

© Springer Science+Business Media Singapore 2016 533
K.J. Kim and N. Joukov (eds.), Information Science and Applications (ICISA) 2016,
Lecture Notes in Electrical Engineering 376,
DOI: 10.1007/978-981-10-0557-2_53

Exploring the Platform for Expressing
SystemVerilog Assertions in Model
Based System Engineering

Muhammad Rashid, Muhammad Waseem Anwar, Farooque Azam
and Muhammad Kashif

Abstract&Despite the importance of Model Based System Engineering (MBSE)
for early design verification, it is always challenging to represent the system prop-
erties / constraints at higher abstraction level due to complex behavioral and tem-
poral aspects of embedded systems. To manage this, OCL (Object Constraint
Language) and CCSL (Clock Constraint Specification Language) have been fre-
quently used. On the other hand, SystemVerilog is a renowned hardware design
and verification language that supports Assertion Based Verification (ABV).
However, no real efforts have been made to employ SystemVerilog Assertions
(SVA’s) in MBSE. In this paper, we explore various possibilities to represent
SVA’s at higher abstraction level. Firstly, we evaluate the existing property speci-
fication approaches to represent SVA’s at higher abstraction level. Consequently,
we select OCL as an appropriate approach. Secondly, we investigate the syntax
and semantics of OCL in the context of SVA’s. The outcomes of research provide
the sound platform to represent SVA’s in OCL for model-based design verifica-
tion of embedded systems.

Keywords MBSE · OCL · CCSL · SystemVerilog Assertions · Design verification

M. Rashid()

College of Computer and Information Systems,
DCE, Umm Al-Qura University, Mecca, Saudi Arabia
e-mail: mfelahi@uqu.edu.sa

M.W. Anwar · M. Kashif

MODEVES Project, National Science,
Technology and Innovation Plan, Riyadh, Saudi Arabia
e-mail: waseemanwar@hotmail.com, muhammadkashif038@gmail.com

F. Azam
CEME, DCE, National University of Sciences and Technology, H-12, Islamabad, Pakistan
e-mail: farooq@ceme.nust.edu.pk

534 M. Rashid et al.

1 Introduction

Model Based System Engineering (MBSE) is frequently practiced with static
and/or dynamic verification techniques [1] for embedded systems design. MBSE
dynamic verification process starts by identifying the embedded systems require-
ments [13], [48] so that the structural and behavioral aspects can be modelled.
UML (Unified Modeling Language) [2], SYSML (Systems Modeling Language)
[3] and MARTE (Modeling and Analysis of Real-Time and Embedded systems)
[4] profiles are the leading approaches [5-7] to specify structural and behavioral
aspects. Another important task in modelling is the abstract specification of sys-
tem properties / constraints. OMG (Object Management Group) [9] standards like
OCL (Object Constraint Language) [10] and CCSL (Clock Constraint Specifica-
tion Language) [11] have been frequently used for property specification in the
domain of embedded systems [12 -14].

On the other hand, SystemVerilog [16] is an emerging hardware design and veri-
fication language that supports Assertion Based Verification (ABV). Despite the
proven ABV capabilities of SystemVerilog, it is rarely utilized (e.g. [17-18]) for
early design (dynamic) verification in the context of MBSE for embedded systems.
The primary reason is that the semantics / syntax of existing property specification
approaches are entirely different as that of System Verilog Assertions (SVA’s).
Consequently, it is difficult to represent SVA’s at higher abstraction level.

To target this problem, in this paper, we provide a basic platform for expressing
SVA’s at higher abstraction level by performing: (a) a comparative study of lead-
ing property / constraint specifications techniques and (b) evaluation of syntax and
semantics of SVA’s. It will allow not only to express SVA’s at higher abstraction
level but to develop correct transformation rules in order to derive SVA’s from
abstract property specification due to the matching semantics / syntax of property
specification approach and SVA’s.

