

© Springer Science+Business Media Singapore 2016 1339
K.J. Kim and N. Joukov (eds.), Information Science and Applications (ICISA) 2016,
Lecture Notes in Electrical Engineering 376,
DOI: 10.1007/978-981-10-0557-2_126

A New Virtualized Environment for Application
Deployment Based on Docker and AWS

Gemoh Maliva Tihfon, Jinsul Kim and Kuinam J. Kim*

Abstract The setup environment and deployment of distributed applications is a
human intensive and highly complex process that poses significant challenges.
Nowadays many applications are developed in the cloud and existing applications
are migrated to the cloud because of the promising advantages of cloud
computing. The very core of cloud computing is virtualization. In this paper, we
will look at application deployment with Docker. Docker is a lightweight
containerization technology that has gained widespread popularity in recent years.
It uses a host of the Linux kernel’s features such as namespaces and croup’s to
sandbox processes into configurable virtual environments. Presenting two
common serious challenging scenarios in the software development environment,
we propose a multi-task PaaS cloud infrastructure using Docker and AWS
services for application isolation/optimization and rapid deployment of distributed
applications.

1 Introduction

Software deployment is complex and the diverse computing requirements for
applications require complex hardware infrastructure setups and possibly
incompatible specific software requirements. Therefore, a platform to automate the
deployment and setup of virtual computing is essential. Moreover, it is important to
properly and efficiently manage the computing resources so as to reduce additional
investment in hardware. All these lead towards the concept of cloud computing.

G. M. Tihfon · J. Kim()
School of Electronics and Computer Engineering, Chonnam National University,
Gwangju 500-757, Korea
e-mail: gemohmal@gmail.com, jsworld@chonnam.ac.kr

K.J. Kim()
Convergence Security Department, Kyonggi University, Suwon, Gyonggi-Do, Korea
e-mail: Kuinamj@gmail.com

1340 G. M. Tihfon et al.

Cloud computing is a paradigm to rapidly provision computing resources such as
storage, networks, servers, services, etc., that can be customized and configured to
suit a particular user or application demands[1]. Cloud computing paradigm is
promising because is changing the way enterprises do their businesses in that
dynamically scalable and virtualized resources are provided as a service over the
internet. The cloud is enabled by virtualization, automation, standardization. The very
core of cloud computing is virtualization, which is used to separate a single physical
machine into multiple virtual machines in a cost-effective way. By using virtualization,
we’re basically getting a lot of the work done for free. With virtualization, a number of
virtual machines can run on the same physical computer, which makes it cost-
effective, since part of the physical server resources can also be leased to other tenants
[2] [4]. Such virtual machines are also highly portable, since they can be moved from
one physical server to the other in a manner of seconds and without downtime; new
virtual machines can also be easily created. Another benefit of using virtualization is
the location of virtual machines in a data center. It does not matter where the data
center is located and the virtual machine can also be copied between the data centers
with ease [3]. VM’s in the cloud offer rapid elasticity and it is pay as you go model.

One thing to keep in mind before pushing forward is that, it’s all about the
applications and not the operating system. We need operation system to facilitate
the applications. Virtual machines (VM) reduce capex and opex but also have
some limitations that can be address. VM still requires a CPU, storage allocation,
RAM, and an entire guest Operating system (OS). OS consume a lot CPU, RAM,
Disk storage, and increase overhead. The more VM’s you run, the more resources
you need. Also some operating systems might need individual licensing. Moreover
application portability is not guaranteed. The VM module does nothing to help
but with docker we don’t have to worry about all the issues mentioned above.

IaaS cloud computing is hugely influence by hypervisor virtualization [6].
Lightweight virtualization technologies such as Docker, LXC, and Open VZ etc,
seems to be a good fit for the cloud although lightweight virtualization is limited
but they provide a better hosting density. In general it is possible to host more
lightweight virtualizations on a physical host than with hypervisor based
virtualizations [5]. Docker can be deployed to any environment or device being
public or private cloud because it is super lightweight. A docker container does
not include the full OS as mention earlier, but shares the OS of its host. As a
result, Docker containers can be faster and less resource-draining than virtual
machines. A full virtual machine can take a couple of minutes to launch because
of boot time and other stuff, however a container can be initiated in a blink of an
eye (seconds). Containers also offer superior performance for the application they
contain, compared to running the application within a virtual machine.

2 Problem Statement and Description
Scenario 1: Microservice architecture is an approach that makes web based
development more agile and code bases easier to maintain. This architecture
enables developers to be highly productive and to quickly iterate and evolve a
code base. For fast moving startup companies, the microservices architecture can

A New Virtualized Environment for Application Deployment Based on Docker 1341

really help dev teams be quick and agile in their development efforts. The
disadvantage of microservices is that, because services are spread across multiple
hosts, it is difficult to keep track of which hosts are running certain services.

