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Abstract. Word embeddings obtained through neural language models
developed recently can capture semantic and grammatical behaviors of
words and very capably find relationships between words. Such word
embeddings are shown to be effective for various NLP tasks. In this
paper, we develop a supervised method for word sense disambiguation
(WSD) that employs word embeddings as local context features. Our
experiments show the usefulness of word embeddings in the WSD task.
We also compare the methods with different vector representations and
reveal their effects on the WSD task.

Keywords: Word sense disambiguation · Word representation · Super-
vised machine learning

1 Introduction

Polysemous words are a major obstacle in many natural language processing
(NLP) tasks. To circumvent this obstacle, NLP researchers have been devel-
oping methods for word sense disambiguation (WSD) [3,8,12,22]. Supervised
learning approaches have performed especially well in many NLP tasks includ-
ing the WSD task. Since the words in the neighborhood/context of the target
polysemous word provide clues to the disambiguation, bag-of-words (BoW) of
the context (usually a few words preceding or following the target word) is often
used as a basic feature set. In addition to the local context features such as
the BoW, there are several features that have been usually used in supervised
WSD: topical features, syntactic features, and semantic features [18]. Other fea-
tures also exist for the WSD task. For example, Agirre et al. [1] used Word-
Net [17] as a resource for representing domains in WSD and constructed two
domain features: the domain that is the most relevant with the context, and a
list of domains the relevance of which is above a predefined threshold. It has
been expected that combining these additional features with the local context
features will contribute to the improvement of the system performance.
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When we use BoW as local context features, the context words in the test
data that do not appear in the training data cannot be effective, even if their
synonymous words are found in the training data. One of the approaches which
attacks the problem of the sparseness is using concepts of context words rather
than the words themselves as features. In this approach, the concepts are usu-
ally based on a thesaurus or a knowledge base. The other way is to use vector
representation of words as representation of local context features. When we use
the vector representation, cosine similarity between two vectors is usually used
for calculating similarity between two words. Therefore, we can say that two
words are similar when their two vector representations look similar. To solve
the above-mentioned problem, in this paper, we attempt to represent the sense
of each context word by means of the vector representations of words.

Many researchers have attempted to represent the word meanings as real-
valued vectors. Recently, neural language models, such as the feed-forward neural
network language model [5] and the recurrent neural network language model
[15], have succeeded in obtaining the word representation (or embedding) that
captures the semantic and grammatical behaviors of words. There are a number
of implementations and variants of those neural language models above. Among
them, Mikolov et al. proposed a skip-gram model and a continuous bag-of-words
(CBOW) model [14,16]. Both the skip-gram model and the CBOW model are
log-linear models without any nonlinear hidden layer. The word embeddings
obtained by the skip-gram model and the CBOW model have been shown to
be very useful to calculate word similarity. In particular, the word embeddings
obtained by the skip-gram model achieved the best performance in their exper-
iments.

The high performance in measuring word similarity suggests that the word
embeddings obtained through the neural language models are good candidates
for the vector representations of context words for WSD. Therefore, we employ
word embeddings obtained by neural language models as features for supervised
sense classifiers and confirm the usefulness of word embeddings in a WSD task.
To support this claim, we also compare the word embeddings by neural language
models with other vector representations in terms of the accuracy of WSD.

2 Background

The skip-gram model is a language model proposed by Mikolov et al. [14,16].
This language model predicts words that appear within a context window of an
input word, which consists of Ne word tokens to the left and another Ne tokens
to the right.