The proposed research work starts with the search process in scientific databases
(i.e. IEEE, Springer, Elsevier, and ACM) to identify the leading abstract property
specification techniques in the domain of MBSE for embedded systems. As a result,
MARTE stereotypes / annotations, CCSL, SYSML parametric diagram and OCL
have been identified (Section 2.1). For comparative study of the leading techniques,
we identify certain parameters such as complexity, tools support, applicability, ex-
tendibility etc. (Section 2.2). The results of comparative study have allowed to select
OCL for further investigations. Once the OCL is selected, we evaluate/compare
syntax and semantics of OCL with respect to SVA’s (Section 3) to ensure the ap-
plicability of our proposal. It has been analyzed that SystemVerilog basic operators
and control statements (Section 3.2) can be logically represented in OCL. However,
SystemVerilog sampled value functions, sequence and repetition operators cannot be
directly represented in OCL (Section 3.3). For such SystemVerilog constructs, we
propose the possibility of OCL extension. Significant aspects of research have been
discussed in Section 4. Finally, Section 5 concludes the paper.

Exploring the Platform for Expressing SVA in Model Based System Engineering 535

2 Investigation of Existing Property Specification
Approaches

This section investigates various property specification techniques, through a Sys-
tematic Literature Review (SLR), to represent embedded systems properties /
constraints at higher abstraction level. The details of the SLR can be found at [8].
In subsequent sections, we first summarize the leading techniques in Section 2.1
and then perform comparative analysis in Section 2.2.

2.1 Summary of Leading Property Specification Approaches

It has been concluded from the SLR that MARTE stereotypes / annotations,
CCSL, SYSML parametric diagram and OCL are leading property specification
techniques:

MARTE Stereotypes / Annotations. It has been analyzed that MARTE stereotypes /
annotations have been frequently used to specify embedded systems properties / con-
straints at higher abstraction level. Basically, UML and SYSML diagrams have been
customized through MARTE stereotypes / annotations to capture embedded systems
properties / constraints at higher abstraction level. For example, Andrade et al. [19],
Moreira et al. [20] and Xiaopu et al [21] customize activity diagram, sequence
diagram and state machine diagram respectively, through MARTE annotations, to
capture properties / constraints at higher abstraction level.

Clock Constraint Specification Language (CCSL). The CCSL [11] has been
first introduced in MARTE profile to express the time constraints. The Synchro-
nous languages [22] and their polychromous extensions [23] provide the basis for
CSSL. It has been analyzed that CCSL has been frequently used for embedded
systems property specification. For example, [6], [24] and [25] utilize CCSL to
represent system properties / constraints at higher abstraction level.

SYSML Parametric Diagram. We analyzed that SYSML parametric diagram
has also been used to specify properties / constraints at higher abstraction level.
For example, Berrani et al. [26] capture system properties / constrains through
SYSML parametric diagram. Modelica [27] code is generated to perform dynamic
verification. Similarly, Rahman et al. [28] utilize parametric diagram for abstract
property specification.

Object Constraint Language (OCL). As OCL is an OMG standard, it has been
frequently put into practice for the specification of embedded systems constraints /
properties. For example, Iqbal et al. [29] propose Real Time Embedded Systems
(RTES) scheme to model constraints, structure and behavior of the environment in
UML / MARTE and OCL. Erwan et al. [30] present novel model verification ap-
proach by specifying safety critical systems properties / constraints in OCL.

Temporal Extensions of OCL. Although OCL has enhanced features to specify
constraints at higher abstraction level, it has certain limitations while dealing with
the temporal properties of embedded systems. Consequently, temporal aspects of

536 M. Rashid et al.

embedded systems cannot be expressed in OCL unless it is extended. It has been
analyzed that OCL extensions can be classified into three major types i.e. Template
based, OCL meta-level based and Pattern based. Template based OCL extensions
utilize template clauses to represent temporal dimensions [32], [33]. In Meta-level
based OCL extensions, new classes and functions / operators have been added in the
existing meta-level of OCL language while preserving the core OCL semantics as
defined in the meta-level [35]. In Pattern based OCL extensions, property specifica-
tion patterns have been employed to extend OCL for temporal dimensions [37-39].

