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Abstract&Despite the importance of Model Based System Engineering (MBSE) 
for early design verification, it is always challenging to represent the system prop-
erties / constraints at higher abstraction level due to complex behavioral and tem-
poral aspects of embedded systems. To manage this, OCL (Object Constraint 
Language) and CCSL (Clock Constraint Specification Language) have been fre-
quently used. On the other hand, SystemVerilog is a renowned hardware design 
and verification language that supports Assertion Based Verification (ABV). 
However, no real efforts have been made to employ SystemVerilog Assertions 
(SVA’s) in MBSE. In this paper, we explore various possibilities to represent 
SVA’s at higher abstraction level. Firstly, we evaluate the existing property speci-
fication approaches to represent SVA’s at higher abstraction level. Consequently, 
we select OCL as an appropriate approach. Secondly, we investigate the syntax 
and semantics of OCL in the context of SVA’s. The outcomes of research provide 
the sound platform to represent SVA’s in OCL for model-based design verifica-
tion of embedded systems. 
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1 Introduction 

Model Based System Engineering (MBSE) is frequently practiced with static 
and/or dynamic verification techniques [1] for embedded systems design. MBSE 
dynamic verification process starts by identifying the embedded systems require-
ments [13], [48] so that the structural and behavioral aspects can be modelled.  
UML (Unified Modeling Language) [2], SYSML (Systems Modeling Language) 
[3] and MARTE (Modeling and Analysis of Real-Time and Embedded systems) 
[4] profiles are the leading approaches [5-7] to specify structural and behavioral 
aspects. Another important task in modelling is the abstract specification of sys-
tem properties / constraints. OMG (Object Management Group) [9] standards like 
OCL (Object Constraint Language) [10] and CCSL (Clock Constraint Specifica-
tion Language) [11] have been frequently used for property specification in the 
domain of embedded systems [12 -14].  

On the other hand, SystemVerilog [16] is an emerging hardware design and veri-
fication language that supports Assertion Based Verification (ABV). Despite the 
proven ABV capabilities of SystemVerilog, it is rarely utilized (e.g. [17-18]) for 
early design (dynamic) verification in the context of MBSE for embedded systems. 
The primary reason is that the semantics / syntax of existing property specification 
approaches are entirely different as that of System Verilog Assertions (SVA’s). 
Consequently, it is difficult to represent SVA’s at higher abstraction level.  

To target this problem, in this paper, we provide a basic platform for expressing 
SVA’s at higher abstraction level by performing: (a) a comparative study of lead-
ing property / constraint specifications techniques and (b) evaluation of syntax and 
semantics of SVA’s. It will allow not only to express SVA’s at higher abstraction 
level but to develop correct transformation rules in order to derive SVA’s from 
abstract property specification due to the matching semantics / syntax of property 
specification approach and SVA’s. 

The proposed research work starts with the search process in scientific databases 
(i.e. IEEE, Springer, Elsevier, and ACM) to identify the leading abstract property 
specification techniques in the domain of MBSE for embedded systems. As a result, 
MARTE stereotypes / annotations, CCSL, SYSML parametric diagram and OCL 
have been identified (Section 2.1).  For comparative study of the leading techniques, 
we identify certain parameters such as complexity, tools support, applicability, ex-
tendibility etc. (Section 2.2). The results of comparative study have allowed to select 
OCL for further investigations. Once the OCL is selected, we evaluate/compare 
syntax and semantics of OCL with respect to SVA’s (Section 3) to ensure the ap-
plicability of our proposal. It has been analyzed that SystemVerilog basic operators 
and control statements (Section 3.2) can be logically represented in OCL. However, 
SystemVerilog sampled value functions, sequence and repetition operators cannot be 
directly represented in OCL (Section 3.3). For such SystemVerilog constructs, we 
propose the possibility of OCL extension. Significant aspects of research have been 
discussed in Section 4. Finally, Section 5 concludes the paper.  
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2 Investigation of Existing Property Specification 
Approaches  

This section investigates various property specification techniques, through a Sys-
tematic Literature Review (SLR), to represent embedded systems properties / 
constraints at higher abstraction level. The details of the SLR can be found at [8]. 
In subsequent sections, we first summarize the leading techniques in Section 2.1 
and then perform comparative analysis in Section 2.2. 

