
Chapter 11
Modeling Regular Aggregate Interference
by Symmetric Structures

Markus Rupp, Stefan Schwarz and Martin Taranetz

In this chapter, downlink co-channel interference statistics in wireless cellular
networks with hexagonal grid layout are investigated. The main target is to facil-
itate the analysis at user locations outside the center of the cell of interest.

The proposal of a cellular structure for mobile networks dates back to 1947. Two
Bell Labs engineers, Douglas H. Ring and W. Rae Young were the first to mention
the idea in an internal memorandum [1]. Almost two decades later, in 1966, Richard
H. Frenkiel and Philip T. Porter, shaped a hexagonal cellular array of areas to pro-
pose the first mobile phone system. Although never proposed as innovative research
solution, the hexagon model gained high popularity within the research community
and is still extensively utilized nowadays [2–7]. It serves either as the system model
itself, or as a reference system for more involved simulation scenarios. On the other
hand, its geometric structure renders closed-form analysis of aggregate interference
statistics difficult [8]. Hence, simulation results often lack a mathematical back up.

Recently, closed-form results have been reported with system models based on
stochastic geometry [9–11]. The stochastic approach is based on an ensemble of
network realizations and is therefore not applicable when a fixed structure of the
network is given. Since the well-planned deployment of macro-sites is not expected
to vanish in the medium term, it is thus considered imperative to make interference
analysis in the hexagonal grid model more convenient.

Current work on regular grid models has mainly focused on link-distance statistics
[12, 13]. The authors also account for fading and provide closed-form approximations
for the co-channel interference of a single link. However, convenient expressions
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for the moments and the distribution of aggregate co-channel interference are not
available yet.

Based on the work in [14, 15], the contributions of this chapter are:

• A circular interference model to facilitate interference analysis in cellular networks
with regular grid layout is introduced. Particular focus is placed on the hexagonal
grid due to its ubiquity in wireless communication engineering [2–7]. The key idea
is to consider the power of the interfering BSs as being uniformly spread along
the perimeter of the hexagon.

• It is proposed to model interference statistics in a hexagonal scenario by a single
Gamma Random Variable RV. Its shape- and scale parameters are determined in
closed form by employing the circular model. The analysis yields key insights
on the formative components of the interference distribution. A scenario with
regularly arranged macro-sites and randomly distributed small cells demonstrates
the model’s expedient application in heterogeneous cellular networks.

The chapter forgoes hexagonal grid setups with more than one ring of interferers as
well as further performance analysis, which is enabled by the Gamma approximation.
Both are considered straightforward and of no particular relevance for this thesis.

The remainder of this chapter is structured as follows: Sect. 11.1 provides prelim-
inaries on the Gamma distribution. Section 11.2 specifies the hexagonal reference-
system model. In Sect. 11.3 the circular interference model and its dual pendant are
introduced. Section 11.4 investigates Gamma-distributed interference and its para-
metrization by the proposed circular interference model. In Sect. 11.5, the accuracy
of the Gamma approximation is verified. In Sect. 11.6, the circular model is applied
for modeling the interference from the macro BSs in a two-tier heterogeneous cellu-
lar network. Section 11.7 provides a comparison of the circular model against Long
Term Evolution-Advanced LTE-A system level simulations. Section 11.8 concludes
the chapter.

11.1 Preliminaries on the Gamma Distribution

In the current- as well as the subsequent chapter, particular focus is placed upon the
Gamma distribution due to its wide range of useful properties for wireless commu-
nication engineering, some of which are outlined in this section.

The Probability Density Function (PDF) of a Gamma distributed RV X with shape
parameter k and scale parameter θ , i.e., G ∼ Γ [k, θ ], is defined as

fG(x) = 1

θ kΓ (k)
xk−1e−x/θ . (11.1)

Its mean and variance are given by E[G] = kθ and Var[G] = kθ2.
The Gamma distribution exhibits the scaling property, i.e., if G ∼ Γ [k, θ ], then

a G ∼ [k, a θ ], ∀a > 0, and the summation property, i.e., if Gi ∼ Γ [ki , θ ] with i =
1, 2, . . . , N , then

∑N
i=1 Gi ∼ Γ [∑N

i=1 ki , θ ].
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Consider an arbitrary distribution with mean ν and variance σ 2. Then, the distri-
bution Γ [k, θ ] with the same first- and second order moments has the parameters

k = ν2

σ 2
, θ = σ 2

ν
. (11.2)

These simple moment-matching identities can be exploited for accurately approx-
imating fading distributions [16], such as generalized-K [17, 18] and log-normal
[16–19], as well as aggregate interference statistics [11, 20, 21].