Other Property Specification Techniques. In this section, we summarize the
various property specification approaches that have not been practiced frequently.
For example, we found an interesting research work by Daniel et al. [5] in which
TEPE language has been proposed to graphically express temporal properties
through parametric diagrams of SysML. We have also found different property
specification techniques like Probabilistic Computation Tree Logic (PCTL) [42],
Linear Temporal Logic LTL [43] and Property Specification Language (PSL) [44]
which have been used by Samir et al. [45], Siveroni et al [46] and Guglielmo et al.
[47] respectively. However, we analyzed that such property specification ap-
proaches should not be considered at higher abstraction level because properties /
constraints are not represented in pure abstract design rather properties are speci-
fied in between higher and lower abstraction level.

2.2 Comparative Analysis

We develop five significant evaluation parameters for comparative analysis of
leading property specification techniques as follows:

1. Applicability: It is defined as the ability of approach to express the properties /
constraints of embedded systems in the UML-based models. “YES” means it
can be used in UML-based models. “NO” means it cannot be used in UML-
based models. This parameter ensures that the property specification approach
should be compatible with the leading modeling language.

2. Representation Complexity: It is defined as the complexity of constructs,
semantics and syntax of property specification approach. This parameter gives
us a clear idea of the complexity involved to express properties / constraints at
higher abstraction level. It is evaluated as low, high and very high accordingly
where “low” means it is simple to express properties, “high” means it is difficult
to express properties and “very high” means it’s very difficult to express proper-
ties / constraints.

3. Transformation Complexity: It is defined as the complexity involved to trans-
form the abstract properties / constraints into target dynamic verification
platform. This parameter is mandatory to evaluate because some properties
specification approaches have very low representation complexity but it is very
challenging to attain desired dynamic verification platform due to their very
high transformation complexity. Consequently, it is evaluated as low, high and
very high accordingly.

Exploring the Platform for Expressing SVA in Model Based System Engineering 537

4. Extension: It is defined as the possibility to extend the particular property spec-
ification approach in order to meet some specific objectives. For example, OCL
doesn’t support temporal aspects of embedded systems but researchers inten-
sively extend it to support temporal aspects. Extension can be evaluated as No,
Partial and Full. “No” means that the approach does not support any extensions.
“Partial” means the approach can be extended to meet particular objectives with
some limitations. “Full” means the approach can be customized to support
broad extensions.

5. Tool Support: It is defined as the range of tools that support a particular ap-
proach. It is evaluated as low, medium and high. Various factors have been con-
sidered while evaluating tools support like support of editor to express con-
straints / properties, syntax checking, validation and possible customization of
tool to accommodate the extension of the approach.

The above mentioned evaluation parameters facilitate us to select the appropriate

property specification approach in order to represent SVA’s at higher abstraction
level. The evaluation results, summarized in Table 1, reveal that all the leading tech-
niques provide support to represent embedded systems properties / constraints in the
UML-based models. It has also been analyzed that all the evaluation parameters
(except Applicability) are directly related with Tools support parameter. For exam-
ple, representation complexity is increased if property specification editor is not
available. Similarly, transformation complexity is also increased in the absence of
appropriate transformation tools.

Table 1 Comparative study of leading property specification approaches

Parameter
MARTE
Stereotypes /
annotations

CCSL
SYSML
Parametric
Diagram

OCL

Applicability YES YES YES YES
Representation

Complexity High Very High Very High High

Transformation
Complexity Very High Very High Very High High

Extension Partial Partial Partial Full
Tools support Medium Medium Medium High

We analyzed that MARTE stereotypes / annotation has high representation
complexity because it is required to logically combine MARTE stereotypes / an-
notations with semantics of different UML diagrams. Consequently, it is difficult
to develop transformation rules due to mix behavioral and verification aspects that
leads to very high transformation complexity. MARTE stereotypes can be partial-
ly extended to achieve a particular property specification objective. There are
sufficient modeling tools available for MARTE profile like papyrus [50]. Fur-
thermore, different existing transformation tools (e.g. QVTO [51]) can be used to
develop customized tools.

