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Preface

The International Conference on Research and Education in Mathematics (ICREM)
is a biennial event which aims to bring together academicians, scientists, and
industrialists from around the country and the world for knowledge sharing,
exchanging ideas, and for collaborating and presenting research results about all
aspects of mathematics and its applications. The first four ICREM were held in
Kuala Lumpur in the years 2003, 2005, 2007, and 2009. Following this, the con-
ference was successfully held in Bandung, Indonesia (2011) and in Ho Chi Minh
City, Vietnam (2013).

In conjunction with that, the Institute for Mathematical Research (INSPEM),
Universiti Putra Malaysia took the responsibility to organize the 7th International
Conference on Research and Education in Mathematics (ICREM7) with technically
co-sponsored by IEEE Malaysia WIE Affinity Group. This conference took place
on August 25–27, 2015 in Kuala Lumpur, Malaysia. The main goal of ICREM7 is
to provide opportunities for the delegates to exchange new ideas and application
experiences, to establish research or business relations, and to find global partners
for future collaboration. The conference also included several invited papers on
important and timely topics from well-known leaders in the field, and parallel tracks
of oral presentation sessions of the accepted papers.

This book contains research papers by invited speakers and selected papers from
the fields of applied mathematics and pure mathematics in ICREM7. In chapter
“Counting Trees and Rooted Trees with Applications,” our keynote address for this
conference was given by Emeritus Prof. Dr. John Butcher, the mathematician
specialized in numerical analysis. The principal applications discussed in this talk
are connected with the structures of Runge–Kutta methods and canonical
Runge–Kutta methods. Another eight chapters in this book represent a cross section
of state-of-the-art and cutting-edge research in pure mathematics and applied
mathematics for future.
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Counting Trees and Rooted Trees
with Applications

J.C. Butcher

Abstract Trees are connected graphs with no cycles. Rooted trees have a specific
vertex designated to be the root. The order of a tree is the number of vertices. As
the order increases the total number of trees or rooted trees with this order grows
rapidly. A generating function for these totals will be demonstrated. The principal
applications discussed in this talk are connected with the structures of Runge–Kutta
methods and canonical Runge–Kutta methods.

Keywords Trees · Rooted trees · Generating functions · Runge–Kutta methods ·
Order conditions

Mathematics Subject Classification (2000) 65L05

1 Introduction

We will discuss counting rooted trees

T =
{

, , , , , , , , . . .

}

=
{
t1, t2, t3, t4, t5, t6, t7, t8, . . .

}

J.C. Butcher (B)
The University of Auckland, Auckland, New Zealand
e-mail: butcher@math.auckland.ac.nz

© Springer Science+Business Media Singapore 2016
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2 J.C. Butcher

and unrooted trees

U =
{

, , , , . . .
}

=
{
u1, u2, u3, u4, u5, . . .

}

The order of a rooted tree |t |, or unrooted tree |u|, is the number of vertices. For
example

|t1| = 1, |t2| = 2, |t3| = |t4| = 3, |t5| = |t6| = |t7| = |t8| = 4,
|u1| = 1, |u2| = 2, |u3| = 3, |u4| = |u5| = 4.

Some unrooted trees have a special type of symmetry and these are called super-
fluous trees (S-trees). These are formed by joining two identical rooted trees together
at the roots. For example, joining two copies of the rooted tree on the left gives the
unrooted superfluous tree on the right

The set of S-trees will be denoted by S. We see that only those S-trees with order not
exceeding 4 are u2 and u5.

Define three generating functions

A(x) =
∞∑

n=1

anx
n , where an is the number of members of T with order n.

B(x) =
∞∑

n=1

bnx
n , where bn is the number of members of U with order n.

C(x) =
∞∑

n=1

cnx
n , where cn is the number of members of U with order n, which are

not also members of S.

Just by looking at the first few rooted and unrooted trees, and counting, we observe
that

A(x) = x + x2 + 2x3 + 4x4 + · · ·
B(x) = x + x2 + x3 + 2x4 + · · ·
C(x) = x + x3 + x4 + · · ·
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The first aim of this paper is to present formulae for A(x), B(x), and C(x). The
result for A(x) is a classical result in combinatorics, whereas for B(x) and C(x) the
principal reference will be [5]. The derivation of the generating functions, presented
here, makes use of the tree and forest spaces which are introduced in Sect. 2. The
applications are to the order conditions for Runge–Kutta methods and for symplectic
Runge–Kutta methods.

2 The Tree and Forest Spaces

A forest is a formal product of trees. The set of all forests will be named F . The
empty product will be denoted by 1.

If f is a forest then [ f ] is the tree formed by joining all the factors in f to a
new root. As an example, the forest t21t3t6 (on the left) and the tree [t21t3t6] (on the
right) are:

Lemma 1 For every t ∈ T there is a unique forest f such that t = [ f ].
Proof Remove the root of t . If nothing is left, then the unique forest is f = 1.
Otherwise f is the collection of trees that remains.

The tree space is the vector space of formal linear combinations of trees. The forest
space F is the vector space of formal linear combinations of forests. Products are
found by formal multiplication as in the example:

(
1 + 2t1t2

)(
3t1 + 4t21 t2

)
= 3t1 + 4t21t2 + 6t1t2t1 + 8t1t2t1t1 t2

= 3t1 + 10t21 t2 + 8t31 t
2
2 .

Define the vector space X as the set of linear combinations of powers of x . Let φ be
the mapping from F to X, where 1 is mapped to 1 and every tree t is mapped to x |t |.
For example,

φ
(
(1 + 2t1t2)(3t1 + 4t21 t2 )

) = φ(1 + 2t1t2)φ(3t1 + 4t21 t2)

= (1 + 2x3)(3x + 4x4) = 3x + 10x4 + 8x7.
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3 Counting Rooted Trees

An interesting member of F is the sum of all trees: We can calculate φ of this:

φ

(
∑

t∈T
t

)
= |t1| + |t2| + |t3| + |t4| + · · ·

= x + x2 + x3 + x3 + · · ·
= x + x2 + 2x3 + 4x4 + 9x5 + · · ·
= A(x).

Another interesting member of F is the sum of all powers of a single tree t

∞∑

n=0

tn = 1 + t + t2 + t3 + t4 + · · ·

= (1 − t)−1,

with

φ

( ∞∑

n=0

tn
)

= 1 + |t | + |t |2 + |t |3 + |t |4 + · · ·

= (1 − |t |)−1

Even more interesting is the product over all trees

∏

t∈T
(1 − t)−1

because this gives the sum over all forests with

φ

(
∑

F∈F
F

)
=

∏

t∈T
(1 − x |t |)−1 =

∞∏

n=1

(1 − xn)−an .

Theorem 1 The value of an is the coefficient of xn−1 in

n−1∏

m=1

(1 − xm)−am .
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Proof For every t ∈ T there is a unique forest f such that t = [ f ]
∑

t∈T
t =

[
∏

t∈T
(1 − t)−1

]
.

4 Counting Unrooted Trees

If t1 and t2 are rooted trees then the (noncommutative) product t1 ◦ t2, also known
as the “Butcher product”, is defined as a rooted tree with order |t1| + |t2| formed by
joining their roots. The root of t1 becomes the root of the new rooted tree as in the
diagram

t1

t2

Unrooted trees can be thought of as equivalent classes of rooted trees, with t1 ◦ t2 ≡
t2 ◦ t1 a generator of the equivalence relation. The tree containing both t1 ◦ t2 and
t2 ◦ t1 is

t1 t2

Among the members of T up to order 4, we have

t3 = t2 ◦ t1 ≡ t2 ◦ t2 = t4
t5 = t3 ◦ t1 ≡ t3 ◦ t2 = t7
t6 = t4 ◦ t1 ≡ t1 ◦ t4 = t8,

so that we can complete the identification, to this order, of unrooted trees with
equivalent classes of rooted trees:

u1 = {t1},
u2 = {t2},
u3 = {t3, t4},
u4 = {t5, t7},
u5 = {t6, t8}.

A vertex v is a “centre” of an unrooted tree u if the rooted tree with root v is
[t1t2 . . . tm], with

m
max
i=1

|ti | ≤ 1
2 |t |
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If |t | is even, it is possible to have bicenters; that is two adjacent vertices each of
which is a center.

Theorem 2 (Sanz-Serna, Abia)

B(x) = A(x) − 1
2 (A(x)2 − A(x2)), (1)

C(x) = A(x) − 1
2 (A(x)2 + A(x2)) (2)

Proof To enumerate unrooted trees, we count only trees which are central or bicen-
tral. In the latter case only one of the bicentral pair is counted and we note that for
S-trees, themembers of the bicentral pair are identical.We carry out this enumeration
by counting all trees and subtracting the ones which do not qualify.

As an example of the use of generating functions, calculateA(x) up to degree 10.
This is found to be

A(x) = x + x2 + 2x3 + 4x4 + 9x5 + 20x6 + 48x7 + 115x8 + 286x9 + 719x10 + · · ·
= x(1 − x)−1(1 − x2)−1(1 − x3)−2(1 − x4)−4(1 − x5)−9 · · ·

To calculate B(x) and C(x), we also need

A(x)2 = x2 + 2x3 + 5x4 + 12x5 + 30x6 + 74x7 + 188x8 + 478x9 + 1235x10 + · · ·
A(x2) = x2 + x4 + 2x6 + 4x8 + 9x10 + · · ·

Substitute into (1) and (2) and we obtain the results

B(x) = x + x2 + x3 + 2x4 + 3x5 + 6x6 + 11x7 + 23x8 + 47x9 + 106x10 + · · ·
C(x) = x + x3 + x4 + 3x5 + 4x6 + 11x7 + 19x8 + 47x9 + 97x10 + · · ·

5 Order of Runge–Kutta Methods

A Runge–Kutta method is characterized by a tableau

c A

bT
=

c1 a11 a12 · · · a1s
c2 a21 a22 · · · a2s
...

...
...

...

cs as1 as2 · · · ass
b1 b2 · · · bs

,

where c = A1.
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Given an initial value problem

y′(x) = f (y(x)), y(x0) = y0, where y0 ∈ R
N , f : RN → R

N , (3)

step number n of the numerical solution is computed, along with stages Yi , i =
1, 2, . . . , s from the equations

Yi = yn−1 + h
s∑

j=1

ai j f (Y j ), i = 1, 2, . . . , s,

yn = yn−1 + h
s∑

i=1

bi f (Yi ).

The numerical order of the method is determined by conditions on the coefficients
in the tableau. These conditions take the formΦ(t) = 1/t !, where for each tree t ,Φ(t)
is a polynomial of degree |t |, in the coefficients appearing in the method tableau,
and the factorial of the tree t !, is an integer depending on the particular tree. The
condition must hold whenever |t | ≤ p.

The meanings of Φ(t) and t ! are illustrated in the examples

t Φ(t) = 1
t !

t1 bT1 = 1

t2 bTc = 1
2

t3 bTc2 = 1
3

t4 bTAc = 1
6

t5 bTc3 = 1
4

t6 bTcAc = 1
8

t7 bTAc2 = 1
12

t8 bTA2c = 1
24

For amore complicated example, using a tree t with order 10. The expression forΦ(t)
is calculated from the labels attached to the vertices on the left and t ! is calculated
from the integers attached on the right,

j

i

k

�

m

2
10

7
5
3
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The results are found to be

Φ(t) =
s∑

i, j,k,�,m=1

biai j c j aikckak�c�a�mc
2
m,

t ! = 3 · 5 · 7 · 2 · 10 = 2100.

Theorem 3 A Runge–Kutta method has order p if and only if

Φ(t) = 1

t !
for all t such that |t | ≤ p.

This result is proved in [1] and in [2] and [3].

6 Canonical Runge–Kutta Methods

A method (A, bT, c) is canonical (or symplectic) if

diag(b)A + AT diag(b) = bbT.

When these methods are applied to Hamiltonian problems, they preserve symplectic
behaviour, see [4]. They also preserve the quadratic invariant ‖y(x)‖2 in a problem
satisfying

〈Y, f (Y )〉 = 0, ∀Y. (4)

We have

Theorem 4 If f in (3) satisfies (4) and y0, y1, . . . are computed by a canonical
Runge–Kutta method, then

‖yn‖ = ‖yn−1‖ = ‖y0‖, n = 1, 2, . . . .

Proof We have

〈yn, yn〉 − 〈yn−1, yn−1〉

= 〈yn−1 + h
s∑

i=1

bi f (Yi ), yn−1 + h
s∑

j=1

b j f (Yi )〉 − 〈yn−1, yn−1〉

= h
s∑

i=1

bi 〈 f (Yi ), yn−1〉 + h
s∑

j=1

b j 〈yn−1, f (Y j )〉 + h2
s∑

i, j=1

bib j 〈 f (Yi ), f (Y j )〉
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Substitute bib j = biai j + b ja ji and the result can be written as

h
s∑

i=1

bi 〈 f (Yi ),Yi 〉 + h
s∑

j=1

b j 〈Y j , f (Y j )〉 = 0.

This result applies also to any quadratic form in place of 〈·, ·〉. However, its most
important application is to Hamiltonian problems, [4] and Canonical methods are
also referred to as “symplectic” methods.

To illustrate the advantages of canonical methods, three attempts have been made
to solve the Harmonic oscillator problem

y′
1 = −y2, y1(0) = 1,

y′
2 = y1, y2(0) = 0,

where we note that ‖y(x)‖ = 1 is an invariant for this problem.
In each attempt, a Runge–Kutta method was used with h = 2π/40 and 2000 steps

were taken; this is equivalent to approximately 50 orbits. The three methods were
(E) an explicit second-order method, (I ) an implicit second-order method, and (M)
the implicit midpoint rule method, with tableaux

E :
0 0 0
1
2

1
2 0

0 1
, I :

1
2 1 − 1

2
1 1 0
1 0

, M :
1
2

1
2

1
.

The results are shown in Fig. 1 where the advantages of the symplectic method M are
clearly observed. The path traced out by this method stays on the unit circle, forever.

It was shown in [5] that unrooted trees, as well as rooted trees, have a significant
role in the order analysis in the case of canonical methods.

Fig. 1 Numerical results for
harmonic oscillator for the
methods E (dark grey), I
(light grey) and M (black
line)
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7 Order Conditions for Canonical Methods

We want to find the relationship between the order conditions associated with the
equivalent trees t1 ◦ t2 and t2 ◦ t1. The conclusion will be that for canonical methods
these conditions imply each other and one of them can be omitted. Furthermore, in
the superfluous case in which t1 = t2, the order condition associated with t1 ◦ t2 can
be disregarded entirely.

Write the order conditions for t1 and t2 in the forms

Φ(t1) = bTΨ (t1) = 1

t1! ,

Φ(t2) = bTΨ (t2) = 1

t2! ,

whereΨ (t1),Ψ (t2) are vectors dependent on A and c but not bT, then we can evaluate
Φ(t1 ◦ t2) and Φ(t2 ◦ t1)

Φ(t1 ◦ t2) = bT
(
Ψ (t1) ◦ AΨ (t2)

) = Ψ (t1)
T( diag(b)A

)
Ψ (t2),

Φ(t2 ◦ t1) = bT
(
Ψ (t2) ◦ AΨ (t1)

) = Ψ (t1)
T(AT diag(b)

)
Ψ (t2).

This leads to the result

Φ(t1 ◦ t2) + Φ(t2 ◦ t1) = Ψ (t1)
T( diag(b)A + AT diag(b)

)
Ψ (t2)

= Ψ (t1)
T(bbT

)
Ψ (t2)

= Φ(t1)Φ(t2) (5)

We can also calculate
1

(t1 ◦ t2)! + 1

(t2 ◦ t1)! = 1

t1!t2! . (6)

These results lead to a key theorem.

Theorem 5 (Sanz-Serna, Abia) Given trees t1 and t2, where |t1| + |t2| = p then for
a method with order p − 1,

Φ(t1 ◦ t2) = 1

(t1 ◦ t2)! if and only if Φ(t2 ◦ t1) = 1

(t2 ◦ t1)! .

Furthermore, if t1 = t2, then

Φ(t1 ◦ t2) = 1

(t1 ◦ t2)! .
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Proof From (5) and (6) we deduce

(
Φ(t1 ◦ t2) − 1

(t1 ◦ t2)!
)

+
(

Φ(t2 ◦ t1) − 1

(t2 ◦ t1)!
)

= Φ(t1)Φ(t2) − 1

t1!t2! = 0

and the result follows.

This means in effect that, for a canonical method, rather than having to impose an
order condition of each rooted tree up to the required order, it is only necessary to
satisfy a single-order condition for each nonsuperfluous (nonrooted) tree.

8 Conclusions

Both rooted and unrooted trees have fundamental roles in the theory of Runge–Kutta
methods in that the number of order p conditions for a Runge–Kutta method is the
number of rooted trees with order not exceeding p. In the case of symplectic or
canonical methods, the number of independent conditions is the number of unrooted
trees to order p, where superfluous trees are omitted. In this survey paper, enumer-
ations for rooted trees and unrooted trees are given in terms of generating functions
and the connection with the order of numerical methods is shown.
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Boundedness and Stability of Leslie–Gower
Model with Sokol–Howell Functional
Response

Safaa Jawad Ali, Norihan Md. Arifin, Raid Kamel Naji,
Fudziah Ismail and Norfifah Bachok

Abstract In this chapter, a three-speciesmodel of Leslie–Gower predator–prey food
chain model with Sokol–Howell functional response is proposed. The boundedness
of the solution of the model is discussed. Local and global stability analyses of the
system are carried out. The dynamics of the predator–prey food chain model with
Sokol–Howell functional response is investigated theoretically as well as numeri-
cally.

Keywords Food chain · Chaotic · Leslie–Gower · Functional response ·
Sokol–Howell

1 Introduction

Thework ofMay [1] exploring the chaotic behaviors of population dynamics inspired
much research work in the predator–prey system [2–11]. Alaoui [12] proposed and
studied the dynamics of a modified Leslie–Gower predator–prey food chain model
with Holling type II functional response. Naji et al. [5] studied a modified Leslie–
Gower food chain model with Bendigton–DeAnglis functional response and the
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model exhibited chaotic dynamics. Gakkharwith Priyadarshi [13] studied the Leslie–
Gower food web system. The numerical works of Alaoui, Naji, and Gakkhar are
brilliant and perfect.

In their experiments about the kinetics of phenol oxidation, Sokol and Howell
[14] suggested a simplified Holling type IV function of the form wx

d+x2 and found that
it is simpler and better than the original function of Holling type IV. The Holling type
IV response represents a situation in which the predation of the predator decreases
at sufficiently high prey densities [10] and about how this functional response is
obtained, see [15–17]. Ruan [18] and Hu [19] both studied the dynamics and bifur-
cation analysis of continuous-time and discrete-time models of modified Holling
type IV, respectively. Investigations on Leslie–Gower type model [12, 13, 20, 21]
and Sokol–Howell functional response [14, 18, 19, 22, 23] are relatively less than
the other types like Lotka–Volterra and Bendigton–DeAnglis functional responses.