Linux containers can help mitigate many of these challenges with the
microservices architecture. Linux containers make use of kernel interfaces such as
cgroups, namespaces, and unionfiles, which allow multiple containers to share the
same kernel while running in complete isolatioin from one another. The Docker
execution environment uses a module called Libcontainer, which standardizes
these interfaces. It is this isolation between containers running on the same host
that makes deploying microservices code developed using different languages and
frameworks very easy. Using Docker, we could create a DockerFile describing all
the languages, framework, and library dependencies for that service. The container
execution environment isolates each container running on the host from one
another, so there is no risk that the language, framework, library dependencies
used by one certain container will collide with that of another.

Scenario 2: You have written a code for some website or developed a mobile app
for a game using development environment on your laptop. After thorough testing
and realize that your code is ready to be deploy in the working environment or in
your working organization. The system admin dutifully deploys the most recent
build to the test environment and in no time notice that your recently developed
REST endpoint is broken. After uncountable hours of troubleshooting with the
system admin, you discover that the test environment is using an outdated version
of third-party library, and this was causing the REST endpoints to break.
Differences between developments, test, stage, and production environments is a
familiar problem in today’s rapid build and deploy cycles.

The solution is to find a way to transfer from one environment to another
seamlessly and eliminating error prone resource provisioning and configuration.
Services like Amazon EC2, AWS CloudFormation, and Docker provide reliable
and efficient way to automate the creation of an environment. Amazon EC2
makes web-scale cloud computing easier for developers. AWS CloudFromation
gives developers and system admins an easy way to create and manage a
collection of related AWS resources, provisioning and updating them in an
orderly and predictable manner. You simply create or use prebuilt template
which is a JSON file that serves as a blueprint to define the configuration of all
the AWS resources that make up your structure and application stack. On a plus,
CloudFormation is free of charge and you pay only for the AWS resources
needed to run your application. Docker takes the concept of declarative
provioning a step further. Docker provides a declarative syntax for creating
containers. However, Docker containers don’t depend on any specific
virtualization platform; neither do they need a separate operating system to run.
A container simply requires a Linux kernel in order to run. This means
dockerized apps can run anywhere on anything being desktop, laptops, VMs,
datacenter or instances in the cloud. Docker containers use an execution
environment called Libcontainer, which is an interface to various Linux kernel

1342

isolation features, like c
allows for multiple conta
while sharing the same
doesn’t require a dedicat
virtual machine. The cor
Docker client. Docker d
it is a server process tha
used to interact with the
of Docker as shown in F
registry, containers, and D

Fig. 1 Docker workflow diag

Docker containers are
because they are scalab
lightweight which make
Dockerized applications
With the isolated contain
making more efficient us
the Docker community. T
communities out there. C
Azure, and Rackspace are
more benefits, but what
development life cycle fro

3 Related Works

There are many works
deployment of virtual infr
such as AWS provide t
websites. In particular, C
systems administrators w
related AWS resources,
predictable fashion [8].

The Nimbus project te
infrastructures: the Conte

G. M. Tihfon et a

cgroups, namespace, and unionfiles. This architectu
ainers to be run in complete isolation from one anoth
 Linux kernel. Because a Docker container instanc
ted OS, it is much more portable and lightweight than
re components of Docker are the Docker daemon an
daemon is the engine that runs on the host machine an
at manages all the containers. Docker client is a CL
daemon. The key concepts to understand the workflo

Figure 1 are its workflow components. Docker image
Dockerfile.

gram

e becoming the go ahead for all distributed system
ble in the sense that these containers are extreme
e scaling up and scaling down very fast and eas
are extremely portable; we can move them very eas

ners, we can put more than one into a machine thereb
e of our resources. Another huge plus point of Docker

This community is one of the fastest growing open sourc
Chef, Puppet, Cloud providers such as AWS, OpenStac
e just a few of the recognized members. There are man
all this mean is that it dramatically reduces the enti

om development, to testing, and then deployment.

s

in software management and tools that address th
frastructures and applications. Numerous cloud provider
ools to deploy virtual infrastructures, applications an

CloudFormation and OpsWorks provides developers an
with an easy way to create and manage a collection
 provisioning and updating them in an orderly an

eam group has developed a set of tools to deploy virtu
ext Broker [9] and cloudinit.d [10]. In particular, the la

al.