538 M. Rashid et al.

It is investigated that CCSL has very high representational complexity due to
its difficult syntax and semantics. Furthermore, it is required to understand CCSL
semantics before developing the transformation rules that makes the transfor-
mation complexity very high. However, it is possible to partially extend CCSL.
For example, Ling et al. [52] propose CCSL extension (ccLTS) for embedded
systems design verification. There is sufficient tools support available for CCSL.
For example, TimeSquare [53] tool is explicitly developed for CCSL specifica-
tions that directly simulates the design without model transformation.

It is very difficult to model embedded systems constraints in SYSML paramet-
ric diagram due to its complex semantics. Consequently, the transformation com-
plexity is also very high. However, there are tools available to directly simulate
the SYSML parametric diagram for dynamic verification e.g. Rhapsody Paramet-
ric Constraint Evaluator (PCE) [54]. It can be argued that both SYSML parametric
diagram and CCSL support direct simulation that results in low transformation
complexity because transformation is not required at all. It is also possible to par-
tially extend SYSML parametric diagram [5].

We analyze that the syntax and semantics of OCL are very close to most of the
target dynamic verification platform (e.g. VHDL, SystemC etc.). However, it is
still required to study OCL standard library before expressing the properties / con-
straints. There are various tools available to support transformation of OCL con-
straints (e.g. MOFScript [55]). Moreover, tools are available to directly evaluate
OCL constraints for dynamic verification (e.g. OCL constraint solver [40]). Fur-
thermore, it is possible to customize standard OCL library through Xtext [49] to
support OCL extensions. The tool support for OCL is high. OCL fully supports
extensions to support particular embedded systems property specification objec-
tive. Based on the above analysis, we select OCL to represent SVA’s at higher
abstraction level.

3 Investigating OCL Semantics/Constructs for
SystemVerilog

3.1 Significant SystemVerilog Constructs

SystemVerilog is a Hardware Description Language (HDL) that also provides
enhanced verification features. In the following, we identified the important con-
structs of SystemVerilog, which are mandatory to design simple as well as com-
plex SVA’s.

1. Basic operators and control statements: The SystemVerilog provides set of
basic operators and control statements which are partially similar as that of oth-
er programming languages. These operators and control statements are used to
develop hardware design and assertions. We investigate almost all basic opera-
tors of SystemVerilog like arithmetic (e.g. multiply, division etc.), relational
(e.g. greater than, less than, etc.), logical (e.g. and, or etc.) and equality opera-
tors. Table 2 summarizes the SystemVerilog basic operators with equivalent
OCL operators. Similarly, we have also identified four SystemVerilog control

Exploring the Platform for Expressing SVA in Model Based System Engineering 539

statements (i.e. 1) If else 2) Case 3) While 4) For Loop) for further analysis
(Section 3.2).

2. SystemVerilog sampled value functions: SystemVerilog provides a set of
sampled value functions to evaluate current values with respect to past values.
These functions are frequently used for hardware design and verification (asser-
tions). We identify five important sampled value functions (i.e. $sampled, $fell,
$rose, $past, and $stable) for further investigation (Section 3.3).

3. SystemVerilog sequence, repetition and implication operators: System-
Verilog sequence and repetition operators are usually used to manage past and
future temporal dimensions. Furthermore, SystemVerilog provide two types of
implications (i.e. Overlapped Implication (|->) and Non-Overlapped Implication
(|=>)) to design / check the occurrence of particular sequence of conditions. We
consider most common SystemVerilog sequence and repetition operators for fur-
ther investigation i.e. Consecutive repetition ([*), Goto repetition ([->), ##, [*],
[=] and [->]. We also consider both types of SystemVerilog implication for fur-
ther investigation.