This paper is organized as follows: in Sect. 2, the mathematical model is proposed
and each parameter in the model is described. In Sect. 3, the boundedness of the
solution of the model is established. Stability analyses of the equilibrium points of
the model are derived in Sect. 4. In Sect. 5, numerical study is carried out to obtain
the behavior of the model. Finally, the paper ends with a conclusion in Sect. 6.

2 The Mathematical Model

Consider the three-species food chain model at time t consisting of the prey popula-
tion density denoted by x(t), the middle predator population density denoted by y(t),
and the top predator whose population density denoted by z(t). The middle predator
y preys on its sole food x at the lower level according to simplified Holling type IV
functional response, while the top predator z preys on y at the second level according
to the modified Leslie–Gower type.

The dynamics of the model described above can be represented by the following
set of differential equations:

dx

dt
= x (a0 − b0x) − v0xy

d0 + x2
: x(0) ≥ (0),

dy

dt
= v1xy

d1 + x2
− a1y − v2yz

d2 + y
: y(0) ≥ (0),

dz

dt
= c3z

2 − v3z2

d3 + y
: z(0) ≥ 0. (1)

Here the positive constants a0, b0, v0, d0, v1, a1, d1, v2, d2, c3, v3, and d3 denote:
a0 is the growth rate of the prey x , b0 represents the intraspecific competition among
individuals of prey x , vi ’s are the maximum values attainable by each per capita rate,
d0 and d1 measure the extent to which the environment provides protection to the
prey x and predator y, respectively, a1 represent the death rate of y in the absence
of x , d2 is the value of y at which the per capita removal rate of y becomes v2

2 , c3
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represents the growth rate of z by sexual reproduction, the number of males and
females being assumed to be equal, d3 represents the residual loss in z population
due to serve scarcity of its favorite food y; the second term on the right-hand side in
the third equation of system (1) depicts the loss in the top predator population.

Remark: The origin of the model of system (1) is standard in first two equations, but
the third equation is absolutely not standard. About how the third equation obtained,
see [12, 13, 20, 21].

Now according to the third equation of system (1):

dz

dt
= z

(
c3z − v3z

d3 + y

)
,

if the middle predator y is absence (y = 0), the top predator goes extinct if

c3d3 < v3, (2)

and increase without bound if c3d3 > v3. In this paper, wewill suppose that condition
(2) holds.

Then, the system (1) when d0 = d1 can be written as follows:

dx

dt
= x

(
a0 − b0x − v0y

d1 + x2

)
= G1 (x, y, z) ,

dy

dt
= y

(
v1x

d1 + x2
− a1 − v2z

d2 + y

)
= G2 (x, y, z) ,

dz

dt
= z

(
c3z − v3z

d3 + y

)
= G3 (x, y, z) , (3)

with x(0) ≥ 0, y(0) ≥ 0, and z(0) ≥ 0. Obviously, the interaction functions Gi (i =
1, 2, 3) of system (3) are continuous and have continuous partial derivatives on
the positive octant R3+ = {

(x, y, z) ∈ R3+ : x ≥ 0, y ≥ 0, z ≥ 0
}
. Therefore, these

functions are Lipschitzian on R3+, and hence the solution of the system (3) exists and
is unique.

3 Boundedness of the Model

In this section, the boundedness of the solution of the system (3) in R3+ is established
in the next theorem.

Theorem 1 All the solutions of the three-species food chain system (3) are uniformly
bounded, provided

a0v1
b0v0

+ a20v1
4a1b0v0

+ d3 <
v3

c3
, (4)
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and let Ω be the set defined by

Ω =
{
(x, y, z) ∈ R3

+ : 0 ≤ x ≤ a0
b0

, 0 ≤ x + v0

v1
y ≤ a0

b0
+ a20

4a1b0
,

0 ≤ x + v0

v1
y + αz ≤ a0

b0
+ a20

4a1b0
+ N

a1

}

where

α = 1

a21

(
a0v1
b0v0

+ a20v1
4a1b0v0

+ d3
) (5)

N = 1

4
(
v3 −

(
a0v1
b0v0

+ a20v1
4a1b0v0

+ d3
)
c3

) (6)

Proof Let (x(t), y(t), z(t)) be any solution of the system with non-negative initial
condition. Now there are three cases about the boundedness of the solutions.

• Case 1: To prove that x(t) is bounded ∀t ≥ 0.

Since we have

dx

dt
≤ x (a0 − b0x) , (7)

then according to comparison theorem [24], we obtain that

lim
t→∞ Sup x(t) ≤ a0

b0
(8)

implies that x(t) ≤ a0
b0
, ∀t ≥ 0. Now as t → ∞.

⇒ 0 ≤ x(t) ≤ a0
b0

.

• Case 2: To prove that x(t) and y(t) are bounded ∀t ≥ 0.

Consider

M1(t) = x(t) + v0y(t)

v1
, M1(0) ≥ 0

Then

dM1(t)

dt
≤ x(a0 − b0x) − a1v0

v1
y
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Since in Ω , 0 ≤ x ≤ a0
b0
and simplification using Max [0, a0b0 ]x(a0 − b0x) = a20

4b0
gives

dM1(t)

dt
+ a1M1(t) ≤ a0

b0
+ a20

4a1b0
(9)

Therefore for all t ≥ 0

M1(t) ≤
(
a0
b0

+ a20
4a1b0

)
−

[(
a0
b0

+ a20
4a1b0

)
− M1(0)

]
e−a1M1t (10)

Hence as t → ∞, since (x(0), y(0), z(0)) ∈ Ω

x(t) + v0

v1
y(t) ≤ a0

b0
+ a20

4a1b0
∀t ≥ 0. (11)

Similarly for Case 3

0 ≤ x + v0

v1
y + αz ≤ a0

b0
+ a20

4a1b0
+ N

a1
.

Therefore, every solution initiated in non-negative octant are attracted in a bounded
set Ω defined above, which implies to the uniformly bounded of y(t) and z(t). Thus
the proof is complete.

4 Stability of the Model

There are at most three non-negative equilibrium points of system (3) in addition to
the positive equilibrium point E3 in R+3 existence and stability conditions of them
are given as follows:

• The trivial equilibrium point E0 = (0, 0, 0) always exits.
• The equilibrium point E1 = ( a0b0

, 0, 0) always exists on the boundary of the first
octant.

• The middle predator can exist and survive depending on its prey. Therefore, the
equilibrium point E2 = (x̄, ȳ, 0) exists uniquely in the positive quadrant of x–y
plane where x̄ and ȳ are given by:

x̄ = v1

2a1
, ȳ = 1

v0

(
a0 − b0

v1

2a1

)
(d1 + x̄2), (12)

provided that the following conditions hold

v1

2a1
<

a0
b0

, v2
1 − 4a1

2d1 = 0 (13)
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• In the absence of prey x , then both y and z cannot survive, so there is no equilibrium
point in the y–z plane. In addition to that, if the middle predator y is absent, then
there is no equilibrium point in the x–z plane.

• The positive equilibrium point E3 = (x∗, y∗, z∗) exists in the interior of the first
octant if and only if there is a positive solution to the following equations:

f1 = a0 − b0x − v0y

d1 + x2
= 0,

f2 = v1x

d1 + x2
− a1 − v2z

d2 + y
= 0,

f3 = c3z − v3z

d3 + y
= 0. (14)

Straightforward computation shows that

y∗ = v3

c3
− d3, (15)

while x∗ is the positive root of the following equation

x3 − a0
b0

x2 + d1x +
[
1

b0

(
v0y

∗ − a0d1
)] = 0,

this equation can be rewritten as

f (x) = Ax3 + Bx2 + Cx + D = 0, (16)

where A = 1, B = − a0
b0

,C = d1 and D =
[

1
b0

(v0y∗ − a0d1)
]
.

Now since 0 ≤ x∗ ≤ a0
b0
, then f (0) = D < 0, if

y∗ <
a0
v0

d1, (17)

f ( a0b0 ) = v0
b0
y∗ > 0.Thus, f (0) f ( a0b0 ) < 0, and then there is a positive root of Eq. (16)

lies in (0, a0
b0

) when y∗ < a0
v0
d1, is satisfied.

The second equation of (14) gives

z∗ = (d2 + y∗)
v2

(
v1x∗

d1 + x∗2 − a1

)
(18)

Therefore, the positive equilibrium point E3 = (x∗, y∗, z∗) exists if in addition to
conditions (2) and (17), the following condition holds:

a1 <
v1x∗

(d1 + x∗2)
. (19)
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Now in order to investigate the dynamical behavior of the three species food chain
system (3) near the above equilibrium points, the variational matrix V of system (3)
at (x, y, z) is computed as:

V (x, y, z) =
⎡
⎢⎣
x ∂ f1

∂x + f1 x ∂ f1
∂y x ∂ f1

∂z

y ∂ f2
∂x y ∂ f2

∂y + f2 y ∂ f2
∂z

z ∂ f3
∂x z ∂ f3

∂y z ∂ f3
∂z + f3

⎤
⎥⎦

where ∂ f1
∂x = −b0 + 2v0xy

(d1+x2) ,
∂ f1
∂y = − v0

(d1+x2) ,
∂ f1
∂z = 0, ∂ f2

∂x = v1(d1−x2)
(d1+x2) ,

∂ f2
∂y = v2z

(d2+y)2 ,
∂ f2
∂z = − v2

(d2+y) ,
∂ f3
∂x = 0, ∂ f3

∂y = v3z
(d3+y)2 ,

∂ f3
∂z = c3 − v3

d3+y .

Further, the stability analysis of the system (3) is carried out and according to the
variational matrix Vi ; i = 0, 1, 2, 3 of Ei ; i = 0, 1, 2, 3 respectively, the following
results are obtained:

V0 =
⎡
⎣a0 0 0
0 −a1 0
0 0 0

⎤
⎦ ,

V1 =
⎡
⎣−a0 − v0

d1+1 0
0 v1

d1+1 − a1 0
0 0 0

⎤
⎦ ,

V2 =
⎡
⎢⎣
x̄

(
−b0 + 2x̄(a0−b0 x̄)

(d1+x̄2)

)
− v0 x̄

(d1+x̄2) 0
v1 ȳ(d1−x̄2)
(d1+x̄2)2

v1 x̄
(d1+x̄2) − a1

−v2 ȳ
d1+y

0 0 0

⎤
⎥⎦ .

• Here the trivial equilibrium point E0 is a nonhyperbolic saddle-node, having an
unstable manifold along x-direction.

• From variational matrix V1, it is observed that the nonhyperbolic equilibrium point
E1 is a saddle point having stable manifold along x-direction if the following
condition holds

v1

d1 + 1
> a1, (20)

while nonhyperbolic equilibrium point E1 having stable manifold along x and
y-direction if

v1

d1 + 1
< a1. (21)

• The equilibrium point E2 = (x̄, ȳ, 0) is a nonhyperbolic point having stable man-
ifold along x and y-direction if the following conditions hold.
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2x̄(a0 − b0 x̄)

(d1 + x̄2)2
< b0,

v1 x̄

d1 + x̄2
< a1 (22)

while E2 is unstable saddle if the opposite of any part of condition (22) hold.

However, for the positive equilibrium point E3 = (x∗, y∗, z∗), the variational
matrix is:

V3 =
⎡
⎣a11 a12 a13
a21 a22 a23
a31 a32 a33

⎤
⎦ (23)

The characteristic equation of the variational matrix (23) can be written as

λ3 + A1λ
2 + A2λ + A3 = 0

where A1 = −(a11 + a22), A2 = a11a22 − a12a21 − a23a32, and A3 = a11a23a32.
According to Routh–Hurwitz criterion, E3 = (x∗, y∗, z∗) is locally asymptotically
stable provided A1 > 0, A3 > 0, and Δ = A1A2 − A3 > 0.

Now straightforward computations show that, A1 > 0 and A3 > 0 if and only if
the following conditions are satisfied:

a0 < 2b0x + v0y∗(d1 − x∗2) − v1x∗R
R2

+
(
a1 + v2z∗

Q2
1

)
, (24)

with

v1

v0
<

y∗(d1 − x∗2)
x∗R

, x∗2 < d1. (25)

In addition to that, since

A1A2 − A3 = (a11 + a22)(a12a21 − a11a22) + a22a23a32.

Hence, the necessary condition for A1A2 − A3 > 0 is

(a12a21 − a11a22) < 0,

which is equivalent to the following condition

[
a0 −

(
2b0x

∗ + v0y∗(d1 − x∗2)
R2

)]

[
v1x∗

R
−

(
a1 + v2d2z∗

Q2
1

)]
+ v0v1x∗y∗(d1 − x∗2)

R3
> 0. (26)
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Therefore, depending on the above analysis, the locally asymptotically stable in
I nt R3+ of the positive equilibrium point E3 = (x∗, y∗, z∗) is discussed in the follow-
ing theorem

Theorem 2 Suppose that positive equilibrium point E3 = (x∗, y∗, z∗) exists in
Int R3+, then E3 is locally asymptotically stable provided conditions (24–26) hold.

Proof Follows directly from Routh–Hurwitz criterion [25].

5 Numerical Simulation

In this section, the global dynamics of system (3) are studied numerically. The food
chain system is solved numerically using predictor–corrector method with six order
Runge–Kutta method [26]. System (3) run for 60,000 time steps and the first 30,000
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Fig. 1 a 3D of system (3) chaotic attractor for data (27) with a0 = 0.47 and c3 = 0.047, b 2D x–y
plane of Fig. 1a. c Time series of Fig. 1a
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Fig. 3 a 3D of system (3) asymptotically stable for data set (27), a0 = 0.47 and c3 = 0.050, b 2D
x–z plane of Fig. 3a

time steps are deleted to eliminate the transient effect. For the following set of fixed
parameter values

a1 = 0.105, b0 = 0.075, d1 = 10.0, d2 = 10.0,

d3 = 20.0, v0 = 1.0, v1 = 2.0, v2 = 0.405, v3 = 1.0. (27)

The attractor of system (3) in 3D and 2D with their time series are drawn in Fig. 1 for
the initial condition (1.2, 1.2, 1.2). The main objective is to explore the possibility
of chaotic behavior of system (3) by depending on the controlling parameter and
keeping other parameters of (27) fixed.
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Fig. 5 a 2D x–y plane of system (3) period doubling attractor with a0 = 0.34 and c3 = 0.047,
b 2D y–z plane of Fig. 5a

• The first case by fixing a0 = 0.47 and varying the value of c3 in the range
0.041–0.049, it is observed that the system approaches to chaotic dynamics of
system (3) as shown in Fig. 1 for c3 = 0.047, while decreasing the value of c3
less than 0.041 stabilizing the system as shown in Fig. 2 for the typical value
c3 = 0.040. Further increasing the of c3 more than 0.049 change the dynamics of
system (3) from chaotic to stable point (6.265, 1.003e−192, 5.910) as shown in
Fig. 3 for the typical value c3 = 0.050.

• The second case is by fixing c3 = 0.047 and varying the value of a0 in the range
0.27–0.047with data in (27). For the value a0 = 0.27 the system approach to stable
at the point (2.577, 1.276, 5.700) as in Fig. 4. Increasing the value of a0 = 0.34,
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Fig. 6 a 2D x–y plane of system (3) strange attractor approach to periodic for data in (27) with
a0 = 0.47, c3 = 0.047 and a1 = 0.25, b 2D y–z plane tea-cup attractor for data set Fig. 6a, c time
series of Fig. 6a

change the dynamics of system (3) to period doubling as shown in Fig. 5, while
increasing a0 more than 0.034 change the dynamics of the system to chaotic for
the typical value of a0 = 0.47 as shown in Fig. 1.

• The third case about fixing a0 = 0.47 and c3 = 0.047 with same data in (27), it is
observed by increasing the death rate of themiddle predator a1 = 0.25 then system
(3) behavior is chaotic approach to periodic as shown in Fig. 6. Further increasing
of a1 more than 0.25 change system (3) dynamics from chaotic to asymptotically
stable.
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6 Conclusion

In order to explain the dynamical behavior of the proposed food chain systems (3),
local as well as global stability analysis are carried out. Boundedness of the system
is discussed.

In addition to that to confirm the analytical results, the system is solved numeri-
cally for different sets of biologically feasible parameter values, and then the attract-
ing sets with their time series are drown in order to explain the dynamical behavior
of the model as in Figs. 1–6 with data the same as in (27). According to our study,
the following results are obtained:

(1) The intrinsic growth rate of the top predator c3 is a sensitive parameter which
lead to sensitivity of system (3) dynamics. Decreasing c3 less than 0.041 and
increasing c3 more than 0.049 lead to change the dynamics of the food chain
model from chaotic to asymptotically stable as shown in Figs. 2 and 3, which
prove that a small change in c3 will lead to major change in the dynamics of
system (3).

(2) System (3) has a chaotic dynamics as in Fig. 1, but if we decreasing the values of
intrinsic growth of the prey species a0, then system (3) approaches to periodic
attractor as in Fig. 5 and decreasing a0 more change the behavior of the system
to an asymptotically stable as in Fig. 4, so decreasing a0 has a stabilizing effect
on the dynamics of system (3) and a0 is control parameter of system (3).

(3) Increasing the death rate a1 in the middle predator y has a stabilizing effect in
the dynamics of system (3) as shown in Fig. 6.
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Fifth-Order Four-Stage Explicit
Trigonometrically-Fitted
Runge–Kutta–Nyström Methods

Musa A. Demba, Norazak Senu and Fudziah Ismail

Abstract In this study, we derive fifth-order four-stage explicit trigonometrically-
fitted Runge–Kutta–Nyström (ETFRKN) methods for the numerical integration of
second-order initial value problems with oscillatory solutions based on Simos tech-
nique. The numerical results show the efficiency of the proposed methods in com-
parison with other Runge–Kutta–Nyström (RKN) Methods.

Keywords Trigonometricfitting ·RKNmethods ·Oscillatory solutions ·Numerical
integration · Initial value problems

1 Introduction

During the last decades, methods for the numerical integration of initial value
problems

y′′ = f (x, y), x ∈ [x0, X ], (1)

y(x0) = y0, y′(x0) = y′
0,

whose solution shows a noticeable oscillatory behavior has attracted the interest
of many researchers. Such problems occur in several fields of applied sciences; for
instance, molecular dynamics, celestial mechanics, theoretical physics, and electron-
ics. Bettis [1] suggested the first Runge–Kutta (RK) methods with 3 and 4 stages
for the solution of ordinary differential equations (ODEs) with oscillatory solu-
tions. Recently, Monovasilis [2], J.M. Franco [3], R.D’Ambrosio [4], H. Ramos [5]
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proposed Runge–Kutta–Nyström (RKN) methods for the solution of second-order
ordinary differential equations. Similarly, T.E. Simos [6], J.P. Coleman [7] con-
structed an explicit RK method which integrate certain first-order initial value prob-
lems with periodic or oscillating solutions. In the same manner, G.V. Berghe [8]
proposed exponentially-fitted RK (EFRK) methods that integrates exactly first order
systems whose solutions can be represented as the linear combination of some func-
tions.Motivated by thework of Simos [9], we construct fifth-order four-stage explicit
trigonometrically-fitted RKN method. The remaining part of this paper is structured
as follows: Sect. 2 deals with the derivation of the proposed method.

