological yearly data are collected for
Vallabh Vidyanagar, Anand district of Gujarat. The basic annual climatological
data obtained comprises of maximum and minimum temperature (°C), relative
humidity (%), wind speed (Kmph), and sunshine hours (hours). The yield data of
various crops grown in Vallabh Vidyanagar are collected from the Krishi Bhavan,
Gandhinagar from 1981 to 2006.
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Chapter 5
Methodology

Abstract This chapter gives the overview on the methodology to predict the yield
of cotton using multiple linear regression and principal component regression,
which is followed by models’ performance indices to estimate the best model. The
climatological parameters considered to predict the yield of cotton were maximum
temperature, minimum temperature, wind velocity, relative humidity, and sunshine
hours. The methodology of MLR and PCR models to predict the yield of cotton,
considering the above-given climatological parameters, as input and yield of cotton
as output, is discussed. The model’s performances were evaluated for training and
validation (70–30 %) using performance indices such as root mean squared error
(RMSE), coefficient of correlation (r), coefficient of determination (R2), and dis-
crepancy ratio (D.R.).

Keywords MLR model methodology � PCR model methodology � Performance
indices

5.1 Multiple Linear Regression Model

Multiple linear regression is an extension of simple linear regression in which more
than one independent variable is used to predict single dependent variable “Y.” The
predicted value of “Y” is a linear transformation of the variables such that the sum
of squared deviations of the observed and predicted “Y” is a minimum. The
computations are more complex, however, because the interrelationships among all
variables must be taken into account in the weights assigned to the variables. Here
maximum temperature, minimum temperature, wind velocity, relative humidity,
and sunshine hours are selected as independent variables x1, x2, x3, x4, x5 and yield
of cotton as dependent variable y. The equation will be of the form as given below.

y ¼ d0 þ d1x1 þ d2x2 þ d3x3 þ d4x4 þ d5x5 ð5:1Þ

© The Author(s) 2016
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The coefficients in the above-given equation are obtained by multiple linear
regression which are thereafter put in Eq. (5.1) to estimate the value of y for known
values of independent variables.

5.2 Principal Component Regression Model

The variables under study are highly correlated. It may be useful to transform the
original set of variables to a new set of uncorrelated variables called principal
components. These new variables are linear combinations of original variables and
are derived in decreasing order of importance, so that the first principal component
accounts for as much as possible of the variation in the original data.

The first few principal components account for most of the variability in the
original data. These few principal components can then replace the initial p vari-
ables in subsequent analysis and thus, reducing the effective dimensionality of the
problem. Further, since Principal Component Analysis transforms original set of
variables to new set of uncorrelated variables, it is worth stressing that if original
variables are uncorrelated, then, there is no point in carrying out principal com-
ponent analysis.

In order to find principal components, the covariance matrix of the selected data
is generated. Also, eigenvalues and eigenvectors of covariance matrix are found and
principal components of the data considered are derived.

It can be seen that the total variation explained by principal components is same
as that explained by original variables. It could also be proved mathematically as
well as empirically that the principal components are uncorrelated. The proportion
of total variation accounted for, by the first principal component, z1 is

k1
k1þ k2þ k3þ k4þ k5þ k6

The proportion of total variation accounted for, by the second principal com-
ponent, z2 is

k1þ k2
k1þ k2þ k3þ k4þ k5þ k6

Hence, the first or first two principal components, i.e., z1 and z2, could replace
variables which are maximum temperature, minimum temperature, relative
humidity, wind speed, and sunshine hours by sacrificing negligible information
about the total variation in the system. Thus, the whole data will be converted to a
new data set with two principal components. The larger eigenvalue is associated
with the first principal component. The next larger eigenvalue is associated with the
second principal component.
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The derived principal components z1 and z2, are then considered as regressors
and the dependent variable as regressand. The principal component regression is
carried out by using the above said regressors and regressand in curve expert, and a
series of regression models are developed. The model with maximum correlation
coefficient and minimum standard error and hence having placed at Rank 1, is
chosen as the best model.