3.2 Similarities Between SystemVerilog and OCL Constructs

Basic Operators. It has been analyzed that most of the basic operators of both
SystemVerilog and OCL have similar semantics. Results are summarized in Table 2.
Furthermore, SystemVerilog overlapping implication can be managed through OCL
implies operator.

Table 2 Similarities between basic operators of SystemVerilog and OCL

Sr. # Type of
Operator

SystemVerilog
Operators

Equivalent
OCL Operators Operator Description

1

Arithmetic * * Multiply
 / / Division
 + + Add, Unary plus
 - - Subtract, Unary minus

2

Comparison > > Greater than
 < < Less than
 >= >= Greater than or equal
 <= <= Less than or equal

3

Boolean && and Logical And
 ! not Logical Not
 || or Logical OR
 |-> implies Implies
 ^ xor Exclusive OR

4 Equality == = Equality
 != <> inequality

540 M. Rashid et al.

Control Statements. It has been analyzed that OCL does not directly support
SystemVerilog control statements like foreach etc. However, we examine that the
OCL loop operations on collection types can be used to logically represent par-
ticular SystemVerilog control statements. For example, OCL forAll operation on
collection types returns true if expression is true for all elements in the collection.
Consequently, SystemVerilog foreach statement can be logically expressed in
OCL through forAll operation on collection types. Similarly, other OCL loop op-
erations on collection types (e.g. Any, Exists etc.) can also be used to represent
different SystemVerilog control statements. The details of OCL loop operations
on collection types and description of OCL iterator variables can be found in OCL
specifications version 2.4 [56]. We also analyze that SystemVerilog case / if else
statements can be directly expressed in OCL IfExp.

3.3 Dissimilar Semantics of SystemVerilog and OCL

1. SystemVerilog sampled value functions: These SystemVerilog functions are
based on past temporal dimensions and cannot be expressed in OCL. For ex-
ample, SystemVerilog $past function returns any past value of expression as
per given past number of clocks. However, in OCL, we can only access the last
preceding value through @pre operator with certain restrictions (e.g. it is man-
datory to use @pre operator in post condition). Consequently, SystemVerilog
sampled value functions cannot be expressed in OCL without its appropriate
past temporal extension.

2. SystemVerilog non-overlapping implication (|=>): In this type of implica-
tion, the expression on right hand side is evaluated after one clock tick on the
occurrence of left hand side expression. On the other hand, OCL doesn’t sup-
port any kind of future temporal dimensions. Consequently, non-overlapping
implication cannot be expressed in OCL without its appropriate future temporal
extension.

3. SystemVerilog sequence and repetition operators: These operators are
commonly used with past / future temporal dimensions. For example,
SystemVerilog expression a ##7 b means that b should be true after seven clock
ticks of a. However, OCL doesn’t support future temporal dimensions. Conse-
quently, it is mandatory to extend OCL for past and future temporal dimensions
in order to handle SystemVerilog sequence and repetition operators.

4 Discussion and Limitations

The objective of this research is to logically represent SVA’s in OCL so that the
target SystemVerilog code can be generated with minimum transformation efforts.
Of course SystemVerilog is a complete design / verification language and it is not
possible to represent all SystemVerilog semantics in OCL. For example, in
SystemVerilog, both overlapping and non-overlapping implications have the con-
cept of vacuous success. However, it is not necessary to include such

Exploring the Platform for Expressing SVA in Model Based System Engineering 541

SystemVerilog semantics in OCL because the ultimate dynamic design verifica-
tion is performed in SystemVerilog. Therefore, the main purpose is to logically
represent SVA’s in OCL to ensure the simplicity and correctness of model trans-
formation for the target SystemVerilog code.

