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Meta Learning on Small Biomedical Datasets 
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Abstract Meta-learning is one of subsections of supervised machine learning that 
has continuously grown with interests to apply on new data sets in the late years. 
Meta learning is the process of knowledge that is acquired by the examples. Bag-
ging, dagging, decorate, rotation forest, and filtered classifiers are well known 
meta-learning algorithms that are performed to compare with these meta-learning 
algorithms on 8 different biomedical datasets. In these algorithms, the rotation 
forest had the better results according to F-measurement and ROC Area in most 
cases. 
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1 Introduction 

One of the machine learning algorithms, meta learning is automatic learning algo-
rithms, set by Donald B.Maudsley [1], that are applied on data to understand  the 
interaction between the mechanism of learning and the concrete contexts Meta 
learning provides one such methodology that allows systems to become more 
effective through experience. Meta learning differs from base learning in the scope 
of the level of the adaptation. Learning at the base level is focused on accumulat-
ing experience on a specific learning task whereas learning at the meta-level is 
concerned with accumulating experience on the performance of multiple applica-
tions of learning. In the last years, there are many published works that has been 
done in data mining with meta learning on different biomedical diagnosis prob-
lems at many journals and conferences. 
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Machine learning algorithms have been proposed many different algorithms for 
biomedical diagnostic problems, for instances: in breast cancer [2], coronary heart 
disease [3], and estimation bioinformatics inference systems [4]. 

These algorithms have used different types of neural network algorithms that 
are considered to bring several benefits in a machine learning process, such as 
faster learning, or improved classification performance. Meta-learning algorithms, 
by supporting studies on this type of algorithms on data, are to ensure that all the 
successful outcome. The algorithms demonstrate the success rate of between 80% 
and 95%.  

2 Data Sets and Algorithms  

2.1 Descriptions of Data Sets 

The datasets used in this study are publicly available at “The Data Mining Reposi-
tory of University of California Irvine (UCI)” [5].  Table 1 summarizes the bio-
medical datasets with respect to number of instances, attributes and classes. 

Table 1 Data sets taken from UCI. 

No Data Instances Attributes Classes 
1 Arrhythmia [6] 452 279 2 
2 Heart disease(Cleveland) [7] 303 13 5 
3 Vertebral column (2C) [8] 310 6 2 
4 CTG [9] 2126 21 3 
5 Diabetes (Pima Indians) [10] 768 8 2 
6 Mammographic mass [11] 961 5 2 
7 Parkinson [12] 194 22 2 
8 Wisconsin breast cancer [13] 699 9 2 

2.2 Algorithms 

Bagging:  Bagging is a bootstrap method for improving the accuracy of the mod-
el by using the multiple random redistribution copies of the training set [14]. The 
model decreases variance of the base model without changing the bias. Main point 
on bagging algorithm, average of misclassification errors on divided different 
subset of the data gives a better estimate of the predictive ability of a learning 
method. Thus, bagging pursues to reduce the error rate by using a variance of the 
base classifier. 

 
Dagging: Dagging is one of the most popular ensemble algorithms that creates a 
number of disjoint, stratified folds out of the data and feeds each chunk of data to 
a copy of the supplied base learner, while predictions are made via majority vote 
[15]. 
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Decorate: Diverse Ensemble Creation by Oppositional Relabeling of Artificial 
Training Examples directly builds diverse hypotheses using additional artificially 
constructed training examples. It is a simple and general meta-learner that can 
decide to use any strong learner as a base classifier to build diverse groups [16]. 

 
Rotation Forest: Rotation Forest is also one method for generating classifier 
ensembles based on feature extraction. The idea of the rotation approach is to 
encourage simultaneously individual accuracy and diversity within the ensemble. 
Diversity is promoted through the feature extraction for each base classifier. Deci-
sion trees are most often chosen because they are sensitive to rotation of the fea-
ture axes, hence the name "forest.” Accuracy is sought by keeping all principal 
components and also using the whole data set to train each base classifier [17].  
 
Filtered Classification: Meta-learning algorithms also provide filtering on the 
data. This filter is generated using the training data, and then applied to the test 
data. The filter will be processed on the test data without any changing the struc-
ture of it [18]. 

3 Results and Discussion 

We evaluate 5 meta-learning algorithms by WEKA data mining tools [19] on 8 
datasets using the 10-fold cross-validation accuracy. The results are explained in 
recall, false positives rate (FPR), area under ROC curve (AUC) and F-Measure 
(F-m). 

The calculation of the metrics requires the outcomes of the classifier system to 
be labeled with four possible states, as true positives (TP), true negatives (TN), 
false positives (FP) and false negatives (FN). TP refers to the number of samples 
predicted as positive and actually they are positive. FP defines to the number of 
samples predicted as positive but actually they are negative. FN refers to the num-
ber of samples predicted as negative but actually they are positive TN refers to the 
number of samples predicted as negative and actually they are negative.  

Once the output for each sample is labeled, quantitative metrics, as well as 
AUC, can be calculated for the evaluated algorithm. FPR is the ratio of incorrectly 
predicted positives to the total of actual negatives, and defined as  

 =           (1) 
 
The F-measure (F-m) is described as a harmonic mean of two other 

classification metrics; precision and recall. Precision is the ratio of truly classified 
positives to all predicted positives defined as  

 =                    (2) 
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Recall, also known as TPR, is the ratio of number of correctly predicted 
positives to the total of actual positives, and defined as  

 =            (3) 
 
 − = 2 ∗ ∗

                         (4) 
                        
AUC measures the classifier’s skill in ranking a set of patterns according to the 
degree to which they belong to the positive class, but without actually assigning 
patterns to classes. TPR and FPR plot a ROC curve on two axes by using values. 
Thus, each point on the ROC curve represents a TPR / FPR pair corresponding to 
a particular decision threshold [20].  