5.3 Performance Indices

The results of the model developed in this study were evaluated by means of
following performance indices:

5.3.1 Root Mean Squared Error (RMSE)

The root mean squared error (RMSE) (also called the root mean square deviation,
RMSD) is a frequently used measure of the difference between values predicted by
a model and the values actually observed from the environment that is being
modelled. These individual differences are also called residuals, and the RMSE
serves to aggregate them into a single measure of predictive power.

The RMSE of a model prediction with respect to the estimated variable Xmodel is
defined as the square root of the mean squared error. The equation will be of the
form as given below in Eq. (5.2).

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn

i¼1ðxobs � xmodelÞ2
n

s
ð5:2Þ

where Xobs is observed values and Xmodel is modelled values at time/place i. Also n
is the number of observations.

However, the RMSE values can be used to distinguish model performance in a
calibration period with that of a validation period as well as to compare the indi-
vidual model performance to that of other predictive models.

5.3.2 Correlation Coefficient (r)

Correlation, often measured as a correlation coefficient, indicates the strength and
direction of a linear relationship between two variables (for example, model output
and observed values). A number of different coefficients are used for different
situations. The best known is the Pearson product-moment correlation coefficient
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(also called Pearson correlation coefficient or the sample correlation coefficient),
which is obtained by dividing the covariance of the two variables by the product of
their standard deviations. If one has a series of n observations and n model values,
then the Pearson product-moment correlation coefficient can be used to estimate the
correlation between model and observations. The equation will be of the form as
given below in Eq. (5.3).

r ¼
Pn

i¼1ðxi � �xÞðyi � �yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðxi � �xÞ2 Pn

i¼1ðyi � �yÞ2
q ð5:3Þ

where xi is observed values and yi is modelled values at time/place i, �x and �y is the
average value of observed and predicted values.

The correlation is +1 in the case of a perfect increasing linear relationship, and
−1 in case of a decreasing linear relationship, and the values in-between indicates
the degree of linear relationship between model and observations. A correlation
coefficient of zero means that there is no linear relationship between the variables.

5.3.3 Coefficient of Determination (R2)

A measure used in statistical model analysis to assess how well a model explains
and predicts future outcomes. It is indicative of the level of explained variability in
the model. The coefficient, also commonly known as R-square, is used as a
guideline to measure the accuracy of the model. The equation will be of the form as
given below in Eq. (5.4).

R2 ¼
Pn

i¼1 yi � �yð Þðŷi � ~yÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPn
i¼1ðyi � �yÞ2 Pn

i¼1ðŷi � ~yÞ2
q

0
B@

1
CA
2

ð5:4Þ

5.3.4 Discrepancy Ratio (D.R.)

It is the ratio of observed values (yi) and predicted values (�yi) of the dependent
variables. The equation will be of the form as given below in Eq. (5.5).

D:R. =

Pn
i¼1 yiPn
i¼1 �yi

ð5:5Þ
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5.4 Analysis of MLR and PCR Models

The whole data set has been divided into 70–30 %. That means 70 % data has been
considered for training and the remaining 30 % data has been selected for validation
of the models.

• The root mean squared error value obtained during training and validation
should be almost equal and it should be numerically as minimum as possible.

• The coefficient of correlation should be as maximum as possible in the range of
0 to 1, and preferably above 0.80 and as possible as nearer to unity.

• The coefficient of determination should be nearer to unity.
• The discrepancy ratio should also be nearer to unity.

The models were evaluated using the above performance indices and the best
model will be concluded and recommended for estimation of the dependent
variable.
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Chapter 6
Results and Analysis

Abstract This chapter illustrates the results and analysis of the study. The MLR
models are developed and the results are given. The performance indices for theMLR
model are analyzed. This is followed by the development of PCRmodel and the same
are analyzed using the above said indices. The outcomes are statistically analyzed
and their accuracy are assessed and discussed during training and validation.

