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Abstract Flood duration, volume, and peak flow are important considerations in
flood risk analysis and management of hydraulic structures. The conventional flood
frequency analysis assumed that the marginal distribution functions of flood
parameters follow a certain pattern. However, such assumption is impractical
because a flood event is multivariate and the flood parameter distributions can be
different. These discrepancies were addressed using bivariate joint distributions and
Copula function which allow flood parameters having different marginal distribu-
tions to be analyzed simultaneously. The analysis used hourly stream flow data for
45 years recorded at the Rantau Panjang gauging station on the Johor River in
Malaysia. It was found that flood duration and volume are best fitted by the gen-
eralized extreme value distribution while peak flow by the Generalized Pareto.
Inference function for margin (IFM) method was applied to model the joint dis-
tributions of correlated flood variables for each pair and the results showed that all
the calculated θ values were in acceptable range of Gaussian Copula. By hori-
zontally cutting the joint cumulative distribution function (CDF), a set of contour
lines were obtained for Gaussian Copula which represented the occurrence prob-
abilities for the joint variables. Also the joint return period for pair of flood variables
was calculated.
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1 Introduction

Detailed information on random yet mutually correlated flood parameters such as
flood duration, flood volume, and peak flow is crucial for the design, management,
and planning of hydrological structures. A number of flood frequency analysis [1]
methodologies has been developed so far to summarize flood characteristics and
find their correlations to estimate the severity of flood events using univariate [2–4]
and multivariate techniques [5–8]. Both analyses require many restrictive
assumptions to be considered [5]. However, the crucial flood characteristics can be
presented using multivariate analysis as a joint cumulative distribution function
(CDF) and probability density function (PDF). Therefore, multivariate analyses are
getting increasingly more popular in recent years for flood frequency analysis [6–8].

The best marginal distribution for the flood parameters aforementioned is not
necessarily from the same probability distribution function. This has encouraged the
introduction of a Copula concept [9, 10] into flood frequency analysis [11–13] to
model the correlations among the flood parameters without taking the type of mar-
ginal distributions into consideration. This implies that such joint distribution model
is not as restricted as traditional flood frequency analyses. A univariate marginal can
be connected to its full multivariate distribution using a Copula. Its model gives more
freedom than traditional bivariate models by accommodating various marginal dis-
tributions. Therefore, Copula-based flood frequency analysis has emerged as a better
option than conventional ones, and its empirical joint distribution has been proven
superior to standard join parametric distribution [14, 15]. Copula models have been
successfully applied in many fields including survival analysis [16–18], actuarial
science [19, 20], and finance [21, 22] though their numbers are still rather limited at
this stage.

Generally, Copulas can be parameterized by one or two parameters. Gaussian
Copula, a member of Copula family, can be computed and simulated easily and can
also be swiftly extended to arbitrary dimensions. Moreover, it can be uniquely
defined by the correlation matrix of marginal distributions and therefore only
requires calculating pairwise correlations. Gaussian Copula has been used in this
study to estimate the joint CDF and joint bivariate return period of three flood
parameters of the Johor River in Malaysia.

2 Materials and Methods

2.1 Case Study

The Johor River (Fig. 1) is located in the south of Peninsular Malaysia, covering an
area of 2700 km2. The topography of the catchment is undulating, but quite steep in
the upstream. It has a tropical climate with a mean annual rainfall of 2470 mm,
mean air temperature of 28.5 °C, and mean relative humidity of 85 %. This river is
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selected since flood is a recurrent phenomenon in the basin. This study utilized
45-year hourly stream flow data of Johor River measured at the Rantau Panjang
gauging station (01° 46′ 50″N and 103° 44′ 45″E) by the Department of Irrigation
and Drainage (DID), Malaysia.