In Sect. 3, we present the numerical results and the last section deals with the
conclusion.

2 Derivation of the Proposed Method

In this section, we will derive four-stage fifth-order explicit trigonometrically-fitted
RKN methods using Simos technique. Let us consider the four-stage explicit RKN
method given by:

yn+1 = yn + hy′
n + h2

4∑

i=1

bi f (xn + ci h,Yi ), (2)

y′
n+1 = y′

n + h
4∑

i=1

di f (xn + cih,Yi ), (3)

Yi = yn + ci hy
′
n + h2

3∑

j=1

ai j f (xn + cih,Yi ). (4)

or in Butcher Tableau as :
0

c2 a21

c3 a31 a32

c4 a41 a42 a43

b1 b2 b3 b4

d1 d2 d3 d4

In this study, the four-stage fifth-order dispersive of order eight RKN methods
will be used as given in [10]. The coefficients of the methods are given in Tables1
and 2.

When an explicit Runge–Kutta–Nyström method (2)–(4) is applied to the ODE
(1), the method becomes:
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Table 1 The RKN4(5,8,5)M Method [10]
0

1
2

1
8

19
70

2907
343000

1216
42875

44
51

6624772
12858819

6273905
54121608

210498365
1028310552

479
5016

235
1776

145775
641744

309519
6873416

476
5016

235
888

300125
962616

2255067
6873416

Table 2 The RKN4(5,8,5)S Method [10]
0

34
105

578
11025

121
142

10640377
194703584

60046371
194703584

1
2

1576823
23630816

5787873
1538346592

18651700
342169003

2623
24684

5479425
19818532

2505377
47655850

359
5550

2623
24684

8103375
19818532

25411681
71483775

359
2775

yn+1 = yn + hy′
n + h2

4∑

i=1

bi f (xn + ci h,Yi ), (5)

y′
n+1 = y′

n + h
4∑

i=1

di f (xn + cih,Yi ), (6)

with

Y1 = yn + c1hy
′
n, (7)

Y2 = yn + c2hy
′
n − h2a21w

2Y1, (8)

Y3 = yn + c3hy
′
n + h2(−a31w

2Y1 − a32w
2Y2), (9)

Y4 = yn + c4hy
′
n + h2(−a41w

2Y1 − a42w
2Y2 − a43w

2Y3), (10)

which results in
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yn+1 = yn + hy′
n + h2

4∑

i=1

bi (−w2Yi ), (11)

and

y′
n+1 = y′

n + h
4∑

i=1

di (−w2Yi ). (12)

Now, let yn = eIwx . Computing the value of yn+1, y′
n , and y′

n+1 and substituting in
the Eqs. (7)–(12) and by using eIv = cos(v) + I sin(v) and comparing the real and
imaginary part, we obtain the following system of equations:

T1 := cos(v) = 1 − v2
4∑

i=1

bi

⎛

⎝1 − v2
3∑

j=1

ai jY j e
−Iwx

⎞

⎠ , (13)

T2 := sin(v) = v − v2
4∑

i=1

biciv, (14)

T3 := sin(v) = v

4∑

i=1

di

⎛

⎝1 − v2
3∑

j=1

ai jY j e
−Iwx

⎞

⎠ , (15)

T4 := cos(v) = 1 − v2
4∑

i=1

dici . (16)

where v = wh.
Solving (13)–(16) using the coefficients of themethod inTable1 for a31, c2, b2, d2,

we obtain the Taylor series expansion of the solution as given in (17).

a31 = 2907

343000
+ 922507

612255000
v2 + 1232013673651

6163815987000000
v4

− 17236094463540793

1264054836560670000000
v6 − 103858865992645835017663

82717346800340779527000000000
v8

+ 4494075784581591760180534261

30281767897372755047640720000000000
v10 + O

(
v12

)
,

d2 = 235

888
+ 875000

2577531
v2 + 23

48960
v4 + 41078983

690059865600
v6

− 39685575187087

5306819138913600000
v8 − 40332411800984269987

92604843065104546176000000
v10

+ 17787006352557984314900801

233072499268408377043065600000000
v12 + O

(
v14

)
,

c2 = 1

2
+ 25567

33558000
v4 − 2406857437

33784180920000
v6 − 118742174747143

27713388836548800000
v8

+ 380049278740603078721

725404604009985611712000000
v10 + 12003758502069503990362649

486862554027341943156625920000000
v12

− 1089615539643889920756195093403

326762671760990818569001052467200000000
v14 + O

(
v15

)
,
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b2 = 235

1776
+ 6125000

131454081
v2 − 227

3427200
v4 + 89457317

287524940000
v6

− 98730120494347

127363659333926400000
v8 − 159591803857701238421

617365620434030307840000000
v10

+ 645599919558530114442893

49722133177260453769187328000000
v12 + O

(
v13

)
. (17)

This result in the new method called ETFRKN5(4)M. In a similar way, solving the
above system using the coefficients of the method in Table2 for a21, a31, c2, c3, we
obtain the Taylor series expansion of the solution as given in (18).

a21 = 578

11025
+ 848521

243101250
v2 − 126992892839

507449549250000
v4 + 986801812486171

176541698184075000000
v6

− 37201622231491287721

552769711184157232500000000
v8 + 42636320511539680384901501

82500381901495401209115750000000000
v10

− 10934039994699581131126067711

3913893117754125010997914012500000000000
v12 + O

(
v14

)
,

a31 = 10640377

194703584
− 11495

2863288
v2 + 608371181

398455158080
v4 − 154892867010409

1871404418196432000
v6

+ 1151397714695854901

651061597090538692800000
v8 − 5154880609701150122861

245379690430114945493880000000
v10

+ 2958528130879689827642928239

18439400368937589740061304032000000000
v12 + O

(
v14

)
,

c2 = 34

105
− 1629739

1380815100
v4 + 354787385213

8646940319220000
v6 − 64967657425690231

99272927722869054000000
v8

+ 8337460298957261884051

1346945010636659611577400000000
v10 − 55618218521097029431171117

1405806507601481636603332380000000000
v12

+ 33572537761856083679820439733

183405031497958298015362250625750000000000
v14 + O

(
v15

)
,

c3 = 121

142
+ 1001275

304940172
v4 − 10628432485

25461284601312
v6 + 23345592719251

1771596182559288960
v8

− 14806003877975858273

72111582493748065614528000
v10 + 3716634862365696662369

1929816888428842463638022400000
v12

− 454933058077823261288939059

37093927075512784693756656611040000000
v14 + O

(
v15

)
. (18)

This result in the new method called ETFRKN5(4)S.

3 Numerical Results

We compare the performance of the proposed methods ETFRKN5(4)M and
ETFRKN5(4)S with RKN 4(5,8,5)M and RKN 4(5,8,5)S by considering the fol-
lowing problems:
Problem 1 [11]

y′′ = −64y, x ∈ [0, 4000], (19)

y(0) = 1, y′(0) = −2,
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The exact solution is y(x) = − 1
4 sin(8x) + cos(8x).

Problem 2 [12]
y′′ = −100y, x ∈ [0, 4000], (20)

y(0) = 1, y′(0) = 2,

The exact solution is y(x) = − 1
5 sin(10x) + cos(10x).

Problem 3 [13]
y′′ = −100y + 99 sin(x), x ∈ [0, 4000], (21)

Table 3 Numerical results for problem 1

h Methods T = 100 T = 1000 T = 4000

0.025 RKN4(5,8,5)M 3.692168(−6) 3.679147(−5) 1.472381(−4)

ETFRKN 5(4)M 4.561014(−11) 5.243194(−9) 8.3778224(−8)

RKN 4(5,8,5)S 9.195562(−6) 9.268534(−5) 3.713213(−4)

ETFRKN 5(4)S 4.702866(−11) 5.228975(−9) 8.383908(−8)

0.05 RKN4(5,8,5)M 1.167864(−4) 1.162936(−3) 4.663103(−3)

ETFRKN 5(4)M 6.756228(−10) 7.937932(−9) 4.879474(−8)

RKN 4(5,8,5)S 3.048566(−4) 3.100016(−3) 1.236002(−2)

ETFRKN 5(4)S 1.178220(−9) 9.256040(−9) 9.638870(−8)

0.1 RKN4(5,8,5)M 3.591201(−3) 3.595222(−2) 1.515525(−1)

ETFRKN 5(4)M 1.647945(−6) 1.644000(−5) 6.588576(−5)

RKN 4(5,8,5)S 1.152519(−2) 1.108431(−1) 3.768479(−1)

ETFRKN 5(4)S 1.331787(−6) 1.371467(−5) 5.485441(−5)

Table 4 Numerical results for problem 2

h Methods T = 100 T = 1000 T = 4000

0.025 RKN4(5,8,5)M 1.391246(−5) 1.386496(−4) 5.54318(−4)

ETFRKN 5(4)M 5.377163(−11) 6.503970(−9) 1.035798(−7)

RKN 4(5,8,5)S 3.504919(−5) 3.533674(−4) 1.412718(−3)

ETFRKN 5(4)S 6.990865(−11) 6.341439(−9) 1.042249(−7)

0.05 RKN4(5,8,5)M 4.346169(−4) 4.358384(−3) 1.753295(−2)

ETFRKN 5(4)M 9.798471(−9) 9.865613(−8) 3.914656(−7)

RKN 4(5,8,5)S 1.196191(−3) 1.205331(−2) 4.736293(−2)

ETFRKN 5(4)S 1.431150(−8) 1.395804(−7) 6.318411(−7)

0.1 RKN4(5,8,5)M 1.2885867(−2) 1.368225(−1) 6.672607(−1)

ETFRKN 5(4)M 2.658254(−5) 2.701145(−4) 1.080911(−3)

RKN 4(5,8,5)S 4.821748(−2) 3.924927(−1) 8.755385(−1)

ETFRKN 5(4)S 1.653645(−5) 1.675094(−4) 6.785474(−4)
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y(0) = 1, y′(0) = 11,

The exact solution is y(x) = sin(10x) + cos(10x) + sin(x).
Problem 4 [11]

y′′ = −y + x, x ∈ [0, 4000], (22)

y(0) = 1, y′(0) = 2,

The exact solution is y(x) = cos(x) + sin(x) + x .
The numerical results are presented in Tables3, 4, 5 and 6.

The performance of these methods are presented graphically in Figs. 1, 2, 3 and 4.

Table 5 Numerical results for problem 3

h Methods T = 100 T = 1000 T = 4000

0.025 RKN4(5,8,5)M 1.891016(−5) 1.915843(−4) 7.684370(−4)

ETFRKN 5(4)M 4.817489(−10) 9.075352(−9) 1.439351(−7)

RKN 4(5,8,5)S 4.940767(−5) 4.899236(−4) 1.960017(−3)

ETFRKN 5(4)S 1.927360(−9) 9.319327(−9) 1.456267(−7)

0.05 RKN4(5,8,5)M 5.902084(−4) 6.028942(−3) 2.429924(−2)

ETFRKN 5(4)M 2.547192(−8) 1.476824(−7) 5.542078(−7)

RKN 4(5,8,5)S 1.685789(−3) 1.674061(−2) 6.570742(−2)

ETFRKN 5(4)S 9.968822(−8) 2.702436(−7) 9.540691(−7)

0.1 RKN4(5,8,5)M 1.737163(−2) 1.891174(−1) 9.247597(−1)

ETFRKN 5(4)M 3.730664(−5) 3.752516(−4) 1.4977996(−3)

RKN 4(5,8,5)S 6.763346(−2) 5.448985(−1) 1.214736(+0)

ETFRKN 5(4)S 2.668692(−5) 2.345496(−4) 9.322934(−4)

Table 6 Numerical results for problem 4

h Methods T = 100 T = 1000 T = 4000

0.025 RKN4(5,8,5)M 1.665512(−11) 9.304131(−10) 1.431408(−8)

ETFRKN 5(4)M 7.489120(−12) 9.009682(−10) 1.434046(−8)

RKN 4(5,8,5)S 5.249490(−11) 1.032845(−9) 1.455373(−8)

ETFRKN 5(4)S 8.071765(−12) 8.984671(−10) 1.45007(−8)

0.05 RKN4(5,8,5)M 5.229737(−10) 6.126811(−9) 2.593288(−8)

ETFRKN 5(4)M 4.860112(−12) 5.171614(−10) 8.164534(−9)

RKN 4(5,8,5)S 1.674536(−9) 1.551314(−8) 6.202617(−8)

ETFRKN 5(4)S 4.718004(−12) 5.123866(−10) 8.172265(−9)

0.1 RKN4(5,8,5)M 1.670104(−8) 1.948985(−7) 7.882986(−7)

ETFRKN 5(4)M 2.131628(−12) 2.229399(−10) 3.582954(−9)

RKN 4(5,8,5)S 5.376775(−8) 4.969693(−7) 1.971801(−6)

ETFRKN 5(4)S 1.662670(−12) 2.223715(−10) 3.512014(−9)
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Fig. 1 Efficiency graph for problem 1 with tend = 100 and h = i(0.025), i = 1, 2, 4

Fig. 2 Efficiency graph for problem 2 with tend = 100 and h = i(0.025), i = 1, 2, 4
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Fig. 3 Efficiency graph for problem 3 with tend = 100 and h = i(0.025), i = 1, 2, 4

Fig. 4 Efficiency graph for problem 4 with tend = 1000 and h = i(0.025), i = 1, 2, 4
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4 Conclusion

In this study, we have presented the fifth-order four-stage explicit trigonometrically-
fitted RKN methods for the solutions of oscillatory problems. The numerical results
obtained show that the error norm of the new methods are smaller than that of the
other existing methods; the new methods are more efficient than the other existing
methods.
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Modified Homotopy Perturbation
Method for Fredholm–Volterra
Integro-Differential Equation

F.S. Zulkarnain, Z.K. Eshkuvatov, N.M.A. Nik Long
and F. Ismail

Abstract In this paper, consider a linear Fredholm–Volterro integro-differential
equation (FVIDE) of the third kind has derivative of order m where m is positive
integer. This type of integral has been solved by using modified homotopy pertur-
bation method (HPM) to get approximate solutions. In this modification, selective
functions and unknown parameters are introduced to help us obtain only two-step
iterations. This proposed method could avoid common problems such as complex
and long calculations. It is found that modified HPM is a semi-analytical method
and easy to apply for solving FVIDE. Numerical examples are given to present the
efficiency and reliability of the propose method.

Keywords Homotopy perturbation method · Numerical method · Integral equa-
tion · Approximate solution · Integro-differential equations

1 Introduction

Homotopy perturbation method (HPM) [1–5] is the combination of two methods
namely homotopy and perturbation methods. Recently, researchers have been using
HPM to solve mathematic and physic problems. This method deforms a complicated
problem to a simple problem which is easy to solve.

HPM has been used for finding the exact and approximate solutions; in general,
mathematical problems such as nonlinear ordinary differential equations (ODEs) [6],
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one-phase inverse Stefan problem [7], linear and nonlinear integral equations [8],
the integro-differential equations [9, 10] and the Volterra–Fredholm integral equa-
tions [11].

There are few modifications on HPM, one of them is adding few unknown para-
meters to the first iterations and finding them by equating the second iteration to be
zero that leads to semi-analytical solutions [12]. Another modification is to divide the
interval into subintervals and useHPM in each subinterval which is namedmultistage
homotopy-perturbation method [13, 14]. A series of parameters and selectives called
improved HPM have been added to find semi-analytical solutions of nonlinear Fred-
holm and Volterra integral equations [15]. Mohamad Nor et al. [16] developed the
new homotopy function using De Casteljau algorithms to solve algebraic nonlinear
problems.

Our main problem is to implement modified HPM (MHPM) into Fredholm–
Volterra integro-differential equation of the third kind. Fredholm–Volterra integral
equations arise fromparabolic boundary value problems, themathematicalmodelling
of spatiotemporal development of an epidemic and various physical and biological
problems [17, 18]. There are many methods to solve the Volterra–Fredholm integral
equations; for instance, the collocation method [19], the Galerkin Method [20], the
fixed point method [21], the moving least squares method [22], the Taylor expansion
method [23], and the modified decomposition method [24]. Consider Fredholm–
Volterra integro-differential equation of the third kind with initial conditions.

s(x) u(m)(x) = f (x) + λ1

∫ b

a
K1(x, t) u(t) dt + λ2

∫ x

a
K2(x, t) u(t) dt, x ∈ [a, b],

u(k)(a) = ck , 0 ≤ k ≤ m − 1. (1)

where s(x), g(x) are continuous functions on [a, b], m is the order of differential,
λ1 and λ2 are parameters, K1 and K2 are square integrable kernels, and u(x) is the
function to be determined.

Rewrite Eq. (1) in the operator form as

Lu = f + Ku, (2)

where L is differential operator and K is integral operator has the form

Lu = u(m)(x), f = f (x)

s(x)
,

Ku = λ1

s(x)

∫ b

a
K1(x, t) u(t) dt + λ2

s(x)

∫ x

a
K2(x, t) u(t) dt.

Assume that L−1 is integral operator and has the form

L−1(·) =
∫ x

a

∫ x1

a
· · ·

∫ xm−1

a
(·)dx1dx2 . . . dxm−1, (3)
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Applying (3) to the Eq. (2) and taking into account initial condition in Eq. (1), we
obtain

u(x) =
m−1∑

k=0

ck
k! (x − a)k + L−1

[
f (x)

s(x)

]
+ L−1

[
λ1

s(x)

∫ b

a
K1(x, t) u(t) dt

+ λ2

s(x)

∫ x

a
K2(x, t) u(t) dt

]
. (4)

Operator form of Eq. (4) is

Lmu = hm + fm + Kmu, (5)

where

Lmu = u(x), hm =
m−1∑

k=0

ck
k! (x − a)k, fm = L−1

(
f (x)

s(x)

)
,

Kmu = L−1

(
λ1

s(x)

∫ b

a
K1(x, t) u(t) dt + λ2

s(x)

∫ x

a
K2(x, t) u(t) dt

)
.

2 Modified Homotopy Perturbation Method

Standard HPM is usually given by

H(v, p) = (1 − p)F(v) + p(Lmv − fm − Kmv), (6)

where F(v) is a functional operator with known solution u0, which can be obtained
easily.

The convex homotopy (6) continuously traces an implicitly defined curve from
a starting point H(u(x), 0) to a solution function H(u(x), 1). The embedding para-
meter p monotonically increases from zero to unit as trivial problem F(u) = 0 is
continuously deformed to original problem Lmu − fm − Kmu = 0. It is clear that,

H(v, p) = 0, (7)

leads to
F(v) = p[F(v) + Lmv − fm − Kmv]. (8)

Improved HPM has been presented in Ghorbani [15]. Using this method, we define
F(v) = Lmv − ∑N

j=0 α j g j (x)where α j are called accelerator parameters, and using
these parameters we might have exact solution or approximate solution. Thus, the
improved HPM is constructed as follows:
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Hm(v, α, p) = (1 − p)

⎛

⎝Lmv −
N∑

j=0

α j g j (x)

⎞

⎠ + p (Lmv − hm − fm − Kmv),

(9)
where α j are the parameters to be defined and g j (x) are given selective functions.
Forcing Hm(v, α, p) = 0 leads to the equation

Lmv =
N∑

j=0

α j g j (x) + p

⎡

⎣hm + fm + Kmv −
N∑

j=0

α j g j (x)

⎤

⎦ . (10)

Let us search approximate solution v in the form of a power series

v(x) =
∞∑

k=0

pkvk(x). (11)

Substituting (11) into (10) yields

Lm

[ ∞∑

k=0

pkvk(x)

]
=

N∑

j=0

α j g j (x)

+ p

⎛

⎝hm + fm + Km

[ ∞∑

k=0

pkvk(x)

]
−

N∑

j=0

α j g j (x)

⎞

⎠ .

