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Abstract. The Locally Self-consistent Multiple Scattering (LSMS) code
solves the first principles Density Functional theory Kohn-Sham equation
for a wide range of materials with a special focus on metals, alloys and
metallic nano-structures. It has traditionally exhibited near perfect scal-
ability on massively parallel high performance computer architectures.
We present our efforts to exploit GPUs to accelerate the LSMS code
to enable first principles calculations of O(100,000) atoms and statisti-
cal physics sampling of finite temperature properties. Using the Cray
XK7 system Titan at the Oak Ridge Leadership Computing Facility we
achieve a sustained performance of 14.5PFlop/s and a speedup of 8.6
compared to the CPU only code.

1 Multiple Scattering Theory

Density Functional Theory [4], especially in the Kohn-Sham formulation [6] rep-
resents a major, well established, methodology for investigating materials from
first principles. Most computational approaches to solving the Kohn-Sham equa-
tion for electrons in materials attempt to solve the eigenvalue problem for peri-
odic systems directly. The solution of the eigenvalue problem for dense matrices
results in cubic scaling in the system size. Additionally these spectral methods
require approximations such as the use of pseudopotentials or linearized basis
sets for all electron methods to make the size of the basis set manageable.
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In this paper we utilize a different approach to solving the Kohn-Sham equa-
tion using multiple scattering theory in real space. The basis of this method is
formed by the Kohn-Korringa-Rostocker (KKR) method [5,7], that allows for
the solution of the all electron DFT equations without the need for linearization.

1.1 The LSMS Algorithm

For the energy evaluation, we employ the first principles framework of density
functional theory (DFT) in the local density approximation (LDA). To solve the
Kohn-Sham equations arising in this context, we use a real space implementation
of the multiple scattering formalism. The details of this method for calculating
the Green function and the total ground state energy E[n(r),m(r)] are described
elsewhere [3,14]. Linear scaling is achieved by limiting the scattering distance
of electrons in the solution of the multiple scattering problem. Additionally the
LSMS code allows the constraint of the magnetic moment directions [11] which
enables the sampling of the excited magnetic states in the Wang-Landau proce-
dure described below.

For the present discussion it is important to note that the computationally
most intensive part is the calculation of the scattering path matrix τ for each
atom in the system by inverting the multiple scattering matrix.

τ = [I − tG0]
−1

t (1)

While the rank of the scattering path matrix τ is proportional to the number of
sites in the local interaction zone and to (lmax + 1)2 (typically a few thousand,
e.g. for lmax = 3 and 113 atoms in the local interaction zone, the rank is 3616.),
the only part of τ that will be required in the subsequent calculations of site
diagonal observables (i.e. magnetic moments, charge densities, and total energy)
is a small (typically 32 × 32) diagonal block of this matrix. This will allow us to
employ the algorithm described in the next section for maximum utilization of
the on node floating point compute capabilities (Fig. 1).

From benchmarking a typical calculation of 1024 iron atoms with a local
interaction zone radius of 12.5a0 on the AMD processors on Titan, we find that
the majority of time (95%) and floating point operations are spent inside the
inversion of the multiple scattering matrix to obtain the τ -matrix. About half
of the remaining time is used to construct this matrix. Thus our approach to
accelerate the LSMS code for GPUs concentrated on these two routines that will
be presented in detail in the following two sections.

1.2 Scattering Matrix Construction

To calculate the τ -matrix (Eq. 1) the first step involves constructing the scatter-
ing matrix

m = I − tG0 (2)
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Fig. 1. Parallelization scheme of the LSMS method [14].

to be inverted. The m matrix is constructed from blocks that are associated with
the sites i and j in the local interaction zone.

mij = Iδij − tiG
ij
0 (3)

Each of these block can in principle be evaluated in parallel. The size of these
individual blocks is given by the cut-off in the l expansion of the scattering
expansion. For a spin-canted calculation the size of a block is 2(lmax + 1)2, i.e.
for a typical lmax = 3 each of the mij blocks has rank 32. The indices inside
each block label the angular momentum l, m. For a typical number of O(100)
atoms in the local interaction zone, there are O(10, 000) blocks of the m matrix
that need to be calculated, thus providing significant parallelism that can be
exploited on accelerators. On the accelerator the m matrix is first initialized to
a unit matrix to account for the Iδij part. The single site scattering matrices are
currently calculated on the CPU, as this involves only the numerical evaluation
of ordinary differential equations for initial values determined by the energy and
the angular momentum l and are communicated as needed to remote nodes and
transferred to the GPU memory.
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The structure constants Gij
0,LL′(E) are geometry dependent and the atomic

distances Rij and directions R̂ij are transferred to the GPU memory at the
beginning of the program and remain there unchanged. The structure constants
are given by the expression

Gij
0,LL′(E) = 4πil−l′

∑

L′′
CL

L′L′′D
ij
L′′(E) (4)

where L are the combined (l,m) indices and CL
L′L′′ are the Gaunt coefficients.

The factor Dij
L′′(E) is given by the following equation.

