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Abstract In developing countries, data is usually a scarce resource as data col-
lection is an expensive exercise. Therefore, analytical method is required to simulate
the actual situations and provide synthetic data for forecasting purposes. This paper
will compare several methods of synthetically generating rainfall data based on
available data. Several models will be used, including lag-one Markov chain model,
two-step model, and transition probability model to generate stochastic daily rainfall
data of long-term duration, using data from a catchment in Australia. Three varia-
tions of lag-one Markov chain models were used: untransformed, logarithmic
transformation, and square root transformation. Two-step model uses Markov chain
to model rainfall occurrences and gamma distribution to model rainfall depths. Six
variations of the Transition Probability Matrices were used, 3 using Shifted
Exponential Distribution and 3 using Box–Cox Power Transformation was adopted
to predict the high rainfall depths, and the parameters are determined using
maximum-likelihood method on the available rainfall data. The models’ results were
tested by comparing the statistics of the generated data against those of the available
data. Direct comparisons of the means, standard deviations, and skews show satis-
factory results. Further comparisons of monthly means, standard deviations, skews,
maxima and minima, as well as the lengths of wet and dry spells had also shown
satisfactory results. In conclusion, all the models have produced synthetic rainfall
data, which are statistically similar to those of the available data. In comparison, the
TPM model gave the most accurate results. Therefore, this model may be utilised for
synthetic rainfall data generations, which can then be used for forecasting.
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1 Introduction

Long-term data is desirable to enable the asset managers to sufficiently simulate the
many possibilities, including flooding and extreme droughts. In developing coun-
tries, data is usually a scarce resource as data collection is an expensive exercise.
Generation of synthetic data is one of the methods to enable forecasting to be made.
One of the techniques available to produce the synthetic data is the stochastic data
generation. Rainfall is regarded as the most basic weather variable, independent of
temperature and evaporation [16]. Hence, generation of long-term synthetic rainfall
data can provide basic set of weather variables for long-term forecasting.

The hydrological time series consists of two contributing factors: random factors
and persistence (stochastically deterministic factor) [26]. Stochastic modelling used
the stochastic properties of observed time series to generate long-term time series.
The statistical and stochastic properties of the observed time series are assumed to
represent the population properties, and the synthetic long-term time series is
assumed to come from the same population [10].

There are many stochastic data generation models. This paper compared several
models including lag-one Markov chain model, two-step model, and the transition
probability Matrices model (TPM).

Lag-one Markov chain models are the most popular variations of rainfall data
generation models [2, 24, 31]. Higher-order Markov chain models have also been
utilised satisfactorily [12]. The major problem in daily rainfall generation using a
single-step runoff generation type model (Lag-one Markov Chain Model by [2]) is
the large number of zero values of daily rainfall. Richardson [22] used square root
transformation and a multivariate normal distribution truncated at zero to overcome
the zeros problems. Baki [4] used logarithmic and square root transformation to
overcome this problem. Nevertheless, there is an inherent problem of large number
of zeros in the historical data, which introduced skews. Nevertheless, Malek and
Baki [17] successfully forecasted stochastic data for Gombak River in Malaysia
using non-transformed data.

The two-step model was developed by various researchers to separate the
analysis between the occurrences of rainfall and the rainfall depth. Jones et al. [16]
and Adam [1] modelled occurrences of daily rainfall using a Markov chain. The wet
spells, which is a series of rainfall occurrences, and the dry spells, which is a series
of non-occurrences of rainfall, have also been satisfactorily modelled using Markov
chains [19, 21, 25]. Baki [5] has modelled rainfall data generation using the
two-step model using Markov chain for rainfall occurrences and gamma distribu-
tion for rainfall depth. Generally, Baki [5] has achieved satisfactory results, where
the statistics of the generated data is comparable to those of the recorded data.