Keyword Trained MLR model � Validated MLR model � Trained PCR model �
Validated PCR model

6.1 MLR Model During Training and Validation

Multiple linear regression is done using maximum temperature, minimum tem-
perature, relative humidity, sunshine hours, and wind speed as independent vari-
ables and crop yield as dependent variable.

The generalized form of multiple linear regression is as follows:

y ¼ d0 þ d1x1 þ d2x2 þ d3x3 þ d4x4 þ d5x5 ð6:1Þ

The coefficients of MLR model developed during training, i.e., 70 % of dataset
considered, are shown in Table 6.1.

6.1.1 Multiple Linear Regression During Training

The results of MLR model for observed and predicted yield of cotton during
training are shown in Table 6.2.

The results of the performance indices, viz., root mean squared error (RMSE),
coefficient of correlation (r), coefficient of determination (R2), and discrepancy ratio
(DR) for the MLR model developed during training are given below:

© The Author(s) 2016
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RMSE ¼ 46:6989 kg=ha; r ¼ 0:6664; R2 ¼ 0:4440 and D:R: ¼ 0:9999

The comparison of observed yield of cotton and predicted yield of cotton using
MLR model during training is shown in Figs. 6.1 and 6.2.

6.1.2 Multiple Linear Regression During Validation

The results of MLR model for observed and predicted yield of cotton during
validation are shown in Table 6.3.

Table 6.1 Coefficients of
MLR model developed

Coefficients Value

d0 114.5882

d1 5.52183

d2 11.88686

d3 2.178833

d4 −74.7393

d5 −9.44541

Table 6.2 Observed and
predicted yield of cotton using
MLR during training

Year Observed yield (Kg/ha) Predicted yield (Kg/ha)

1981 170 233.02

1982 175 210.80

1983 179 205.89

1984 200 263.53

1985 263 267.33

1986 275 255.63

1987 290 231.57

1988 305 331.09

1989 319 284.30

1990 326 265.25

1991 218 305.24

1992 274 246.68

1993 277 232.59

1994 340 298.00

1995 300 304.99

1996 293 334.21

1997 323 331.15

1998 410 332.70
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Fig. 6.1 Observed and predicted yield of cotton using MLR during training

Fig. 6.2 Scatter plot of observed and predicted yield of cotton using MLR during training

Table 6.3 Observed and
predicted yield of cotton using
MLR during validation

Years Observed yield (Kg/ha) Predicted yield (Kg/ha)

1999 264 294.41

2000 219 340.02

2001 205 318.94

2002 210 341.37

2003 220 258.97

2004 265 353.46

2005 339 388.71

2006 232 405.92
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The results of the performance indices, viz., root mean squared error (RMSE),
coefficient of correlation (r), coefficient of determination (R2), and discrepancy ratio
(DR) for the developed MLR model during validation are given below:

RMSE ¼ 104:80 kg=ha; r ¼ 0:3985; R2 ¼ 0:1588 and D:R: ¼ 0:7232

The comparison of observed yield of cotton and predicted yield of cotton using
MLR model during validation is shown in Figs. 6.3 and 6.4.

Fig. 6.3 Observed and predicted yield of cotton using MLR during validation

Fig. 6.4 Scatter plot of observed and predicted yield of cotton using MLR during validation
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6.2 PCR Model During Training and Validation

The variables under study are highly correlated. So it may be useful to transform the
dataset of variables to a new set of uncorrelated variables called principal com-
ponents. These new variables are linear combinations of original variables and are
derived in decreasing order of importance so that the first principal component
accounts for as much as possible of the variation in the original data.

Now, the variance–covariance matrix is as follows:
Covariance matrix:

0:7991 0:3548 0:2052 0:1563 �0:083 4:8282
0:3548 0:5392 1:4073 0:1798 �0:292 9:2796
0:2052 1:4073 32:204 1:8038 �1:656 50:599
0:1563 0:1798 1:8038 0:6105 �0:18 �9:34
�0:083 �0:292 �1:656 �0:18 0:4376 �8:773
4:8282 9:2796 50:599 �9:34 �8:773 3442:3

2
6666664

3
7777775

The eigenvalues (λ) and eigenvectors (ai) of the above matrix are obtained for
given dataset and are given as follows in decreasing order along with the corre-
sponding eigenvectors.