Additionally, the Gamma distribution covers the power fading distribution of
various single- and multi-antenna schemes under the Rayleigh fading assumption.
Conventional Single-Input Single-Output (SISO) yields an exponential distribution
Exp[1/θ ], which is equivalent to Γ [1, θ ]. The power fading of Maximum Ratio
Transmission (MRT) with NTx transmit antennas and one receive antenna can be mod-
eled by Γ [NTx, θ ], Maximum Ratio Combining (MRC) with one transmit antenna
and NRx receive antennas is characterized by Γ [NRx, θ ]. Furthermore, MRC is
often studied in the presence of Nakagami-m fading. Let Y ∼ Nakagami[m,Ω] and
G = Y 2. Then, G ∼ Γ [m,Ω/m].

According to [22], the quotient γ = S/I of two RVs S ∼ Γ [kS, θS] and I ∼
Γ [kI , θI ] is distributed as

fγ (x) = (θI /θS)
kS

B(kS, kI )

(

1 + θI

θS
x

)−kS−kI

xkS−1, x > 0 (11.3)

with B(·, ·) denoting the Beta function. Interpreting γ as a Signal-to-Interference
Ratio (SIR) allows to determine the success probability P[γ > δ] for a given thresh-
old δ as

P[γ > δ] = Γ (kS + kI )

Γ (kS)

(
θS

δ θI

)kI

2 F̄1

(

kI , kS + kI , 1 + kI ,− θS

δ θI

)

, (11.4)

where 2 F̄1(·, ·, ·, ·) is a regularized hypergeometric function [11].
These observations motivate the application of the Gamma RV as a sensible com-

promise between accuracy and tractability. Further properties of Gamma RVs will
be discussed as needed.

11.2 Hexagonal Reference Model

The reference hexagonal setup is composed of a central cell and six interfering BSs,
as shown in Fig. 11.1. The interferers are equipped with omnidirectional antennas and
are located at the edges of a hexagon with radius R (marked as ‘+’ in Fig. 11.1). All
BSs are assumed to transmit with the same power. The signal from the i th interfering
BS with polar coordinates (R, Ψi ) to a user with polar coordinates (r, φ) experiences
macroscopic path loss and fading. It is assumed that 0 < r ≤ R/2, so as to assure
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Fig. 11.1 System model.
Center cell with user at
(r, φ). Interfering BSs are
located at (R, Ψi ), where
Ψi = 2π i/M, i = 1, . . . , M

that the user is associated with the central BS. The path loss is modeled by the
exponential law

�
(

d(M)
r,Δi

)
= min

(

bP,
1

cP

(
d(M)

r,Δi

)−α
)

, (11.5)

where bP denotes the intercept, cP is a constant, α refers to the path loss exponent
and

d(M)
r,Δi

=
√

R2 + r2 − 2Rr cos (Δi ), (11.6)

with Δi = φ − Ψi and Ψi = 2π i/M, i = 1, . . . , M . In the remainder of this chapter,
it is assumed that d(M)

r,Δi
> (bPcP)

−1/α . Exemplifying from [23], a minimum coupling
loss of 70 dB and free space propagation at an LTE-A frequency of fc = 2.14 GHz
yield bP = 10−7, cP = 8.05 × 10−3 and (bPcP)

−1/α = 0.028 m, hence justifying this
assumption.

In the hexagonal scenario, M = 6. The terms r and Δi denote the user’s distance
to the center and its angle-difference to the i th interfering BS, respectively. Motivated
by Sect. 11.1, fading is modeled by an independent and Identically Distributed (I.I.D.)
Gamma RV Gi ∼ Γ [k0, θ0], where k0 and θ0 refer to shape- and scale parameter,
respectively.

11.3 Circular Interference Model

In a one-tier hexagonal grid scenario, as presented in Sect. 11.2, the experienced
aggregate interference power at position (r, φ) can be expressed as

I6(r, φ) =
6∑

i=1

PM Gi �
(

d(6)
r,Δi

)
, (11.7)
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where PM denotes the transmit power, Gi is the fading and �(d(6)
r,Δi

) refers to the path

loss at distance d(6)
r,Δi

, as specified in Eqs. (11.5) and (11.6), respectively. Each sum

term can be regarded as a RV Gi , which is weighted by the factor PM �(d(6)
r,Δi

). Hence,
the statistics of I6(r, φ) outside the cell-center, i.e., r > 0, are accessible via a sum of
differently weighted RVs. Since, in general, this does not lead to closed-form results,
as detailed in Chap. 12, in this chapter a circular interference model is proposed in
order to facilitate the statistical analysis.

11.3.1 Proposed Model

In the proposed circular interference model, the power of the six reference BSs is
spread uniformly along a circle of radius R. This is achieved by evenly distributing
the total transmit power 6 PM among M equally spaced BSs and considering the
limiting case M → ∞. By generalizing Eq. (11.7), this is expressed as

IC(r) = lim
M→∞

6 PM

M

M∑

i=1

Gi �
(

d(M)
r,Δi

)
= 6 PM

2π
E [Gi ]

π∫

−π

�
(
dr,Δ

)
dΔ, (11.8)

with �(·) from Eq. (11.5) and d(M)
r,Δi

from Eq. (11.6). The terms dr,Δ and Δ denote dis-
tance and angle-difference between the user and an infinitesimal interfering circular
segment, as illustrated in Fig. 11.1.