2.2 Determination of Flood Characteristics

The hourly river discharge data aforementioned were utilized to determine the
annual flood peaks and its corresponding volume and duration. The initiation and
ending of all flood events were marked using the method of [23, 24]. The peak flow
ðQpÞ was determined using the flood duration frequency approach [25], where the
peak flow corresponds to the maximum amount of flood in each water year. The
flood volume (V) is approximately the total water volume, and the flood duration
(D) is the time elapsed during the flood event.

Fig. 1 Location of Johor River in south of peninsular Malaysia
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2.3 Modeling Peak flow, Flood Duration,
and Flood Volume

The distribution of the flood variables was modeled using Generalized Pareto,
Pearson, Exponential, Beta, and General Extreme Value distributions. The
goodness-of-fit tests measure how well a random sample fits a theoretical PDF. In
this study, the Kolmogorov–Smirnov (K-S) goodness-of-fit tests were conducted at
a 5 % significance level.

2.4 Copula Function

The function of a Copula is a joint distribution with uniform random variables [26],
which can be expressed as:

C : ½0; 1�n ! ½0; 1�

Within the unit hypercube, every n dimensional hyper cube’s probability has to
be positive. Sklar’s theorem [9] links the Copulas to the multivariate distributions,
which means that the Copula can represent each multivariate distribution
F(t1, …, tn) as:

Fðt1; . . .; tnÞ ¼ CðFt1ðt1Þ; . . .;FtnðtnÞÞ ð1Þ

where FtiðtiÞ is the ith one-dimensional margin of the multivariate distribution. The
Copula C becomes unique when the distribution is continuous. Nelsen [10] con-
structed Copulas from distribution function as:

CðuÞ ¼ Cðu1; . . .; unÞ ¼ F F�1
t1 ðt1Þ; . . .;F�1

tn ðtnÞ
� �

ð2Þ

If the corresponding dependence of a bivariate Copula is symmetrical, it can be
expressed as:

Cðu; vÞ ¼ Cð1� u; 1� vÞ � 1þ uþ v ð3Þ

When the Copula density is symmetrical with the secondary diagonal of the unit
square, i.e., u = 1 − v, the Copula density, c, fulfills the following condition:

Cðu; vÞ ¼ Cð1� u; 1� vÞ ð4Þ
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2.5 Gaussian (Normal) Copula

The normal Copula [27, 28] takes the form of:

Cðu; v; hÞ ¼ UGðU�1ðuÞ;U�1ðvÞ; hÞ ð5Þ

¼
ZU�1ðuÞ

�1

ZU�1ðvÞ

�1

1

2pð1� h2Þ1=2
� �ðx2 � 2hxyþ y2

2ð1� h2Þ

� �
dxdy ð6Þ

where U�1ð�Þ is the inverse function of the standard normal distribution (CDF) Uð�Þ
and h is the linear correlation coefficient between U�1ðuÞ and U�1ðvÞ restricted to
the interval (−1, 1) which is explained in below.

2.6 Parameter Estimation of Copulas

The inference function for margin (IFM) method was used to determine the Copula
parameter ðhÞ, which is a parameter used to measure the degree of association
between two univariate CDFs, using MATLAB coding in this research. Basically,
this method has two steps:

1. Using two margins’ log-likelihood functions, estimate a and b for the PDF of
fxðx; aÞ and fyðy; bÞ, respectively. The two parameters a and b may have
a1; a2; . . .; ai; . . .; am; i 2 ½1;m� and b1; b2; . . .; bi; . . .; bn; j 2 ½1; n�, respectively.

2. Use the estimated a and b to solve the general log-likelihood function to find θ
through Eq. 7:

ln L½fx;yðx; y; a; b; hÞ� ¼
Xk
k¼1

ln ChðFXðxk; aÞ;FY ðyk; bÞ; hÞ

þ
Xk
k¼1

ln½fxðxk; aÞþ fYðyk; bÞ�
ð7Þ

The accepted rang of Gaussian Copula parameter is (�1\h\1).