re
her
ce

n a
nd
nd
LI

ow
es,

ms
ly

sy.
sy.
by
is
ce
ck
ny
re

he
rs,
nd
nd
of
nd

ual
ast

A New Virtualized Environment for Application Deployment Based on Docker 1343

tool submits, controls, and monitors Cloud applications. It automates the virtual
machine (VM) creation process, the contextualization, and the coordination of
service deployment[7]. It supports multiple clouds and the synchronization of
different ‘runlevels’ to launch services in a defined order. Furthermore, it provides
a system to monitor the services that uses user-created scripts to ensure that they
are running. This system checks for service errors, re-launching failed services or
launching new VMs. However, it enables the contextualization of VMs using
simple scripts, which are insufficient in complex scenarios with multiple VMs and
different Operating Systems.

One common limitation of all the above systems is the usage of manually
selected base images to launch the VMs. This is an important limitation because it
implies that users must create their own images or they must previously know the
details about software and configuration of the image selected. This limitation
affects the reutilization of the previously created VMIs, forcing the user to waste
time testing the existing images or creating new ones. Another issue is that most
of them need to use a VMI specifically configured to support their environment,
requiring specific software installed or a set of scripts prepared.

The next section is our proposed cloud platform to address and improve most of
these related works. Also in the next section is an algorithm we created to
effectively and fully utilize the available resources in any data center or
organization setup environment.

4 Proposed Cloud Infrastructure

Based on the numerous advantages of Docker containers, ease of deployment in
the development, test, stage, and production environment and how Docker
containers fit well in the distributed systems architecture (microservices). We
propose a private-multitask PaaS cloud system. This PaaS cloud system using
Docker is for infrastructure virtualization and application isolation/deployment. In
a multitask environment, the number of containers will be increasing, and this
becomes increasingly difficult to manage manually. This is where the services of
Amazon EC2 Container Service (ECS) steps in to help our container management
framework (cluster computing). With ECS, we effectively abstract the low-level
resources such as CPU, memory, and storage, allowing for highly efficient usage
of the nodes in a compute cluster.

Initially the idea we had was to use the Docker swarm which is a native
clustering solution provided by Docker. It takes the Docker Engine and extends it
to enable you to work on a cluster of containers. Using Swarm we can manage a
resource pool of Docker hosts and schedule containers to run transparently on top,
automatically managing workload and providing failover services. Swarm uses
an algorithm called Bin Packing Scheduling algorithm (they also support Random
and Spread algorithms) and some scheduler filters (Constrain, Affinity, Port,
Dependency, and Health filters) to effectively manage the containers on a subset
of nodes. Swarm is the future native clustering for Docker. Currently swarm has

1344 G. M. Tihfon et al.

many limitations such as it doesn’t support image management yet, it is still beta
and not recommended for production. So using Amazon EC2 Container service is
the right choice for scalability and management of Docker containers.

EC2 Container Service is a cluster management framework that uses optimistic,
shared state scheduling to execute processes on EC2 instances using Docker
containers. Amazon ECS makes it easy to launch containers across multiple hosts,
isolate applications and users, and scale rapidly to meet changing demands of your
applications and users. Using ECS incurs no extra charges, apart from the cost of
spinning up EC2 instance. The ECS takes care of many of the challenges in
running a distributed system. Customers need not about monitoring the health and
availability of nodes that provide the scheduling and resource management
capabilities. ECS also provides a robust solution to the very challenging problem
of storing state information in a distributed system. Lastly, ECS is designed to
scale horizontally and for high availability. Container instances, clusters, tasks,
and task definition are the key components of ECS.

Fig. 2 Propose multi-task cloud

5 System Workflow

The propose platform allow organizations/sysadmins/developers to focus on
building products rather than building infrastructure. As mention earlier, we can
build, test, and debug our code on any machine capable of running Docker. When
the code is ready, we can package it up into the Docker image by building the
image from a Dockerfile and storing it in Docker Hub (repository). Next, we need
to provide the compute resources required to run containers. In ECS, this is called
a cluster, and it consists of EC2 instances called “container instances” that are
running the ECS agent. To create an ECS cluster of container instances, we
simply launch one or more EC2 instances using the Aazon ECS-Optimized
Amazon Linux AMI. The instance will need to be associated with an IAM role
that allows the agent running on the instance to make the necessary API calls to
ECS. The next step is to tell ECS how to run the containers. We use an entity
called a “task definition.” ECS task definition can be thought of a prototype for
running an actual task. For any given task definition, there can be zero or more

A New Virtualized Environment for Application Deployment Based on Docker 1345

task instances running in the cluster. The Task definition allows for one or more
containers to be specified. ECS has another entity called a “service,” which is
useful for long running tasks, like web applications. A service allows multiple
instances of a task definition to be run simultaneously. It also provides integration
with Elastic Load Balancing (ELB) service. The ELB is used to distribute tasks
and services to different containers efficiently.