Haan et al. [14] and Taewechit et al. [29] used a multistate Markov chain
approach to model the distribution of rainfall. Haan et al. [14] used seven states to
describe rainfall behaviour based on rainfall depths. The first state is dry (no rain),
and six others are wet (with rainfall). Uniform distributions were assumed for states
2–6 and a shifted exponential distribution for the seventh state (unbounded).
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A modified TPM model was developed by Srikanthan and McMahon [26] based
on the TPM model of Haan et al. [14]. The exception was that the daily rainfall data
is transformed using the Box–Cox power transformation [8] instead of a shifted
exponential distribution for the last class. Srikanthan and McMahon [27] used TPM
model in their development of automatic evaluation of stochastically generated
rainfall data. Srikhathan et al. [28] also used TPM model in their comparison of
daily rainfall data generation models. Baki [6] found that in general, all six vari-
ations used (three sets of matrices using shifted exponential and three sets of
matrices using Box–Cox power transformation) were equally satisfactory as
the differences between the six variations are minimal. This was consistent with the
past research as Haan et al. [14] found that the number of classes did not affect
the accuracy of the TPM model to a great extent. Therefore, the selection between
the six variations is not very critical.

The objective of this paper is to compare the performance of those models in
generating daily rainfall. Apart from comparing the daily statistics of the generated
data to those of the recorded data, further comparisons will also be carried out using
monthly and annual statistics, daily maxima, and average lengths of dry and wet
spells. The comparison will enable identification of the model that will give the
most accurate statistical comparisons between recorded and generated rainfall
statistics.

2 Data and Methods

2.1 Data

The catchment selected for this study is Kangaroo Valley, which is located about
150 km south of Sydney and about 50 km west of the east coast of New South
Wales, Australia. The map is shown in Fig. 1, and catchment characteristics are as
listed below [3]:

• The National Index reference is 215,220.
• The catchment area is 330 km2.
• The length of the stream (Kangaroo River) is 34.5 km.
• The average slope of the Kangaroo River is 1.35 % or 135 in 10,000.
• The annual rainfall for Kangaroo Valley is 1629.0 mm.
• The annual runoff from the catchment is 934.2 mm.
• The annual pan evaporation is 1773.4 mm.
• The climatic condition for this catchment is temperate.
• The vegetation in the area is a mixture of rainforest, hedgeland, sedgeland, and

grassland.

A total of 80 years of daily rainfall data were used. Both regionalised and
single-site approaches have been satisfactorily used in rainfall data generation.
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Benson and Matalas [7] used regionalised parameters in stochastic runoff data
generation. Solomon [23] used regionalised parameters as he found that region-
alised parameters were more suitable than single-site parameters because region-
alisation reduced operational bias. Baki [4] found that by using the average rainfall
for the catchment, continuity of data could be obtained. Hernáez and Martin-Vide
[15], Mehrotra et al. [18], and Camberlin et al. [9] had used regionalised approach
to satisfactorily model rainfall data. However, Mhanna and Bauwers [20] had
satisfactorily generated rainfall data using single-site approach. In this study, the
regionalised approach had been adopted using catchment daily average rainfall.
Therefore, the use of catchment average rainfall instead of individual stations
allows for better approximations of rainfall stochastic properties and processes.

The location of the catchment is shown in Fig. 1. The locations of the rainfall
stations are shown in the enlarged inset of Fig. 1. Catchment average rainfall was
computed using the Thiessen polygons [30] of available data for the day. For the
day with available data from all rainfall stations, the Thiessen [30] polygons will be
computed using 6 rainfall stations (as shown in the inset of Fig. 1). For days that
have missing data (e.g. if station 1 data is missing), the Thiessen polygons [30] will
be computed using the available data only, namely stations 2, 3, 4, 5, and 6.
Similarly, if data from stations 1 and 2 are missing, then the Thiessen polygons [30]
will be computed using the available data from stations 3, 4, 5, and 6. There are
different polygons for different sets of missing data.

Statistics of daily rainfall for this catchment are shown in Table 1. Table 1 shows
that the overall means, standard deviations, skews, and coefficient of variations of
daily rainfall for this catchment are 4.4, 15.6, 8.1, and 3.5 mm, respectively.

Fig. 1 Catchment (after, [3])
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The ratio of skew to coefficient of variation is 2.3, which is close to 2, indicating
that gamma distribution can be used to approximate the rainfall distribution [5].

Figure 2 shows a plot of serial correlation coefficient (rk) plotted against the
corresponding lag (k). The lag-one value is r1 = 0.436, while the other rk values are
less than half r1 [4]. Fisher [13] suggested a value of rk of 0.349 as the conventional
minimum value for stochastic analysis of time series. The lag-one serial correlation
coefficient (r1) was shown to be satisfactory for this catchment, while the other rk
values are much lower than the suggested conventional minimum value. Lag-one
correlation was adopted for this paper [4].