Although OCL provides support to basic SystemVerilog constructs and control
statement, it is not sufficient to represent SVA’s due to missing past and future
temporal dimensions. Therefore, it is mandatory to extend OCL for inevitable
temporal aspects of embedded systems. We already highlighted different research
works (2.1) where OCL is extended to deal with the complex temporal aspects.
Consequently, it can be concluded that the development of such OCL extension is
practicable. Furthermore, it is easy to tailor OCL extension in the context of
SVA’s as basic semantics / syntax of SystemVerilog operators and control state-
ments have already been supported by OCL (Section 3.2). We are currently work-
ing on OCL extension for SystemVerilog and represent it in our next article.

5 Conclusions and Future work

In this paper, we explored various property specification techniques and provided
a basic platform to represent SystemVerilog Assertions (SVA’s) at higher abstrac-
tion level in the context of MBSE for embedded systems. Analysis of existing
techniques identified the four leading approaches: (i.e. MARTE stereotypes / an-
notations, CCSL, SYSML parametric diagram and OCL). A comprehensive com-
parative study of the leading techniques allowed to select OCL for SVA’s. Subse-
quently, we investigated semantics / syntax of OCL constructs with respect to
SystemVerilog constructs for representation of SVA’s. It has been concluded that
OCL supports the representation of SystemVerilog constructs like basic operators
and control statements. It has also been analyzed that some SystemVerilog con-
structs like sampled value functions and sequence / repetition operators cannot be
represented in OCL unless it is extended for past and future temporal dimensions.
This research provided the basis/platform for researchers and practitioners of the
domain to introduce SystemVerilog Assertions in MBSE for embedded systems.
We are currently working on OCL extension for SystemVerilog and intend to
present the details in our next article.

Acknowledgments This project is funded by NSTIP (National Science Technology, Inno-
vative Plan), Saudi Arabia under the Technology Area “Information Technology Strategic
Priorities” and Track “Software Engineering and Innovated Systems”. We acknowledge the
support of KACST (King Abdulaziz City for Science and Technology) and STU (Science
and Technology Unit) Makkah (grant no. 13-INF761-10).

542 M. Rashid et al.

References

1. Rashid, M., Anwar, M.W., Khan, A.M.: Towards the Tools Selection in Model Based
System Engineering for Embedded Systems - A Systematic Literature Review. JSS
106, 150–163 (2015)

2. Booch, G., Rumbaugh, J., Jacobson, I.: UML, User Guide. Addison-Wesley (1999)
3. OMG, SysML (2008). http://www.omg.org/spec/SysML/1.3/ (retrieved March 6,

2012)
4. OMG, UML Profile for MARTE, v1.0, November 2009, formal/2009-11-02
5. Knorreck, D., Apvrille, L.: TEPE: A SysML Language for Time-Constrained Property

Modeling and Formal Verification. ACM SIGSOFT 36(1), 1–8 (2011)
6. Ge, N., Pantel, M., Cregut, X.: Formal specification and verification of task time

constraints for real-time systems. LNCS, vol. 7610, pp. 143–157 (2012)
7. Baresi, L., Blohm, G., Kolovos, D.S., Matragkas, N., Motta, A., Paige, R.F.,

Radjenovic, A., Rossi, M.: Formal verification and validation of embedded systems:
the UML-based MADES approach. SSM Springer (2013)

8. MODEVES project, details of SLR. http://www.modeves.com/slr2.html
9. Object management Group: http://www.omg.org/ (accessed September 2015)

10. Object Constraint Language: http://www.omg.org/spec/OCL/ (accessed September
2015)

11. Clock Constraint Specification Language (CCSL): http://www.omgmarte.org/node/66
(accessed September 2015)

12. Rashid, M., Anwar, M.W., Khan, A.M.: Identification of trends for model based
development of embedded systems. In: 12th IEEE International Symposium on Pro-
gramming and Systems (ISPS), April 2015, Algiers, pp. 1–8 (2015)