2.1 Summary of Leading Property Specification Approaches  

It has been concluded from the SLR that MARTE stereotypes / annotations, 
CCSL, SYSML parametric diagram and OCL are leading property specification 
techniques: 

MARTE Stereotypes / Annotations. It has been analyzed that MARTE stereotypes / 
annotations have been frequently used to specify embedded systems properties / con-
straints at higher abstraction level. Basically, UML and SYSML diagrams have been 
customized through MARTE stereotypes / annotations to capture embedded systems 
properties / constraints at higher abstraction level. For example, Andrade et al. [19], 
Moreira et al. [20] and Xiaopu et al [21] customize activity diagram, sequence  
diagram and state machine diagram respectively, through MARTE annotations, to 
capture properties / constraints at higher abstraction level. 

Clock Constraint Specification Language (CCSL). The CCSL [11] has been 
first introduced in MARTE profile to express the time constraints. The Synchro-
nous languages [22] and their polychromous extensions [23] provide the basis for 
CSSL. It has been analyzed that CCSL has been frequently used for embedded 
systems property specification. For example, [6], [24] and [25] utilize CCSL to 
represent system properties / constraints at higher abstraction level.  

SYSML Parametric Diagram. We analyzed that SYSML parametric diagram 
has also been used to specify properties / constraints at higher abstraction level. 
For example, Berrani et al. [26] capture system properties / constrains through 
SYSML parametric diagram. Modelica [27] code is generated to perform dynamic 
verification. Similarly, Rahman et al. [28] utilize parametric diagram for abstract 
property specification.  

Object Constraint Language (OCL). As OCL is an OMG standard, it has been 
frequently put into practice for the specification of embedded systems constraints / 
properties. For example, Iqbal et al. [29] propose Real Time Embedded Systems 
(RTES) scheme to model constraints, structure and behavior of the environment in 
UML / MARTE and OCL. Erwan et al. [30] present novel model verification ap-
proach by specifying safety critical systems properties / constraints in OCL.  

Temporal Extensions of OCL. Although OCL has enhanced features to specify 
constraints at higher abstraction level, it has certain limitations while dealing with 
the temporal properties of embedded systems. Consequently, temporal aspects of 
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embedded systems cannot be expressed in OCL unless it is extended. It has been 
analyzed that OCL extensions can be classified into three major types i.e. Template 
based, OCL meta-level based and Pattern based. Template based OCL extensions 
utilize template clauses to represent temporal dimensions [32], [33]. In Meta-level 
based OCL extensions, new classes and functions / operators have been added in the 
existing meta-level of OCL language while preserving the core OCL semantics as 
defined in the meta-level [35]. In Pattern based OCL extensions, property specifica-
tion patterns have been employed to extend OCL for temporal dimensions [37-39].  

Other Property Specification Techniques. In this section, we summarize the 
various property specification approaches that have not been practiced frequently. 
For example, we found an interesting research work by Daniel et al. [5] in which 
TEPE language has been proposed to graphically express temporal properties 
through parametric diagrams of SysML. We have also found different property 
specification techniques like Probabilistic Computation Tree Logic (PCTL) [42], 
Linear Temporal Logic LTL [43] and Property Specification Language (PSL) [44] 
which have been used by Samir et al. [45], Siveroni et al [46] and Guglielmo et al. 
[47] respectively. However, we analyzed that such property specification ap-
proaches should not be considered at higher abstraction level because properties / 
constraints are not represented in pure abstract design rather properties are speci-
fied in between higher and lower abstraction level.  

2.2 Comparative Analysis 

We develop five significant evaluation parameters for comparative analysis of 
leading property specification techniques as follows: 

1. Applicability: It is defined as the ability of approach to express the properties / 
constraints of embedded systems in the UML-based models. “YES” means it 
can be used in UML-based models. “NO” means it cannot be used in UML-
based models. This parameter ensures that the property specification approach 
should be compatible with the leading modeling language.  