Assuming a path loss exponent α = 2, i.e., free space propagation, Eq. (11.8) can
explicitly be evaluated as

IC(r) = 6 PM E [Gi ]
1

cP

1

R2 − r2
. (11.9)

An intuitive interpretation of this result is provided in the next section by the
model’s pendant.

In the remainder of this chapter, α = 2 is employed. It represents the worst case
of low interference attenuation. However, previously- as well as all subsequently
presented analysis can be carried out in closed-form for α = 2n with n ∈ N. Values
α other than these require the evaluation of elliptic integrals (see, e.g., [24]). Thus,
a practical first order estimate for arbitrary values of α is achieved by evaluating the
performance with 2n and 2(n + 1), where 2n < α < 2(n + 1).

11.3.2 The Dual Model

Consider a user in a hexagonal scenario, which is moved along a circle of radius r
from −π to π , as indicated in Fig. 11.1. The average expected interference along the
circle can be calulated as

http://dx.doi.org/10.1007/978-981-10-0617-3_12
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I ′
C(r) = 1

2π

π∫

−π

E
[
I6(r, φ

′)
]

dφ′ (11.10)

=
6∑

i=1

PM E [Gi ]
1

2π

π∫

−π

�(dr,Δ)dφ′. (11.11)

The result is obtained by plugging Eq. (11.7) into Eq. (11.10), exchanging sum and
integral, and exploiting the linearity of the expectation. It is equivalent to IC(r) in
Eq. (11.8) and, consequently, also yields Eq. (11.9). Thus, the result is independent
of the user’s angle-position. It can be interpreted as the average expected interfer-
ence, i.e., the interference experienced by a typical user in a hexagonal scenario at
distance r .

From Eq. (11.9) it is observed that the average expected interference increases by
either increasing the transmit power PM, decreasing the distance of the interferers R,
or moving the user further away from the origin, which is reflected by the parame-
ter r . The fading enters the equation only via the expectation, i.e., Eqs. (11.8) and
(11.11) hold for arbitrary fading distributions with finite mean. Finally, note that the
circular interference model is not restricted to hexagons. By replacing ‘6’ by ‘N ’ in
Eqs. (11.7)–(11.11), it can generally be applied for substituting any convex regular
N -polygonal model, as validated in Sect. 11.5.1.

11.4 Statistics of Aggregate Interference

In this section, aggregate interference in a hexagonal scenario with I.I.D. Gamma
fading is investigated. Motivated by the findings in Sect. 11.1, it is proposed to
approximate its statistics by a single Gamma RV. The corresponding shape- and
scale parameters are dependent on the distance and can be determined by applying
the previously presented circular model.

11.4.1 Interference Statistics at the Center

Assume I.I.D. Gamma fading with Gi ∼ Γ [k0, θ0]. Then, according to Sect. 11.3,
interference can be considered as a sum of Gamma RVs, which are weighted by the
factors PM �(d(6)

r,Δi
), i.e., the received power without fading.

At the center of a hexagonal scenario (i.e., at r = 0), all weighting factors are
equal, i.e., PM �(d(6)

r,Δi
) = PM �(R). By virtue of the scaling- and summation property

of a Gamma RV (cf. Sect. 11.1), the resulting interference is distributed as

I6(0, φ) ∼ Γ [6 k0, θ0 PM�(R)] . (11.12)
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11.4.2 Interference Statistics Outside the Center

Outside the center (i.e., at r > 0), the distances d(6)
r,Δi

and, thus, also the weighting

factors PM �(d(6)
r,Δi

) generally differ from each other. Hence, a non-uniform impact
of the interferers is observed. Then, the interference statistics are only accessible via
evaluating the distribution of a sum of Gamma RVs with varying scale parameter.
This method is particularized in Chap. 12.

The current chapter resorts to the following first order estimate. It is proposed
to approximate the typically experienced interference distribution at distance r , 0 <

r ≤ R/2, by
Î (r) ∼ Γ [k̂(r), θ̂ (r)]. (11.13)

The rationale for this model are findings in prior work, where out-of-cell inter-
ference in stochastic networks is appropriately assessed by a Gamma distribution
[11]. If it can be proven as accurate, it considerably facilitates further performance
analysis by applying the methods in Sect. 11.1.

The distribution in Eq. (11.13) is fully determined by the distance-dependent
shape- and scale parameters k̂(r) and θ̂ (r), respectively. In order to evaluate the two
parameters, firstly the proposed circular interference model is employed to determine
expectation and variance of Î (r). Then, it is exploited that E[ Î (r)] = k̂(r) θ̂(r) and
Var[ Î (r)] = k̂(r) θ̂2(r).