6 Schedule Algorithm

The schedule algorithm below aims to schedule applications on VMs based on the
user deployment request and deploys VMs on physical resources based on
resource availability. This strategy optimizes the application performance.
Additionally, the load-balancer ensures high and efficient resource utilization in
the cloud environment.

Schedule Algorithm for VMs
1: Input: UserDeploymentRequest
2: get Resources&AvailableVMList
3: // find applicableVMList
4: if AVM(UDR, ARS) != 0 then
5: //call the load balancer
6: deployableVM = load-balance(AVM(UDR, ARS))
7: deploy UserRequest on deployableVM;
8: deployed = true;
9: else
10: if ResourceForExtraVM then
11: start newVMInstance;
12: add VMToApplicableVMList;
13: deploy UserRequest on newVM;
14: deployed = true;
15: else
16: queue UserRequest until
17: queueTime > waitingTime
18: deployed = false;
19: end if
20: end if
21: if deployed then
22: return success;
23: terminate;
24: else
25: return fail;
26: terminate;
27: end if

1346

As shown in the Sched
Deployment Requests (U
the schedule algorithm).
successful or failure deplo

In the first step, the u
finding the VM with app
collects information abo
running VMs in the data
Applicable/Apposite VM
request (lines 3-4).

When the list of VMs
VM to deploy the applica
case the ELB (line 5-8).

In case there is no V
center, the scheduler chec
can host new VMs (lines
with predefined resource

When the resources
provisioning of service re
(lines 15-16). If after a
scheduled and deployed,
admin, otherwise it return

7 Test Experienc

Based on the figure belo
simple at this stage of ou
a 64-bit Ubuntu 14.04 s
each: 512MB of memor
adapters, and 16GB of har

Fig. 3 A Web Application A

G. M. Tihfon et a

dule Algorithm, the scheduler receives as input the User
DR) and the application data to be provisioned (line 1
. The output of the scheduler is the confirmation o
oyment.

user request is extracted, which then forms the basis f
ropriate resources for deploying the application. Next,

out the Available Resource (ARS) and the number
a center (line 2). The UDRs are used to find a list

Ms (AVM) capable of provisioning the requested us

 is found, the load-balancer decides on which particul
ation in order to balance the load in the data center; in ou

VM with the appropriate resources running in the da
cks if there is resources consisting of physical resourc
9-10). If that is the case, it automatically starts new VM
capacities to provision the user requests (lines 11-14).
cannot host extra VMs, the scheduler queues th

equests until a VM with appropriate resources is availab
certain period of time, the user requests cannot be b
the scheduler returns a scheduling failure to the clou

ns success (lines 17-27).

ce

ow Fig. 3, the setup environment for testing is pret
ur work. Using Oracle VM VirtualBox manager we setu
ystem and Centos7 system with the following featur
ry, 2 processor, 12MB of video memory, 2 networ
rd drive space.

Architecture

al.

rs’
in
of

for
it

of
of
er

lar
ur

ata
es

Ms

he
ble
be
ud

tty
up
es
rk

A New Virtualized Environment for Application Deployment Based on Docker 1347

First, we define a Docker image for launching a container for running the
REST endpoint. I will then use this Docker image to test the code (the source code
of a simple productive web application I downloaded from GitHub) on the
Centos7 (acting like a laptop in this test environment). Later this created image
can be used to test the code in Amazon EC2. The REST endpoints are going to
be developed using Ruby and the Sinatra framework, so these will need to be
installed in the image. Sinatra is open source software to write web application
written in Ruby. We chose Sinatra framework in the test environment because it is
an elegant web framework and really tiny. Sinatra is good fit for small scale
projects and it does all what other heavy frameworks of the Ruby family such as
Rail do. The backend will use Amazon DynamoDB to ensure that the application
can be run from both inside and outside AWS web services, the Docker image will
include the DynamoDB local database.

