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Abstract In this paper, we propose a new reliable classification approach, called
the pseudo nearest centroid neighbor rule, which is based on the pseudo nearest
neighbor rule (PNN) and nearest centroid neighborhood (NCN). In the proposed
PNCN, the nearest centroid neighbors rather than nearest neighbors per class are
first searched by means of NCN. Then, we calculate k categorical local mean
vectors corresponding to k nearest centroid neighbors, and assign the weight to each
local mean vector. Using the weighted k local mean vectors for each class, PNCN
designs the corresponding pseudo nearest centroid neighbor and decides the class
label of the query pattern according to the closest pseudo nearest centroid neighbor
among all classes. The classification performance of the proposed PNCN is eval-
uated on real data sets in terms of the classification accuracy. The experimental
results demonstrate the effectiveness of PNCN over the competing methods in
many practical classification problems.
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1 Introduction

In pattern recognition, k-nearest neighbor rule (KNN) is one of the most widely
used nonparametric approaches, and is also deemed to be one of the top 10 algo-
rithms in data mining [1], due to its simplicity and effectiveness for classification. It
has been theoretically proven that the KNN classifier has asymptotically optimal
performance in the Bayes sense [2, 3]. Moreover, the appeal of KNN is that only a
single integer parameter k is required to adjust and any particular statistical dis-
tribution of the training data should not be considered [4]. However, the classifi-
cation performance of KNN and its variants are still degraded by three main issues:
the sparse problem, the imbalance problem and the noise problem [5]. The sparse
problem is that there are a small number of training samples in many practical
classification tasks. In the small training sample size cases, the nonparametric
KNN-based classifiers usually suffer from the existing outliers [6]. The imbalance
problem is produced when the data in one class heavily outnumbers the data in
another class. In this case, the class boundary can be skewed to the class with few
samples. The noise problem is the sensitivity to the outliers or noises that exists in
KNN and its variants, as they treat both noisy and normal points equally.

In fact, the choice of the neighborhood size k can aggravate the negative
influence of the three problems aforementioned on the classification performance of
KNN-based methods to some degree [1, 7]. If k is too small, the results can be
sensitive to the data sparseness and the noisy points. On the other hand, if k is too
large, then the results can be degraded by the introduction of many outliers from
other classes in the neighborhood. Thus, the performance of nonparametric
KNN-based classifiers can be severely affected by the existing outliers, particularly
in the cases of the sparse, imbalance and noise problems.

To overcome the existing outliers, a reliable KNN-based approaches, called the
local mean-based KNN rule (LMKNN), is well designed in [8]. It uses the local
mean vector of the categorical k nearest neighbors to determine the classes of query
patterns. Subsequently, the basic idea of LMKNN has successfully been applied to
some approaches, such as the pseudo nearest neighbor rule (PNN) [9], the local
mean-based k-nearest centroid neighbor rule (LMKNCN) [10] and other methods
[11–13]. As an extension of LMKNN, PNN is also robust to the outliers. It utilizes
the distance weighted local learning in each class to design the pseudo nearest
neighbor of the query pattern, based on the distance weighted k-nearest neighbor
rule [14] and LMKNN. Then, the query pattern is allocated into the class, which the
closest pseudo nearest neighbor belongs to. As we know, k-nearest centroid
neighbor rule (KNCN), based on NCN [15], is very effective classifier, especially in
the small sample size situations [16, 17]. Combined the robustness of LMKNN and
effectiveness of KNCN, LMKNCN is introduced in [10]. It employs the local mean
vector of k nearest centroid neighbor from each class to decide the class of the query
pattern.
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To further perform classification on the existing outliers well, especially in the
sparse, imbalance and noise situations, we propose the pseudo nearest centroid
neighbor rule (PNCN), motivated by PNN and NCN. In this method, we design the
pseudo nearest centroid neighbor rather than the pseudo nearest neighbor in each
class to classify the query pattern. First, k nearest centroid neighbors of one query
pattern are found from each class, and then k local mean vectors corresponding to
k neighbors are calculated. Second, the weights for the local mean vectors instead of
the neighbors are assigned. Third, the pseudo nearest centroid neighbor in each
class are decided by using the weighted sum of distances of k local mean vectors.
Finally, the query pattern is classified into the class, which the closest pseudo
nearest centroid neighbor belongs to. The classification performance of the pro-
posed PNCN is investigated on real data sets, compared to KNN, LMKNN, KNCN,
LMKNCN and PNN. Experimental results suggest that PNCN is effective and
robust in such practical situations.