As discussed in Sect. 11.3.1, the distinct received powers from the interfering BSs
can be averaged along a circle of radius r . Thus, the typical impact of one interferer
is calculated as

PM
1

2π

π∫

−π

�
(
dr,Δ

)
dΔ = PM

cP

1

R2 − r2
, (11.14)

and yields the average expected interference at distance r as

E

[
Î (r)

]
= 6 k0θ0

PM

cP

1

R2 − r2
. (11.15)

The variance of the aggregate interference comprises two components:

1. The variance of the fading, which calculates as

Var f

[
Î (r)

]
= 6 k0

(

θ0
PM

cP

1

R2 − r2

)2

. (11.16)

2. The variance of the received power without fading, which is caused by the unequal
distances dr,Δi . With

http://dx.doi.org/10.1007/978-981-10-0617-3_12
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1

2π

π∫

−π

(
PM�

(
dr,Δ

) − PM�(R)
)2

dΔ =
(

PM

cP R2

)2 2r2 R4 + r4 R2 − r6

(
R2 − r2

)3 ,

(11.17)

the second variance component is obtained as

Vard

[
Î (r)

]
= 6k0

(

θ0
PM

cP R2

)2 2r2 R4 + r4 R2 − r6

(
R2 − r2

)3 . (11.18)

Since the two components are statistically independent, the overall variance is cal-
culated as

Var
[

Î (r)
]

= Var f

[
Î (r)

]
+ Vard

[
Î (r)

]

= 6 k0

(

θ0
PM

cP

1

R2 − r2

)2 (

1 + 2r2 R4 + r4 R2 − r6

R6 − r2 R4

)

(11.19)

where Var f [ Î (r)] and Vard [ Î (r)] refer to Eqs. (11.16) and (11.18), respectively.
Finally, the distance-dependent shape- and scale parameter are derived from

Eqs. (11.15) and (11.19) as

k̂(r) = 6 k0
R4(R2 − r2)

R6 + r2 R4 + r4 R2 − r6
, (11.20)

θ̂ (r) = θ0
PM

cP

1

R2 − r2

(

1 + 2r2 R4 + r4 R2 − r6

R6 − r2 R4

)

. (11.21)

11.5 Numerical Results and Discussion

In this section, the accuracy of the circular model and the proposed Gamma approx-
imation are verified by numerical evaluation.

11.5.1 Validation of Expected Aggregate Interference

First, the expected interference powers in the hexagonal reference scenario and the
proposed circular interference setup are compared to each other. The transmit power
and inter-site distance are specified as PM = 40 W and R = 500 m, based on the
standard 3rd Generation Partnership Project (3GPP) macro cell scenario from [23].
Intercept and constant of the path loss �(·) are set bP = 1 and cP = 1 for simplicity.
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Table 11.1 System
parameters for validation.
Transmit power and circle
radius are referred from [23]

Parameter Value

Transmit power PM = 40 W

Circle radius R = 500 m

Path loss intercept bP = 1

Path loss constant cP = 1

Path loss exponent α = 2

Fading distribution Gi ∼ Γ [1, 1]

Fading is assumed to be distributed as Gi ∼ Γ [1, 1]. The parameters are summarized
in Table 11.1.

Consider a user which is moved along a semi circle { (r, φ)| φ ∈ [0, π ]}, as indi-
cated in Fig. 11.1. The expected interference in the hexagonal scenario is calculated
as

E [I6(r, φ)] =
6∑

i=1

PM E[Gi ] �
(

d(6)
r,Δi

)
, (11.22)

with I6(r, φ) from Eq. (11.7) and E[Gi ] = 1. For the circular model, E [IC(r)] =
IC(r), with IC(r) from Eq. (11.9).

Figure 11.2 depicts the evaluated results of Eqs. (11.9) and (11.22) for various
distances r . It is observed that

• At cell-center, i.e., at r = 0 m, the expected interference powers in the hexagonal-
and circular scenario (E[I6(0, φ)] and IC(0)) are equal.

• Outside the center, i.e., at r > 0 m, E[I6(r, φ)] fluctuates around IC(r). The devi-
ation is weak in the middle of the cell (r = 125 m), and strong at cell-edge

Fig. 11.2 Expected
aggregate interference
experienced at position (r, φ)

in circular- (IC (r)) and
hexagonal model
(E[I6(r, φ)]), respectively.
Receiver distances
r = {0, 125, 250} m refer to
cell-center, middle of cell
and cell-edge, respectively
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(r = 250 m). Note that E[I6(r, φ)] is not symmetric about IC(r) due to the con-
cavity of the path loss model.

The relative error of the circular interference model is calculated as

ε (r, φ) =
∣
∣
∣
∣
E [I6(r, φ)] − IC(r)

E [I6(r, φ)]

∣
∣
∣
∣ , (11.23)

with IC(0) andE[I6(0, φ)] from Eqs. (11.9) to (11.22), respectively. The largest error
occurs at cell-edge, i.e.,

max
r,φ

ε (r, φ) = max
φ

ε (250, φ). (11.24)

In the specified scenario, maxφ ε (250, φ) = 3.2 %, as shown in Fig. 11.3.