(12)

Since Lm = I is identity operator, comparing the expressions from both sides of Eq.
(12) like power of parameter p, we get the following schemes

v0 =
N∑

j=0

α j g j (x),

v1 = hm + fm + Kmv0 −
N∑

j=0

α j g j (x), (13)

vk = Kmvk−1, k ≥ 2.

Remark: In MHPM, the accelerating parameters α j are defined by forcing v1 = 0 it
leads two-step iteration and gives exact solution. If v1 �= 0 but vN1 → 0 as N → ∞
then the contribution of vk, k ≥ 2 to the solution will be small; therefore, we can
neglect vk, k ≥ 2 to find the approximate solution.
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3 Results

Example 1 Consider 2nd order FVIDE as

(x + 1)u′′(x) = −119

60
− 71

36
x + 1

2
x2 − 2

3
x3 + 5

12
x4 − 1

10
x5 + 1

3

∫ 2

1
xt0u(t) dt

+ 1

2

∫ x

1
(x − t2)u(t) dt, u(1) = 0, u′(1) = 0 (14)

which has exact solution u(x) = −x2 + 2x − 1.

After reducing Eq. (14) into Fredholm–Volterra integral equation, we have

u(x) = 707

3600
− 301

180
ln (2) + 301

180
ln (x + 1)

301

180
+ ln (x + 1) x + 5137

3600
x

− 301

180
ln (2) x − 329

180
x2 + 101

360
x3 − 71

720
x4 − 31

1200
x5 − 1

300
x6

+ 1

3

∫ x

1

∫ t0

1

∫ 2

1

t1 t2
t1 + 1

u(t2) dt2 dt1 dt0 + 1

2

∫ x

1

∫ t0

1

∫ t1

1

t1 − t22
t1 + 1

u(t2) dt2 dt1 dt0.

By using MHPM scheme (13), we choose selective function as g j (x) = x j with
N = 4. To find α = (α0, α1, . . . , α4), we force v1 = 0 and obtain system algebraic
as below

− 1

784
α4 = 0,

1

245
α4 − 1

504
α3 = 0,

− 1

175
α4 + 1

144
α3 − 1

300
α2 − 1

300
= 0,

3

350
α4 − 1

96
α3 + 1

75
α2 − 1

160
α1 + 31

1200
= 0,

− 71

70
α4 + 5

288
α3 − 1

72
α2 + 1

32
α1 − 1

72
α0 − 71

720
= 0,

1

35
α4 − 149

144
α3 + 2

45
α2 − 1

16
α1 + 1

9
α0 − 101

360
= 0,

113

70
α4 + 43

40
α3 − 71

120
α2 + 65

144
α1 − 1

3
α0 − 329

180
= 0,

− 221

70
α4 − 31

15
α3 − 43

60
α2 − 7

9
α1 + 5

6
α0 + 301

180
= 0,

− 221

70
α4 − 31

15
α3 − 43

60
α2 − 7

9
α1 + 5

6
α0 + 301

180
= 0,
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(
221

70
ln 2 − 311

2450

)
α4 +

(
31

15
ln 2 − 7

288

)
α3 +

(
43

60
ln 2 − 43

225

)
α2

+
(
7

9
ln 2 − 33

32

)
α1 −

(
5

6
ln 2 + 4

9

)
α0 − 301

180
ln 2 + 5137

3600
= 0,

(
221

70
ln 2 − 29543

19600

)
α4 +

(
31

15
ln 2 − 10361

10080

)
α3 +

(
43

60
ln 2 − 449

1800

)
α2

+
(
7

9
ln 2 − 551

1440

)
α1 −

(
5

6
ln 2 − 23

72

)
α0 − 301

180
ln 2 + 707

3600
= 0. (15)

We found that α0 = −1, α1 = 2, α2 = −1 and α3 = α4 = 0. Thus, the approximate
solution is v(x) = v0(x) = −x2 + 2x − 1 is identical to the exact solution.

Example 2 Consider fourth-order FVIDE as

(ex ) u(4)(x) = 3

40
ex + 1

8
ex+1 − 1

2
ex−1 − 2

15
ex x3 − 1

10
e3x x + 321

20
e3x

− 1

8

∫ 1

0
ex−t u(t) dt + 1

5

∫ x

0
t exu(t) dt,

u(0) = 1, u′(0) = 4, u′′(0) = 4, u′′′(0) = 8. (16)

with exact solution u(x) = e2x + 2x .

We choose functions g j (x) = x j where j = 0, 1, . . . , N yields v0 = α0 + α1x +
α2x2 + · · · + αN xN . As we repeated the same calculations in Example1, we cannot
solve the algebraic equations for any N . Then, we substitute points xi , i = 0, . . . , N
in the form

xi = i (b − a)

N
, i = 0, 1, . . . , N (17)

Table1presented errors of v(x)usingMHPMfor N = {5, 10, 15, 20} in problem (16).

Example 3 Consider third-order FVIDE as

4

2 + cos (2x)
u(3)(x) = f (x) + 3

5

∫ π

0
(x + t sin (x) + cos (t)) u(t) dt

+ 1

5

∫ x

0
t sin (x − t) u(t) dt,

u(0) = 0, u′(0) = −1

4
, u′′(0) = 0, (18)

f (x) = 1

9
+ 3

5
π2 − 1

20
π4x + 4

5
x2 − 1

15
x4 −

(
3

80
π + 1

25
π5

)
sin (x) − 1

60
x sin (x) cos (x)

+ 29

18
cos (x) − 1

45
cos2 (x).
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Table 1 Errors of modified
HPM for Eq. (16)

N ‖u(x) − v(x)‖
5 3.0476237 ×10−4

10 6.3915328 ×10−10

15 1.8708452 ×10−16

20 1.3107657 ×10−23

Table 2 Errors of modified
HPM for Eq. (18)

N ‖u(x) − v(x)‖
5 1.5214140 × 10−3

10 3.3985617 × 10−5

15 4.4100567 × 10−10

20 4.4531769 × 10−14

Exact solution of Eq. (18) is u(x) = sin (−2x)

8
+ x3

3
.

We choose selective function as g j (x) = x j where j = 0, 1, . . . , N then applying
the same calculations as Example2. As a result, the errors are shown in Table2.
According to Tables1 and 2, both the approximate solutions converge to the exact
solution.

4 Conclusion

In this work, we are using MHPM to solve FVIDE at m order. The modified homo-
topy was introduced where α = [α j ] is the unknown accelerating parameter and
g(x) = [g(x) j ] is the selective function. The unknown parameters are obtained by
equating v1 = 0 which lead v2 = v3 = · · · = vk = 0. In consequence, this method
could avoid any long and complex computations as shown in the numerical exam-
ples. The numerical results present that the modified HPM is an efficient and reliable
method for solving this type of integral equations.
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Simultaneous Effects of Soret and Dufour
on the Unsteady Stagnation Point Flow
of Micropolar Fluid Towards a Permeable
Stretching Sheet

Shah Jahan, Hamzah Sakidin and Roslinda Nazar

Abstract Thepresent study investigates theSoret andDufour effects on the unsteady
stagnation point flowofmicropolar fluid toward a permeable stretching surface. First,
we obtained the ordinary differential equation using appropriate transformation on
partial differential equations. Then we used the Homotopy analysis method (HAM)
to solve the subsequent problem. The influences of different values for various per-
tinent parameters such as unsteady parameter, Schmidt number, chemical reaction
parameter, Dufour and Soret number on concentration, and temperature distributions
are determined. Numerical values of physically interested parameter like skin friction
coefficient are computed and compared with the previous results.

Keywords Soret and dufour effect ·Unsteady flow · Permeable stretching surface ·
Stagnation point flow · Micropolar fluid

1 Introduction

Theory which introduces the coupling between the spin of each particle and micro-
scopic velocity is known as “the theory of micropolar fluids” introduced by Eringen
[1]. This theory has a range of applications in colloidal suspensions, liquid crys-
tals, turbulent, porous media, lubricants, blood flow, capillaries, and microchannels
flows. Joneidi et al. [2] investigated the effect of high mass transfer on micropolar
fluid flow in a porous channel. They solved it with optimal homotopy asymptotic
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method and got excellent comparison with numerical results. Ashraf et al. [3] stud-
ied the asymmetric laminar flow of micropolar fluid numerically in porous channel.
They observed that micropolar fluids increase couple stress and reduce shear stress
near the wall when compared with Newtonian fluids. Mapatra and Gupta examined
the effect of heat transfer in stagnation point flow over a stretching sheet [4]. Then
Nazar et al. [5] studied the micropolar fluid flow over a stretching sheet numeri-
cally. A phenomenon in which transfer of heat is induced by concentration gradient
is called thermo-diffusion or Dufour effect. On the other hand the phenomenon of
thermo-diffusion or Soret effect implies that mass transfer is induced by temperature
gradient.

When concentration and temperature gradient are high, then these effects are
very significant. The applications of these effects have become very prominent in
the areas such as isotope separation, nuclear waste, hydrology, geothermal energy,
and in the mixture of different gases like Helium or Hydrogen due to their light
molecular weight. Similarly, for air or hydrogen due to medium molecular weight,
Angel et al. [6] examined the effects of Dufour and Soret on free convection towards
a vertical surface that was fixed in a porous medium. Cheng [7] studied the dual
diffusion in a fluid-saturated porous medium adjacent to a perpendicular truncated
cone with variable concentration andwall temperature considering the effect of Soret
and Dufour. Mixed convection magnetohydrodynamic heat and mass transfer on a
micropolar fluid towards a stretching surface saturated in porous medium under the
impact of ohmic heating, Soret andDufour have been discussed by Pal andChatterjee
[8]. Pal and Mondal [9–12] examined these effects in detail.

Motivated by the above studies, our aim is to examine simultaneous effects of
Soret andDufour onmicropolar fluid past a permeable stretching sheet with unsteady
stagnation point flow. Using suitable transformation, the nonlinear partial differential
equations are transformed to ordinary differential equation. To solve highly nonlinear
equations, we use Homotopy analysis method [13–15] to find the series solution. The
influence of different flow parameters is discussed through graphs and compared
numerically.

2 Problem Formulation

Consider the stagnation point flow of a micropolar fluid past a permeable stretching
surface for unsteady case. The x-component of the surface is stretched with velocity
Uw. As a result fluid moves with velocity U in the y-direction toward the stagnation
point on the surface. The flow of heat and mass transfer with the effect of Soret
and Dufour is also incorporated. With the help of boundary layer approximation, the
associated equations for continuity, momentum, angular momentum, concentration,
and energy are given as

∂u

∂x
+ ∂v

∂y
= 0, (1)
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∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
= U

∂U

∂x
+ ∂U

∂t
+

(
ν + κ

ρ

)
∂2u

∂y2
+ κ

ρ

∂N∗

∂y
, (2)

∂N∗

∂t
+ u

∂N∗

∂x
+ v

∂N∗

∂y
= γ ∗

ρj

∂2N∗

∂y2
− κ

ρj

(
2N∗ + ∂u

∂y

)
, (3)

∂C

∂t
+ u

∂C

∂x
+ v

∂C

∂y
= De

∂2C

∂y2
− R(t)C + DekT

Tm

∂2T

∂y2
, (4)

∂T

∂t
+ u

∂T

∂x
+ v

∂T

∂y
= αm

∂2T

∂y2
+ DekT

CsCp

∂2C

∂y2
, (5)

u = Uw, v = vw, N∗ = −N0
∂u
∂y ,T = Tw,

C = Cw at y = 0,
u → U, N∗ → 0, T → T∞, C → C∞ as y → ∞,

⎫
⎪⎪⎬

⎪⎪⎭
(6)

where
Uw = ax

1−ct , U = bx
1−ct , vw = −

√
vUw
x f (0),

Cw = C∞ + ex
1−ct , Tw = T∞ + bx

1−ct .

}
(7)

Note that b > 0, a > 0, c ≥ 0, e > 0, u and v are velocity components along x-
axis and y-axis, ct < 1,R(t) = R1(1 − ct)−1 and R1 is constant reaction rate, ρ is
the fluid density, ν is the kinematic viscosity, C is the concentration, C∞ is the free
stream concentration,Cs is the concentration susceptibility, De is the coefficient of
diffusing species, αm is the thermal diffusivity, T is the temperature of the fluid,
and T∞ is the temperature for surrounding. Uw is the stretching velocity, vw is the
suction or injection velocity, Cw is the concentration at surface, Tw is the surface
temperature, Tm is the mean fluid temperature, N∗ is the microrotation or angular
velocity, j = (ν/c) is the microinertia per unit mass, k is the thermal conductivity,
kT is the thermal diffusion rate, Cp is the specific heat, and γ ∗ = (μ + κ/2)j is the
spin gradient viscosity, respectively.

Here b > 0 is for heated surface (Tw > T∞) and b < 0 for a cooled plate (Tw <

T∞). Further, prime signifies the differentiation with respect to η.Obviously for γ >

0orγ < 0,wehavedestructive/generative chemical reaction,whereas the caseγ = 0
yields the nonreactive species. Note that for k = 0, we get viscous fluid. Further, the
boundary parameterN0 has range 0 ≤ N0 ≤ 1. For strong concentration (N0 = 0)we
get N∗ = 0 near the wall. That mean due to saturated particle flows, microelements
are unable to spin near thewall, whereasN0 = 1/2 represents the weak concentration
of microelements because stress tensor vanishes its anti-symmetric part. Peddieson
[15] has shown that the turbulent boundary layer flow can be demonstrated when
N0 = 1, whereas vw < 0 is for suction and vw > 0 for injection/blowing.
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Introducing

η = (Uw
vx

)1/2
y, u = cxf ′ (η) , ψ = − (Uwvx)

1/2 f (η) ,

N∗ = Uw
(Uw
vx

)1/2
g(η), φ (η) = C−C∞

Cw−C∞

}
(8)

Now (1) is automatically satisfied and (2)–(6) are reduced as (9)–(13) respectively:

(1 + K) f ′′′ + ff ′′ − (f ′)2 + Kg′ − α

(
f ′ + 1

2
ηf ′′

)
+ λ2 + λα = 0,

}
(9)

(
1 + K

2

)
g′′ + fg′ − f ′g − 2Kg − Kf ′′ − α

(
3

2
g + 1

2
ηg′

)
= 0,

}
(10)

φ′′ − Scα(φ + η

2
φ′) + Sc(f φ′ − φf ′) − Scγφ + ScSrθ ′′ = 0,

}
(11)

θ ′′ − Pr α(θ + η

2
θ ′) + Pr (f θ ′ − θ f ′) + Pr Df φ

′′ = 0,
}

(12)

f (0) = S, f ′(0) = 1, g(0) = −N0f ′′(0),
θ(0) = 1, φ(0) = 1,

f ′(∞) = λ, g(∞) = 0, θ(∞) → 0,
φ(∞) → 0, η → ∞

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(13)

where Sc is the Schmidt number, γ is the chemical reaction,K is the vortex viscosity,
η is the similarity variable,λ is the velocity ratio parameter, Pr is the Prandtl number,
Df and Sr are the Dufour and Soret numbers, S is the suction injection parameter,
and μ is the dynamic viscosity.

Here, different flow parameters are defined as

K = κ
μ
, Sc = ν

De
, λ = b

a , α = c
a ,

γ = R1
a , Pr = ν/αm,

Df = DekT
CsCp

(Cw−C∞)

(Tw−T∞)υ
, Sr = DekT

Tmν

(Tw−T∞)

(Cw−C∞)

⎫
⎪⎪⎬

⎪⎪⎭
(14)

The parameter of physical interest skin friction coefficient Cfx, the local Nusselt
number Nux and the Sherwood number Sh are defined as

Cfx = τw
ρU2

w/2 , Nux = xqw
k(Tw−T∞)

,

Sh = xjw
De(Cw−C∞)

τw = ((μ + k) ∂u
∂y + kN)y=0, qw = −k

(
∂T
∂y

)

y=0
,

jw = −De

(
∂C
∂y

)

y=0

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

(15)
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From (9) and (16) we have

CfxR
1
2
ex = (1 + K) f

′′
(0) + Kg(0)

Nux/Re1/2x = −θ ′(0), Sh/Re1/2x = −φ′(0).

}
(16)

3 Analytical Solutions

We have used HAM to solve (9)–(12) with boundary conditions (13) analytically.
Here we describe the procedure briefly.

First, we choose initial guesses for velocity (f0) , microrotation (g0),concentration
(φ0), and temperature (θ0) with the help of set of base function that are defined as
follows:

f0(η) = S + λ ∗ η + (λ − 1) ∗ (exp[−η] − 1), (17)

g0(η) = −N0 ∗ f ∗′′
0 (0) exp[−η], (18)

φ0(η) = exp(−η), (19)

θ0(η) = exp(−η), (20)

Then we defined the auxiliary linear operators for Eqs. (9)–(12).

Lf = d3f
dη3 − df

dη
, Lg = d2g

dη2 − g,

Lφ = d2φ
dη2 − φ, Lθ = d2θ

dη2 − θ,

⎫
⎬

⎭ (21)

Thenwedefine zeroth-order deformation.After thatwe differentiate zero-order equa-
tions m times with respect to p and then divided by p! By choosing p = 0, we get
mth order deformation. Finally, we get general solutions that are given below:

fm(η) = f ∗
m(η) + C1 + C2 exp(η) + C3 exp(−η), (22)

gm(η) = g∗
m(η) + C4 exp(η) + C5 exp(−η), (23)

φm(η) = φ∗
m(η) + C6 exp(η) + C7 exp(−η), (24)

θm(η) = θ∗
m(η) + C8 exp(η) + C9 exp(−η). (25)

where f ∗
m(η), g∗

m(η), φ∗
m(η), θ∗

m(η) are the particular solutions of the equations,where
the values of constants from C1 to C9 can be found using boundary conditions.
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4 Convergence of the Series Solutions

It is commonly known that a nonlinear problem can be approximatedmore efficiently
through the choice of an appropriate set of base functions and to certify the conver-
gence usingHAM(HomotopyAnalysisMethod). The rate of approximation and con-
vergence criteria depends upon the value of nonzero auxiliary parameter �, usually
called a convergence control parameter. Here for the case of velocity, microrotation,
concentration, and temperature profile, � is represented as �f , �g, �ϕ, and �θ , respec-
tively. These parameters help in the adjustment and control the radius of convergence
of the series solutions. The range of admissible values of �f , �g, �ϕ, and �θ can be
computed by displaying the �− curves of the functions f ′′(0), g′(0), ϕ′(0), θ ′(0).
Figures1, 2, 3, and 4 are drawn at 15th order of approximation for the fixed values of
other parameters as K = 1 = λ, α = 0.5,Df = 0.1, γ = 1 = Pr, Sr = 1 = Sc, S =
0, and the admissible values of f ′′(0), g′(0), ϕ′(0), θ ′(0) lie in the range−0.5 ≤ �f ≤
−0.2,−0.6 ≤ �g ≤ −0.3,−0.5 ≤ �φ ≤ −0.2,−1.25 ≤ �θ ≤ −0.6, respectively.