The skip-gram model differs from the models based on simple co-occurrences
of words in the context window, because it assumes that each word in the context
window, as well as the word in the center (“walking” in the example below), also
has its own embedding and that the co-occurrence is caused by the two embed-
dings. Therefore, this model learns vector representations of words to assign
larger co-occurrence probability to word pairs co-occurring more frequently.
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The skip-gram model has two different types of parameters: input and output
vector representations for each word. The first type of vector represents the
word wI in the center of the context window, while the second type of vector
represents the other words wO in the context window. The probability of wO

appearing within a context-window of wI is defined as follows:

p(wO|wI) =
exp(v′

wO
· vwI

)
∑

w∈W exp(v′
w · vwI

)
(1)

where vw and v′
w are the vector representations of input and output of w, and

W is the vocabulary. Thus, this model assigns a large conditional probability to
word pair wI and wO if the inner product of vwI

and v′
wO

is large.
Specifically, the model maximizes the average of the logarithm of probability:

1
T

T∑

t=1

∑

−Ne≤j≤Ne,j �=0

log p(wt+j |wt) (2)

where T is the number of words in the training corpus and wt is the t-th word
in the corpus.

For example, suppose that there are two sentences in the training corpus:
- The cat is walking in the bedroom.
- The cat was running in the room.

If Ne is set to 2, the words in the context window of “walking” are “cat”,
“‘is”, “in”, and “the” in this example. Also, the words in the context window of
“running” are “cat”, “was”, “in”, and “the”. The skip-gram model increases the
probabilities of each pair of the word in the center (e.g.,“walking” and “running”)
and a context word (e.g., “cat” for both examples) by bringing the input vector of
the word in the center and the output vector of the context words close together,
i.e. the cosine similarity between these vectors becomes large. Thus, the vector
pair (vwalking and v′

cat) get close to each other. The pair (vrunning and v′
cat) also

get close to each other. As a result, input vectors of words with similar context
(vwalking and vrunning) become similar to each other through the output vector
(v′

cat).
Word embeddings are usually used as the input layer of neural network mod-

els [10,21]. Collobert and Weston [10] proposed a single convolutional neural
network architecture that performs multi-task learning. Their model learns each
word embedding as feature representations of each task. Although these (deep)
neural network models work very well, the computational cost is mostly high. It
is therefore practically important to consider how to represent instances of the
data in supervised learning by using word embeddings learned from an unlabeled
corpus, because feature representations are fundamental to supervised classifiers
that have lower computational cost. Yu et al. [23] employed the feature that rep-
resents words by a cluster of embeddings. They used the support vector machines
(SVM) and the multilayer perceptron with their features on chunking and named
entity recognition tasks.

Some researchers have extended vector space models to deal with polysemous
words. Agirre et al. [2] proposed a method of using the inter-word similarity
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on the basis of latent semantic analysis (LSA). They applied the method to
the domain adaptation of word sense disambiguation. Cai et al. [7] used latent
Dirichlet allocation (LDA) [6] to create a naive Bayesian classifier, and achieved
a high accuracy in the Semeval 2007 coarse-grained lexical sample task [20].
Chen et al. [9] proposed a unified model for joint word sense representation and
disambiguation, which assigned a distinct representation for each word sense.
Their model achieved state-of-the-art performance on the coarse-grained all-
words dataset and domain-specific WSD dataset. Neelakantan et al. [19] also
focused on a method for obtaining word sense representation. They proposed
two models: one has a fixed number of word senses, and the other automatically
determines the number of word senses.

3 Methodology

In this section, we first describe the task definition of WSD and then present
the features of the supervised classifier that employ word embeddings.

3.1 Task Definition

The word sense disambiguation is a task to choose appropriate senses of polyse-
mous words in the given context. The possible senses of each word are based on
external knowledge, such as WordNet, in most cases. In the lexical sample task
of WSD, the corpus annotated with word senses is usually given as the training
data, and the WSD task is reduced to a supervised classification task. Since a
single polysemous word can have three or more senses, we should construct a
multi-class classifier.

3.2 Proposed Feature Representation

For a classifier, we use the support vector machines (SVM) together with the one-
versus-rest approach to extend SVMs to a multi-class classifier. In this section,
we explain feature representation based on word embeddings and we call it Con-
text Word Embeddings. Since we compare four types of context features in our
experiments in the next section, we explain them all in this section. Two are
based on BoW, and the others are based on word embeddings.

Bag-of-Words (BoW)
This type of feature indicates whether a word appears within the context win-
dow of size N . The dimension of the feature space is equal to the vocabulary
size |W |.