13. Rashid, M., Pottier, B.: A multi-objective framework for characterization of software
specifications. In: Embedded and Real Time System Development: A Software Engi-
neering Perspective: Concepts, Methods and Principles. Springer, pp. 185–209 (2014)

14. Rashid, M.: An efficient cycle accurate performance estimation model for hardware
software co-design. In: Embedded and Real Time System Development: A Software
Engineering Perspective: Concepts, Methods and Principles. Springer, pp. 213–234
(2014)

15. Rashid, M., Ferrandi, F., Bertels, K.: HARTES design flow for heterogeneous plat-
forms. In: Proceedings of the 10th International Symposium on Quality of Electronic
Design (ISQED 2009), CA, USA, March 2009, pp. 330–338 (2009)

16. IEEE SystemVerilog: http://standards.ieee.org/getieee/1800/download/1800-2012.pdf
17. Jin, N., Shen, C., Ni, T.: Engineering of An Assertion-based PSLSimple-Verilog

Dynamic Verifier by Alternating Automata. ENTCS 207, 153–169 (2008)
18. Li, L., Coyle, F.P., Thornton, M.A.: UML to SystemVerilog synthesis for embedded

system models with support for assertion generation. In: ECSI Forum on Design
Languages (2007)

19. Andrade, E., Maciel, P., Callou, G., Nogueira, B.: A methodology for mapping SysML
activity diagram to time petri net for requirement validation of embedded real-time
systems with energy constraints. In: ICDS 2009, pp. 266–271 (2009)

20. Moreira, T.G., Wehrmeister, M., Pereira, C.E., Pétin, J.F., Levrat, E.: Automatic code
generation for embedded systems: from UML specifications to VHDL code. In: IEEE
8th INDIN 2010, pp. 1085–1090 (2010)

Exploring the Platform for Expressing SVA in Model Based System Engineering 543

21. Huang, X., Sun, Q., Li, J., Pan, M., Zhang, T.: An MDE-based approach to the verifi-
cation of SysML state machine diagram. In: APSIS 2012, p. 9. ACM (2012)

22. Benveniste, A., Caspi, P., Edwards, S., Halbwachs, N., Le Guernic, P., De Simone, R.:
The synchronous languages 12 years later. Proc. of the IEEE 91(1), 64–83

23. André, C., Mallet, F., Deantoni, J.: VHDL observers for clock constraint checking. In:
ISIE, pp. 98–107

24. Peters, J., Wille, R., Drechsler, R.: Generating SystemC implementations for clock
constraints specified in UML/MARTE CCSL. In: 19th ICECCS 2014, pp. 116–125
(2014)

25. Suryadevara, J.: Validating EAST-ADL timing constraints using UPPAAL. In: 39th
Euromicro Conference SEAA 2013, pp. 268–275 (2013)

26. Berrani, S., Hammad, A., Mountassir, H.: Mapping SysML to modelica to
validate wireless sensor networks non-functional requirements. In: 11th ISPS 2013,
pp. 177–186 (2013)

27. Modelica Language: https://www.modelica.org/ (accessed October 2015)
28. Rahman, M.A.A., Nor, N.S.M., Mizukawa, M.: Evaluation for SysML-based design

and analysis models using PCE. In: ICCSCE 2012, pp. 339–344 (2012)
29. Iqbal, M.Z., Arcuri, A., Briand, L.: Environment modeling and simulation for auto-

mated testing of soft real-time embedded software. SSM (2013)
30. Bousse, E., Mentré, D., Combemale, B., Baudry, B., Katsuragi, T.: Aligning

SysML with the B method to provide V&V for systems engineering. In: WMDEVV,
pp. 11–16. ACM (2012)