11.5.2 Validation of Gamma Approximation

In this section, the accuracy of the Gamma approximation in Eq. (11.13) and its para-
meterization by Eqs. (11.20) and (11.21) are verified. The exact position-dependent
distributions of I6(r, φ) are obtained by evaluating Theorem 12.1.

In order to capture a representative profile of distributions, three user distances
r = {0, 125, 250} m and three angle-positions φ = {0, π

12 , π
6 } are considered, as

illustrated by bold dots in Fig. 11.4. The distances correspond to cell-center, middle
of cell and cell-edge, respectively. The angle φ = 0 represents a user, which is moved

Fig. 11.3 Maximum
deviation of circular
interference model from
expected interference in
convex regular N-polygonal
models. The labeled
cell-shapes can be arranged
in a grid without overlapping
areas

http://dx.doi.org/10.1007/978-981-10-0617-3_12
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Fig. 11.4 Setup for
evaluation. Cutout of
Fig. 11.1 (upper right
quadrant)

directly towards its strongest interferer, φ = π
6 refers to the path with two equidistant

dominant interferers, and φ = π
12 is a variation thereof.

Fading is specified as Gi ∼ Γ [2, 1]. This corresponds to a 1 × 2 Single-Input
Multiple-Output SIMO system with Rayleigh-fading and Multiple-Input Single-
Output (MISO) at the user, or, equivalently, a 2 × 1 MISO system with MRT at
the BS.

The Cumulative Distribution Function (CDF) of the Gamma approximation,
FÎ (x; k̂(r), θ̂ (r)) and the CDF F6(x; r, φ) of I6(r, θ) are evaluated at each distance
r and angle φ, respectively. The accuracy of the Gamma approximation is quantified
by Kolmogorov–Smirnov KS statistics, which formulate as

DKS(r, φm) = sup
x

∣
∣
∣FÎ

(
x; k̂(r), θ̂ (r)

)
− F6 (x; r, φ)

∣
∣
∣ . (11.25)

Results are depicted in Fig. 11.5. The Gamma approximation most closely resem-
bles the experienced interference distributions at φ = π

12 . In this case, the difference
between exact- and approximated CDFs is less than 1 % for r < 159 m and 2.75 %
at cell-edge (r = 250 m). The largest deviation occurs at φ = π

6 , where the user is
moved centrally in between its two dominant interferers (upper curve). Then, the
distributions differ by less than 1 % for r < 155 m and by 3.7 % at cell-edge.

For qualitative evaluation, Fig. 11.6 depicts the exact CDFs and the corresponding
Gamma approximations at the specified representative user positions, which are
denoted by bold dots in Figs. 11.4 and 11.5, respectively.

The Gamma CDFs perfectly fit at cell center (r = 0 m) and in the middle of the cell
(r = 125 m). At cell-edge (r = 250 m), the Gamma approximation closely resem-
bles the experienced interference of a user at φ = π

12 . The probability of high inter-
ference values at φ = π

6 is slightly underestimated by at most 3.7 % (cf. Fig. 11.5).
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Fig. 11.5 KS statistics at
position (r, φm), comparing
Gamma approximation and
exact distribution. Receiver
distancesr = {0, 125, 250}m
refer to cell-center, middle of
cell and cell-edge,
respectively

Fig. 11.6 Aggregate
interference at particular user
positions (see bold dots in
Fig. 11.4): Exact CDFs, as
obtained by numerically
evaluating [25] for a hexagon
scenario dashed lines and
corresponding Gamma
approximations solid lines

11.6 Application in Heterogeneous Networks

In this section, aggregate interference statistics in a two-tier heterogeneous cellular
network with regularly placed macro-BSs and randomly distributed small cell BSs
are investigated. The interference contribution from each tier is approximated by a
single Gamma RV and the total interference is calculated as the sum of the two. The
accuracy of the approximations is verified by extensive Monte Carlo simulations.

The macro-tier comprises six hexagonally arranged BSs at distance R = 500 m,
each transmitting with PM = 40 W. Small cell BSs are distributed according to a
Poisson Point Process PPP of density μS = 10−4 m−2 and transmit with a power
of PS = 0.4 W. As indicated in Fig. 11.7, they are excluded from a ball (in fact,
it is a disc, but ball is the more common term in literature, e.g., in [11]) of radius
REx = (PM/PS)

−1/α R/2 around the user so as to ensure user association to the central
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Fig. 11.7 Snapshot of a
heterogeneous network
deployment. Macro-BSs are
arranged on a hexagon.
Small cell BSs are randomly
distributed around a user at
(r, φ) and excluded from a
ball of radius REx

Table 11.2 Parameters for
numerical evaluation of
heterogeneous scenario

Parameter Value

Macro-BS transmit power PM = 40 W

Inter macro-site distance R = 500 m

Small cell BS transmit power PS = 0.4 W

Small cell density μS = 10−4m−2

Path loss intercept bP = 1

Path loss constant cP = 1

Path loss exponent α = 4

Fading distribution Gi ∼ Γ [1, 1]

macro-BS at cell-edge. In both tiers, the path loss �(·) is modeled according to
Eq. (11.5), with intercept bP = 1, constant cP = 1 and exponent α = 4. Fading is
assumed to be distributed as Gi ∼ Γ [1, 1]. The parameters are summarized in
Table 11.2.