Position-Bag-of-Words (PosiBoW)
With this feature set, each feature vector is represented as a concatenation
of one-of-V representations. One-of-V representation represents each word
by a binary vector, in which only the element associated with this word is
1, and the others are 0. The one-of-V representations of words within the
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Fig. 1. Example of each feature

context window are concatenated to make a feature vector of 2 × N × |W |.
While the simple BoW described above does not contain position information,
PosiBoW does. We use this feature for comparison, because the following
Context-Word-Embeddings feature takes positions into consideration.

Average-Word-Embeddings (AveWE)
This feature set uses word embeddings, but does not take into account the
position of each context word. The feature vector is the average of vector
representations of words in the context window. The dimension of the feature
space is the same as the dimension of each word embedding.

Context-Word-Embeddings (CWE)
This feature vector is a concatenated vector of the real-valued vectors of the
words in the context window. If the window size is N and words appearing in
the context window are w−N , . . . , w−1, w+1, . . . , w+N , this feature vector is a
vector concatenating vw−N

, . . . , vw−1 , vw+1 , . . . , vw+N
, where vw represents an

embedding of word w. If the dimension of each word embedding is d, the size
of this feature vector is 2 ×N × d.

Fig. 1 shows a simple example of each feature representation. Please assume
that only four words “cat,” “machine,” “around,” and “well” are in the vocab-
ulary (the vocabulary size |W | is 4). In the top, word embeddings for each word
are shown (the dimension of each word embedding d is 3). The instance data
to be represented as feature representation is shown in the middle, where the
target word is “run” and the window size N is 1. In the bottom, four types of
context features are shown.
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4 Experiments

We evaluated word embedding based features on an English lexical-sample data
set. We also investigated the effect of the difference in word embeddings.

4.1 Experimental Settings

We used the SemEval 2007 lexical sample task (task17) dataset [20]. This dataset
contains training and test data for 100 polysemous words. The average numbers
of instances are 222 for the training set and 48 for the test set.

We lemmatized each word by using the lemmatizer in the Natural Language
Toolkit1 that is based on WordNet. We chose the skip-gram model [16] to learn
embeddings. Mikolov et al. [16] distributed word embeddings learned from news
articles containing about 100 billion words2. We used this data to compare fea-
tures based on binary vector and features based on word embeddings. The dimen-
sion of these vectors is 300. We also used linear SVM (LIBLINEAR [11]) as a
classifier and used five-fold cross validation on the training dataset in order to
determine the value of soft-margin parameter C by changing its value from 0.1
to 1 with a step size of 0.1 and from 1 to 10 with a step size of 1.

4.2 Comparison of BoW and CWE

We used four types of features explained in Sect. 3: BoW, PosiBoW, AveWE,
and CWE. We also tested their combinations in experiments. Table 1 shows the
experimental results.

Table 1. Classification results of each feature and combination of features

Features Accuracy

BoW 84.72 %

PosiBoW 85.53 %

AveWE 84.56 %

CWE 87.51 % † ‡

PosiBow+CWE 87.18 % † ‡

BoW+CWE 87.80 % † ‡

‘†’ and ‘‡’ denote significant
differences from BoW and
PosiBoW, respectively.

We performed McNemar’s test [13] at the significance level of 1 % to assess
whether two classifiers were performing significantly differently. ‘†’ and ‘‡’ mean
1 http://www.nltk.org/.
2 https://code.google.com/p/word2vec/.

http://www.nltk.org/
https://code.google.com/p/word2vec/
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that the corresponding feature set significantly outperforms BoW and PosiBoW,
respectively. This result shows that CWE is better than BoW, PosiBoW, and
AveWE in this task. This also shows that PosiBoW outperforms BoW. There-
fore, position information of words would be helpful on WSD. However, the
system using PosiBoW+CWE performed worse than that using BoW+CWE.
We conjecture that PosiBoW+CWE does not work better than BoW+CWE
despite the useful information from word positions, because CWE itself contains
position information. CWE worked very well, but AveWE did not work well.
There are two possible reasons: one is that the size of context window was not
enough to represent context, and the other is that simply averaging vectors can
not represent context well. Actually, we tried AveWE with broader context win-
dows, but obtained worse results. Thus we consider this is because averaging
word-representations obscures information about which words appear in local
context. We conclude simple averaging is not enough to represent context from
this result. Actually, we tried AveWE with broader context window, but it shows
worser result. Thus, we consider this is because averaging word-representations
lose information about what words appear in local context. We conclude simple
averaging is not enough to represent context from this result.