2.7 Bivariate Joint Return Periods

For the bivariate case, the joint return period can be characterized in two ways:
(i) Return period for X ≥ x AND Y ≥ y, let the corresponding return period
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represented by TXY; (ii) Return period for X ≥ x OR Y ≥ y, let the corresponding
return period represented by T’XY. The joint return periods, and, or Copula-based
flood events can be expressed as follows [13, 29]):

Tx;y ¼ 1
PðX� xANDY � yÞ ¼

1
1� FxðxÞ � FyðyÞþFx;yðx; yÞ

¼ 1
1� FxðxÞ � FyðyÞþC FxðxÞ;FyðyÞ

� � ð8Þ

T 0
x;y ¼

1
PðX� x OR Y � yÞ ¼

1
1� Fx;yðx; yÞ ¼

1
1� C FxðxÞFyðyÞ

� � ð9Þ

Based on the above equations, the meaning of Tx;y is the joint return period for
variable X equal or greater then a certain value and variable Y equal to or greater
than another certain value. On the other hand, the meaning of T 0

x;y is the joint return
period for variable X equal or greater than a certain value or variable Y equal to or
greater than another certain value [30].

3 Result and Discussion

3.1 Statistical Analysis

The summary of statistics for the flood parameters is given in Table 1. The observed
averages of peak flow, flood duration, and flood volume at the study site were
248 m3/s, 349 h, and 105 mm, respectively.

Table 2 presents the contribution of the shape parameter (j), continuous scale
parameter (r), and continuous location parameter (l) of various distributions used
to fit flood variable data. Results of the K-S test showed that the Generalized Pareto
distribution is most compatible with peak flow distribution. The best-fit distribution
for the flood duration and volume distributions is the Generalized Extreme Value.
The Kendall’s rank correlations are tabulated in Table 3. The positive value of
Kendall’s rank correlation shows that the flood variables are dependent and satisfy
the first condition of Copula [31].

Figures 2, 3, and 4 present the joint CDF of the peak flow and duration, peak flow
and volume, and duration and volume based on Gaussian Copula, respectively. By
horizontally cutting the joint cumulative distribution, a set of counter lines are
obtained, which are also shown in the figures. It should be noted that for a given joint
probability, there may exist more than one possible flood variable combinations. The
contour lines of joint cumulative distribution of the peak flow and duration are
depicted in Fig. 2. Joint cumulative distribution refers to the probability that a
specified value of one variable will be exceeded at the same time with a specified
value of a second variable. Therefore, the joint probability graph presented in Fig. 2
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refers to the chance of two conditions, namely peak flow and flood duration
occurring at the same time. Joint cumulative contours, which are lines of equal
probability of the variables, are simultaneous probability values indicated by any
point on the contour. The amount of a CDF value is the probability offlood variables
which call P(x) to being less than or equal to the specific value. On the other hand,
the probability of flood variables to exceed the specific value is 1 − P(x).

Figures 2, 3, and 4 show how joint distribution of two flood variables can be
determined simultaneously and thus more meaningful for solving many problems of
hydrological design. For example, for a given flood peak, it is possible to obtain the

Table 1 The summary statistics of flood parameters

Peak flow (m3/s) Duration (h) Volume (mm)

Maximum 725 600 231

Minimum 77 144 20

Average 248 349 105

SDa 164 126 49
aStandard deviation. Volume in unit depth (mm) which is the flood volume (m3) divided by the
basin area

Table 2 Fitting result parameters for various distributions of flood variables

Flood variable Best fitted distribution Parameters

Peak flow (QP) Gen. Pareto j ¼ �0:033905

r ¼ 184:48

l ¼ 70:684

Duration (D) Gen. extreme value (GEV) j ¼ �0:20041

r ¼ 122:45

l ¼ 299:35

Volume (V) Gen. extreme value (GEV) j ¼ �0:074

r ¼ 42:82

l ¼ 83:01

Note Based on the Kolmogorov–Smirnov test, the Generalized Extreme Value distribution is best
fitted to flood volume and duration, and Gen. Pareto distribution is the best for peak flow