2 Pseudo Nearest Centroid Neighbor Classification

In pattern classification, the recognition rates of the KNN-based nonparametric
classifiers are easily affected by the outliers in the issues above. Considering the
superiorities of both PNN and NCN, we give a new scheme of designing pseudo
nearest neighbor and accordingly propose the pseudo nearest centroid neighbor rule
(PNCN), in order to improve the classification accuracy rate. In what follows, for the
ease of presentation in the general recognition problem, we first suppose that there is
a training set T ¼ fxi 2 R

dgNi¼1 with M classes in d-dimensional feature space, and
the corresponding class labels are fy1; y2; . . .yNg, where yi 2 fc1; c2; . . .; cMg, a class
subset of T from the class cl is Tl ¼ fxlj 2 R

dgNl
j¼1 with the number of the training

samples Nl.

2.1 Nearest Centroid Neighborhood

As we know, the choice of neighborhood plays a critical role in the KNN-based
classification [1]. It has been found that Nearest centroid neighborhood (NCN) is a
very good alternative to nearest neighborhood [15]. The concept of NCN focuses on
the idea that the neighborhood of a query pattern is simultaneously subject to the
distance criterion and the symmetry criterion. On the one hand, the neighbors of a
query are as close to it as possible by the distance criterion. On the other hand, the
neighbors of a query are placed as homogeneously around it as possible with the
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symmetry criterion. To seek the neighbors according to NCN, the centroid of a set
Z ¼ fz1; z2; . . .; zng should be first defined as

Z ¼ 1
n

Xn
i¼1

zi: ð1Þ

Then, the nearest centroid neighbors of a given query pattern x with both criterions
above, are searched through an iterative procedure [15] as follows:

1. Find the first nearest centroid neighbor xNCN1 of x that corresponds to its nearest
neighbor.

2. Find the i-th nearest centroid neighbor xNCNi ði� 2Þ, which is imposed by the
constraint that the centroid of the query x and all previous centroid neighbors,
i.e., xNCN1 ; . . .; xNCNi�1 , is the closest to x.

Based on the NCN, KNCN and LMKNCN are introduced in the field of pattern
classification [10, 16].

2.2 The Proposed PNCN Classifier

Based on NCN and PNN, we introduce the pseudo nearest centroid neighbor rule
(PNCN). It first finds the k nearest centroid neighbors per class in terms of the NCN,
and then computes each local mean vector of first j categorical neighbors and
allocates the weight for each local mean vector. Finally, the pseudo nearest centroid
neighbor per class is designed by using the weighted k local mean vectors corre-
sponding to k nearest centroid neighbors. In the process of making classification
decision, PNCN assigns the class label, which the closest pseudo nearest centroid
neighbor belongs to among all classes, into the unseen pattern.

Given a query pattern x in the pattern classification problem, the PNCN decides
the class label of x as follows:

1. Search k nearest centroid neighbors from Tl of each class cl for the query pattern
x in the training set T, say TNCN

lk ðxÞ ¼ fxNCNlj 2 R
dgkj¼1.