Fig. 1 �f curve for f ′(0)
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Fig. 2 �g curve for g′(0)

Fig. 3 �φ curve for φ′(0)
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Fig. 4 �θ curve for θ ′(0)

5 Results and Discussion

Homotopy analysis method (HAM) is applied to solve the equation from (9) to (13)
analytically usingMathematica 9 software. We investigate the influences of different
parameters on concentration and temperature distribution to comprehend the physical
phases of the problem. These embedded flow parameters are α (unsteady parameter),
Sc (Schmidt number), γ (chemical reaction parameter),Df (Dufour number), and Sr
(Soret number). Figures5, 6, 7, 8, and 9 show the effects of different flow parameters
on concentration profiles, whereas Figs. 10, 11, and 12 indicate the influence of
involved parameters on temperature profiles. Figure5 shows the influence unsteady
parameter α on concentration profiles. It is observed that concentration distribution
increases by increasing the α for fixed values of other parameters, whereas Schmidt
number shows opposite behavior on the concentration velocity which is displayed in
Fig. 6 due to decrease in boundary layer thickness. Physically increase in Sc means
that decrease in molecular diffusivity D, so as a result concentration distribution
decreases.

The effects γ on concentration profiles are sketched in Fig. 7 which shows that
as we increase the values of γ, the φ(η) increases. It means that the concentration
of the diffusing species increases during chemical reaction. The Dufour and Soret
numbers have increasing effects as shown in Figs. 8 and 9. With the increase of these
parameters the concentration velocity for Soret number increases more rapidly as
compared toDufour number. It clears that diffusive species boost the concentration in
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Fig. 5 Influence of α on concentration profiles when λ = 2, Sc = 2, Sr = 1,Df = 1, S = 2

Fig. 6 Influence of Sc on concentration profiles when λ = 2, γ = 0.3, Sr = 1,Df = 0.2,
S = 1, α = 0.5
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Fig. 7 Influence of γ on concentration profiles when λ = 0.3, Sc = 3, Sr = 1,Df = 2, S = 1,
α = 0.5

Fig. 8 Influence of Df on concentration profiles when λ = 0.3, Sc = 3, Sr = 1, γ = 2, S = 1,
α = 0.5



Simultaneous Effects of Soret and Dufour on the Unsteady Stagnation … 55

Fig. 9 Influence of Sr on concentration profiles when λ = 0.3, Sc = 3, γ = 2,Df = 1, S = 1,
α = 0.5

Fig. 10 Influence of Sr on temperature profiles when λ = 2,Pr = 2,Df = 1, S = 1, α = 0.5
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Fig. 11 Influence of α on temperature profiles when λ = 2, Sc = 0.2, Sr = 1,Df = 0.3, S = 1

Fig. 12 Influence of Df on temperature profiles when λ = 2, Sr = 1,Pr = 2, S = 1, α = 0.5
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Table 1 Numerical values of skin friction coefficient Re1/2x Cf when K = 0, 1, at S = 0,
α = 0,N0 = 0

λ Mahapatra
et al. [4]

K = 0 (Newtonian fluid) K = 1

Nazar et al. [5] Present result Nazar et al. [5] Present result

0.01 – −0.9980 −0.9980 −1.3653 −1.3653

0.02 – −0.9958 −0.9958 −1.3622 −1.3622

0.05 – −0.9876 −0.9876 −1.3512 −1.3512

0.10 −0.9694 −0.9694 −0.9694 −1.3268 −1.3268

0.20 −0.9181 −0.9181 −0.9181 −1.2579 −1.2579

0.50 −0.6673 −0.6673 −0.6673 −0.9175 −0.9175

1.00 – 0.0000 0.0000 0.0000 0.0000

Table 2 Numerical values of skin friction coefficient Re1/2x Cf when K = 0, 1 at S = 0,
α = 0,N0 = 1/2

λ Mahapatra
et al. [4]

K = 0 (Newtonian fluid) K = 1

Nazar et al. [5] Present result Nazar et al. [5] Present result

0.01 – −0.9980 −0.9980 −1.2224 −1.2224

0.02 – −0.9958 −0.9958 −1.2196 −1.2196

0.05 – −0.9876 −0.9876 −1.2095 −1.2095

0.10 −0.9694 −0.9694 −0.9694 −1.1872 −1.1872

0.20 −0.9181 −0.9181 −0.9181 −1.1244 −1.1244

0.50 −0.6673 −0.6673 −0.6673 −0.8172 −0.8172

1.00 – 0.0000 0.0000 0.0000 0.0000

the flow field with Soret and Dufour effect. Figures10, 11, and 12 are prepared to see
the influence of Sr, α andDf on temperature profiles. From these figures, it is obvious
that Sr and α have slow behavior on the temperature velocity but with the increase
of Df , the temperature profiles enhanced more as compared to Sr and α. The present
results for S = 0, α = 0 are compared with the Ref. [4]. The validation of HAM
results are in good agreement with the results presented in [5] when S = 0, α = 0.
Such comparisons are shown in Tables1 and 2 when N0 = 0 and N0 = 1/2. This
comparison is provided in good agreement.

6 Conclusions

The current study explores the effects of Soret and Dufour on the micropolar fluid
toward a permeable stretching sheet for unsteady stagnation point flow case. The
nonlinear ordinary differential equations (9)–(12) with boundary condition (13) are
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solved analytically by homotopy analysis method using Mathematica 9. The results
for different flow parameters of interest are shown. So the following are the main
points drawn from this study:

• �—curves show the convergence of the series solution.
• The concentration profiles increase rapidly, whereas temperature profiles increase
slowly with the increasing values of unsteady parameter α.

• Temperature velocity increases slowly with the increase of Soret number but for
concentration distribution increases fast.

• With the increase of chemical reaction γ, concentration distribution increases
while for Schmidt number Sc reduces gradually.

• Dufour number increases the concentration and temperature distributions.

Acknowledgments The first author is grateful to theUniversity Technology PETRONAS for finan-
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One-Step Implicit Hybrid Method
for Solving Semi-explicit Index-1
Differential Algebraic Equations

Khoo Kai Wen and Zanariah Abdul Majid

Abstract In this paper, a self-starting one-step implicit hybrid method is proposed
to solve semi-explicit index-1 differential algebraic equations (DAEs). The pro-
posed method is formulated using Lagrange interpolating polynomial. The proposed
method will compute the solutions of differential algebraic equations using con-
stant step size. Implementation of the method involved Newton’s iteration in order
to solve semi-explicit index-1 differential algebraic equations. Numerical examples
are shown in order to present the applicability of the proposed method when solv-
ing the semi-explicit index-1 differential algebraic equations. The results of proposed
method show better results compared to existingmethods when solving semi-explicit
index-1 differential algebraic equations.

Keywords Differential algebraic equations ·Hybrid method · Semi-explicit · Self-
starting · Constant step size

1 Introduction

This research focused on study numerical solutions for semi-explicit index-1 differ-
ential algebraic equations (DAEs). Semi-explicit index-1 DAEs consist of a system
of ordinary differential equations with algebraic constrains, and it can be written in
following form:

y′ = f (y, z) y(x0) = y0
0 = g(y, z) z(z0) = z0 (1)

where gz = ∂g
∂z is nonsingular in a neighborhood of solution. The unknowns y and z

represent differential variable and algebraic variable, respectively.
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One-stepmethod in numerical analysis indicated that themethod used information
from only one of the previous points to determine the approximation at the next point.
By referring to Butcher (2002), hybrid method can be formed in this way that needs
two predictors, one to obtain an approximation to the solution at the off-step point
and a second to give a first approximation to y(xn), from which fn is calculated.

In literature, Gear (1971) had introduced the ideas of applying numerical method
of ODEs in order to solve DAEs. Numerical solutions of ODE methods for solving
DAEs are derived by Gear and Pezold (1984). They concluded that the level of
difficulties to solve DAEs depends on the index of DAEs. By referring to Petzold
(1982), they had discussed the difficulties in solving DAEs, and stated that the basic
algorithms will work for lower index DAEs. Recently, several methods have been
proposed to solve semi-explicit index-1 DAEs, such as [1], 2-points and 3-points
BBDF [2], and L-stable extended BBDF [3]. Hybrid method is a method of modified
linear multistep formulae which incorporate a function evaluation at an off-step
point [4]. There are many researchers who had tried to use hybrid method to solve
stiff ODEs, such as in [5–7].

2 Formation of Method

Based on Fig. 1, one-step implicit hybrid method is formulated using Lagrange inter-
polating polynomial with one off-step point. It is a self-staring method and it will
compute the approximate solutions using constant step size. The interpolating points
are yn , yn+1, and yn+ 5

4
. The proposed method used the extended point yn+ 5

4
which is

1
4h apart from yn+1 to compute the new value of yn+1. The derivation of the implicit
hybrid method is obtained by taking the first-order differential equation as follows:

y′ = f (x, y) (2)

Fig. 1 One-step implicit
hybrid method

yn+1

xn+1 xn+2xn n+
x

h h1
4

5
4

n+
y 5

4
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The approximation value of yn+1 for the first equation can be obtained by integrating
Eq.2 from xn to xn+1 with respect to x as shown as follows:

∫ xn+1

xn

y′dx =
∫ xn+1

xn

f (x, y)dx

or

y(xn+1) = y(xn) +
∫ xn+1

xn

f (x, y)dx (3)

Next, y′ = f (x, y) in Eq.3 is replaced by Lagrange interpolation polynomial. The
involved interpolation points are (xn, fn), (xn+1, fn+1), and (xn+ 5

4
, fn+ 5

4
), and the

Lagrange interpolating polynomial is shown as follows:

P = (x − xn+1)(x − xn+ 5
4
)

(xn − xn+1)(xn − xn+ 5
4
)
fn

+ (x − xn)(x − xn+ 5
4
)

(xn+1 − xn)(xn+1 − xn+ 5
4
)
fn+1

+ (x − xn)(x − xn+1)

(xn+ 5
4
− xn)(xn+ 5

4
− xn+1)

fn+ 5
4

Then, by taking s = x−x
n+ 5

4
h , dx = hds and replacing into Eq.3. Let x = xn ,

s = xn − xn+ 5
4

h
, s = − 5

4h

h

So, s = − 5
4 , then, taking x = xn+1 ,

s = xn+1 − xn+ 5
4

h
, s = − 1

4h

h

So s = − 1
4 , hence, limit of integration is from − 5

4 to − 1
4 . Hence, the first equation

of one-step hybrid method will be obtained as shown as follows:

yn+1 = yn + 11

30
h fn + 7

6
h fn+1 − 8

15
h fn+ 5

4
(4)

The same process is repeated in order to obtain the second equation of the formula
where integrating Eq.2 from xnto xn+ 5

4
with respect to x ,

∫ x
n+ 5

4

xn

y′dx =
∫ x

n+ 5
4

xn

f (x, y)dx
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or

y(xn+ 5
4
) = y(xn) +

∫ x
n+ 5

4

xn

f (x, y)dx (5)

Then, change the limit of integration from − 5
4 to 0. Thus, the second equation of the

method can be obtained as follows:

yn+ 5
4

= yn + 35

96
h fn + 125

96
h fn+1 − 5

12
h fn+ 5

4
(6)

Hence, the one-step implicit hybrid method is obtained and shown as below:

yn+1 = yn + 11

30
h fn + 7

6
h fn+1 − 8

15
h fn+ 5

4

yn+ 5
4

= yn + 35

96
h fn + 125

96
h fn+1 − 5

12
h fn+ 5

4
(7)

3 Analysis of the Method

By referring to Jator (2010), the order of this method is identified by applying the
constant coefficient, Cp, p = 0, 1, 2, . . . , the formulae can be defined as follows:

C0 =
k∑

j=0

α j

C1 =
k∑

j=1

jα j −
k∑

j=1

β j −
1∑

j=1

βv j

...

Cp = 1

p!

⎡

⎣
k∑

j=1

j pα j − p

⎛

⎝
k∑

j=1

j p−1β j +
1∑

j=1

vp−1
j βv j

⎞

⎠

⎤

⎦ (8)

Hence, the order and error constant of the method will be computed using Eq.8 as
shown as follows:

For p = 0, 1, 2, 3, 4:

C0 =
k∑

j=0

α j =
(−1

−1

)
+

(
1
0

)
+

(
0
1

)
=

(
0
0

)
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C1 =
k∑

j=1

jα j −
k∑

j=1

β j −
1∑

j=1

βv j

=
(
1
0

)
+ 5

4

(
0
1

)
−

(
11
30
35
96

)
−

(
7
6
125
96

)
−

(
− 8

15

− 5
12

)
=

(
0
0

)

C2 = 1

2!

⎡

⎣
k∑

j=1

j2α j − 2

⎛

⎝
k∑

j=1

j2−1β j +
1∑

j=1

v2−1
j βv j

⎞

⎠

⎤

⎦

= 1

2

[(
1
0

)
+

(
5

4

)2 (
0
1

)
− 2

((
7
6
125
96

)
+

(
5

4

)(
− 8

15

− 5
12

))]
=

(
0
0

)

C3 = 1

3!

⎡

⎣
k∑

j=1

j3α j − 3

⎛

⎝
k∑

j=1

j3−1β j +
1∑

j=1

v3−1
j βv j

⎞

⎠

⎤

⎦

= 1

6

[(
1
0

)
+

(
5

4

)3 (
0
1

)
− 3

((
7
6
125
96

)
+

(
5

4

)2
(

− 8
15

− 5
12

))]
=

(
0
0

)

C4 = 1

4!

⎡

⎣
k∑

j=1

j4α j − 4

⎛

⎝
k∑

j=1

j4−1β j +
1∑

j=1

v4−1
j βv j

⎞

⎠

⎤

⎦

= 1

24

[(
1
0

)
+

(
5

4

)4 (
0
1

)
− 4

((
7
6
125
96

)
+

(
5

4

)3
(

− 8
15

− 5
12

))]
=

(
1
48
125
6144

)
�=

(
0
0

)

A method is order of p if C0 = C1 = · · · = Cp = 0 and Cp+1 �= 0 is the error
constant of the method. Since C4 �= 0, hence the order of this method is three and
the error constant is

Cp+1 = C4 =
(

1
48
125
6144

)
.

The stability of one-step implicit hybrid method Eq.7 can be determined when the
method is applied to the test equation:

y′ = f = λy (9)

The characteristic polynomial of the method can be obtained as follows:

(
−1 − 1

2
h̄ − 5

96
h̄2

)
t +

(
1 − 3

4
h̄ + 5

24
h̄2

)
t2 = 0 (10)

where h̄ = hλ, stability region of the method can be determined using software
MAPLE with Eq.10. Hence, the stability is shown as in Fig. 2.
By referring to the definition, the method Eq.7 can be considered as A-stable since
the stability region of Eq.7 covered the left-hand plane. A-stable method is suitable
to solve stiff equations.
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Fig. 2 Stability region of
one-step implicit hybrid
method

4 Implementation of Method

One-step implicit hybrid method is implemented with Newton’s iteration in order
to solve semi-explicit DAE. This method is a self-starting method with predictor–
corrector scheme. Prediction of pointsyn+1 and yn+ 5

4
can be done using the initial

value with the predictor formulae. The predicted value will then be used in the
corrector formulae to compute the approximate value of yn+1.
Define

F1 = yn+1 − yn − 7

30
h fn − 7

6
h fn+1 + 8

15
h fn+ 5

4

F5
4

= yn+ 5
4
− yn − 35

96
h fn − 125

96
h fn+1 + 5

12
h fn+ 5

4

g1 = g(yn+1, zn+1)

g 5
4

= g(yn+ 5
4
, zn+ 5

4
) (11)

The formula of Newton’s iteration is shown as follows:

y(i+1) = y(i) − J−1(y(i)) f (y(i)) (12)

Then, substituting Eq.11 into Eq.12,

[
y(i+1)
n+ j

z(i+1)
n+ j

]
=

[
y(i)
n+ j

z(i)
n+ j

]
−

⎡

⎢⎣

∂F (i)
j

∂y(i)
n+ j

∂F (i)
j

∂z(i)
n+ j

∂g(i)
j

∂y(i)
n+ j

∂g(i)
j

∂z(i)
n+ j

⎤

⎥⎦

−1

×
[
F (i+1)
j

g(i+1)
j

]
(13)
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let

e(i+1)
n+ j = y(i+1)

n+ j − y(i)
n+ j

ê(i+1)
n+ j = z(i+1)

n+ j − z(i)
n+ j where j = 1,

5

4
.

Hence, ⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂F (i)
1

∂y(i)
n+1

∂F (i)
1

∂y(i)

n+ 5
4

∂F (i)
1

∂z(i)
n+1

∂F (i)
1

∂z(i)

n+ 5
4

∂F (i)
5
4

∂y(i)
n+1

∂F (i)
5
4

∂y(i)

n+ 5
4

∂F (i)
5
4

∂z(i)
n+1

∂F (i)
5
4

∂z(i)

n+ 5
4

∂g(i)
1

∂y(i)
n+1

∂g(i)
1

∂y(i)

n+ 5
4

∂g(i)
1

∂z(i)
n+1

∂g(i)
1

∂z(i)

n+ 5
4

∂g(i)
5
4

∂y(i)
n+1

∂g(i)
5
4

∂y(i)

n+ 5
4

∂g(i)
5
4

∂z(i)
n+1

∂g(i)
5
4

∂z(i)

n+ 5
4

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Jacobian matri x

×

⎡

⎢⎢⎢⎢⎢⎣

e(i+1)
n+1

e(i+1)
n+ 5

4

ê(i+1)
n+1

ê(i+1)
n+ 5

4

⎤

⎥⎥⎥⎥⎥⎦
= −

⎡

⎢⎢⎢⎢⎢⎣

F (i)
1

F (i)
5
4

g(i)
1

g(i)
5
4

⎤

⎥⎥⎥⎥⎥⎦
(14)

By referring to Eq.14, the Jacobian matrix is shown as follows:

J =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

1 − 7h
6

∂ fn+1

∂yn+1

8h
15

∂ fn+1

∂y
n+ 5

4

− 7h
6

∂ fn+1

∂zn+1

8h
15

∂ fn+1

∂z
n+ 5

4

− 125h
96

∂ f
n+ 5

4
∂yn+1

1 + 5h
12

∂ f
n+ 5

4
∂y

n+ 5
4

− 125h
96

∂ f
n+ 5

4
∂zn+1

5h
12

∂ f
n+ 5

4
∂z

n+ 5
4

∂g1
∂yn+1

∂g1
∂y

n+ 5
4

∂g1
∂zn+1

∂g1
∂z

n+ 5
4

∂g 5
4

∂yn+1

∂g 5
4

∂y
n+ 5

4

∂g 5
4

∂zn+1

∂g 5
4

∂z
n+ 5

4

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

(15)

Thus, the values of yn+ j and zn+ j , where j = 1, 5
4 , will be obtained. The predicted

values of zn+1 and zn+ 5
4
can be computed from g(x, y) = 0 where y(p)

n+1 and y(p)
n+ 5

4

have been interpolated at the previous points. The absolute error of this solution is
|y(i+1)

n+ j − y(i)
n+ j | < TOL and |z(i+1)

n+ j − z(i)
n+ j | < TOL where TOL = 10−5.