In the first step, the interference contribution from the macro-tier is approximated
by a Gamma RV ÎM(r) ∼ Γ [k̂M(r), θ̂M(r)]. According to Sect. 11.4, it can be para-
meterized by the circular interference model. Recalculating Eqs. (11.15), (11.16),
(11.18) and (11.19) for α = 4 yields

k̂M(r) = 6 k0 R8
(
r2 − R2

) (
r2 + R2

)2

r14 − 7r12 R2 + 23r10 R4 − 41r8 R6 + 39r6 R8 − 25r4 R10 − 9r2 R12 − R14 ,

(11.26)

θ̂M(r) = θ0 PM
(−r14 + 7r12 R2 − 23r10 R4 + 41r8 R6 − 39r6 R8 + 25r4 R10 + 9r2 R12 + R14

)

cP
(
r2 − R2

)4 (
r2 + R2

)
R8

.

(11.27)
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Secondly, the contribution of the small cell tier is also approximated by a Gamma RV
ÎS ∼ Γ [k̂S, θ̂S]. Along the lines of [26, Eqs. (2.19) and (2.21)], mean and variance
of the actual interference IA,S from the PPP model are determined as

E[IA,S] = PS E[Gi ]2πμS

∫ ∞

REx

r �(r)dr

= PS k0 θ0
1

cP
πμS R−2

Ex , (11.28)

Var[IA,S] = E[G2
i ]2πμS

∫ ∞

REx

r �(r)2dr

= (1 + k0)k0 θ2
0 P2

S
1

c2
P

μSπ

3
R−6

Ex . (11.29)

Then, exploiting the identities E[ ÎS] = k̂S θ̂S and Var[ ÎS] = k̂S θ̂2
S yields

k̂S = 3R2
Ex k0 θ0 μS

(1 + k0)
, (11.30)

θ̂S = PS(1 + k0)

3 cP Rα
Ex

. (11.31)

Finally, the PDF of the total aggregate interference, ÎA(r) = ÎM(r) + ÎS, at user
distance r is calculated as

f ÎA
(x; r) = θ̂M (r)

−k̂M(r)
θ̂

−k̂S
S e

− x
θ̂S xk̂M(r)+k̂S−1

× 1 F̃1

(

k̂M (r); k̂M (r) + k̂S;
(

1

θ̂S

− 1

θ̂M (r)

)

x

)

, (11.32)

where 1 F̃1(·; ·; ·) denotes the regularized confluent hypergeometric function.
In order to verify the accuracy of this approximation, Monte Carlo simulations are

carried out. The results for a typical user at distance r are obtained by averaging over
106 uniformly distributed angle-positions on [0, 2π ]. For each position, 105 fading-
and 104 spatial realizations of the small cell deployment are generated. The small
cell BSs are distributed over a circular area of radius 10 R.

Figure 11.8a depicts the individual interference contributions from the macro-
and the small cell tier at various user distances r . It is observed that the CDFs for
the macro tier, which correspond to the approximation in Eqs. (11.26), and (11.27),
show an accurate fit with the Monte Carlo simulations. This corroborates the claim
in Sect. 11.3.1 that the circular model is also applicable for path loss exponents other
than α = 2. The interference CDF of the small cell tier, which refers to the approx-
imation in Eqs. (11.30) and (11.31), is independent of the user distance r due to
the fixed exclusion radius REx. It is also in close agreement with the simulations.
Figure 11.8b shows the CDFs of the aggregate interference from both macro- and
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Fig. 11.8 CDFs of
interference from macro- and
small cell tier a and
aggregate interference from
both tiers b. Solid lines
indicate results as obtained
by approximating the
contribution of each tier by a
Gamma RV. Dashed lines
show results from Monte
Carlo simulations. User
distances r = {0, 125, 250}
m refer to cell-center, middle
of cell and cell-edge,
respectively

(a)

(b)
Individual tiers

Both tiers

small cell tier. It is found that the approximation by a sum of two independently
parameterized Gamma RVs almost perfectly captures the actual interference char-
acteristics at the cell center (r = 0 m) and in the middle of the cell (r = 125 m). It
even provides an accurate fit at cell-edge (r = 250 m).