2. Representation Complexity: It is defined as the complexity of constructs, 
semantics and syntax of property specification approach. This parameter gives 
us a clear idea of the complexity involved to express properties / constraints at 
higher abstraction level.  It is evaluated as low, high and very high accordingly 
where “low” means it is simple to express properties, “high” means it is difficult 
to express properties and “very high” means it’s very difficult to express proper-
ties / constraints.  

3. Transformation Complexity: It is defined as the complexity involved to trans-
form the abstract properties / constraints into target dynamic verification  
platform. This parameter is mandatory to evaluate because some properties 
specification approaches have very low representation complexity but it is very 
challenging to attain desired dynamic verification platform due to their very 
high transformation complexity. Consequently, it is evaluated as low, high and 
very high accordingly.   
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4. Extension: It is defined as the possibility to extend the particular property spec-
ification approach in order to meet some specific objectives. For example, OCL 
doesn’t support temporal aspects of embedded systems but researchers inten-
sively extend it to support temporal aspects. Extension can be evaluated as No, 
Partial and Full. “No” means that the approach does not support any extensions. 
“Partial” means the approach can be extended to meet particular objectives with 
some limitations.  “Full” means the approach can be customized to support 
broad extensions.  

5. Tool Support: It is defined as the range of tools that support a particular ap-
proach. It is evaluated as low, medium and high. Various factors have been con-
sidered while evaluating tools support like support of editor to express con-
straints / properties, syntax checking, validation and possible customization of 
tool to accommodate the extension of the approach.  

 
The above mentioned evaluation parameters facilitate us to select the appropriate 

property specification approach in order to represent SVA’s at higher abstraction 
level. The evaluation results, summarized in Table 1, reveal that all the leading tech-
niques provide support to represent embedded systems properties / constraints in the 
UML-based models. It has also been analyzed that all the evaluation parameters 
(except Applicability) are directly related with Tools support parameter. For exam-
ple, representation complexity is increased if property specification editor is not 
available. Similarly, transformation complexity is also increased in the absence of 
appropriate transformation tools.  

Table 1 Comparative study of leading property specification approaches 

Parameter 
MARTE 
Stereotypes / 
annotations  

CCSL 
SYSML 
Parametric 
Diagram 

OCL 

Applicability YES YES YES YES 
Representation 

Complexity High Very High Very High High 

Transformation 
Complexity  Very High Very High Very High High 

Extension Partial Partial Partial Full 
Tools support Medium Medium Medium  High 

We analyzed that MARTE stereotypes / annotation has high representation 
complexity because it is required to logically combine MARTE stereotypes / an-
notations with semantics of different UML diagrams. Consequently, it is difficult 
to develop transformation rules due to mix behavioral and verification aspects that 
leads to very high transformation complexity. MARTE stereotypes can be partial-
ly extended to achieve a particular property specification objective. There are 
sufficient modeling tools available for MARTE profile like papyrus [50]. Fur-
thermore, different existing transformation tools (e.g. QVTO [51]) can be used to 
develop customized tools.  
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It is investigated that CCSL has very high representational complexity due to 
its difficult syntax and semantics. Furthermore, it is required to understand CCSL 
semantics before developing the transformation rules that makes the transfor-
mation complexity very high. However, it is possible to partially extend CCSL. 
For example, Ling et al. [52] propose CCSL extension (ccLTS) for embedded 
systems design verification. There is sufficient tools support available for CCSL. 
For example, TimeSquare [53] tool is explicitly developed for CCSL specifica-
tions that directly simulates the design without model transformation.  

It is very difficult to model embedded systems constraints in SYSML paramet-
ric diagram due to its complex semantics. Consequently, the transformation com-
plexity is also very high. However, there are tools available to directly simulate 
the SYSML parametric diagram for dynamic verification e.g. Rhapsody Paramet-
ric Constraint Evaluator (PCE) [54]. It can be argued that both SYSML parametric 
diagram and CCSL support direct simulation that results in low transformation 
complexity because transformation is not required at all. It is also possible to par-
tially extend SYSML parametric diagram [5].  