Table 3 Kendall’s rank correlations and Copula linear correlation parameter among flood
variables

Peak flow-Duration Peak flow-Volume Duration-Volume

Kendall’s rank correlation 0.472 0.015 0.333

h 0.0165 0.6455 0.4397
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Fig. 2 The joint CDF f(x, y) of peak flow (Q), duration (D), and the contour of f(x, y) based on
Gaussian Copula

Fig. 3 The joint CDF g(x, y) of peak flow (Q), volume (V), and the contour of g(x, y) based on
Gaussian Copula

Fig. 4 The joint CDF h(x, y) of duration (D), volume (V), and the contour of h(x, y) based on
Gaussian Copula
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probability of non-occurrence of various combinations of flood duration and flood
volume, and vice versa. In short, the figure allows one to obtain information
concerning the occurrence probabilities of flood volume under the condition that a
less than or equal to given flood peak or flood duration occurs, and vice versa.

The Copula-based joint CDF of peak flow and flood duration for Johor River
based on the Gaussian Copula is shown in Eq. (10):

Fðx; yÞ ¼
Z/�1 1� 1�0:04x�70:684

184:48ð Þ 1
0:04

� �

�1

Z/�1 exp � 1�0:2 y�299:35
122:45ð Þð Þ 1

0:24

� �� �

�1
0:1592

� exp � x2 � 0:033 xyþ y2

1:9995

� �
dxdy ð10Þ

where / ¼ CDF of the standard normal and the /�1 is the inversed standard
normal.

Figure 2 revealed that the probabilities are between 0.2 and 1.0 based on the
Gaussian Copula. Furthermore, it is possible to derive the probability of occurrence
for each pair of given values of peak flow and duration. For example, for the peak
flow values of less or equal to 113 m3/s and duration less or equal to 229 h, the
probability of occurrence is 0.2. Conversely, the probability of occurrence for peak
flow exceeding 113 m3/s and the duration exceeding 228 h is 0.8 (1–0.2).

The probabilities of occurrence of joint peak flow and duration based on the
Gaussian Copula are 0.6,0.4, 0.2, and 0, when the peak flows are greater than
168 m3/s, 241 m3/s, 339 m3/s, and 447 m3/s and the durations greater than 296 h,
363 h, 433 h, and 492 h, respectively. Specifically, the joint probability of occur-
rence for this combination is close to 0 when the peak flow is greater than 447 m3/s
and duration greater than 492 h. Also, Fig. 2 shows that when the peak flow is equal
to 113 m3/s, the probability of not being exceeded is always 0.2 for all values of
flood durations that fall on the 0.2 contour line.

Meanwhile, the Gaussian Copula-based joint CDF of peak flow and flood vol-
ume can be calculated as in Eq. 11 below:

/�1Gðx; yÞ ¼
Z/�1 1� 1�0:03x�70:684

184:48ð Þ 1
0:04

� �

�1

Z/�1 exp � 1�0:07399 y�83:017
42:822ð Þð Þ 1

0:07

� �� �

�1
0:2084

� exp � x2 � 1:291xyþ y2

1:1667

� �
dxdy

ð11Þ

Figure 3 depicts the contour lines generated from Eq. 11. For hydraulic design
and hydraulic infrastructure operation, a combined occurrence of these two flood
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characteristics is often important. The joint probability graph presented in Fig. 3
refers to the chance of peak flow and flood volume occurring simultaneously. In
Fig. 3a, b, the probabilities are shown in intervals of 0.2 from 0 to 1.0.