11.7 LTE-Advanced System Level Simulations

In this section, the validity of the Gamma distribution for approximating aggregate
interference in symmetric interference scenarios is evaluated. In the first part, the
corresponding system model is introduced.
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11.7.1 System Model

The system model is composed of a central macro site and six neighboring nodes,
which are arranged according to a hexagonal grid, as illustrated in Fig. 11.9. Each
site employs a single eNodeB, which is equipped with an omni-directional antenna.
For systematic investigations, the UEs are equidistantly distributed along concen-
tric circles of radius r = {50, 120, 210} m, referring to cell-center, middle of cell
and cell-edge, respectively. Each circle encompasses 24 UEs, which are uniquely
identified by the tuple (r, φ), where φ denotes the angle position. The signal expe-
riences free-space path loss, fast fading according to a time-correlated Rayleigh
channel, and spatially-correlated log-normal shadowing with 8 dB standard devia-
tion. Hereinafter, the combination of these three mechanisms is termed composite
fading. The free-space path loss law is defined as min(bP, 1/cPd−2). In this section,
bP = 10−7 and fc = 2.14 GHz, yielding cP = (4π fc/c0)

2 = 8.0465 × 103, where
c0 is the speed of light. The shadow fading maps are computed by applying the method
in [27]. The results in this section are obtained by averaging over 100 channel real-
izations and 100 TTIs. The simulation parameters are summarized in Tables 9.6 and
11.3, respectively.

Fig. 11.9 Hexagonal grid
setup with central cell and
six interfering eNodeBs.
UEs are equidistantly
distributed along circles of
radius r = {50, 120, 210} m.
Bold dots indicate represen-
tative UE positions. The
corresponding angles are
given by φ = {0, π

12 , π
6 },

respectively. In the case of
BS collaboration, eNodeB 7
does not contribute to the
aggregate interference

Table 11.3 Specific
parameters for simulations of
homogeneous macro cellular
network

Parameter Value

Antenna configuration NTx × NRx = 1 × 1

eNodeB antenna gain in dB A(θ) = 0 dB

Path loss �(d) = min(bP, 1/cP d−2)

Scheduler type Round robin

http://dx.doi.org/10.1007/978-981-10-0617-3_9
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11.7.2 Validation of Gamma Approximation

In this section, the introduced circular interference model is validated. The particular
focus lies on the accuracy of the Gamma distribution as an approximation for both
composite fading and aggregate interference. The system model is referred from
Sect. 11.7.1.

Firstly, the average aggregate interference is measured along each of the three
UE circles. The results are depicted as solid lines in Fig. 11.10. In accordance with
Sect. 11.5.1, it is observed that average aggregate interference is almost constant at the
cell-center and in the middle of the cell. At cell-edge, the curves exhibit fluctuations
due to the vicinity of the dominant interferers. Results from the circular interference
model accurately assess the average behavior, as shown by the dashed lines.

In the next step, the Empirical Cumulative Distribution Function (ECDF) of
the aggregate interference is computed at nine representative UE locations, which
are marked by bold dots in Fig. 11.9. Similar to Sect. 11.5.2, the angle positions
φ = {0, π

6 , π
12 } refer to UEs with one dominant interferer (eNodeB 7), two equidis-

tant dominant interferers (eNodeBs 6 and 7) and a variation thereof. Solid lines in
Fig. 11.11 depict the results. In accordance with Sect. 11.5.2, the interference distri-
butions are dominated by the UEs’ distances to the origin while their angle positions
have only minor impact. The latter is illustrated by the enlarged section in Fig. 11.11.

Finally, the introduced circular model is applied to approximate the aggregate
interference distribution at a certain distance r by a Gamma RV. The first step con-
sists in determining the parameters k0 and θ0 of the Gamma distribution Γ [k0, θ0]
that models the composite fading (cf. Sect. 11.4). This is achieved by applying Algo-
rithm 2. The intital values k ′

0 and θ ′
0 are obtained from Maximum Likelihood Estima-

tion (MLE). MLE maximizes the likelihood L(k ′
0, θ

′
0|x) = f (x |k ′

0, θ
′
0), where f (·)

denotes a Gamma PDF with shape k ′
0 and scale θ ′

0, and x are the given outcomes.

Fig. 11.10 Average
aggregate interference power
along the three UE circles in
Fig. 11.9. Solid curves refer
to simulation results, dashed
curves denote results from
circular interference model
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Using a step size of Δ = 0.001 and Niterations = 100 yields a KS distance of 0.0512
between simulated- and approximated composite fading distribution. For compari-
son, employing only MLE achieves a KS distance of 0.0917.

Algorithm 2: Iterative algorithm for improving KS distance between empirical
composite fading distribution and Gamma approximation. The term F(x; k, θ)

denotes the CDF of a Gamma distribution with shape k and scale θ , respectively.