Figure 3 shows the plot of annual rainfall values [4]. No apparent trend can be
observed in the values of annual rainfall for this catchment. Therefore, the random

Table 1 Recorded daily rainfall statistics (after [4])

Month Mean (mm) Std. Dev. (mm) Skew (γ) Coeff. Var. (Cv) γ/Cv

Jan 4.8 16.4 11.3 3.4 3.3

Feb 5.5 17.5 7.4 3.2 2.3

Mar 5.8 18.2 6.3 3.1 2.0

Apr 4.9 16.5 7.0 3.4 2.1

May 4.8 17.7 7.9 3.7 2.1

Jun 6.1 19.3 5.5 3.1 1.8

Jul 4.6 18.0 8.3 3.9 2.1

Aug 3.1 11.4 8.2 3.7 2.2

Sep 3.1 9.9 6.5 3.2 2.0

Oct 3.7 15.0 9.2 4.1 2.3

Nov 2.9 8.9 6.8 3.0 2.2

Dec 4.1 12.2 7.3 3.2 2.3

Overall 4.4 15.6 8.1 3.5 2.3

Fig. 2 Plot of serial
correlation against lag [4]
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variations are assumed to continue in the future. The stochastic rainfall data gen-
eration is therefore assumed to be able to reproduce these random variations [4].

2.2 Lag-One Markov Chain Model

Baki [4] used lag-one Markov chain model in modelling daily rainfall. Earlier
applications of lag-one Markov chain model were by Adamowski and Smith [2]
and Richardson [22].

In the study by Baki [4], the daily recorded rainfall values were standardised as
follows:

zi ¼ xi � xið Þ
ri

ð1Þ

where zi is the standardised daily rainfall (mm) for day i, with zero mean and unit
standard deviation; xi is the daily rainfall (mm) for day i; σi is the standard deviation
(mm) for day i; is the average daily rainfall (mm) for day i, where i ranges from 1 to
366 (including leap years).

The generated rainfall data is given by:

zi ¼ rizi�1 þ ti
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ið Þ

q
ð2Þ

which gives:

xi ¼ xi þ ri rizi�1 þ ti
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� r2ið Þ

q� �
ð3Þ

Fig. 3 Plot of annual
catchment rainfall [4]
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where xi is the generated rainfall on day i (mm); xi is the mean recorded daily
rainfall of day i (mm); ri is the standard deviation of recorded daily rainfall on day
i (mm); ri is the lag-one serial correlation for the whole record; zi�1 is the stan-
dardised rainfall on day i − 1; and ti is the normally distributed random numbers
with zero mean and unit variances.

Baki [4] used three variations of the lag-one Markov chain model, untrans-
formed data (referred to as QT), logarithmically transformed data (referred to as
LOG), and square root transformation (referred to as SQR). All these three results
will be used in the comparison.

2.3 Two-Step Model

The large number of zero values of daily rainfall caused problems to single-step
runoff generation type of model to generate daily rainfall data. The two-step model
was developed to separate the analysis between the occurrence of rainfall and the
rainfall depth. Baki [5] used the two-step model by modelling the occurrences of
rainfall using transition probabilities between two classes of events (dry days and
wet days). The transition probabilities between the two classes are according to
Markov chain probabilities.

The gamma distribution can be used to model rainfall depths during wet days.
Table 1 shows that the ratio of daily skew coefficients to coefficient of variation
(γ/Cv) of the recorded data is 2.3, which is close to 2. Baki [5] adopted the gamma
distribution since the data he used had a ratio (γ/Cv) close to 2. This distribution is
also utilised by Jones et al. [16] and Carey and Haan [11].

The gamma distribution is given by:

FðxkkÞ ¼
Zx
o

kikð Þgik
C gikð ÞU

gik¼1ð Þ exp �kikUð Þdu ð4Þ

where U is the uniformly distributed random number between 0 and 1.
In order to find the parameters, λ and η, maximum likelihood can be used. Carey

and Haan [11] used maximum likelihood to find the parameters in their study. For
example,

g� ¼ 0:5000876þ 0:164852yþ 0:0544274y2

y
ð5Þ
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in which

y ¼ In
Xn
i¼1

vi
n

 !
�
Xn
i¼1

ln vi
n

ð6Þ

vi = ith observation from a sample of n observations.
Correction for small sample bias can then be made as follows:

g ¼ ðn� 3Þg�
n

ð7Þ

The estimate for λ can then be made:

k ¼ gPn
i¼1

vi
n

ð8Þ

Baki [5] used the two-step model, using a first-order Markov chain to model
occurrences of rainfall and a gamma distribution to generate rainfall depths during
wet days. The parameters of the gamma distribution will be estimated from the
recorded wet days. The results from this study will be used in the comparison
(referred to as TS).