The probabilities of joint peak flow and flood volume occurrence based on the
Gaussian Copula were 0.8, 0.6, 0.4, 0.2, and 0, when the peak flow were greater
than 81, 139, 202, 308, and 428 m3/s and the flood volume greater than 19, 66, 113,
159, and 183 mm, respectively. It can be mentioned that the joint probability is 0.2
when the peak flow exceed 308 m3/s and the flood volume is greater than 159 mm.
The joint probability is almost zero when the peak flood exceeds 428 m3/s and flood
volume is more than 183 mm. On the other hand, when the peak flow is greater than
81 m3/s, the probability of occurrence across all flood volumes is anticipated to be
always 0.8.

The Copula-based joint CDF of flood duration-flood volume for Johor River
based on the Gaussian Copula is calculated as in Eq. 12:

Hðx; yÞ ¼
Z/�1 exp � 1�0:2 x�299:35

122:45ð Þð Þ 1
0:2

� �� �

�1

Z/�1 exp � 1�0:07 y�83:017
42:822ð Þð Þ 1

0:09

� �� �

�1
0:1772

� exp � x2 � 0:8794xyþ y2

1:6133

� �
dxdy

ð12Þ

Similar to Figs. 2 and 3, in Fig. 4, the contour lines of joint CDF for flood duration
and flood volume based on Eq. 12 are shown. Similarly, it illustrates the chance of a
certain amount of flood duration and flood volume occurring at the same time. As
shown in Fig. 4, the probabilities of occurrence based on the Gaussian Copula were
0.8, 0.6, 0.4, 0.2, and 0, when the flood duration was greater than or equal to 221,
307, 368, 420, and 496 h while the flood volume was greater than or equal to 66, 96,
129, 159, and 194 mm. These are interpreted in such manner: assuming that the flood
duration is greater than or equal to 420 h and the flood volume is not smaller than
159 mm, the joint probability of occurrence is thus 0.2. Also, if flood duration and
flood volume are, respectively, smaller than 420 h and 159 mm, the joint probability
now becomes 0.8. The probability is at its maximum (i.e., 0) when flood duration
exceeds 496 h and flood volume exceeds 194 mm. Also, the probability is consis-
tently 0.2 if the flood volume is less than 66 mm.

Figures 2, 3, and 4, show joint distribution of two flood variables can be
determined simultaneously to help in solving many of hydrological design prob-
lems is shown. The graphs allow one to obtain information concerning the
occurrence probabilities when two variables are recorded at certain values.

The contour lines for specific joint return periods, in which both peak flow and
duration are exceeded (TQD), peak flow and volume are exceeded (TQV), and flood
volume and duration are exceeded (TVD), have inward bounds as shown in
Figs. 5a, 6a, and 7a, respectively, whereas the contour lines for specific joint return
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periods, in which either peak flow or duration is exceeded (T′QD), peak flow or
volume is exceeded (T′QV), and flood volume or duration is exceeded (T′VD), have
outward bounds as shown in Figs. 5b, 6b, and 7b, respectively.

Figure 5a is derived from the Gaussian Copula and shows that for the bivariate
joint return periods of 2, 5, 10, 20, 50, and 100 years, both peak flow and flood
duration are, respectively, greater than or equal to 230 m3/s and 367 h; 391 m3/s and
447 h; 510 m3/s and 528 h; 623 m3/s and 580 h; 770 m3/s and 630 h; and 874 m3/s
and 668 h. Therefore, the joint return period of occurrence of peak flow and flood
duration is 50 years when peak flow is greater than 770 m3/s and flood duration is
greater than 630 h. In addition, Fig. 5b shows the joint return period of peak flow or
flood duration for 2, 5, 10, 20, 50, and 100 years when flood peak exceeds a specific
value or flood duration exceeds another specific value.