If many words in an instance data to be classified do not appear in the
training dataset, it is difficult to classify the instance correctly, especially when
we use BoW. However, when we use word embeddings, information of words that
do not appear in the training set is expected to be leveraged for classification.
To confirm this assumption, we checked the number of words that do not appear
in the context window when we train classifiers for each instance in the test set.
Hereinafter, we call such words unknown word (UNKs), and we also examine
the correlation between the accuracy and the number of UNKs.

Table 2 shows the number of instances per the number of UNKs and Fig. 2
shows the ratios (%) of correct and incorrect outputs per the number of UNKs.
The first figure shows the ratios with BoW only, and the second figure shows
the ratios of the system using BoW and CWE.

Table 2. The number of instances per the number of UNKs

0 1 2 3 4 5 6 7 8 9 10

564 765 872 846 766 525 321 109 50 21 12

The first and second rows denote the number of
UNKs and the number of instances, respectively.

Vertical and horizontal axes of both graphs are the ratios and the number of
UNKs, respectively. Thus, the rightmost bar represents cases in which all words
are UNKs, and the leftmost bar represents cases in which neither words are
UNKs. Right cases are expected to be more difficult to classify than left cases.
When we used only BoW, the ratio of incorrect outputs increased as we had
assumed. Next, we focus on bars representing the ratios of cases whose result



Context Representation with Word Embeddings for WSD 115

Fig. 2. Effect of UNKs on accuracy

Table 3. The relationships between the accuracy and the sizes of training sets

Feature The size of training set

100% 75 % 50 % 25%

PosiBoW 85.53 % 83.67 % 82.81 % 80.64%

CWE 87.51 % 86.94 % 86.44 % 84.85%

diff. 1.98 % 3.27 % 3.63 % 4.21 %

became correct when we used BoW and CWE (bars with blue slash). These
ratios did not monotonically decrease even if the number of UNKs increased.
These results show that CWE can utilize of UNKs, while BoW cannot.

The feature set based on word embeddings would alleviate the sparseness
problem. Thus, we next examined how the performance of the classifier changed
depending on the size of training data. The size of test data was the same as
in the above experiment, although we changed the size of training data in this
experiment. We randomly divided each piece of training data of each word into
quarters and then gradually removed quarters from training data. Each piece
of divided data has almost the same amount of data for each sense. Table 3
shows the relationships between the accuracy and the number of the training
instances. The row diff. shows the accuracy differences between PosiBoW and
CWE. Table 3 shows that the difference between two systems is large when the
number of training instances is small. This result suggests that the CWE feature
is useful, especially when only a small training data set is available.

4.3 Effect of the Methods for Constructing Vector Representations

A method for constructing vector representation is crucial for a high perfor-
mance of WSD. To investigate how the choice of vector representation affects
the performance of WSD, we used the singular value decomposition (SVD) and
word2vec3 (skip-gram model) to obtain vector representation. We also used

3 https://code.google.com/p/word2vec/.

https://code.google.com/p/word2vec/


116 H. Sugawara et al.

Table 4. Classification results of each word representation

CWE BoW + CWE

EnWiki SVD 83.54 % 86.15 %

EnWiki w2v 86.45 % 86.58 %

Google w2v 87.51 % 87.80 %

(BoW) 84.72 %

English Wikipedia4 data to obtain vector representations of words. This data
contains 1.7 billion words. This is 0.5 % size of the corpus used in learning vectors
distributed by Mikolov et al. [16].