2.4 Transition Probability Matrices Model

Haan et al. [14] mentioned that persistence and periodicities can be observed in
daily weather patterns. The persistence is modelled by a Markov chain. Consider

P Enj En�1jn�1;...;E1j1

��� � ¼ P Enj En�1jn�1

��� � ð9Þ

where for x1; x2; . . . as the observations of daily rainfall, then Ei,j (i = 1, 2,…, c, and
j = 0, 1, …, c), where c is the number of classes or states, and if P(Enj|En − 1j) does
not depend on n, then these transition probabilities (denoted Pij), and the Markov
chain is stationary. The transition probability matrices (TPM) is the collection of Pij

between classes in (c + 1) × (c + 1) matrices.
Periodicities mean that the weather pattern undergoes a cyclical behaviour

within a year. Within a season, the weather pattern can be assumed to be stationary.
Therefore, the TPM can be assumed to be stationary within each season:

PðkÞ
ij ði:j ¼ 0; 1; . . .; cÞ and ðk ¼ 1; . . .; sÞ ð10Þ

where k denotes the kth season and s is the total number of seasons.
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The probability distributions had to be fitted to each class. It was assumed that
the same set of distributions would model each season. Therefore, (c + 1) cumu-
lative distribution functions are used:

FmðxÞðm ¼ 0; . . .; cÞ ð11Þ

where Fm (x) = P (rainfall < x | rainfall belongs to class m).
A uniform distribution was assumed for all wet states, except for the last one.

For the highest class, a shifted exponential distribution was found by Haan et al.
[14] to be the most suitable:

FlastðxÞ ¼ exp ðx� nclÞ=g
� 	

ð12Þ

where ncl is the lower boundary of the last class and η is a constant found by
maximum likelihood:

g ¼ �x� ncl ð13Þ

where �x is the mean daily rainfall greater than ncl.
Haan et al. [14] adopted the months to be the seasons. Seasons follow an annual

cycle, and by using months to represent seasons, the cyclical pattern can be satis-
factorily represented. Hence, the TPM can be assumed to be stationary within a
month. They also adopted 7 classes of daily rainfall states after testing up to 12
classes. These values were found to be satisfactory for the Kentucky basin.
Therefore, twelve sets of (7 × 7) matrices needed to be found from the recorded data.

Baki [6] tested six variations of the TPM model: 6 × 6 TPM (called SE6), 7 × 7
TPM (called SE7), and 8 × 8 TPM (called SE8), all three with shifted exponential
distribution for the last class and linear distribution for the other classes, and 6 × 6
TPM (called BC6), 7 × 7 TPM (called BC7) and 8 × 8 TPM (called BC8), all three
with Box–Cox power transformation for the last class and linear distribution for the
other classes. The last (highest) class has closed lower bound and open upper
bound. The class boundaries are shown in Table 2. The results from Baki [6]’s
study will be used in the comparison.

Table 2 Class boundaries for TPM model

Class Lower limit (mm) Upper limit (mm)

6 × 6 7 × 7 8 × 8

1 0.0 0.0 0.0 0.0

2 0.1 0.9 0.9 0.9

3 1.0 2.9 2.9 2.9

4 3.0 6.9 6.9 6.9

5 7.0 14.9 14.9 14.9

6 15.0 ∞ 30.9 30.9

7 31.0 (for 7 × 7 and 8 × 8) N/A ∞ 62.9

8 63.0 (for 8 × 8) N/A N/A ∞
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3 Results and Discussion

Ten replicates of generated data were made, each with the same length as the
recorded data. The average of the statistical measures of the generated data was
compared to those of the recorded data.