31. Universal Verification Methodology: http://accellera.org/downloads/standards/uvm
32. Bradfield, J., Filipe, J. K., Stevens, P.: Enriching OCL using observational

mu-calculus. LNCS, vol. 2306, pp. 203–217 (2002)
33. Mullins, J., Oarga, R.: Model checking of extended OCL constraints on UML models

in SOCLe. LNCS, vol. 4468, pp. 59–75 (2007)
34. Mentor Graphics: http://www.mentor.com/ (accessed October 2015)
35. Lavazza, Luigi, Morasca, Sandro, Morzenti, Angelo: A Dual Language Approach to

the Development of Time-Critical Systems. ENTC 116, 227–239 (2005)
36. Cengarle, M.V., Knapp, A.: Towards OCL/RT. LNCS, vol. 2391, pp. 390–409
37. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property specifications for

finite-state verification. In: 21st ICS, pp. 411–420 (1999)
38. Dou, W., Bianculli, D., Briand, L.: OCLR: a more expressive, pattern-based temporal

extension of OCL. LNCS, vol. 8569, pp. 51–66 (2014)
39. Kanso, B., Taha, S.: Specification of temporal properties with OCL. Science of

Computer programming 96, Part 4, pp. 527–551 (2014)
40. Ali, S., Iqbal, M.Z., Arcuri, A., Briand, L.: A Search-based OCL constraint solver for

model-based test data generation. In: The 11th International Conference on Quality
Software (2011)

41. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: Model checking of CTL-extended
OCL specifications. LNCS, vol. 8706, pp. 221–240 (2014)

42. Baier, C., Katoen, J.P.: Principles of model checking. The MIT Press (2008)
43. Emerson, E.: Temporal and modal logic. In: Leeuwen, J.V. (ed.) HTCE. MIT Press

(1990)
44. IEEE PSL Std.: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=5446004
45. Ouchani, S., Mohamed, O.A., Debbabi, M.: A formal verification framework for

SysML activity diagrams. ESA, 2713–2728 (2014)

544 M. Rashid et al.

46. Siveroni, I., Zisman, A., Spanoudakis, G.: Property specification and static verification
of UML models. In: 3rd ICARS 2008, pp. 96–103 (2008)

47. Di Guglielmo, G., Di Guglielmo, L., Foltinek, A., Fujita, M., Fummi, F., Marconcini,
C., Pravadelli, G.: On the integration of model-driven design and dynamic assertion-
based verification for embedded software. JSS, 2013–2033 (2013)

48. Rashid, M., Picard, D., Pottier, B.: Application analysis for parallel processing. In:
Proceedings of the 11th Euro Micro Conference on Digital System Design, Architec-
tures, Methods and Tools (DSD 2008), Parma, Italy, September 2008, pp. 633–640
(2008)

49. Eciplse XText Editor: https://eclipse.org/Xtext/ (accessed October 2015)
50. Papyrus MDT: http://www.eclipse.org/modeling/mdt/papyrus/
51. OMG, M2M/Operational QTV: https://projects.eclipse.org/projects/modeling.mmt.qvt-

oml
52. Yin, L., Liu, J., Ding, Z., Mallet, F., De Simone, R.: Schedulability analysis with

CCSL specifications. In: 20th APSEC 2013, pp. 414–421 (2013)
53. TimeSquare: http://timesquare.inria.fr/ (accessed August 2015)
54. IBM: Rational PCE. http://www.304.ibm.com/support/docview.wss?uid=swg27018

723
55. MofScript: http://www.eclipse.org/gmt/mofscript/ (accessed August 2015)
56. Object Constraint Language specification version 2.4. http://www.omg.org/spec/

OCL/2.4/

	Exploring the Platform for Expressing SystemVerilog Assertions in Model Based System Engineering
	1 Introduction
	2.1 Summary of Leading Property Specification Approaches
	2.2 Comparative Analysis

	3 Investigating OCL Semantics/Constructs for SystemVerilog
	3.1 Significant SystemVerilog Constructs
	3.2 Similarities Between SystemVerilog and OCL Constructs
	3.3 Dissimilar Semantics of SystemVerilog and OCL

	4 Discussion and Limitations
	5 Conclusions and Future work
	References