5 Numerical Results

The following shows the test problems which are solved using one-step implicit
hybrid method and compare with existing methods. The algorithm was written in C
language.
Test problem 1:

y′ = f (y, z) = z
0 = g(y, z) = z3 − y2

y(0) = 1
z(0) = 1

0 ≤ x ≤ 10
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Exact solution:

y =
(
1 + x

3

)3

z =
(
1 + x

3

)2

Test problem 2:

y′ = f (x, y) = x cos x − y + (1 + x)z
0 = g(x, y) = sin x − z

y(0) = 1
z(0) = 0

0 ≤ x ≤ 10

Exact solution:

y = e−x + x sin x

z = sin x

Notation:

h Step size
1BDF 1-point sequential BDF method in Abasi et al. [2]
2BDF 2-point block BDF method in Abasi et al. [2]
3BDF 3-point block BDF method in Abasi et al. [2]
IHM One-step implicit hybrid method
MAXE Maximum error of the computed solution
Time The execution time in second
TS Total steps
TFC Total function call

The error is defined in the following form:

error(i) = Max(|y(i)
exact − y(i)

approximate|, |z(i)
exact − z(i)

approximate|)

and the maximum error is

MAXE = max
1≤i≤N

(error (i))

Tables1 and 2 show the maximum error of the proposed method with three different
step sizes. It is shown that the solution of IHM is more accurate than 1BDF, 2BDF,
and 3BDF as the step size decreased. Besides, the execution time for IHM is more
than 1BDF in test problem 1, but less than 1BDF in test problem 2. Moreover, the
execution time for IHM is lesser than 2BDF and 3BDF for both of the test problems.
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Table 1 Numerical results for test problem 1

h Result

Method Maxe Time TS TFC

0.01 1BDF 2.7469e−1 1.8110e−3 – –

2BDF 1.9608e−3 2.1990e−3 – –

3BDF 2.0417e−3 2.3417e−3 – –

IHM 2.0189e−4 2.1990e−3 1000 1001

0.001 1BDF 2.7528e−2 1.9337e−2 – –

2BDF 1.9799e−5 4.4437e−2 – –

3BDF 2.0631e−5 4.8578e−2 – –

IHM 2.0137e−6 2.1922e−2 10,000 10,001

0.0001 1BDF 2.7533e−3 2.0087e−1 – –

2BDF 1.9798e−7 2.3496e−1 – –

3BDF 2.0636e−7 2.7629e−1 – –

IHM 1.9943e−8 2.1978e−1 100,000 100,001

Table 2 Numerical results for test problem 2

h Result

Method Maxe Time TS TFC

0.01 1BDF 2.9999e−2 4.5121e−3 – –

2BDF 4.7146e−4 5.8129e−3 – –

3BDF 4.7815e−4 6.9001e−3 – –

IHM 1.3626e−7 1.3361e−3 1000 1001

0.001 1BDF 3.0062e−3 1.5927e−2 – –

2BDF 4.8149e−6 4.0054e−2 – –

3BDF 4.9186e−6 4.4136e−2 – –

IHM 1.3934e−10 1.2513e−2 10,000 10,001

0.0001 1BDF 3.0068e−4 1.4517e−1 – –

2BDF 4.8250e−8 2.1078e−1 – –

3BDF 4.9454e−8 2.3529e−1 – –

IHM 1.6230e−11 1.2586e−1 100,000 100,001

Meaning that the time duration for solving DAEs using one-step implicit hybrid
method is faster than 2BDF and 3BDF. Hence, the proposed method which is one-
step implicit hybrid method is suitable to solve semi-explicit index-1 DAEs.
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An Artificial Intelligence Strategy
for the Prediction of Wind Speed
and Direction in Sarawak for Wind
Energy Mapping

S.M. Lawan, W.A.W.Z. Abidin, S. Lawan and A.M. Lawan

Abstract Accurate and reliable wind speed and direction prediction is one of the
necessary concepts in implementing a wind energy system. In this paper, meteo-
rological and geographical variables were modeled via artificial neural networks
(ANNs), taking terrain elevation and roughness class into account. The feedforward
neural network (FFNN) with back propagation trained with Levenberg–Marquardt
algorithm was utilized, with wind speed and direction as the target function in each
model. The results obtained using the formulated topographical models showed a
regression value R in the range of 0.8256–0.9883. The optimum network based on
the lower mean square error and fast computation time was 9-152-1. Thus, the devel-
oped topographical feedforward neural network (T-FFNN) is efficient to predict the
wind speed and direction properly.

Keywords Wind speed ·Wind direction · Neural network · Sarawak

1 Introduction

Renewable energy resources are the major competitor of the fossil fuels such as
coal, gas, and petroleum. Fossil fuel depletes with time, moreover, the resources are
available in some regions around the world.Wind power is an indirect solar potential,
which is clean, freely available, environmentally friendly, widely distributed, and
naturally abundant almost anywhere around the globe. It has been applied decades

S.M. Lawan (B) · W.A.W.Z. Abidin
Department of Electrical and Electronic Engineering, Faculty of Engineering,
Universiti Malaysia Sarawak (UNIMAS), Sarawak, Malaysia
e-mail: 13010004@siswa.unimas.my

S.M. Lawan
Department of Electrical Engineering, Kano University of Science and Technology,
Wudil, Nigeria

S. Lawan · A.M. Lawan
Faculty of Science, Department of Mathematical Science, Bayero University Kano (BUK),
P.M.B 3011 Kano, Nigeria

© Springer Science+Business Media Singapore 2016
A. Kılıçman et al. (eds.), Recent Advances in Mathematical Sciences,
DOI 10.1007/978-981-10-0519-0_7

71



72 S.M. Lawan et al.

ago for sailing ships, machine grinding, windmills, and crop handling. Recently, it
has become popular for electrical power generation.

The development of wind energy has reached a large scale in terms of annual
installed capacity. Large-scale wind farms are linked to the electrical power trans-
mission lines; meanwhile, small wind turbines rated from few watts up to 10kW are
being used for stand-alone application to provide electricity to the isolated, remote,
and rural locations [1–3]. Notwithstanding, many professionals have claimed that
the wind potential remains unharnessed. In fact, 2014 is another remarkable year for
wind turbine installation. Currently, wind turbine producers are yet to meet up with
the present demands [4, 5].

Wind resource assessment (WRA), micrositing and sizing of wind turbines are
prerequisite requirements that must be performed during the technical feasibility
stage. The essential aspect that needs to be considered is the stochastic and unpre-
dictable nature of wind speed. It is well known that a small deviation of wind speed
will lead to a large error in the wind power output [6]. Because of this, wind speed
prediction is essential for analyzing the performance of wind turbine system.

Many published studies have demonstrated the usefulness of wind speed and
direction prediction models and this helps in siting of wind energy systems. Those
techniques are usually classified into persistence, numericweather prediction (NWP),
statistical, stochastic, and method based on soft computing (artificial neural network
(ANN) and fuzzy logic).

In the persistence approach, the accuracy drops with an increase in prediction time
horizons. NWPmethod was based on the kinematics equations, which involve mete-
orological parameters. Examples, AIOLOS mass-consistent code numerical models
[7]. COMPLEX and NOABL models were tested in the united kingdom (UK) [8].
Modified AIOLOS based on thermal stratification [9]. Multigrid solution via three-
dimensional solver [10]. Moreover, according to [7], on the account of unpredictable
nature of wind speed, it is difficult to generate a reliable algorithm that will take
into account of all those irregularities, with acceptable accuracy. Furthermore, it has
found that no mathematical model either physical or numeric will give a perfect
definitive solution [11]. Meteorologist ordinarily uses the method to predict future
samples.

A statistical and stochastic strategy mainly aims short samples. In the era of
soft computing, neural network (NN), support vector machine (SVM), simulated
annealing (SA) and fuzzy logic are found to be more appropriate [12–16].

On the other hand, in order to guarantee the prediction reliability for nonlinear
time series, these techniques have some difficulties such as the problems in select-
ing input parameters, the complexity of computation time, and so on. In particular,
one of the issues of fuzzy logic is the difficulty to determine the precise weights
and the degree of each rule; moreover, it involves fuzzy sets and interval numbers.
The application of ANN presents a series of advantages such as self-adaptive, paral-
lelism, simple structure, rapid training speed, fast convergence fault tolerance. Based
on these advantages, the ANNmodel has been widely formulated for various nonlin-
ear applications [17]. The application of NN for the prediction of wind speed varies
depending on the prediction timescale, that is, from short term up to long term.Many
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researchers [4, 18–21] have applied different forms of NN for wind speed prediction
using different meteorological and geographical data. However, none of the listed
studies have considered the influence of terrain shape and roughness changes. Nowa-
days, special attention has been put into the prediction of nonlinear and nonstationary
time-varying data using ANNs, because of their widespread approximation function-
ality. It is generally acknowledged that ANN is the most suitable for the wind speed
prediction [2, 22, 23]. The main objective of this paper is to present a novel ANN
models named topographical feedforward neural network (T-FFNN) for predicting
monthly wind speed and direction for Sarawak is proposed.

This research was carried out based upon the obtainable average hourly data at
eight ground stations under the control of the Malaysia Meteorological Department
(MMD). The rest of the paper is structured as follows. First, in depth wind speed and
direction prediction using an extended proposed ANN and geographical information
system (GIS) assisted methodology are discussed. Subsequently, the predicted and
developed wind map results are analyzed. Lastly, purposeful findings are drawn.

2 Wind Speed and Direction Prediction Using ANN

Wide application of wind energy system necessitates accurate and precise estimation
of wind speed/direction, which has a direct effect on the energy output. Traditionally,
this can only be possible by using anemometer and wind vane to carry out experi-
ments. However, in rural and remote areas, where obstacle-free wind resources are
available, these devices or wind monitoring stations are not available. The goal of
this paper is to provide a solution for estimating the abundant resource based on
the knowledge of existing wind station in Sarawak, Malaysia. In fact, prediction
tool is one of the best approaches for estimating wind speed and direction in non-
monitored locations, which can help in designing of the wind energy systems, prior
to microsizing and siting.

In wind engineering, ANNs have been widely used for the prediction of wind
speed where a wind turbine is expected to operate [2, 22, 23].

ANNs are mathematical techniques constructed to perform a variety task, such
as incremental learning, pattern recognition, process control data mining prediction,
and financial modeling. They learn by examples and produce a future unseen data.
ANN mimics human being brain system, which consist of layers of parallel element
unit called neurons.

The neurons are connected to large number of weights over which the signal
is passing; the neuron receives the input through the input layer and multiple by
a weight generally performs nonlinear operations and produce an output. The most
successful ANN used for the prediction is feedforward neural network (FFNN) using
log-sigmoid [14, 15]. For these reasons, one hidden layer FFNN with backpropaga-
tion was adopted in this paper to examine the complex dependency of wind speed in
the locations where wind station is not available, taking terrain shape and roughness
height into consideration.
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Fig. 1 T-FFNN for wind
speed/direction prediction

Theoretically, it has been validated that a single layer design is satisfactory to
approximate any nonlinear problems [5, 24]. Figure1 shows a fully connected three
layers topology of the proposed model for wind speed and direction prediction. Fully
connected implies that the output fromeachof the input andhidden layer is distributed
to all of the neurons in the subsequent layer. However, feedforward signifies that the
network has not any directed cycle.

Although, there is no restriction regarding the adoption of transfer functions, it can
be anymathematical function such as tangent, hyperbolic, logarithm, or combination
of both like log-sigmoid, hyperbolic tangent, or Purelin. In this paper, log-sigmoid
and Purelin (Fig. 2, [2]), activation functions were selected in order to obtain the
differential function between the output and input variables, whose mathematical
formulas are expressed in Eqs. 1 and 2 accordingly [25].

f (x) = 1

1+ e−x
(1)

f (x) = x (2)

Fig. 2 Log-Sigmoid and purelin activation functions
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Yet anothermost important phase in the course of designing anANN is the training
phase, simply because ANN is trained to solve a problem instead of programmed to
accomplish this. The supervised training was adopted in this study. Monthly average
data were feed in and the network learned by comparing the measured with the
estimated. The error difference is propagated back from the output layer via hidden
layer to the input layer and the weights on the connection between the neurons are
updated as the error is backpropagated using Levenberg–Marquardt (LM). The goal
of selecting LM was to assure speedy processing and furthermore to overwhelm
the slow convergence associated with the conventional algorithm such as descent
gradients and resilient propagation.

FFNN canmathematically approximatemultivariate function to any level of accu-
racy if an adequate number of the hidden layer neurons are available. To avoid under-
fitting and overfitting in determining the number of optimal neurons in the hidden
layer. This research work considered that the number of weights must not exceed the
data used for the training. Hence, 9-7-1 topology was used with a step of five in all
the designed models.

AMATLABeditorwas used to thewrite the scripts file and implemented in theNN
Toolbox. The developedmodels have 9 inputs latitude, longitude, altitude, andmonth
of the year, temperature, atmospheric pressure, temperature and relative humidity,
terrain shape and roughness height. Meanwhile, the output is the monthly wind
speed for the wind speed prediction. In the case of wind direction, as the objection
function (model 2). The network has latitude, longitude, altitude and month of the
year, temperature, atmospheric pressure, temperature, and wind speed, terrain shape
and roughness height. After the ANN training, the network was simulated to get the
weights /biases, and can be applied to formulate the mathematical function.

The appropriateness of the designed models was assessed according to two
statistical methods, the correlation coefficient (R) and mean absolute percent-
age error (MAPE). These values are mathematically described by the following
equation [18, 26].

R =

N∑

i=1

(
ti − t

)
. (oi − o)

√√√√√
N∑

i=1

(
ti − t

)2
.

√√√√
N∑

i=1

(oi − o)2

(3)

MAPE(%) =
(
1

N

N∑

i=1

∣∣∣∣
ti − oi
ti

∣∣∣∣

)
100 (4)

where N is the number of data, and ti, oi are target value and ANN predicted value,
respectively, of one data point i. The bars indicate the average value.
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3 Isovent Lines Mapping and Maps Production

Wind energy mapping of the study area was generated using ARCGIS 9.3 software.
The base maps of Sarawak at 1: 1,25,000 were digitized in order to obtain the shape
files. The coordinate of the ground and predicted stationwere converted fromdegrees,
minutes, seconds to the decimal unit. The World Geodetic System (WGS) of 1984
was applied for the definition of the coordination system and it was used in generating
contour lines. Series of interpolationwere conducted to select the bestmethod that fits
the wind speed and energy data of the studied area. It was found that Kriging method
provides better accuracy for the spatial analysis carried out. This methodology has
been verified in various studies [27, 28].

4 Results and Discussion

The employed data consist of 3650 daily records from Kuching, Miri, Sibu, Bintulu,
and Sri Aman for the period of ten years (2003–2012). In addition, for the remaining
stations, Kapit, Limbang andMulu, the period of observation is 5 years (2008–2012).
For the first five stations, the data were segmented from 2003–2009, 2010–2011, and
2012. For the last three stations, 2008–2009, 2010–2011, and 2012 for the training,
testing, and validation. Prior to the training, all the data employed were scaled to the
range of [–1, 1].

4.1 Topographical Simulation Models

Forty networks were designed and trained. The training was performed according to
the mean squared error (MSE). It was identified that the optimum network in terms
of fast convergence and lower MSE was 9-152-1 and 9-94-1 for the wind speed and
direction models. The number of epochs was varied from 0 to 1000 in a step of one.
It was realized that no further improvement could be made once the training reaches
between 996 and 1000 epochs. Hence, the training was stopped. Figure3 shows the
error model function obtained during the training of one station. It can be noted
from the figure that the after 1000 epochs the MSE reduces drastically between the
ANN and measured data. The realized MSE was 0.043821. It should be observed
that extended training would result in the ANN to remember training data, which
ends up in poor generalization capability of the ANN model.
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Fig. 3 Sample of the error function during the training (color figure online)

Pertaining to the data normalization, activation function used in the hidden layer
and by using the weights and biases generated after the training, the equation for
calculating wind speed and direction in the case of one station becomes:

vm = 1.098

[{(
2.907

1+ e−2.907(XW1+B1)

)
W2 + B2

}
+ 1

]
+ 0.337 (5)

wD = 0.035

[{(
0.072

1+ e−0.062(XW1+B1)

)
W2 + B2

}
+ 1

]
+ 10.789 (6)

where Vm,WD: are the monthly wind speed/direction,W1:Weight between the input
and hidden layer,W2: Weight between the hidden layer and output layer, B1: Biases
of the hidden layer, B1: Biases in the output layer B2, X: is the column vector, which
contains normalized values of nine input variables.

In accordance with the results displayed in Table1. The suggested models have
the satisfactory precision for calculating wind speed and direction. It is interested
to observe that, the T-FFNN models showed improved outcomes on the test data,
which verifies the high generalization of the development process. For this reason,
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Table 1 T-FFNN prediction accuaracy

Model Data for the development Data for model test

R MAPE R MAPE

T-FFNN-1 0.8256–0.9871 5.46 0.9126–0.9671 4.69

T-FFNN-2 0.90123–0.985 4.29 0.9432–0.9883 3.87

Fig. 4 Interaction effect between wind speed and terrain elevation at v = 1−3m/s

the formulated models can be utilized efficiently to examine the relation between
geographical, topographical, and meteorological variables on the wind speed and
direction.

To this aim, Eq.5 was plotted to generate a contours map response of wind speed
for change in terrain condition (the shape of the terrain and roughness class) see
Fig. 4. It is clear that, the terrain varies depending on the location, and wind speed is
affected by the terrain and changes with the roughness of the terrain such as forest,
lake, city, etc. From the figure, it is noticeable that the changes are more pronounce at
higher wind speed, however, wind speed in the range of 1m/s to about 2.2 m/s (class
from 0–5 and 5–10) has limited effect on the wind flow within the studied area.

4.2 Wind Atlas Map of Sarawak at Various Elavations

The isovents map of Sarawak was developed based on the procedures discussed in
the previous section. The generated map was based on the long-term measured and
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Fig. 5 Long-term wind speed map of Sarawak (color figure online)

predicted wind speed at 10–40m in heights. Sample of the wind speed, power, and
energy density maps are depicted in Figs. 5, 6 and 7 at 10m in elevation. In all the
listed figures, the areas marked red and blue represent highest and lowest potentials
respectively.