Eigenvalues (λ):

3443:2
31:7
1:1
0:5
0:4
0:1

2
6666664

3
7777775

Eigenvectors (ai):

0:0014 0:0027 0:0148 �0:0027 �0:003 0:9999
0:0052 0:414 0:9958 0:0628 �0:049 �0:015
0:7495 0:5218 �0:058 0:3218 �0:243 �0:001
0:5632 �0:188 0:0687 �0:5673 0:567 �0:001
0:1475 �0:465 �0:006 0:7484 0:45 0:0043
0:3151 �0:689 0:0016 �0:1027 �0:644 �0:0005

2
6666664

3
7777775

Therefore, the above eigenvalues and eigenvectors may now be represented as
below.

k1 ¼ 3443:2; k2 ¼ 31:7; k3 ¼ 1:1; k4 ¼ 0:5; k5 ¼ 0:4; k6 ¼ 0:1
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a1 ¼ ð0:0014; 0:0027; 0:0148;�0:0027;�0:0030; 0:9999Þ

a2 ¼ ð0:0052; 0:4140; 0:9958; 0:0628;�0:0490;�0:0150Þ

a3 ¼ ð0:7495; 0:5218;�0:0580; 0:3218;�0:2430;�0:0010Þ

a4 ¼ ð0:5632;�0:1880; 0:0687;�0:5673; 0:5670;�0:0010Þ

a5 ¼ ð0:1475;�0:4650;�0:0060; 0:7484; 0:4500; 0:0043Þ

a6 ¼ ð0:3151;�0:6890; 0:0016;�0:1027;�0:6440;�0:0005Þ

The principal components for data will be

z1 ¼ 0:0014x1 þ 0:0027x2 þ 0:0148x3 � 0:0027x4 � 0:003x5 þ 0:9999x6

z2 ¼ 0:0052x1 þ 0:4140x2 þ 0:9958x3 þ 0:0628x4 � 0:0490x5 � 0:0150x6

z3 ¼ 0:7495x1 þ 0:5218x2 � 0:0580x3 þ 0:3218x4 � 0:2430x5 � 0:0010x6

z4 ¼ 0:5632x1 � 0:1880x2 þ 0:0687x3 � 0:5673x4 þ 0:5670x5 � 0:0010x6

z5 ¼ 0:1475x1 � 0:4650x2 � 0:0060x3 þ 0:7484x4 þ 0:4500x5 þ 0:0043x6

z6 ¼ 0:3151x1 � 0:6890x2 þ 0:0016x3 � 0:1027x4 � 0:6440x5 � 0:0005x6

The variance of principal components will be eigenvalues, i.e.,

var z1ð Þ ¼ 3443:2; var z2ð Þ ¼ 31:7; var z3ð Þ ¼ 1:1; var z4ð Þ ¼ 0:5;

var z5ð Þ ¼ 0:4; var z6ð Þ ¼ 0:1

The total variation explained by original variables is

var x1ð Þþ var x2ð Þþ var x3ð Þþ var x4ð Þþ var x5ð Þþ var x6ð Þ ¼ 3476:90

The total variation explained by principal components is

k1 þ k2 þ k3 þ k4 þ k5 þ k6 ¼ 3477

As such, it can be seen that the total variation explained by principal components
is same as that explained by original variables. It could also be proved mathe-
matically as well as empirically that the principal components are uncorrelated. The
proportion of total variation accounted for by the first principal component is

k1
k1 þ k2 þ k3 þ k4 þ k5 þ k6

¼ 0:9902
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Continuing, the first two components account for a proportion

k1 þ k2
k1 þ k2 þ k3 þ k4 þ k5 þ k6

¼ 1:0020

of the total variance.
Hence, the first or first two principal components, i.e., z1 and z2, could replace

variables which are maximum temperature, minimum temperature, relative
humidity, wind speed, and sunshine hours by sacrificing negligible information
about the total variation in the system. The scores of principal components can be
obtained by substituting the values of xi in equations of zi. For the dataset, the first
two principal components for the year 1981, are given in Eqs. (6.2) and (6.3).