Dij
L (E) = −il+1

√
Ehl(

√
ERij)Y ∗

L (R̂ij) (5)

Here hl(x) are the spherical Hankel functions and YL(r̂) are the spherical har-
monics. These structure constants are evaluated inside a CUDA kernel that is
allows parallelization in L,L′ and executed in multiple streams for i, j. The
final product tiGij is evaluated using batched cuBLAS double complex matrix
multiplications.

1.3 Matrix Inversion

The most computationally intensive part of the LSMS calculation is the matrix
inversion to obtain the multiple scattering matrix τ . (Eq. 1) The amount of
computational effort can be reduced by utilizing the fact that for each local
interaction zone only the left upper block (τ00) of the scattering path matrix τ
is required. LSMS uses an algorithm that reduces the amount of work needed
while providing excellent performance due to its reliance on dense matrix-matrix
multiplications that are available in highly optimized form in vendor or third
party provided implementations (i.e. ZGEMM in the BLAS library).

The method employed in LSMS to calculate the required block of the inverse
relies on the well known expression for writing the inverse of a matrix in term
of inverses and products of subblocks:

(
A B
C D

)−1

=
(

U V
W Y

)

where

U = (A − BD−1C)−1

and similar expressions for V , W , and Y . This method can be applied multiple
times to the subblock U until the desired block τ00 of the scattering path matrix
is obtained.

The operations needed to obtain the τ00 thus are matrix multiplications and
the inversion of the diagonal subblocks. For the matrix multiplication on the
GPUs we can exploit the optimized version of these routines that are readily
available in the cuBLAS library. The size of the intermediate block sizes used in
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the matrix inversion serves as a tuning parameter to optimize the performance
of our block inversion algorithm. As the block size becomes larger, the resulting
matrices entering the matrix multiplication usually result in significant improve-
ments of the matrix multiplication performance at the cost of performing more
floating-point operations then are strictly needed to obtain the final τ00 block.
Thus there exists a optimum intermediate block size that minimizes the run-
time of the block inversion. For the CPU only code this is achieve at a rank of
the intermediate blocks of approximately 1000. For the GPU version we employ
an optimized matrix inversion algorithm written in CUDA that executes the
whole inversion in a single kernel in GPU memory, thus avoiding costly memory
transfers and kernel launches. The maximal rank of double complex matrices
that can be handled by this algorithm is 175, thus providing the size limit for
the intermediate blocks and the block size for which we observe the maximum
performance of the GPU version reported in this paper.

2 Wang-Landau Monte-Carlo Sampling

The LSMS method allows the calculation of energies for a set of parameters
or constraints {ξi} that specify a state of the system that is not the global
ground state. Examples of this include arbitrary orientations of the magnetic
moments or chemical occupations of the lattice sites. Thus we can calculate the
energy E({ξi}) associated with these sets of parameters. Evaluating the partition
function

Z(β) =
∑

{ξi}
e−βE({ξi}), (6)

where β = 1/kBT is the inverse temperature and the sum is over all possi-
ble configurations {ξi}, allows the investigation of the statistical physics of the
system and the evaluation of its finite temperature properties. In all but the
smallest most simple systems (e.g. for a few Ising spins), it is computational
intractable to perform this summation directly. Monte-Carlo methods have been
used successfully to evaluate these very high dimensional sums or integrals using
statistical importance sampling. The most widely used method is the Metropolis
method [8], which generates samples in phase space with a probability that is
given by the Boltzmann factor e−βE({ξi}).

For our work we have chosen to employ the Wang-Landau Monte-Carlo
method [12,13], which is a method to calculate the density of states g(E) of
the system for the phase space spanned by the set of classical parameters that
describe the system.

We have parallelized the Wang-Landau procedure by employing multiple,
parallel walkers that update the same histogram and density of states [2] as
illustrated in Fig. 2.

3 Scaling and Performance

The WL-LSMS code has been known for its performance on scalability, as has
been shown on CPU only architectures, such as the previous Jaguar system at
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Wang-Landau Driver (1 process)
g(E); {mi}M

LSMS
Instance 1
(N procs)

LSMS
Instance 1
(N procs)

LSMS
Instance M
(N procs)

Fig. 2. Parallelization strategy of the combined Wang-Landau/LSMS algorithm. The
Wang-Landau process generates random spin configurations for M walkers and updates
a single density of states g(E). The energies for these N atom systems are calculated by
independent LSMS processes. This results in two levels of communication, between the
Wang-Landau driver and the LSMS instances, and the internal communication inside
the individual LSMS instances spanning N processes each.

the Oak Ridge Leadership Computing Facility [2]. The acceleration of significant
portions of the code for GPUs, combined with major restructuring of the high
level structure of the LSMS code was able to maintain the excellent scalability of
the code. In Fig. 3 we show the near perfect weak scaling of the LSMS code in the
number of atom, while maintaining the number of atom per compute node over
five orders of magnitude from 16 iron atoms to 65, 536 atoms, while achieving a
speedup factor of 8.6 for the largest systems compared to using the CPUs only
on the Titan system at Oak Ridge. This performance puts calculations of million
atom size systems within reach for the next generation of supercomputers such
as the planned Summit system at the Oak Ridge Leadership Computing Facility.