Historical floods are analyzed by using the graphs given in Figs. 5a, b. The worst
flood in the basin during the study period occurred in the year 1995–1996. The
flood had a peak flow of 725 m3/s and duration of 192 h. The joint return periods
derived from Gaussian Copula for this flood event TQD estimated using Eq. 7;
T′QD using Eq. 8 are 38.64 and 0.94 years, respectively. This means that the joint
return period of peak flow and flood duration greater than or equal to 725 m3/s and
192 h, respectively, is 38.64 years, and the return period of either peak flow greater
than 725 m3/s or flood duration greater than 192 h is only 0.94 year. The summary
of bivariate joint return period of flood variables based on the Gaussian Copula
from Figs. 5, 6, and 7 is as follow:

From Figs. 5a, 6a, and 7a, it can be noticed that for the same values of peak flow
and duration, peak flow and volume, volume and duration, the joint return period of
T is much greater than that of T′. For example, in the mentioned year 1995–1996,

Fig. 5 Joint return periods of peak flow and duration based on the Gaussian Copula: a both
duration and peak flow are exceeded, TQD (years); b either duration or peak flow is exceeded, T′
QD (years)
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for annual peak flow of 725 m3/s the corresponding flood duration was 192 h, the
joint return periods for this flood event TQD is 38.64 years and T′QD is 0.94 year.
Similar results are observed for joint return periods of volume and duration
(i.e., TVD is greater than that of T′VD) and also joint return periods of peak flow and
volume (i.e., TQV is greater than that of T′QV).

Fig. 6 Joint return periods of peak flow and volume based on the Gaussian Copula for a both
volume and peak flow are exceeded, TQV (years); b either volume or peak flow is exceeded, T′QV
(years)

Fig. 7 Joint return periods of flood duration and volume based on the Gaussian Copula: a both
flood duration and volume are exceeded, TVD (years); b either duration or volume is exceeded, T′
VD (years)
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4 Conclusion

The concept of Copula has been used in this paper to derive bivariate joint dis-
tributions for the Johor River Basin’s flood characteristics. The modeling of flood
variable function was done using the Generalized Pareto, Pearson, Exponential,
Beta, and GEV distributions with their goodness of fit measured using the K-S test.
The best fitted distribution functions were used to develop the joint CDFs of peak
flow volume, volume duration, and peak flow duration using Gaussian Copula.
Moderate correlations were found between peak flow and flood volume (Kendall’s
τ = 0.472) as well as flood duration and flood volume (Kendall’s τ = 0.333).
However, the peak flow and flood duration combination had a weak correlation
(Kendall’s τ = 0.015). Statistically significant correlations between the flood vari-
ables are prerequisite for Gaussian Copula bivariate flood frequency analysis. The
Copula parameter h was applied to model the joint distributions of correlated flood
variables for each pair based on the IFM method. Results showed that all calculated
h values were within the acceptable range and could be applied to compute the
bivariate joint distribution of flood variables for Gaussian Copula families. By
horizontally cutting the joint CDF, a set of contour lines were obtained for each
Copula family which represented the occurrence probabilities for the joint variables
at intervals of 0.2, 0.4, 06, 0.8, and 1.0 were obtained. The joint return periods for
pair of flood variables were also calculated. For Gaussian Copula, the bivariate joint
return periods of 2, 5, 10, 20, 50, and 100 years for peak flow (m3/s) equal to or
greater than and flood duration (h) equal to or greater than are (230 m3/s, 367 h),
(391 m3/s, 474 h), (510 m3/s, 528 h), (623 m3/s, 580 h), (770 m3/s, 630 h), and
(874 m3/s 668 h), respectively. For hydraulic design and hydraulic infrastructure
operation, a combined occurrence of two flood characteristics is often important.
Therefore, it is expected that the results of bivariate Copula frequency analysis
could provide a better alternative for water resources management and flood risk
assessment. Development of trivariate Copula functions for flood frequency anal-
ysis is recommended for future work. For simplicity, this can be achieved by
performing bivariate analysis in two stages: first by determining the bivariate of
variable pairs and then rerunning the bivariate of the paired variables with another
variable. Examples of combinations include the bivariate of peak flow flood volume
with flood duration; peak flow duration with flood volume; and flood volume flood
duration with peak flow.
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