We analyze that the syntax and semantics of OCL are very close to most of the 
target dynamic verification platform (e.g. VHDL, SystemC etc.). However, it is 
still required to study OCL standard library before expressing the properties / con-
straints.  There are various tools available to support transformation of OCL con-
straints (e.g. MOFScript [55]). Moreover, tools are available to directly evaluate 
OCL constraints for dynamic verification (e.g. OCL constraint solver [40]). Fur-
thermore, it is possible to customize standard OCL library through Xtext [49] to 
support OCL extensions. The tool support for OCL is high. OCL fully supports 
extensions to support particular embedded systems property specification objec-
tive. Based on the above analysis, we select OCL to represent SVA’s at higher 
abstraction level. 

3 Investigating OCL Semantics/Constructs for 
SystemVerilog  

3.1 Significant SystemVerilog Constructs  

SystemVerilog is a Hardware Description Language (HDL) that also provides 
enhanced verification features. In the following, we identified the important con-
structs of SystemVerilog, which are mandatory to design simple as well as com-
plex SVA’s. 

1. Basic operators and control statements: The SystemVerilog provides set of 
basic operators and control statements which are partially similar as that of oth-
er programming languages. These operators and control statements are used to 
develop hardware design and assertions. We investigate almost all basic opera-
tors of SystemVerilog like arithmetic (e.g. multiply, division etc.), relational 
(e.g. greater than, less than, etc.), logical (e.g. and, or etc.) and equality opera-
tors. Table 2 summarizes the SystemVerilog basic operators with equivalent 
OCL operators. Similarly, we have also identified four SystemVerilog control 
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statements (i.e. 1) If else 2) Case 3) While 4) For Loop) for further analysis 
(Section 3.2). 

2. SystemVerilog sampled value functions: SystemVerilog provides a set of 
sampled value functions to evaluate current values with respect to past values. 
These functions are frequently used for hardware design and verification (asser-
tions). We identify five important sampled value functions (i.e. $sampled, $fell, 
$rose, $past, and $stable) for further investigation (Section 3.3).  

3. SystemVerilog sequence, repetition and implication operators: System-
Verilog sequence and repetition operators are usually used to manage past and  
future temporal dimensions. Furthermore, SystemVerilog provide two types of 
implications (i.e. Overlapped Implication (|->) and Non-Overlapped Implication 
(|=>)) to design / check the occurrence of particular sequence of conditions. We 
consider most common SystemVerilog sequence and repetition operators for fur-
ther investigation i.e. Consecutive repetition ([*), Goto repetition ([->), ##, [*], 
[=] and [->]. We also consider both types of SystemVerilog implication for fur-
ther investigation.  

3.2 Similarities Between SystemVerilog and OCL Constructs 

Basic Operators. It has been analyzed that most of the basic operators of both 
SystemVerilog and OCL have similar semantics. Results are summarized in Table 2. 
Furthermore, SystemVerilog overlapping implication can be managed through OCL 
implies operator.  

Table 2 Similarities between basic operators of SystemVerilog and OCL 

Sr. # Type of  
Operator  

SystemVerilog 
Operators  

Equivalent 
OCL Operators  Operator Description 

1 

Arithmetic * * Multiply 
 / / Division 
 + + Add, Unary plus 
 - - Subtract, Unary minus 

2 

Comparison > > Greater than 
 < < Less than 
 >= >= Greater than or equal 
 <= <= Less than or equal 

3 

Boolean && and Logical And 
 ! not Logical Not 
 || or Logical OR 
 |-> implies Implies 
 ^ xor Exclusive OR 

4 Equality == = Equality 
 != <> inequality 
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Control Statements. It has been analyzed that OCL does not directly support 
SystemVerilog control statements like foreach etc. However, we examine that the 
OCL loop operations on collection types can be used to logically represent par-
ticular SystemVerilog control statements. For example, OCL forAll operation on 
collection types returns true if expression is true for all elements in the collection.  
Consequently, SystemVerilog foreach statement can be logically expressed in 
OCL through forAll operation on collection types. Similarly, other OCL loop op-
erations on collection types (e.g. Any, Exists etc.) can also be used to represent 
different SystemVerilog control statements. The details of OCL loop operations 
on collection types and description of OCL iterator variables can be found in OCL 
specifications version 2.4 [56]. We also analyze that SystemVerilog case / if else 
statements can be directly expressed in OCL IfExp.  