z1 ¼ 0:0014ð38:2Þþ 0:0027ð22:55Þþ 0:0148ð51:15Þ � 0:0027ð4:88Þ
� 0:003ð11:34Þþ 0:9999ð170Þ ¼ 170:81

ð6:2Þ

z2 ¼ 0:0052ð36:05Þþ 0:414ð21:67Þþ 0:9958ð52:5Þþ 0:0628ð4:88Þ
� 0:049ð11:64Þ � 0:015ð175Þ ¼ 57:70

ð6:3Þ

Thus, the whole data has been converted to a new dataset with two principal
components. The larger eigenvalue is associated with the first principal component.
The next larger eigenvalue is associated with the second principal component.

Now, principal component regression (PCR) is a type of regression analysis,
which considers principal components (PCs) as independent variables instead of
adopting original variables. The PCs are the linear combination of the original
variables, which can be obtained by principal component analysis (PCA).

The derived principal components z1 and z2, are then considered as regressors
and the dependent variable as regressand. The principal component regression is
carried out using the above said regressors and regressand in curve expert, and a
series of regression models are developed. The model with maximum correlation
coefficient and minimum standard error and hence having placed at Rank 1, is
chosen as the best model. The best model developed for the area considered for the
study is Power Model B, which is of the form as given in Eq. 6.4.

y ¼ aþ zb1 þ zc2 ð6:4Þ

where a, b, c are coefficients and their values

a ¼ �1:164; b ¼ 0:9999 and c ¼ �0:2493
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6.2.1 Principal Component Regression During Training

The results of observed and predicted yield of cotton using PCR Model during
training are shown in Table 6.4.

The results of the performance indices, viz., root mean squared error (RMSE),
coefficient of correlation (r), coefficient of determination (R2), and discrepancy ratio
(DR) during training are shown below:

RMSE ¼ 0:1745 kg=ha; r ¼ 0:9999; R2 ¼ 0:9998 and D:R: ¼ 1:0000

The comparison of observed yield of cotton and predicted yield of cotton using
PCR model during training is illustrated in Figs. 6.5 and 6.6.

6.2.2 PCR During Validation

The results of observed and predicted yield of cotton using PCR Model during
validation are shown in Table 6.5.

The results of the performance indices, viz., root mean squared error (RMSE),
coefficient of correlation (r), coefficient of determination (R2), and discrepancy ratio
(DR) for the developed PCR model during validation are shown below:

Table 6.4 Observed and
predicted yield of cotton using
PCR during training

Year Observed yield (Kg/ha) Predicted yield (Kg/ha)

1981 170 169.92

1982 175 174.93

1983 179 178.84

1984 200 199.80

1985 263 262.81

1986 275 274.92

1987 290 289.87

1988 305 304.91

1989 319 318.86

1990 326 325.94

1991 218 217.91

1992 274 273.81

1993 277 276.80

1994 340 339.72

1995 300 299.80

1996 293 292.92

1997 323 322.79

1998 410 409.64
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Fig. 6.5 Observed and predicted yield of cotton using PCR during training

Fig. 6.6 Scatter plot of observed and predicted yield of cotton using PCR during training

Table 6.5 Observed and
predicted yield of cotton using
PCR during validation

Year Observed yield (Kg/ha) Predicted yield (Kg/ha)

1999 264 263.68

2000 219 218.91

2001 205 204.75

2002 210 209.81

2003 220 219.79

2004 265 264.89

2005 339 338.73

2006 232 231.81
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RMSE ¼ 0:2140 kg=ha; r ¼ 0:9999; R2 ¼ 0:9998 and D:R: ¼ 0:9999

The comparison of observed yield of cotton and predicted yield of cotton using
PCR model during validation is shown in Figs. 6.7 and 6.8.