Table 3 shows the average of ten replicates of daily means of all models used
compared to the recorded data. In general, the statistical measures of daily means of
the generated data for all models are satisfactory except for untransformed lag-one
Markov chain model (QT). In comparison, all the six variations of the TPM and TS
models are more accurate compared to those of the lag-one Markov chain model, in
respect to the daily means of the recorded data. In terms of accuracy of the daily
means, 7 × 7 TPM (SE7 with 8 accurate daily means followed by BC7 with 7) gave
the best results compared to others (as highlighted in Table 3).

Table 4 shows the average of ten replicates of daily standard deviations compared
to the recorded data. Again, the statistics of the generated data for all six variations of
the TPM and TS models are more accurate compared to those of the lag-one Markov
chain model. In terms of accuracy, the standard deviations for 6 × 6 and 7 × 7 TPM
(SE6, SE7, BC6, BC7) tend to be lower, indicating that the data generated by the
model tend to be more normally distributed, while 8 × 8 TPM (SE8 and BC8) can
generate data that are less normally distributed compared to the recorded data as
some of the standard deviations exceeded those of the recorded data. Furthermore,
SE8 and BC8 both have 4 accurate daily standard deviations, which are much better
than others (SE7 and BC6 both have 2, as highlighted in Table 4).

Table 5 shows the average of ten replicates of daily skews compared to the
recorded data. Once again, the statistics of the generated data for all six variations of
the TPM and TS models are satisfactory compared to those of the lag-one Markov

Table 3 Mean daily rainfall statistics’ comparison

Month Daily means for recorded and average for the generated data (mm)

Rec Lag-one Markov 2-step TPM model

QT LOG SQR TS SE6 SE7 SE8 BC6 BC7 BC8

Jan 4.8 9.2 5.1 5.4 5.0 4.7 4.8 5.0 4.9 4.8 4.9

Feb 5.5 10.3 6.9 6.2 5.6 5.6 5.4 5.4 5.6 5.5 5.7

Mar 5.8 11.5 6.7 6.5 6.1 5.9 6.1 6.1 5.6 5.8 5.9

Apr 4.9 9.7 3.8 5.4 5.2 4.8 4.9 4.9 4.7 5.0 4.9
May 4.8 10.3 2.8 5.3 4.8 5.1 4.8 5.0 4.7 4.8 5.0

Jun 6.1 11.9 4.9 7.0 6.4 6.1 6.2 6.1 6.2 6.1 6.7

Jul 4.6 10.0 2.7 5.2 4.9 4.5 4.6 4.6 4.7 5.0 4.7

Aug 3.1 6.6 2.0 3.5 3.3 3.2 3.1 3.2 3.3 3.2 3.1
Sep 3.1 6.1 2.2 3.5 3.4 3.2 3.1 3.2 3.2 3.1 3.3

Oct 3.7 8.1 2.5 4.1 3.6 3.8 3.7 3.9 3.6 3.6 3.7
Nov 2.9 5.5 2.5 3.3 3.3 3.0 3.1 3.0 3.0 3.0 3.0
Dec 4.1 7.9 3.9 4.6 4.4 4.2 4.1 4.4 4.1 4.1 4.4
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chain model, in comparison with the recorded data. In terms of accuracy, the skews
for 6 × 6 and 7 × 7 TPM (SE6, SE7, BC6, BC7) tend to be lower, indicating that the
data generated by the model tend to be more normally distributed. The 8 × 8 TPM
(SE8 and BC8) can generate data that are less normally distributed compared to the
recorded data, since some of the skews exceeded those of the recorded data. SE8
has 6 accurate daily skews, followed by BC8 with 4 (as highlighted in Table 5).

By comparing the daily statistics (means, standard deviations, and skews), the
TPM models gave the most accurate results compared to the two-step (TS) model

Table 4 Daily standard deviations’ comparison

Month Daily standard deviations for recorded and average for the generated data (mm)

Rec Lag-one Markov 2-step TPM model

QT LOG SQR TS SE6 SE7 SE8 BC6 BC7 BC8

Jan 16.4 12.5 21.5 7.2 12.3 13.2 14.3 15.8 13.5 14.1 15.4

Feb 17.5 13.5 28.7 8.5 12.6 15.3 16.4 16.8 16.0 16.7 17.4
Mar 18.2 13.6 28.9 8.4 14.4 16.2 17.9 19.0 16.3 17.3 17.7