Table 2 The results of algorithms experimented on the datasets 
Model Data Recall FPR F-m AUC Recall FPR F-m AUC Model 
 Arrhytmia 0.816 0.190 0.816 0.861 0.801 0.204 0.769 0.766  
B Cleveland 0.601 0.245 0.547 0.791 0.561 0.221 0.479 0.679 R.  
A Column2 0.829 0.218 0.829 0.913 0.858 0.209 0.795 0.843 F 
G CTG 0.939 0.145 0.937 0.974 0.946 0.119 0.924 0.937 o 
G Diabetes 0.754 0.317 0.751 0.814 0.762 0.337 0.732 0.781 r 
I Mommog 0.835 0.169 0.834 0.895 0.826 0.176 0.829 0.868 e 
N Parkinson’

s 
0.877 0.251 0.874 0.933 0.913 0.169 0.852 0.786 s 

G Wisconsin 0.960 0.045 0.960 0.990 0.971 0.025 0.933 0.939 t 
 Average 0.826 0.197 0.818 0.896 0.829 0.182 0.789 0.824  
 Arrhytmia 0.759 0.257 0.756 0.813 0.770 0.239 0.801 0.878 F 
D Cleveland 0.558 0.237 0.517 0.772 0.525 0.279 0.532 0.783 i 
A Column2 0.684 0.648 0.578 0.790 0.794 0.255 0.856 0.936 l 
G CTG 0.866 0.318 0.854 0.879 0.927 0.187 0.945 0.987 i 
G Diabetes 0.736 0.448 0.701 0.772 0.737 0.345 0.754 0.818 r 
I Mommog 0.814 0.180 0.814 0.870 0.829 0.174 0.826 0.897 e 
N Parkinson’

s 
0.846 0.401 0.831 0.768 0.856 0.299 0.912 0.957 d 

G Wisconsin 0.964 0.046 0.964 0.974 0.933 0.075 0.972 0.988 C 
 Average 0.778 0.316 0.751 0.829 0.796 0.231 0.824 0.905  
 Arrhytmia 0.810 0.198 0.809 0.873      
D Cleveland 0.548 0.233 0.518 0.74      
E Column2 0.816 0.25 0.815 0.901      
C CTG 0.935 0.124 0.934 0.971      
O Diabetes 0.736 0.346 0.731 0.803      
R Mommog 0.827 0.176 0.827 0.883      
A Parkinson’

s 
0.923 0.165 0.922 0.943      

T Wisconsin 0.963 0.047 0.963 0.992      
E Average 0.819 0.192 0.814 0.888      

 
According to Table 2, considering the average values, it can be seen that Rota-

tion Forest algorithm outperforms other models with respect to TPR and FPR 
metrics, with the values of 0.829 and 0.182, respectively, as the highest one  
in TPR and the lowest one in FPR. This means minimum error is achieved with 
respect to positive labeled samples. Filtered classification model is the best at  
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F-measure and area under ROC curve, the metrics that we aim to approach 1.  
F-measure and AUC trade off precision versus recall, therefore take the negative 
labeled samples into consideration too. This means that when both of the positive 
and negative samples are respected Filtered model should be used. 

 

 
(a)          (b) 

Fig. 1 a) The ROC Area measure results of the algorithms b) The results of the algorithms 
on the datasets with ROC Area 

 

 
                   (a)                                      (b) 

Fig. 2 a) The F- measure results of the algorithms b) The results of the algorithms on the 
datasets with F-Measure 
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If the class distribution is not balanced in a dataset accurate measure of classifi-
er performance is more important. In this situation one metric may be satisfactory 
but another may not. Therefore a combined metric should be used such as F-
measure and ROC area to determine which model is superior to another. In this 
study Cleveland, vertebral column, CTG, and diabetes datasets include imbal-
anced class distribution therefore F-measure and ROC Area results are took into 
consideration. On these datasets Filtered column produced the best F-measure 
results of 0.532, 0.856, 0.945 and 0.754 respectively. Furthermore ROC Area 
results of Filtered column are best on vertebral column; CTG and diabetes are best 
with the values of 0.936, 0.987, 0.818 and 0.897 respectively. 

4 Conclusions 

In this paper, we evaluated common meta learning classifiers on small size of 
different type of biomedical datasets. Meta learning algorithms showed some en-
couraging results with these datasets. The best results achieve an F-measure of 
0.972 on the Wisconsin Breast Cancer Data Set with rotation forest algorithm and 
ROC Area of 0.992 on the Wisconsin Breast Cancer Data Set with decorate algo-
rithm. The experimental results demonstrate that especially, the rotation forest 
classifier method is a suitable method for biomedical data sets with the evaluation 
of F-Measure and ROC Area results. In future work, we will focus to find the 
alternative Neural Networks methods to improve the system performances on the 
biomedical data sets. 

We conclude this paper by emphasizing the important role of meta-learning that 
in particular, meta-learning can serve as a useful algorithm for classifying the 
medical datasets with exploitation of knowledge.  It has a strong potential impact 
in medical applications. 
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