5 Conclusion

In this paper, the idea of a newwind speed and direction predictionmodeling based on
the NN considering terrain shape is introduced. The proposed T-FFNN has been ana-
lyzed mathematically. The prediction models were used in conjunction with ground-
based wind station to construct an isovents wind map of Sarawak that will be useful
to policymakers, wind turbine manufacturers, potential investor and structural and
bridge engineers.
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Fig. 6 Long-term power density map of Sarawak (color figure online)

Fig. 7 Long-term energy density map of Sarawak (color figure online)
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Stability Analysis of Dengue Disease Using
Host–Vector Model

Eminugroho Ratna Sari

Abstract The previous model of dengue disease was discussed only in host popula-
tion using a simple SIRmodel. In fact, vectors provide an important role in the spread
of dengue fever since a host can be infected by the vector. Hence it is reasonable
to build a model of dengue disease in host and vector population. From the model,
there are two kinds of equilibrium point: disease free and endemic. Solution behavior
of model can be analyzed using the changes of basic reproduction number which is
obtained by next generating matrix. If basic reproduction number is less or equal
than one, then using LaSalle–Lyapunov Theorem, it is shown that the disease-free
equilibrium is globally asymptotically stable. If the basic reproductive number is
greater than one, then using Routh–Hurwitz Condition, it is shown that the endemic
equilibrium is locally asymptotically stable. In the end, we present the numerical
solution with MAPLE.

Keywords Dengue · Host–vector · Basic reproduction · Stability

1 Introduction

Dengue fever is caused by a virus and Aedes aegypti mosquito is the responsible
vector to transmit it. Dengue virus has four different serotypes namelyDEN1, DEN2,
DEN3, and DEN4. It is possible to become infected multiple times by different
serotype of virus. The virus has an incubation period of 4–10 days in the susceptible
vector. After the incubation period, the mosquito is called infected vector. If the
infected vector bites susceptible human, then the virus exists in the human body until
it is ready to transmit to the mosquito. Infected humans can transmit the infection
for 4–5 days, through Aedes aegypti after their first symptoms appear [1].

Dengue fever is a common disease that occurs in many tropical and subtropical
countries. In the 1780s, the first recognized epidemic of dengue occurred almost
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simultaneously inAsia, Africa, andNorthAmerica, and nowadays is a diseasewidely
found [2]. According to [1], every year 50–100 million people are affected with
dengue fever and themost cases occur in Asia.Meanwhile, during 1968–2009,WHO
noted that in Southeast Asia, Indonesia has the highest dengue cases. In Indonesia,
dengue fever was first discovered in Surabaya in 1968, where as many as 58 people
were infected and 24 died. It means the mortality rate was 41.3%, and after that the
disease spread throughout the country [3].

Mathematical modeling of dengue transmission contributes greatly to predict and
control the disease spread.Modeling of two types of viruses has been discussed in [4]
and the time needed for an initial condition to reach a certain number of infective has
been estimated in [5]. The transmission model with vaccination has been identified
in [2, 6, 7]. Furthermore, SIR model to analyze dengue behavior focuses in host
population has used in [8]. In this paper, first, we discuss the dynamics of dengue
disease focuses in one type of virus that refers to study of Esteva [9] with detailed
derivation of a model and its dynamical analysis. Then, we modified the first model
by adding the assumption that the host population can lose its immunity, the death rate
caused by the disease, and there is the percentage of infected humans but incapable
of transmitting the disease.

2 Model Formulation Focuses in One Type of Virus

Let NH be the human (host) population size and NV be the vector population size.
In this model, host population is divided into three classes, i.e., the number of sus-
ceptible, infectious, and recovered at time t. It is denoted by SH(t), IH(t), RH(t),
respectively. In this section, we only focus on a single type of virus, so for every
infected human will has permanent immunity to it. Because the infection period of
mosquitoes will end by its death, it never recovers from the infection [10]. Hence,
we divide the vector population into two classes SV (t) and IV (t) which denote the
number of susceptible and infectious vectors at time t. Furthermore, we define some
parameters which are summarized in Table1.

We assume an equal constant size for birth rate and natural death rate in the human
population. Death due to disease is assumed to be negligible. We also assume that
the human population will be immune after recovering from dengue disease, every
birth in human population enters the susceptible class, the infection rate of human

population which according to bite of vector
(

βHb
NH

)
is proportional to susceptible

human and infectious vector. For the vector population, we denote A as a constant

recruitment rate, the infection rates of vector population
(

βV b
NH

)
are proportional to

susceptible vector and infectious human.
From the assumptions, we obtain the diagram transfer as shown in Fig. 1.
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Table 1 Parameters which are used in the model

Parameter Biological meaning Range of values Reference

μH Per capita birth/naturally death
rate of human

0.0143–0.0167 per year [11]

μV Per capita death rate of vector 0.02–0.09 per day [11]

b The average number of bites per
vector per day

0–1 [11]

βH Transmission probability from
vector to human

0.75 [11]

βV Transmission probability from
human to vector

1 [9]

γH Infected human get treated (or
recover) rate

0.083–0.25 per day [11]

Fig. 1 Diagram transfer for
dengue disease model

Using Fig. 1, we have the mathematical model of dengue disease in ODEs system
as follows:

dSH (t)

dt
= μHNH − βHb

NH
SHIV − μHSH

dIH (t)

dt
= βHb

NH
SHIV − (μH + γH) IH

dRH (t)

dt
= γHIH − μHRH (1)

dSV (t)

dt
= A − βVb

NH
SV IH − μVSV

dIV (t)

dt
= βVb

NH
SV IH − μV IV

with SH + IH + RH = NH and SV + IV = NV . Since μV denotes the per capita
death rate of the vector, μVNV denotes the total deaths in the vector population.
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Furthermore, the true change rate of vector population is denoted by dNV
dt , that is the

recruitment rate minus the total death of vector, dNV
dt = A − μVNV . As t → ∞, the

solution NV approaches A
μV

. Then we can define

SH + IH + RH = NH and SV + IV = A

μV
.

Therefore, we can discuss the behavior of solution of system (1) in this set.
Furthermore, we can introduce the proportion

sH = SH
NH

, iH = IH
NH

, rH = RH

NH
, sV = SV

A/μV
, iV = IV

A/μV
.

We also use the relation rH = 1 − (sH + iH) and sV = 1 − iV . Then the first equation
of system (1) can be written as

1

NH

(
dSH (t)

dt

)
= 1

NH

(
μHNH − βHb

NH
SHIV − μHSH

)

⇔ dsH (t)

dt
= μH − βHb

NH
sH (A/μV ) iV − μHsH

⇔ dsH (t)

dt
= μH (1 − sH) − βHb (A/μV )

NH
sHiV . (2a)

Similarly, the second equation of system (1) can be written as

diH (t)

dt
= βHb (A/μV )

NH
sHiV − (μH + γH) iH . (2b)

For the last equation of system (1), we use the proportion and relation as introduced
before to obtain

diV
dt

= βVbsV iH − μV iV = βVb (1 − iV ) iH − μV iV . (2c)

In the next section, we provide the analysis of system (2).

2.1 Determination of Equilibrium Point

The equilibrium points of system (2) will be explained in the Lemma 1.

Lemma 1 (a) If iH = 0, then System (2) has a disease-free equilibrium point, E0 =
(1, 0, 0).
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(b) If iH �= 0, then System (2) has an endemic equilibrium point, E1 =
(

�

sH ,
�

iH ,
�

i V
)
,

where

�

sH =
bβV

μV
+ γH+μH

μH

bβV

μV
+

(
γH+μH

μH

)
�

R0

,
�

iH =
�

R0 − 1
(
bβV

μV
+ γH+μH

μH

�

R0

) ,
�

i V =
(

βV b
μV

) (
�

R0 − 1
)

(
βV b
μV

+ γH+μH

μH

)
�

R0

.

Proof With the right-hand side equal to zero for (2c) can be obtained

iV = βVbiH
(βVbiH + μV )

=
βV b
μV

iH
βV b
μV

iH + 1
. (3)

From (2a) with the right-hand side equal to zero and substitute (3), then

sH = μH
βHb(A/μV )

NH
iV + μH

= bβV iH + μV

bβV iH + μV + b2βVβHA/μV iH
NHμH

. (4)

If
�

R0 = βHb(A/μV )

NH (μH+γH )

βV b
μV

, then Eq.4 becomes

sH =
(
bβV

μV
iH + 1

)

1 +
(
bβV

μV
+ γH+μH

μH

�

R0

)
iH

. (5)

Substituting Eqs. 3 and 5 in (2b) with the right-hand side equal to zero, we obtain

(γH + μH)
�

R0

(
bβV

μV
i2H + iH

)
iH

iH
(
bβV

μV
iH + 1

) (
1 +

(
bβV

μV
+ γH+μH

μH

�

R0

)
iH

) − (μH + γH) iH = 0

⇔ −
(
bβV

μV
+ γH + μH

μH

�

R0

)
i2H +

(
�

R0 − 1
)
iH = 0. (6)

Solving Eq.6, we obtain iH = 0 or

iH =
�

R0 − 1
(
bβV

μV
+ γH+μH

μH

�

R0

) . (7)

There are two possibilities

(a) If iH = 0, then from Eq.3 iV = 0. Moreover, from Eq.4 it can be calculated
that sH = 1. Thus, the equilibrium point is E0 = (1, 0, 0), namely disease-free
equilibrium since the number of infectious both human and vector tend to zero.
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(b) If iH �= 0, in other words, the number of infectious humans exist, then we can
obtain the number of infectious vector and the number of susceptible human also
exist. If Eq. 7 is substituted in Eq.3, then we obtain

iV =
(

βV b
μV

) (
�

R0 − 1
)

(
βV b
μV

+ γH+μH

μH

)
�

R0

. (8)

If Eq.7 is substituted in Eq.5, then we obtain

sH =
bβV

μV
+ γH+μH

μH

bβV

μV
+

(
γH+μH

μH

)
�

R0

. (9)

The equilibriumpointE1 =
(

�

sH ,
�

iH ,
�

i V
)
with endemic equilibriumpoint

�

sH ,
�

iH ,
�

i V
are given in Eqs. 9, 7, 8 respectively. �

2.2 Basic Reproduction Number

Determination of the value of basic reproduction number (R0) will be discussed in
this section. Following the idea in [11–13], we use next-generation matrix to find the
threshold value. The ability of the disease to invade population can be analyzed with
this number.

First, we create matrix F as a matrix of gain terms of each class and evaluated at
the disease-free equilibrium. Thus

F =
⎡

⎣
∂

∂iH

(
βHb(A/μH )

NH
sHiV

)
∂

∂iH
(βVbiH)

∂
∂iV

(
βHb(A/μH )

NH
sHiV

)
∂

∂iV
(βVbiH)

⎤

⎦

at (1,0,0)

=
[

0 βVb
βHb(A/μH )

NH
0

]

Then, we create matrix V as a matrix of loss terms of each class and evaluated at the
disease-free equilibrium

V =
[ ∂

∂iH
(μH + γH) iH

∂
∂iH

(μV + βVbiH) iV
∂

∂iV
(μH + γH) iH

∂
∂iV

(μV + βVbiH) iV

]

at (1,0,0)

=
[

(μH + γH) 0
0 (μV )

]
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Therefore

V−1 = 1

(μH + γH) μV

[
μV 0
0 μH + γH

]
=

[
1

μH+γH
0

0 1
μV

]
.

Matrix G is a product of F and V−1,

G = FV−1 =
[

0 βV b
μV

βHb(A/μH )

NH (μH+γH )
0

]
.

The largest Eigen value from matrix G is
√

βHb(A/μH )

NH (μH+γH )

βV b
μV

. This is called basic repro-

duction number of System (2), denoted byR0. If
�

R0 = βHb(A/μH )

NH (μH+γH )

βV b
μV

, thenR0 =
√

�

R0.
It is represented the average number of secondary cases that one case can produce if
introduced into a susceptible population. The stability of equilibrium points can be
explained in the next section.

2.3 Detailed Explanation of Stability Analysis of Each
Equilibrium Point

Explanation about stability analysis will be given in Lemmas 2 and 3 as follows.

Lemma 2 a. If R0 > 1, then E0 is unstable.
b. If R0 ≤ 1, then E0 is globally asymptotically stable.

Proof The Jacobian matrix at E0 is

J (E0) =
⎡

⎢⎣
−μV 0 −bβHA/μV

NH

0 − (γH + μH)
bβHA/μV

NH

0 bβV −μV

⎤

⎥⎦ (10)

If λ denotes the eigenvalue and I denotes the identity matrix, then the eigenvalues of
matrix (10) are determined by |J (E0) − λI| = 0. It implies

(−μH − λ)

(
λ2 + (γH + μH + μV ) λ + μV (γH + μH) − bβV

(
bβHA/μV

NH

))
= 0.

Then we obtain
λ = −μH . (11)
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Also

λ2 + (γH + μH + μV ) λ + μV (γH + μH) − bβV

(
bβHA/μV

NH

)
= 0

⇔ λ2 + (γH + μH + μV ) λ + μV (γH + μH)
(
1 − �

R0

)
= 0

Solving the last equation, we get

λ =
− (γH + μH + μV ) ±

√
(γH + μH + μV )2 − 4μV (γH + μH)

(
1 − �

R0

)

2
.

(12)

a. It implies if
�

R0 > 1, then one of the eigenvalue in (12),

(
− (γH + μH + μV ) +

√
(γH + μH + μV )2 − 4μV (γH + μH)

(
1 − �

R0

))/
2, is positive. Stated that

if
�

R0 > 1 means R0 > 1, and the Lemma section a completes.

b. It is easy to show if
�

R0 < 1, then the eigenvalues in Eq.12 are negative. Since
the eigenvalues in Eqs. 11–12 are negative, E0 is locally asymptotically stable.
To explain the global stability, we use function H : R3+,0 → R, where R

3+,0 ={
(sH , iH , iv) ∈ R

3 : sH , iH , iv ≥ 0
}
and

H (x) = bβHA/μV

μVNH
iV + iH . (13)

Equation13 has properties as follows:

1. Function H and its partial derivative are continue in R3.
2. Function H is positive definite i.e.

a. For every x = (sH , iH , iv) ∈ R
3+,0, H (x) ≥ 0

b. H (x) = 0 ⇔ x = 0
c. If x → ∞, then H (x) → ∞

3. The derivative of H with respect to t is given by

Ḣ (x) = ∂H

∂sH

dsH
dt

+ ∂H

∂iH

diH
dt

+ ∂H

∂iV

diV
dt

= −bβHA/μV

NH
(1 − sH) iV − (γH + μH)

(
1 − �

R0 (1 − iV )
)
iH

which less or equal to zero if
�

R0 ≤ 1.
4. Ḣ (E0) = 0.
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According to LaSalle–Lyapunov Theorem [14], the equilibrium point E0 is globally

asymptotically stable. Note that if
�

R0 ≤ 1 it implies R0 ≤ 1, and the Lemma section
b completes. �

Lemma 3 If R0 > 1, then the endemic equilibrium point, E1, is locally asymptoti-
cally stable.

Proof The Jacobian matrix at E1 is

J (E1) =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−μH

(
bβV
μV

+
(

γH+μH
μH

)
�
R0

)

bβV
μV

+ γH+μH
μH

0 −(γH+μH )
�
R0

bβV
μV

(
(γH+μH )

μH
+ bβV

μV

(γH+μH )
�
R 0

μH
+ bβV

μV

)

(γH+μH )

(
�
R0−1

)

(
bβV
μV

+ γH+μH
μH

) − (γH + μH)
(γH+μH )

�
R0

bβV
μV

(
(γH+μH )

μH
+ bβV

μV

(γH+μH )
�
R 0

μH
+ bβV

μV

)

0 bβV
�
R0

(γH+μH )
�
R 0

μH
+ bβV

μV
(γH+μH )

μH
+ bβV

μV

−μV
�

R0

(
(γH+μH )

μH
+ bβV

μV

(γH+μH )
�
R 0

μH
+ bβV

μV

)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(14)

If λ denotes the eigenvalue and I denotes the identity matrix, then the characteristic
polynomials of matrix (14) are determined by |J (E1) − λI|. It implies

p (λ) = λ3 + J1λ
2 + J2λ + J3, (15)

where

J1 =
μH

(
bβV

μV
+ γH+μH

μH

�

R0

)

bβV

μV
+ γH+μH

μH

+ (γH + μH) + μV
�

R0

⎛

⎝
bβV

μV
+ γH+μH

μH

bβV

μV
+ γH+μH

μH

�

R0

⎞

⎠ ,

J2 = μV (γH + μH)
bβV

μV

⎛

⎝
�

R0 − 1
bβV

μV
+ (γH+μH )

μH

�

R0

⎞

⎠ + μVμH
�

R0

+ μH (γH + μH)

⎛

⎝
bβV

μV
+ (γH+μH )

μH

�

R0

bβV

μV
+ (γH+μH )

μH

⎞

⎠ ,

J3 = μVμH (γH + μH)
(

�

R0 − 1
)

.

Noted that if
�

R0 > 1, then J1, J2, J3 are positive. Furthermore, it is easy to identify
J1J2 > J3, then by Routh–Hurwitz condition E1 is locally asymptotically stable. �

Using parameter values presented in Table1 and different initial points show that
sH decreases in a small period; meanwhile, both iH and iV increase significantly. It
can be seen from Fig. 2 during 50 days to approach (0.09529, 0.00028, 0.00057) as
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Fig. 2 Using A = 5000,
NH = 10,000,
sH (0) = 0.25,
iH (0) = 0.0003,
iV (0) = 0.00005

Fig. 3 Using A = 5000,
NH = 10,000, sH (0) = 0.9,
iH (0) = 0.05, iV (0) = 0.05

the endemic equilibrium point but we just need for about 30 days in Fig. 3 to make
the solution oscillate around this point.

Figures4 and 5 show that susceptible will increase to one and the infection pro-
portion tends to zero. It shows us that the disease will die out.
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Fig. 4 Numerical solution
of sH using A = 500,
NH = 10,000

Fig. 5 Numerical solution
of I using A = 500,
NH = 10,000
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3 Allowance Incubation Period and Without Immunity

In this section, wemodified system (2) by adding the assumption that host population
can lose its immunity and become susceptible again. We use parameter φ to denote
the rate of loss of immunity. Because of the possibility that the host population can be
reinfected, we assume that there is death rate caused by the disease which is denoted
by μd . Due to the incubation period, there is the percentage of infected human but
incapable of transmitting the disease. If ε is a parameter to describe this condition,
then (1 − ε) is the proportion of infected humanwho are able transmit virus to vector.
Figure6 is the diagram transfer to illustrate model.