We chose a method using SVD following Baroni et al. [4]. We regarded two
word tokens as having co-occurred when their distance was less than Ne. We
then made the co-occurrence matrix by using their method and factorized the
matrix as X = UΣV T. In this study, X represents the co-occurrence matrix. We
assume that each row of U represents the vector of the word associated with the
row. When we used word2vec, we chose the skip-gram with negative-sampling as
a model and set the number of negative-samples to 10. We also set the dimension
of vectors to 300 both for skip-gram and SVD.

We compared three vector representations: vectors obtained by SVD from
English Wikipedia (EnWiki SVD), vectors obtained by word2vec from English
Wikipedia (EnWiki w2v), and vectors distributed by Mikolov et al. that are
trained on part of the Google News dataset (Google w2v). Table 4 shows the
experimental results.

With the word representation by SVD, the system using both BoW and CWE
(BoW+CWE) outperformed BoW, although CWE did not outperform BoW.
On the other hand, with the word representation by word2vec, both CWE and
BoW+CWE outperformed BoW even when using English Wikipedia data to
obtain the vector representation. This result suggests that the word embeddings
obtained by the skip-gram model contain very helpful information for WSD.

4.4 Examples of Word Embeddings Affecting the Results

Table 5 shows instances, for which BoW predicted the wrong sense and
BoW+CWE with Google w2v predicted the correct sense. The blue italicized
words in the table represent UNKs, and the red bold words are the target words.
In the examples of the sense 2 of the noun “management”, which means the peo-
ple who direct a business, there are some UNKs that are names of companies
or organizations: “Younkers”, “swift”, and “Wedtech”. Well-learned embeddings
would capture the similarity between these names appearing in training data and
test data, resulting in a high performance of CWE for “management”.

UNKs could also be clues for predicting the sense in the examples of the
verb “begin”. Senses shown in the examples of “begin” are all sense 2, i.e., take

4 We accessed the Wikipedia dataset in August 2014.
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Table 5. Examples improved by using CWE

Word Sense Examples improved by using CWE

management.n

2 Younkers management is likely to buy a 10 % to 20 %
interest in the chain in January , said Fred S. Hubbell ,
Equitable ’s president and chief executive officer .

2 Subcontractors will be offered a settlement and a swift
transition to new management is expected to avert an
exodus of skilled workers from Waertsilae Marine ’s two
big shipyards , government officials said .

2 Wedtech management used the merit system .
2 New management at Kentucky Fried Chicken, a unit of

PepsiCo Inc. , has fought back with new medium and large
chicken sandwiches for the lunch crowd .

begin.v
2 If the investor does n’t put up the extra cash to satisfy

the call , the brokerage firm may begin liquidating the
securities .

2 General Motors Corp. said it had discussed the possibility
of a joint venture with Jaguar before Ford began buying
shares .

2 Precision Castparts Corp. , Portland , Ore. , will begin
trading with the symbol PCP .

the first step or steps in carrying out an action. In these examples, two gerunds
(“buying” and “liquidating”) are UNKs. However, since “trading” appears in the
training data and the cosine similarities between the embeddings of “trading”
and those gerunds are large, these examples were correctly disambiguated by
means of CWE. Note that although these words are not synonyms, they are
given a high similarity by CWE because they are semantically related and have
the same type of inflection (i.e., -ing). We thus consider the system outputs of
these instances changed to correct answers because CWE captured the similarity
of these words.

5 Conclusion

In this paper, we investigated the effects of features based on word embeddings
on a WSD task. We confirmed that the classifier based on the word embeddings
feature set outperforms those based on bag-of-words features. Our experiments
also confirmed that the feature set based on word embeddings was more robust to
the sparseness problem than features based on binary representation. We expect
that the features that we used will contribute to the performance of a supervised
classifier by being combined with other features. Although the feature sets that
take word positions into account (CWE and PosiBoW) outperformed those that
do not, they also have a downside: they are sensitive to the slight difference in
positions of context words. A better way to handle the positions of context words
would improve the performance of WSD.
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