2. Compute the local mean vector uNCNlj ðxÞ of the first j nearest centroid neighbors

of a query x from class cl. Let U
NCN
lk ðxÞ ¼ fuNCNlj ðxÞ 2 R

dgkj¼1 denote the set of
the k local mean vectors corresponding to k nearest centroid neighbors in the
class cl, and dðx; uNCNl1 ðxÞÞ; dðx; uNCNl2 ðxÞÞ; � � � ; dðx; uNCNlk ðxÞÞ are their corre-
sponding Euclidean distances to x.

uNCNlj ðxÞ ¼ 1
j

Xj

m¼1

xNCNlm : ð2Þ
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It should be noted that the local mean vector uNCNl1 ðxÞ of the first nearest centroid
neighbor xNCNl1 is the same as the first nearest neighbor.

3. Assign different weights to k categorical local mean vectors in the same way as

the PNN, and the weight W
NCN
lj of the j-th local mean vector uNCNlj ðxÞ for the

class cl is determined as:

W
NCN
lj ¼ 1

j
j ¼ 1; . . .; k: ð3Þ

4. Design the pseudo nearest centroid neighbor xPNCNl ðxÞ of the query point x from
class cl, and cl can be viewed as the class label of xPNCNl ðxÞ. The distance
dðx; xPNCNl ðxÞÞ between x and xPNCNl ðxÞ can be defined by the weighted sum of
distances of k categorical local mean vectors to x as follows:

d x; xPNCNl ðxÞ� � ¼ W
NCN
l1 � d x; uNCNl1 ðxÞ� �þW

NCN
l2 � d x; uNCNl2 ðxÞ� ��

þ . . .þW
NCN
lk � d ðx; uNCNlk ðxÞÞ� ��

:
ð4Þ

5. Classify the query point x into the class c, which the closest pseudo nearest
centroid neighbor belongs to in the light of Eq. (4) among all classes.

c ¼ argmin
cl

d x; xPNCNl ðxÞ� �
: ð5Þ

Note that the proposed PNCN is equivalent to the 1NN, LMKNN, PNN, KNCN
and LMKNCN rules only when k ¼ 1, and the value of k is no more than Nl.

2.3 The PNCN Algorithm

According to the procedure of the PNCN above, we summarize it in Algorithm 1 by
means of the pseudo codes.

Algorithm 1: The pseudo nearest centroid neighbor algorithm
Require:
x: a query pattern, k: number of nearest neighbors, T ¼ fxi 2 R

dgNi¼1: a training set.
Tl ¼ fxlj 2 R

dgNl
j¼1: a training subset from class cl; c1; . . .; cM : M class labels.

M: the number of classes in T, N1; . . .;NM : number of training samples for
M classes.

Ensure:

Predict the class label of the query pattern x by the closet pseudo nearest centroid
neighbor among all classes.
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Step 1: Calculate the Euclidean distances of training samples in each class cl to x.

for j ¼ 1 to Nl do

dðx; xljÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xlj
� �T

x� xlj
� �q

end for

Step 2: Search the k nearest centroid neighbors of x in each class cl, say
TNCN
lk ðxÞ ¼ fxNCNlj 2 R

dgkj¼1.

(i) Find the first nearest centroid neighbor of x in each class cl, say xNCNl1 .

½min index;min dist� ¼ minðdðx; xljÞÞ

set xNCNl1 ¼ xmin index, RNCN
l ðxÞ ¼ fxNCNl1 2 R

dg
(ii) Find k nearest centroid neighbors of x except xNCNl1 in each class cl.

for j ¼ 2 to k do

Set SlðxÞ ¼ Tl � RNCN
l ðxÞ ¼ fxln 2 R

dgLlðxÞn¼1 , LlðxÞ ¼ lengthðSlðxÞÞ
Calculate the sum of the previous j� 1 nearest centroid neighbors.

sumNCN
l ðxÞ ¼

Xj�1

r¼1

xNCNlr

Compute the centroids in the set Sl for x.

for n ¼ 1 to LlðxÞ do

xln ¼ 1
j

xln þ sumNCN
l ðxÞ� �

; dln x; xlnð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� xlnð ÞT x� xlnð Þ

q

end for

Find the j-th nearest centroid neighbor.