The Docker image is created using the DockerFile that contains all the
instructions require to build an image. From the file, we will launch containers,
install a bunch of software packages using the APT package manager, and then
commit those changes to a new Docker image. DockerFile is a more powerful, fast
and flexible way of creating Docker images. Here’s the DockerFile we created for
the app looks like:

Fig. 4 Creating an image using the Dockerfile

To build the image from the above DockerFile, I used this command
$ docker build --tag=”aws_activate/sinatra:v1”

The tag option sets an identifier on the images and is usually setup as
owner/repository:version. This makes it easy to identify what an image contains
and who owns it when viewing the images in a registry.
Next I launched a container from this newly created image:
$ docker run -it aws_activate/sinatra:v1 /bin/bash

This command launches the container and goes into a bash shell. I can interact
with the container inside just like I would on a Linux server. Because I’m

1348 G. M. Tihfon et al.

developing a web application, I cloned the image and commit the changes in the
running container to a new image using this commit command.
$ docker commit -m “ready for testing” b9d03d60ba89 aws_activate/sinatra:v1.1
Version 1.1 of the container includes the Sinatra application that will serve up the
REST endpoint.

The web application can be run using this command:
$ docker run -d -w /home/sinatra –p 10001:4567aws_activate/sinatra:v1.1
./run_app.sh

The shell script starts up the local DYnamoDb database in the container and
launches the Sinatra application using the thin webserver on port 4567. The web
application can be view from the browser using http://localhost:10001/activity/1
and see the following:

{"activity_id":"1", "user_id":" db430d35-92a0-49d6-ba79-
0f37ea1b35f7", "type":"meal", "calories":100, "date":"2015-
10-29 15:47:23 +0000"}

The endpoint seems to be working properly. The activity record was pulled from
the local DynamoDB database and returned as JSON from the Sinatra application
code.

8 Conclusion

In this paper, we looked at application optimization and deployment. Based on the
challenges in software deployment environment and the numerous advantages of
Docker, we proposed a multi-task cloud infrastructure using Docker and AWS
services for rapid deployment, application optimization and isolation. We saw that
this platform is for building, shipping, and running our applications. We can build
any app in any language using any stack, dockerized the app and the app can run
anywhere on anything. Furthermore, we saw how Amazon ECS helps solve
challenging problems when running multiple container-based applications and
services on a shared compute cluster.

For future work, we intend to fully complete the implementation of our
proposed cloud platform and scale it up with Amazon EC2 container service for
high performance container management. We will then conduct thorough
evaluation to demonstrate the flexibility of our platform and then compare it with
related existing platform.

Acknowledgments Following are results of a study on the “Leades INdustry-university
Cooperation” Project, supported by the Ministry of Education, Science & Technology
(MEST)

A New Virtualized Environment for Application Deployment Based on Docker 1349

References

1. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research
challenges. Journal of Internet Services and Application 1, 7–18 (2010)

2. Yang, T.A., Joshy, N., Rojas, E., Anumula, S., Moola, J.: Virtualization and Data
Center Design. Global Journal on Technology 9, 36–54 (2015)

3. Kratzke, N.: Lightweight Virtualization Cluster How to Overcome Cloud Vendor
Lock-In. Journal of Computer and Communications 2, 1–7 (2014)

4. Kratzke, N.: Cloud Computing Costs and Benefits—An IT Management Point of View
(2012). In: Ivanov, I., van Sinderen, M., Shiskov, B. (eds.) Cloud Computing and
Services Sciences, pp. 185–203. Springer, New York (2014)

5. Merkel, D.: Docker: Lightweight Linux Containers for Consistent Development and
Deployment. Linux Journal 2 (2014)

6. Caballer, M., Blanquer, I., Molto, G., de Alfonso, C.: Dynamic management of virtual
infrastructures. Journal of Grid Computing 13(1), 53–70 (2014)

7. Binz, T., Breitenbcher, U., Haupt, F., Kopp, O., Leymann, F., Nowak, A., Wagner, S.:
OpenTOSCA - a runtime for TOSCAbased cloud applications. In: ICSOC. LNCS,
vol. 8274, pp. 692–695. Springer (2013)

8. AmazonWebServices. AWSEC2. http://docs.aws.amazon.com/AmazonECS/latest/
developerguide/

9. Keahey, K., Freeman, T.: Contextualization: providing one-click virtual clusters.
In: Fourth IEEE International Conference on eScience, Indianapolis, Indiana, USA,
pp. 301–308 (2008)

10. Bresnahan, J., Freeman, T., LaBissoniere, D., Keahey, K.: Managing appliance
launches in infrastructure clouds. In: Proceedings of the 2011 TeraGrid Conference:
Extreme Digital Discovery, TG 2011, vol. 12, pp. 1–12:7. ACM, New York (2011)

	A New Virtualized Environment for Application Deployment Based on Docker and AWS
	1 Introduction
	2 Problem Statement and Description
	3 Related Works
	4 Proposed Cloud Infrastructure
	5 System Workflow
	6 Schedule Algorithm
	7 Test Experience
	8 Conclusion
	References