Apr 16.5 12.1 16.9 7.0 12.6 14.6 16.2 16.3 14.9 16.1 15.6

May 17.7 12.9 13.0 6.9 12.5 17.0 16.6 18.4 15.7 16.5 17.3
Jun 19.3 14.5 22.3 9.2 16.7 18.3 18.9 19.5 18.3 18.7 20.0

Jul 18.0 13.5 15.3 7.5 13.5 15.4 16.6 17.4 16.0 17.6 18.2
Aug 11.4 8.7 11.0 5.0 8.8 10.7 10.9 11.5 11.1 10.9 10.8

Sep 9.9 7.4 9.8 4.6 9.5 9.6 9.8 10.3 9.8 9.7 10.2

Oct 15.0 11.2 11.8 5.7 9.2 12.5 14.3 16.7 13.0 14.4 14.7
Nov 8.9 7.0 11.3 4.5 9.0 8.4 9.5 9.2 8.4 8.8 8.7

Dec 12.2 10.0 17.4 6.1 11.0 12.4 12.6 14.1 12.1 12.7 14.4

Table 5 Daily skews’ comparison

Month Daily skews for recorded and average for the generated data (mm)

Rec Lag-one Markov 2-step TPM model

QT LOG SQR TS SE6 SE7 SE8 BC6 BC7 BC8

Jan 11.3 2.7 9.3 2.6 5.5 4.9 6.5 8.1 4.7 5.8 7.4

Feb 7.4 2.0 8.3 2.6 4.4 5.1 6.2 7.3 4.8 5.8 6.4

Mar 6.3 1.4 9.0 2.2 4.9 4.8 5.7 6.7 4.7 5.6 6.0

Apr 7.0 1.6 10.5 2.2 4.3 5.7 6.4 7.5 5.2 5.7 6.4

May 7.9 1.7 12.1 2.3 4.3 6.3 6.4 8.2 5.3 6.0 7.0

Jun 5.5 1.5 9.8 2.3 5.4 4.9 5.4 6.1 4.4 4.9 5.0

Jul 8.3 2.0 14.0 3.0 4.9 6.2 6.8 8.1 5.3 6.3 8.2
Aug 8.2 1.9 14.8 2.7 4.8 6.1 7.0 7.7 5.7 6.4 7.1

Sep 6.5 1.5 11.3 2.2 6.5 5.5 6.3 6.5 5.2 5.9 6.1

Oct 9.2 2.1 12.4 2.6 4.2 6.1 8.8 11.5 7.2 9.3 9.0

Nov 6.8 2.1 12.1 2.8 6.7 5.2 6.5 6.6 4.8 5.9 6.6

Dec 7.3 1.8 10.4 2.3 5.5 5.5 6.4 6.9 5.0 5.9 6.9
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and both TPM and TS are more accurate than the lag-one Markov chain models
(QT, LOG, and SQR), especially the untransformed (QT). Within the TPM models,
the 7 × 7 TPM (both SE7 and BC7) gave the best estimates of daily means, but the
8 × 8 TPM (SE8 and BC8) gave best estimates of daily standard deviations and
daily skews. However, the differences between the variations (SE6, SE7, SE8, BC6,
BC7, and BC8) are not significant. In general, all six variations were equally
satisfactory as the differences between the six variations are minimal. Thus, the
findings of Baki [6] were consistent with the past research as Haan et al. [14] found
that the number of classes did not affect the accuracy of the TPM model to a great
extent. Therefore, the selection between the six variations is not very critical.

In all daily statistical measures, i.e. means, standard deviations, and skews,
Tables III, IV, and V show that the trend of the figures given by the TPM model
(SE6, SE7, SE8, BC6, BC7, and BC8) follows the trend of the recorded data better
than the other models (TS and lag-one Markov). In overall considerations, the TPM
is proven to be the most satisfactory model. This finding is consistent with other
researches, such as by Srikanthan et al. [28].

Apart from comparing the daily statistical measures (as carried out by [4–6]),
other measures were also necessary to be compared. As discussed above, selection
between the TPM variations is not critical, and thus, SE8 and BC8 are adopted for
further comparison. Since TS has no variations, it is also adopted for further
comparison. For the three variations of the lag-one Markov chain model, Baki [4]
found that LOG was the most satisfactory variation, and thus, it is adopted for
further comparison. Hence, further comparisons were made between SE8, BC8, TS,
and LOG.