½min indexNCN ;min distNCN � ¼ minðdlnðx; xlnÞÞ

Set xNCNlj ¼ xmin indexNCN , and add xNCNlj to the set RNCN
l ðxÞ.

end for

Set TNCN
lk ðxÞ ¼ RNCN

l ðxÞ.
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Step 3: Compute the local mean vector uNCNlj ðxÞ of the first j nearest neighbors of

x usingTNCN
lk ðxÞ and the corresponding distance dðx; uNCNlj ðxÞÞ between uNCNlj ðxÞ and x.

for j ¼ 1 to k do

uNCNlj ðxÞ ¼ 1
j

Xj

m¼1

xNCNlm ; d x; uNCNlj ðxÞ
� �

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x� uNCNlj ðxÞ

� �T
x� uNCNlj ðxÞ

� �r

end for

Set UNCN
lk ðxÞ ¼ fuNCNlj ðxÞ 2 R

dgkj¼1, D
NCN
lk ðxÞ ¼ fdðx; uNCNl1 ðxÞÞ; . . .; dðx; uNCNlk ðxÞÞg.

Step 4: Allocate the weights W
NCN
lj to the j-th the local mean vector uNCNlj ðxÞ in the

set U
NCN
lk ðxÞ.

for j ¼ 1 to k do

W
NCN
lj ¼ 1

j
j ¼ 1; . . .; k:

end for

Set Wlk ¼ fWNCN
l1 ; . . .;W

NCN
lk g.

Step 5: Design pseudo nearest centroid neighbor xPNCNl ðxÞ using Wlk and D
NCN
lk ðxÞ.

d x; xPNCNl ðxÞ� � ¼ W
NCN
l1 � d x; uNCNl1 ðxÞ� �þW

NCN
l2 � d x; uNCNl2 ðxÞ� �

þ . . .þW
NCN
lk � d x; uNCNlk ðxÞ� �

Step 6: Assign the class c of the closest pseudo nearest centroid neighbor to x.

c ¼ argmin
cl

d x; xPNCNl ðxÞ� �

3 Experiments

In this section, we conduct the experiments to validate the classification perfor-
mance of the proposed PNCN on the benchmark real data sets. The PNCN is
compared with KNN, LMKNN, PNN, KNCN and LMKNCN in terms of the
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classification accuracy rate, which is takes as one of the effective measures in
pattern recognition [8, 10]. In what follows. we should note that the neighborhood
size k is for all training samples of a query pattern in KNN and KNCN, while is for
training samples of each class in LMKNN, LMKNCN, PNN and PNCN.

3.1 Data Sets

In the experiments, twelve real data sets taken from the UCI Repository [18] are
employed. The information of these UCI data sets including the numbers of sam-
ples, attributes, classes, training and testing samples is displayed in Table 1. For
short, among these data sets, the abbreviated names for ‘Parkinsons’, ‘Transfusion’,
‘Libras Movement’, ‘Cardiotocography’, ‘LandsatSatellite’, ‘Page-blocks’, ‘Image
Segmentation’ and ‘Robot Navigation’ are ‘Park’, ‘Trans’, ‘Libras’, ‘Cardio’,
‘Landsat’, ‘Page’, ‘Image’ and ‘Robot’, respectively. Note that the Glass data set
originally have seven classes, but in our experiments the five classes with very few
samples are deleted.