6.3 Comparison of MLR and PCR Models Using
Performance Indices

Comparisons of performance indices using the developed MLR and PCR models
during training and validation are given in Tables 6.6 and 6.7, respectively.

Fig. 6.7 Observed and predicted yield of cotton using PCR during validation

Fig. 6.8 Scatter plot of observed and predicted yield of cotton using PCR during validation
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6.4 Analysis of MLR and PCR Models Developed

The model developed using multiple linear regression for estimation of yield of
cotton gives RMSE values as 46.69 kg/ha and 104.80 kg/ha, r value as 0.66 and
0.39, R2 value as 0.44 and 0.15, and DR value as 0.99 and 0.72 during training and
validation, respectively.

The model developed using principal component regression for estimation of
yield of cotton gives RMSE values as 0.17 kg/ha and 0.21 kg/ha, r value as 0.99
and 0.99, R2 value as 0.99 and 0.99, and DR value as 1.00 and 0.99 during training
and validation, respectively.

The root mean squared error (RMSE) values by PCR model, when compared by
those obtained by MLR model, decreased by almost 100 %, both during training
and validation.

The coefficient of correlation (r) values by PCR model, when compared by those
obtained by MLR model, have increased from 0.66 to 0.99 and 0.39 to 0.99 during
training and validation, respectively.

The coefficient of determination (R2) values by PCR model, when compared by
those obtained by MLR model, have increased from 0.44 to 0.99 and 0.15 to 0.99
during training and validation, respectively.

The discrepancy ratio (DR) values by PCR model, when compared by those
obtained by MLR model, are also nearer to unity during training and validation.

Table 6.6 Comparison of
results of MLR and PCR
model during training

Performance indices (Training-70 %)

RMSE r R2 D.R.

MLR 46.6920 0.6664 0.4435 0.9999

PCR 0.1745 0.9999 0.9998 1.000

Table 6.7 Comparison of
results of MLR and PCR
models during validation

Performance indices (Validation-30 %)

RMSE r R2 D.R.

MLR 104.8000 0.3985 0.1588 0.7232

PCR 0.2140 0.9999 0.9998 0.9999
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Chapter 7
Conclusions

Abstract This chapter summarizes the results obtained during the study, and the
comparisons of the results by MLR and PCR are focused and the conclusions of the
study are drawn out.

Keywords Estimated yield � Performance indices’ values

7.1 Conclusions Based on the Study

The estimation of yield of cotton using climatic parameters such as maximum
temperature, minimum temperature, relative humidity, wind speed, and sunshine
hours is carried out using multiple linear regression and principal component
regression.

The model developed using multiple linear regression for estimation of yield of
cotton gives RMSE values as 46.6989 kg/ha and 104.8000 kg/ha, r value as 0.6664
and 0.3985, R2 value as 0.4435 and 0.1588 and D.R. value as 0.9999 and 0.7232
during training and validation, respectively.

The model developed using principal component regression for estimation of
yield of cotton gives RMSE values as 0.1745 kg/ha and 0.2140 kg/ha, r value as
0.9999 and 0.9999, R2 value as 0.9998 and 0.9998 and D.R. value as 1.0000 and
0.9999 during training and validation, respectively.

The root mean squared error (RMSE) values by PCR model, when compared by
those obtained by MLR model, decreased by almost 100 %, both during training
and validation.

The coefficient of correlation (r) values by PCR model, when compared by those
obtained by MLR model, have increased from 0.66 to 0.99 and 0.39 to 0.99 during
training and validation, respectively.

The coefficient of determination (R2) values by PCR model, when compared by
those obtained by MLR model, have increased from 0.44 to 0.99 and 0.15 to 0.99
during training and validation respectively.

© The Author(s) 2016
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The discrepancy ratio (D.R.) values by PCR model, when compared by those
obtained by MLR model, are also nearer to unity during training and validation.

Hence, the principal component regression yields the better model, for the
estimation of yield of cotton, for the area considered for the study.
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