Figure 4 shows the comparison of daily maxima between recorded data and 4
adopted models. For daily maxima, SE8 was found to be most satisfactorily as it is

Fig. 4 Comparison of daily maxima
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capable of generated daily maxima greater than the recorded maximum daily
rainfall of 423.5 mm. BC8 and TS were also satisfactory in generating the trend, but
they tend to have values slightly lower than the recorded maximum. Nevertheless,
SE8, BC8, and TS are satisfactory in generating similar trend of daily maxima to
the recorded data, hence satisfactory in generating extreme rainfall events. LOG
seems to be overestimating the occurrences of daily maxima, with the model
generating daily maxima with higher magnitude at higher frequencies compared to
other models and also compared to the recorded data.

Figures 5, 6, 7, and 8 show the comparison of monthly statistics. The daily data
(recorded and generated) were accumulated on monthly basis, and statistical
comparisons were made between the cumulative monthly figures. Figure 5 shows

Fig. 5 Monthly means
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that for monthly means, SE8, BC8, and TS were most satisfactory in generating
monthly means. Figure 6 shows that SE8 and BC8 were most satisfactory in
generating monthly standard deviations, followed by LOG, as TS tends to under-
estimate the monthly standard deviations. Figure 7 shows that for monthly maxima,
SE8, BC8, and LOG were most satisfactory, while TS tends to generate lower

Fig. 7 Monthly maxima

Fig. 8 Monthly minima
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maxima. Figure 8 shows that for monthly minima, SE8, BC8, and LOG were most
satisfactory, while TS tends to generate higher minima during the first quarter.
Thus, TS is not able to generate extreme rainfall or drought events.

Table 6 shows the comparison of annual statistics. For annual statistics, SE8 and
BC8 are satisfactory in generating annual means, standard deviations, skews, and
maxima and minima. TS is only satisfactory in generating annual means, but tends
to underestimate the standard deviations, skews, and maxima and overestimate the
minima. Thus, TS is unable to reproduce the variations in the recorded data. LOG
generated data with lower annual means (14.4 % lower than the annual recorded
rainfall), satisfactory standard deviations, skews, and maxima and minima. LOG
had the tendency to underestimate the annual rainfall figures.

Figure 9 shows the comparison of average length of wet spells. In terms of
sequences of rainfall events, all models were generally satisfactory in reproducing
the average lengths of wet spells. Figure 10 shows the comparison of average length
of dry spells. LOG tends to underestimate the average lengths of dry spells, while
the other three models (SE8, BC8, and TS) are satisfactory. Thus, LOG is unable to
model drought events satisfactorily.

Table 6 Annual statistical comparison

Measures Recorded LOG TS SE8 BC8

Mean (mm) 1629.2 1394.8 1703.4 1669.4 1678.1

Std. Dev.(mm) 515.0 457.2 263.6 474.0 499.6

Skew 0.5 0.7 0.3 0.5 0.6

Maximum (mm) 3103.3 3222.5 2617.8 3643.0 3736.5

Minimum (mm) 684.9 358.5 1029.2 574.2 632.8

Fig. 9 Average length of wet spells
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After further comparisons were made, findings are consistent with the daily
statistical comparison (Tables 3, 4, and 5). It is also indicated that the TPM is the
most satisfactory model. This finding is consistent with earlier discussions on
Tables 3, 4, and 5 and also with other researches, such as by Srikanthan et al. [28].
Thus, TPM can be used to generate stochastic daily rainfall data, which will give
synthetic data that is statistically similar to the recorded data.

4 Conclusions

In conclusion, except for QT, all the other models have produced synthetic rainfall
data, which are statistically similar to those of the available data. The data generated
have similar stochastic properties compared to the recorded data, and statistically, it
can be deduced that both samples (recorded and generated sets) come from the
same statistical population.

In comparison, the most accurate model is the TPM model for this particular
case. It is able to generate data with the closest statistical measures to those of the
recorded data. As the data in this case is shown to be persistent over the whole
80-year period, the model can be assumed to be able to forecast the variation in
rainfall data. Therefore, this model may be utilised for synthetic rainfall data
generations. These synthetic data can then assist in giving possible variations of
rainfall over longer period, which would be useful for forecasting.
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