3.2 Experimental Results

In this subsection, to well demonstrate the classification performance of the pro-
posed PNCN, we do the experiments on the real UCI data sets. One of the
advantages of using the real data sets is that they are generated without any
knowledge of the classification procedures that it will be used to test. The second

Table 1 The real UCI data sets used in the experiments

Data Size Attributes Classes Testing samples Training samples

Sonar 208 60 2 132 76

Park 195 22 2 65 130

Seed 210 7 3 105 105

Wine 178 13 3 59 119

Glass 146 9 2 53 93

Trans 748 4 2 248 500

Libras 360 90 15 90 270

Landsat 6435 36 6 2146 4289

Cardio 2126 21 10 710 1416

Image 2310 19 7 1078 1232

Robot 5456 4 4 1818 3638

Page 5473 10 5 1830 3643
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advantage is that the sparse, imbalance, noise problems are usually produced in
practical classification, and the outliers for one test sample in these selected real
data sets always exist. Since the classification performance of each method is
verified by using the validation test, each whole data set is randomly split into a
training set and test set. To assess the quality of each method, we perform 10 times
on each data set, and the average classification accuracy with 95 % confidence over
test sets is viewed as the final performance of each method. For each whole data set,
the training and test samples are randomly generated, shown in the Table 1. In the
experiments, the parameter of the neighborhood size k takes the value from 1 to 15
with step 1.

To validate the proposed PNCN method on the performance, we first explore the
classification accuracy rates of the competing classifiers with varying the neigh-
borhood size k on each real data set. As there is no general way to determine the
optimal parameter k in KNN-based methods, it is expected that our PNCN can be
more robust to the change of k when the parameter is common for all compared
methods. The experimental comparisons of all the classifiers in terms of the clas-
sification accuracy is illustrated in Figs. 1 and 2. We can obviously observe that the
proposed PNCN almost surpasses the other methods among the preseted range of
the neighborhood size k on each data set. Compared to KNN, LMKNN, PNN,
KNCN and LMKNCN, the classification performance of PNCN at first increases
when the values of k is small, and then grows slowly or keeps almost stable as
k increases on all the data sets except the Seed data set. Moreover, the best per-
formance of the PNCN is usually yielded at the larger value of the neighborhood
size, this fact implies that it can use more nearest neighbors to improve the clas-
sification. However, KNN, LMKNN, PNN, KNCN and LMKNCN vary drastically
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Fig. 1 The accuracy rates of each method via k on each real data set
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against the parameter k. It can also be seen that the differences of the classification
accuracy rates between PNCN and the other methods are very significant at a larger
k. Consequently, we can draw a conclusion that the proposed PNCN is robust to the
choice of k with satisfactory performance. This means that the selection of k for
PNCN is easier than that for the other KNN-based classifier.

The empirical comparisons of all the competing classifiers are investigated by
the maximal accuracy rates (%) of each method with the corresponding standard
deviations (stds) and values of parameter k in the parentheses on each real data sets.
The classification results of each method on all data sets are given in Table 2. It
should be noted that the best classification performance among these methods are
indicated in bold-face on each data set. When we look at the best cases in Table 2,
the proposed PNCN is found to be very superior to the other methods in most cases.
More interestingly, it can be observed that the best classification results of PNCN
are nearly yielded at larger values of k on all data sets, compared to the other five
methods, shown in Table 2, Figs. 1 and 2. In our experiments, there are a finite
number of training samples and the training samples are randomly chosen from
each whole real data set, so the value of k can easily affect the classification
performance. Nevertheless, the experiments show that the proposed PNCN can use
more nearest neighbors to capture enough information, so as to improve the clas-
sification performance.
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Fig. 2 The accuracy rates of each method via k on each real data set
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4 Conclusions

In this paper, we propose a new classifier, called the pseudo nearest centroid
neighbor rule, with aim of further improving the classification performance. It is
motivated by the PNN and NCN. In the new method, we find k nearest centroid
neighbors based on the NCN and calculate the k categorical local mean vectors
corresponding to the k nearest centroid neighbors. The proposed PNCN designs the
pseudo nearest centroid neighbor for each class by using the weighted k local mean
vectors, and assigns the class of the closest pseudo nearest centroid neighbor to the
query pattern. To investigate the performance of PNCN, we conduct the experi-
ments on real data sets. The experimental results suggest that the proposed PNCN
method are promising classifier.
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