Therefore, themathematicalmodel of dengue disease considered the new assump-
tions as follow:

dSH (t)

dt
= μHNH − βHb

NH
SHIV − μHSH + φRH

dIH (t)

dt
= βHb

NH
SHIV − (μH + μd + γH) IH

dRH (t)

dt
= γHIH − μHRH − φRH (16)

dSV (t)

dt
= A − βVb

NH
SV (1 − ε) IH − μVSV

dIV (t)

dt
= βVb

NH
SV (1 − ε) IH − μV IV

with SH + IH + RH = NH and SV + IV = NV . Using the relation sH = SH
NH

, iH =
IH
NH

, rH = RH
NH

, sV = SV
A/μV

, iV = IV
A/μV

, rH = 1 − (sH + iH) and sV = 1 − iV . Then the
first equation of system (16) can be written as

dsH (t)

dt
= μH (1 − sH) − βHb (A/μV )

NH
sHiV + φ (1 − sH − iH) . (17a)

Fig. 6 Diagram transfer for
the modified model
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The second equation of system (16) can be written as

diH (t)

dt
= βHb (A/μV )

NH
sHiV − (μH + μd + γH) iH . (17b)

For the last equation of system (16), we obtain

diV
dt

= βVb (1 − iV ) (1 − ε) iH − μV iV . (17c)

The equilibrium point of system (17) are obtained by letting dsH (t)
dt = 0, diH (t)

dt = 0
and diV (t)

dt = 0. We have disease-free and endemic equilibrium points. Disease-free

equilibrium point of system (17) is denoted by E2 =
(

μH

φ
+ 1, 0, 0

)
and the endemic

by E3 = (
s∗H , i∗H , i∗V

)
with

s∗H =
φ

(
μH

φ
+ 1

)
− φi∗H

βHb

(
βHb
μV

(1−ε)i∗H
1+ βHb

μV
(1−ε)i∗H

)
+ φ

, i∗V =
βV b
μV

(1 − ε) i∗H
1 + βV b

μV
(1 − ε) i∗H

.

To determine the basic reproduction number, use the same way like in Sect. 2.2. If

σ = βHβV b2
A

μV

(
μH
φ

+1
)

NHμV (μH+μd+γH )
, then we have basic reproduction number for the second model

is R0 = −σε
2 +

√(
σε
2

)2 + σ .

The Jacobian matrix at E2 =
(

μH

φ
+ 1, 0, 0

)
is

J (E2) =

⎡

⎢⎢⎢⎣

−μH − φ −φ − βHb
A

μV
NH

(
μH

φ
+ 1

)

0 − (μH + μd + γH)
βHb

A
μV

NH

(
μH

φ
+ 1

)

0 βVb (1 − ε) −μV

⎤

⎥⎥⎥⎦

and the Jacobian matrix at E3 = (
s∗H , i∗H , i∗V

)
is

J (E3) =

⎡

⎢⎢⎣

− βHb
NH

A
μV

i∗V − μH − φ −φ − βHb
NH

A
μV

s∗H
βHb
NH

A
μV

i∗V − (μH + μd + γH)
βHb
NH

A
μV

s∗H
0 βVb

(
1 − i∗V

)
(1 − ε) −βVb (1 − ε) i∗H − μV

⎤

⎥⎥⎦ .

We have the same result as the first model. If R0 < 1, then all the real part of
eigenvalues of J (E2) are negative, it means the disease-free equilibrium point is
asymptotically stable. If R0 > 1, then there is a positive real part of eigenvalue of
J (E2). This condition makes the disease-free equilibrium unstable. Furthermore, if
R0 > 1, then the endemic equilibrium point is asymptotically stable.
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Using MAPLE, we will show the behavior of model solution. The parameter
values are shown in Table1 and we also use μd = 0.26, φ = 0.8, ε = 0.3, and NH =
10,000.

Fig. 7 A = 10

Fig. 8 A = 5000
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Fig. 9 A = 500

It can be seen from Figs. 4, 5, and 7, in order for the solution behavior to approach
disease-free equilibrium, it needs smaller value ofA. The smaller the value ofA given
in system (17), the faster the solution to approach disease-free equilibrium.

Using A = 500 in Figs. 4 and 5 has not shown the endemic behavior but when
it is used in system (17), the solution approach the endemic equilibrium point. The
smaller value of A is given, from Figs. 8 and 9, it can be seen the smaller proportion
of infected human.

4 Conclusions

We have showed the mathematical model of dengue disease based on host–vector in
system (2). The behavior of its solution has been presented analytically and numer-
ically. If the threshold value is greater than one, then the solution will approach the
endemic equilibrium point. The more the initial point is given to susceptible human
proportion, the more it decreases significantly fast. The more the initial point is given
to infectious proportion, the more it increases fast. If the threshold value is less than
one, then the solution tends to disease-free equilibrium point.

By adding the assumption to themodel, we got system (17). There are disease-free
and endemic equilibrium points from system (17). If the threshold value is less than
one, it means each infective replaces itself less than one to the new infective, then the
disease will die out. On the other hand, if the threshold value is greater than one, then
the proportion of S decreases and the infection proportion increases, it means the
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disease being endemic. We have shown numerically that it just needs a smaller value
of A in system (17) than system (2) to be an endemic condition. It is not surprising
since that the dengue disease become public health problem.
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Simple Motion Evasion Differential
Game of One Pursuer and One Evader

Idham Arif Alias, Sharifah Anisah Syed Mafdzot
and Gafurjan Ibragimov

Abstract We study an evasion differential game of simple motion, involving one
pursuer and one evader in the planeR2. The control functions of players are subjected
to geometric constraints. Maximum speed of the pursuer is equal to 1, and maximal
speed of the evader is α > 1. Control set of the evader is a sector S whose radius
is greater than 1. We say that evasion is possible if the state of the evader does not
coincide with that of the pursuer at all times. The problem is to find the conditions of
evasion. We obtained conditions that guarantee the evasion regardless of the location
of initial position of players.

Keywords Differential game · Geometric constraint · Evasion · Control · Strategy

1 Introduction

The multiple players pursuit–evasion differential games of simple motion with geo-
metric or integral constraints are widely studied in many works (see eg. [1–12]). For
the case of many pursuers against one evader, the game is described by the following
differential equations:

ẋi = ui , xi (0) = xi0, |ui | ≤ ρi , i = 1, . . . ,m,

ẏ = v, y(0) = y0, |v| ≤ σ,
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where xi , y, ui , v ∈ R
n , ρi ≥ 0, σ > 0, xi0 �= y0, and i = 1, . . . ,m. Here, pursuit

is said to be completed if xi (τ ) = y(τ ) for some i ∈ {1, . . . ,m} and τ ≥ 0, and
evasion is said to be possible if xi (t) �= y(t) for all i = 1, . . . ,m, and t ≥ 0.

One of the earliest work of evasion differential game in the case of many pursuers
versus one evader was by Pshenichnii [11]. In his work, the maximum speed of each
player is equal to 1. The necessary and sufficient condition of evasion was obtained
where evasion is possible if and only if y0 /∈ intconv{x10, . . . , xm0}.

The current paper is closely related to the followingwork byChernous’ko [3]. The
author examined the evasion differential game of one evader versus many pursuers
which is described by the following simple differential equations:

ẋi = ui , |ui | ≤ kv, 0 < k < 1,

ẏ = v, |v| ≤ v.

Trajectory of one evader against each pursuer is pictured in the following diagram in
Fig. 1 where Q is the position of point P at time tA; α is the angle between the ray
x and segment AQ where 0 ≤ α ≤ π ; R is the current distance QE ; ϕ is the current
angle between the segments QE and QA, and s is the arc length of curve AE . The
author’s strategy is to ensure EP ≥ L for all t ≥ t0 before the evader moving back
to the horizontal line and continue to move away from pursuer horizontally. By the
strategy, he proved that evasion is possible.

Also, thework by Ibragimov et al. [5] was devoted on differential game of evasion.
The work deals with the evasion differential game of m pursuers x1, . . . , xm and one
evader y described by the equations

ẋi = ui , xi (0) = xi0,

ẏ = v, y(0) = y0, xi0 �= y0, i = 1, . . . ,m.

The game occurs in the plane and the following conditions:

∫ ∞

0
|ui (s)|2ds ≤ ρ2

i , i = 1, . . . ,m,

∫ ∞

0
|v(s)|2ds ≤ σ 2,

Fig. 1 Trajectory of Evader
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were imposed on control functions of the players. The main result of the paper is
as follows: if the total resource of pursuers does not exceed that of evader, that is
ρ2
1 + ρ2

2 + . . . ρ2
m ≤ σ 2, then evasion is possible.

We are to construct a different approach and strategy for evasion problem which
is similar to Chernous’ko’s [3], for the case of one evader against one pursuer. Like
Chernous’ko’s problem, evader is moving on a straight line as pursuer is approaching
the evader. When the distance between them reaches a particular distance which is
greater than zero, the evader will maneuver to avoid the pursuer. The strategy of the
maneuver is different from Chernous’ko’s where the control set of the evader in our
problem is a sector. We also assume the maximal speed of the pursuer is equal to 1
and the maximal speed of the evader is α where α > 1. We find a sufficient condition
for the evader to escape from the pursuer.

2 Statement of the Problem

We study an evasion differential game of one pursuer P and one evader E with
geometric constraints on controls of players described by equations:

P : ẋ = u, x(0) = x0, |u| ≤ 1, (1)

E : ẏ = v, y(0) = y0, v ∈ S, (2)

where x, x0, u, y, y0, v ∈ R
2, x0 �= y0, u is the control parameter of the pursuer P ,

v is that of the evader E ,

S = {(v1, v2)| v21 + v22 ≤ α2, |v1| ≤ v2 tan ϕ, v2 ≥ 0},

α > 1 and ϕ, 0 < ϕ < π
2 , is a given angle. Note that S is a sector with the radius α

and central angle 2ϕ (Fig. 2).

Definition 1 A Borel measurable function u(t) = (u1(t), u2(t)), |u(t)| ≤ 1, t ≥ 0,
is called admissible control of the pursuer x .

Definition 2 A Borel measurable function v(t) = (v1(t), v2(t)), v(t) ∈ S, t ≥ 0, is
called admissible control of the evader y.

Fig. 2 Sector S
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Definition 3 A function

V (t, y, x, u), V : [0,∞) × R2 × H(0, ρ) → S,

is called strategy of the evader, if for any admissible control u(t) the following initial
value problem

ẋ = u(t), x(0) = x0,

ẏ = V (t, y, x, u(t)), y(0) = y0,

has a unique solution (x(t), y(t)), t ≥ 0, with absolutely continuous components
x(t) and y(t).

Definition 4 We say that evasion is possible in the game (1)–(2) if there exists
a strategy V of the evader E such that for any admissible control of the pursuer
x(t) �= y(t) for all t ≥ 0.

Problem
Find sufficient conditions of evasion in the game (1)–(2).

The condition v(t) ∈ S, t ≥ 0, implies that state of the evader y(t) belongs to
the sector S1 = {y0 + ta | a ∈ S, t ≥ 0}. Initial position of the pursuer may be in
S1 as well as outside S1. In process of pursuit, the pursuer can move throughout the
plane. In this regard, the pursuer have advantage. However, the evader has advantage
in speed, since α > 1.

3 Main Result

The main result of the paper is the following statement.

Theorem 1 If α cosϕ0 ≥ 1 and α sin ϕ0 > 1 at some 0 < ϕ0 ≤ ϕ, then evasion is
possible in the game (1)–(2).

Proof Choose any number a, 0 < a < min |x0 − y0|. We construct a strategy for the
evader as follows:

v(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

(0, α) , i f 0 ≤ t < τ,(
±(c + |u1(t)|),

√
α2 − (c + |u1(t)|)2

)
,

i f τ ≤ t ≤ t1,
(0, α) , i f t > t1,

(3)

where τ is the first time when |y(τ ) − x(τ )| = a,

t1 = τ + a√
(α − 1)2 − c2

, c = α sin ϕ0 − 1.
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Note that such a time τ may not exist. If so, then we let v(t) = (0, α) for all t ≥ 0.
In (3), ± means v1(t) = c + |u1(t)|, if x1(τ ) ≤ y1(τ ) and v1(t) = −(c + |u1(t)|), if
x1(τ ) ≥ y1(τ ), where x(t) = (x1(t), x2(t)), y(t) = (y1(t), y2(t)).

Estimate |y(t) − x(t)|, τ ≤ t ≤ t1. We have

|y(t) − x(t)| =
∣∣∣∣y(τ ) +

∫ t

τ

v(s)ds −
(
x(τ ) +

∫ t

τ

u(s)ds

)∣∣∣∣

≥ |y(τ ) − x(τ )| −
∣∣∣∣
∫ t

τ

v(s)ds

∣∣∣∣ −
∣∣∣∣
∫ t

τ

u(s)ds

∣∣∣∣
≥ a − (t − τ)(α + 1).

Without loss of generality, we assume that y1(τ ) ≥ x1(τ ), and hence v1(t) = c +
|u1(t)|, τ ≤ t ≤ t1. Then, on the other hand, for the points x(t) and y(t) we have

|y(t) − x(t)| ≥ y1(t) − x1(t)

= y1(τ ) +
∫ t

τ

v1(s)ds −
(
x1(τ ) +

∫ t

τ

u1(s)ds

)

= y1(τ ) − x1(τ ) +
∫ t

τ

(v1(s) − u1(s)) ds

= y1(τ ) − x1(τ ) +
∫ t

τ

(c + |u1(s)| − u1(s)) ds

≥ c · (t − τ)

Thus, |y(t) − x(t)| ≥ f (t), where

f (t) = max{a − (t − τ)(α + 1), c(t − τ)}.

Note that the function f (t) has only one minimum on [τ, t1], since the first function
in the max decreases, whereas the second function increases. The function f (t) takes
its minimum at

t∗ = τ + a

α(1 + sin ϕ0)
∈ [τ, t1] .

We have

|y(t) − x(t)| ≥ c · (t∗ − τ)

= c · a

α(1 + sin ϕ0)

≥ c

2α
· a, τ ≤ t ≤ t1.
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In particular, at the time t1

|y(t1) − x(t1)| ≥ c

2α
· a. (4)

Moreover, at the time t = t1 the pursuer cannot be above the horizontal line y = y2(t1)
of the xy-plane. Indeed,

y2(t1) − x2(t1) = y2(τ ) +
∫ t1

τ

v2(t)dt −
(
x2(τ ) +

∫ t1

τ

u2(t)dt

)

= y2(τ ) − x2(τ ) +
∫ t1

τ

(v2(t) − u2(t)) dt

≥ −a +
∫ t1

τ

(√
α2 − (c + |u1(t)|)2 −

√
1 − |u1(t)|2

)
dt (5)

It is not difficult to show that
√

α2 − (c + |u1(t)|)2 −
√
1 − |u1(t)|2 ≥

√
(α − 1)2 − c2.

Then right-hand side of (5) can be estimated from below by

−a +
∫ t1

τ

√
(α − 1)2 − c2dt = −a + (t1 − τ)

√
(α − 1)2 − c2 = 0

Thus, y2(t1) ≥ x2(t1).

Next, according to (3) v(t) = (0, α), t > t1. We estimate |x(t) − y(t)| at t > t1.
Since

y1(t) − x1(t) = y1(t1) − x1(t1) −
∫ t

t1

u1(s)ds

and

y2(t) − x2(t) ≥ y2(t1) − x2(t1) + α(t − t1) −
∫ t

t1

|u2(s)|ds ≥ 0.

Last inequality because of y2(t1) ≥ x2(t1) and |u2(t)| ≤ 1.
Therefore

|x(t) − y(t)| ≥
((

y1(t1) − x1(t1) −
∫ t

t1

u1(s)ds

)2

+
(
y2(t1) − x2(t1) + α(t − t1) −

∫ t

t1

|u2(s)|ds
)2

)1/2

.
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Using the triangle inequality, we can estimate right-hand side of this inequality from
below by

√
|y1(t1) − x1(t1)|2 + (y2(t1) − x2(t1) + α(t − t1))

2

−
√(∫ t

t1

u1(s)ds

)2

+
(∫ t

t1

|u2(s)|ds
)2

.

By the Cauchy–Schwarz inequality we obtain

(∫ t

t1

u1(s)ds

)2

+
(∫ t

t1

|u2(s)|ds
)2

≤
(∫ t

t1

1 · |u1(s)|ds
)2

+
(∫ t

t1

1 · |u2(s)|ds
)2

≤
∫ t

t1

12ds
∫ t

t1

u21(s)ds +
∫ t

t1

12ds
∫ t

t1

u22(s)ds

= (t − t1)
∫ t

t1

(
u21(s) + u22(s)

)
ds

≤ (t − t1)
2.

Therefore,

|x(t) − y(t)| ≥
(
(y1(t1) − x1(t1))

2 + (y2(t1) − x2(t1))
2 + (α(t − t1))

2
)1/2 − (t − t1)

≥
√( ac

2α

)2 + α2(t − t1)2 − (t − t1) (6)

since |y(t1) − x(t1)|2 ≥ ( ac
2α )2.

To estimate the expression (6) from below, we let
ac

2α
= b, (t − t1) = x and consider

the function
g(x) =

√
b2 + α2x2 − x, x ≥ 0.

This function takes its minimum at x = x∗ = b

α
√

α2 − 1
. Thus

|x(t) − y(t)| ≥ g(x∗)

=
√

α2 − 1

α
b =

√
α2 − 1

2α2
ac, t ≥ t1.

Next, we estimate y2(t) − x2(t) for t ≥ τ ′ = τ + ra where

r = 1√
(α − 1)2 − c2

+ c

2α2
√

α2 − 1
.
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Since y2(t1) ≥ x2(t1),

y2(t) − x2(t) = y2(t1) +
∫ t

t1

v2(s)ds − x2(t1) −
∫ t

t1

u2(s)ds

≥ y2(t1) − x2(t1) +
∫ t

t1

α ds −
∫ t

t1

1 ds

≥ (α − 1)(t − t1)

≥ (α − 1)(τ ′ − t1)

= (α − 1)c

2α2
√

α2 − 1
· a

= ap,

where p = (α − 1)c

2α2
√

α2 − 1
. �

Thus, we can conclude that

(1) |x(t) − y(t)| ≥ a for 0 ≤ t ≤ τ ,
(2) |x(t) − y(t)| ≥ c

2α · a for τ ≤ t ≤ t1,
(3) y2(t) > x2(t), for t ≥ t1,

(4) |x(t) − y(t)| ≥
√

α2 − 1

2α2
ac for t ≥ t1,

(5) y2(t) − x2(t) ≥ ap for t ≥ τ ′.

In particular, y(t) �= x(t), t > 0.
Hence, at the time t1 the evader will be above the horizontal line where is the

pursuer x . Thus, at the time t1 the pursuer x became “behind” the evader. Since
v2(t) ≥ α cosϕ0 ≥ 1 ≥ u2(t), then y2(t) > x2(t), for all t ≥ t1.

If a-approach occurs with the pursuer x at a time τ , then the evader uses maneuver
on [τ, t1] which ensures the inequality y2(t1) ≥ x2(t1). Further, the strategy of the
evader guarantees him the inequality y2(t) > x2(t) for all t ≥ t1.

4 Conclusion

A simple motion evasion differential game of one pursuer and one evader whose
control set is a sector has been considered in the plane. If α cosϕ0 ≥ 1 and α sin ϕ0 >

1, then evasion from one pursuer has been presented. The strategy for the evader was
constructed as well. Moreover, distances between the pursuer and evader have been
estimated.
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