Data: empirical CDF of composite fading from simulations: Ffading(x);
initial shape- and scale parameter: k′

0, θ ′
0;

stepsize: Δ;
number of iterations: Niterations;

Result: shape- and scale parameter: k0, θ0;
set k0 = k′

0 and θ0 = θ ′
0;

for i = 1 to Niterations do
compute {k∗, t∗} = arg min{k,t}supx |Ffading(x) − F(x; k, θ)|, with
k ∈ [k0 − Δ, k0, k0 + Δ] and θ ∈ [θ0 − Δ, θ0, θ0 + Δ];
if k∗ equals k0 and θ∗ equals θ0 then

break;
else

set k0 = k∗ and θ0 = θ∗;
end

end

Then, for each UE distance, the parameters of the aggregate interference distrib-
ution, k̂(r) and θ̂ (r), are calculated with Eqs. (11.20) and (11.21), respectively. The
corresponding CDF curves are depicted as dashed lines in Fig. 11.11. It is observed
that the approximated distributions slightly underestimate the occurrence of high
interference values. In order to quantify the deviation from the simulated curves,

Fig. 11.11 Aggregate
interference distributions at
representative UE locations
r = {50, 120, 210}m and
φ = {0, π

12 , π
6 }, as marked

by bold dots in Fig. 11.9.
Solid lines refer to ECDF
curves from simulations,
dashed lines denote Gamma
approximations as obtained
with circular model
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Table 11.4 KS distances between Gamma approximations and simulated ECDF curves at repre-
sentative UE locations

φ = 0 φ = π
12 φ = π

6

r = 50 m 0.0713 0.0768 0.0762

0.1391 0.1491 0.1454

0.0720 0.0797 0.0773

r = 120 m 0.0697 0.0659 0.0698

0.1347 0.1393 0.1300

0.0815 0.0708 0.0701

r = 210 m 0.0565 0.0496 0.0466

0.1183 0.1289 0.1274

0.0823 0.0828 0.0840

For each r , the first two rows correspond to the Gamma approximation as obtained with the circular
model. In the first row, composite fading is estimated with Algorithm 2, while in the second row
it is assessed with MLE, respectively. The third row refers to the direct application of MLE on the
distribution of the aggregate interference

the first row in Table 11.4 provides the KS distance for each UE location (r, φ). The
values range from 0.05 at r = 210 m to 0.08 at r = 50 m.

For comparison, each simulated curve is also approximated by two further Gamma
distributions. The first distribution adapts the circular model and estimates the com-
posite fading by MLE, i.e., it employs the parameters k0 and θ0 that were used above
to initialize Algorithm 2. The second distribution is computed by applying MLE
directly to the simulated aggregate interference. The corresponding KS distances are
likewise listed in the second- and third row of Table 11.4 for each UE location (r, φ).
The first observation is that Algorithm 2 considerably improves the performance of
the circular model, such that it even exceeds pure MLE of the aggregate interfer-
ence. Hence, the accuracy of the circular model crucially depends on the precision
of the composite fading approximation. Secondly, the results of the MLE range from
0.07 to 0.08, indicating that the assumption of Gamma-distributed interference itself
induces a systematic error.

In summary, the circular model achieves a remarkable accuracy of fit despite its
simplicity, thus corroborating its applicability.

11.8 Conclusion

In this chapter, a circular interference model for aggregate interference analysis in
regular grid deployments is introduced. Particular focus is placed on characterizing
a user at an eccentric location. The expected interference from the circular model is
identified as the interference that is experienced by a typical user in a hexagonal grid
at a certain distance from the origin. At cell-edge, it deviates by at most 3.2 % from
the actual values.
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In a second step, the corresponding interference statistics are approximated by a
single Gamma RV. By means of the circular model, the distance-dependent shape-
and scale parameters are determined in closed form and unveil the two key formative
components of the distribution as the variance of the fading and the variance of the
path loss due to the eccentric user location, respectively. Qualitative- and quantita-
tive comparisons with the exact distributions confirm the accuracy of the Gamma
approximation, yielding KS statistics no higher than 3.7 %.

The circular model’s expedient adaption for representing the well-planned part
of a two-tier heterogeneous cellular network is demonstrated. The example merges
a fully regular macro-deployment with completely randomly distributed small cells
and models the interference contribution from each tier by a single Gamma RV. The
resulting aggregate interference distribution shows a remarkably good fit with Monte
Carlo simulations. Hence, the model enables to accurately capture the impact of both
user eccentricity and heterogeneity of the network with only few key parameters.

In the last part of the chapter, it is shown that the circular model enables an accu-
rate prediction of the interference statistics in an LTE-A hexagonal grid scenario.
Deviations from the simulation results mainly stem from the inaccurate approxima-
tion of the composite fading. The remainder of the approximation error is caused by
the assumption of Gamma distributed aggregate interference itself.

The presented circular model does not allow to account for power control and
coordination among BSs. This is a major motivation for the next chapter, which
extends the model by non-uniform power profiles.
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