3.3 Dissimilar Semantics of SystemVerilog and OCL  

1. SystemVerilog sampled value functions: These SystemVerilog functions are 
based on past temporal dimensions and cannot be expressed in OCL. For ex-
ample, SystemVerilog $past function returns any past value of expression as 
per given past number of clocks. However, in OCL, we can only access the last 
preceding value through @pre operator with certain restrictions (e.g. it is man-
datory to use @pre operator in post condition). Consequently, SystemVerilog 
sampled value functions cannot be expressed in OCL without its appropriate 
past temporal extension.  

2. SystemVerilog non-overlapping implication (|=>): In this type of implica-
tion, the expression on right hand side is evaluated after one clock tick on the 
occurrence of left hand side expression. On the other hand, OCL doesn’t sup-
port any kind of future temporal dimensions. Consequently, non-overlapping 
implication cannot be expressed in OCL without its appropriate future temporal 
extension.   

3. SystemVerilog sequence and repetition operators: These operators are 
commonly used with past / future temporal dimensions. For example, 
SystemVerilog expression a ##7 b means that b should be true after seven clock 
ticks of a. However, OCL doesn’t support future temporal dimensions. Conse-
quently, it is mandatory to extend OCL for past and future temporal dimensions 
in order to handle SystemVerilog sequence and repetition operators.  

4 Discussion and Limitations 

The objective of this research is to logically represent SVA’s in OCL so that the 
target SystemVerilog code can be generated with minimum transformation efforts. 
Of course SystemVerilog is a complete design / verification language and it is not 
possible to represent all SystemVerilog semantics in OCL. For example, in 
SystemVerilog, both overlapping and non-overlapping implications have the con-
cept of vacuous success. However, it is not necessary to include such 
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SystemVerilog semantics in OCL because the ultimate dynamic design verifica-
tion is performed in SystemVerilog. Therefore, the main purpose is to logically 
represent SVA’s in OCL to ensure the simplicity and correctness of model trans-
formation for the target SystemVerilog code.  

Although OCL provides support to basic SystemVerilog constructs and control 
statement, it is not sufficient to represent SVA’s due to missing past and future 
temporal dimensions. Therefore, it is mandatory to extend OCL for inevitable 
temporal aspects of embedded systems. We already highlighted different research 
works (2.1) where OCL is extended to deal with the complex temporal aspects. 
Consequently, it can be concluded that the development of such OCL extension is 
practicable. Furthermore, it is easy to tailor OCL extension in the context of 
SVA’s as basic semantics / syntax of SystemVerilog operators and control state-
ments have already been supported by OCL (Section 3.2). We are currently work-
ing on OCL extension for SystemVerilog and represent it in our next article.  

5 Conclusions and Future work 

In this paper, we explored various property specification techniques and provided 
a basic platform to represent SystemVerilog Assertions (SVA’s) at higher abstrac-
tion level in the context of MBSE for embedded systems. Analysis of existing 
techniques identified the four leading approaches: (i.e. MARTE stereotypes / an-
notations, CCSL, SYSML parametric diagram and OCL). A comprehensive com-
parative study of the leading techniques allowed to select OCL for SVA’s. Subse-
quently, we investigated semantics / syntax of OCL constructs with respect to 
SystemVerilog constructs for representation of SVA’s. It has been concluded that 
OCL supports the representation of SystemVerilog constructs like basic operators 
and control statements. It has also been analyzed that some SystemVerilog con-
structs like sampled value functions and sequence / repetition operators cannot be 
represented in OCL unless it is extended for past and future temporal dimensions. 
This research provided the basis/platform for researchers and practitioners of the 
domain to introduce SystemVerilog Assertions in MBSE for embedded systems. 
We are currently working on OCL extension for SystemVerilog and intend to 
present the details in our next article. 
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