For the statistical sampling with the Wang-Landau method as described
above, we tested the scaling of the code in the number of walkers. The perfor-
mance tests were done for 1024 iron atoms and the energies were self-consistently
calculated for a LIZ radius of 12.5a0 allowing us to achieve a sampling rate of
nearly one Monte-Carlo sample per second on Titan. The scaling of the energy
samples per wall-time is shown in Fig. 4.

To assess the improvements in the computational and power efficiency that
resulted from the porting of the significant portions of the code to GPU acceler-
ators, we have run an identical WL-LSMS calculation for 1024 iron atoms with
290 walkers on 18561 nodes on Titan at the Oak Ridge Leadership Computing
Facility for 20 Monte-Carlo steps per walker. We measured the instantaneous
power consumption at the power supply to the compute cabinets which includes
the power for compute, memory and communication as well as line losses and
the secondary cooling system inside the cabinets, but excludes the power con-
sumption of the file system and the chilled water supply. The measurements
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Fig. 3. Weak scaling of LSMS on Titan utilizing the GPU accelerators for a bulk iron
calculation. 16 atoms on 4 nodes require 67.343 s per iteration step and 65536 atoms
on 16384 nodes require 69.988 s, resulting in a parallel scaling efficiency of 96 % across
Titan.

were performed both for a CPU only run as well a for a computation utilizing
the GPUs. The results are shown in Fig. 5. The difference in power consump-
tion between the compute intensive LSMS calculations, that take most of the
time, and Monte-Carlo steps that are marked by a significant drop in the power
consumption is obvious and this allows a clear comparison of the two runs.

4 Applications

In this section we review results that we have obtained using the method
described in this paper to calculating the Curie temperatures of various mate-
rials. In particular we have applied this method to iron and cementite [1] and
to Ni2MnGa [9]. For the underlying LSMS calculations the atoms are placed on
lattices with lattice parameters corresponding to the experimental room tem-
perature values. The self-consistently converged potentials for the ferromagnetic
or ferrimagnetic ground states were used for all the individual frozen-potential
energy calculations in the combined Wang-Landau/LSMS algorithm. The calcu-
lations were performed by randomly choosing a site in the supercell and randomly
picking a new moment direction. In the case of Fe and Fe3C the convergence cri-
terion for the Wang-Landau density of states was chosen to be the convergence of
Curie temperature. The density of state thus obtained was used to calculate the
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Fig. 4. Scaling of Wang Landau LSMS on Titan for 1024 Fe calculations, using 128
nodes per Monte-Carlo walker. The code shows good scaling in the number of states
sampled with increasing number of walkers. With two walkers on 257 nodes the code
generates 0.0208 samples/second and with 96 walkers on 12289 nodes 0.9128 sam-
ples/second are generated, thus achieving a parallel efficiency of 92 %.

specific heat. The peak in the specific heat allows us to identify the Curie tem-
perature to be 980 K for iron, in good agreement with the experimental value of
1050 K. The Curie temperature obtained for Fe3C is 425 K which again is in good
agreement with the experimental value of 480 K. [1] For Ni2MnGa the Curie tem-
perature reported is 185 K, well below the experimental value of 351 K. [9] The
small cell used in these calculation (144 atoms) will have resulted in a significant
finite size error. Additionally, it is known that the localized moment picture that
underpins our WL-LSMS calculations does miss important contributions to the
fluctuations that determine the finite temperature magnetism in nickel, which
will contribute to the reduction of the calculated Curie temperature from the
experimental value. This was already observed by Staunton et al. [10] in disor-
dered local moment calculations that underestimate the Curie temperature of
pure Ni and they find 450 K as opposed to the experimental value of 631 K. We
propose to include fluctuations in the magnitude of local moments. Preliminary
calculations with a Heisenberg model that is extended with the inclusion of the
magnitude of the local moment as a variable indicates that this can result in an
increase in the Curie temperature.
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Fig. 5. Power consumption traces for identical WL-LSMS runs with 1024 Fe atoms on
18,561 Titan nodes (99 % of Titan). 14.5 PF sustained vs 1.86 PF CPU only. Runtime
is 8.6X faster for the accelerated code, Energy consumed is 7.3X less. GPU accelerated
code consumed 3,500 kW-hr, CPU only code consumed 25,700 kW-hr.

5 Conclusions

We have shown that for some classes of calculations, it is possible to make effi-
cient use of GPU accelerators with a reasonable amount of code modification
work. The acceleration of the code additionally results in significant energy sav-
ings while maintaining its scalability. Consequently the code and work presented
in this paper enables the first principles investigation of materials at scales that
were previously hard to access and pushes the possibilities for first principles
statistical physics. Ongoing work involves extending the capabilities of LSMS
presented in this paper to non spherical atomic potentials and to solving the
Dirac equation for the electrons in solids, which will allow the first principles
investigation of the coupling of magnetic and atomic degrees of freedom and
other effects involving atomic displacements. These additions to the code will
require additional work to accelerate the single site solvers for GPUs as in these
cases a significant amount of compute resources will be needed to solve the single
site equation for non spherical scatterers.
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