
SparkSCAN: A Structure Similarity Clustering
Algorithm on Spark

Qijun Zhou and Jingbin Wang(&)

Department of Mathematics and Computer Science,
Fuzhou University, Fuzhou 350108, China

369337098@qq.com, wjbcc@263.net

Abstract. The existing directed graph clustering algorithms are born with some
problems such as high latency, resource depletion and poor performance of
iterative data processing. A distributed parallel algorithm of structure similarity
clustering on Spark (SparkSCAN) is proposed to solve these problems: con-
sidering the interaction between nodes in the network, the similar structure of
nodes are clustered together; Aiming at the large-scale characteristics of directed
graphs, a data structure suitable for distributed graph computing is designed, and
a distributed parallel clustering algorithm is proposed based on Spark frame-
work, which improves the processing performance on the premise of the
accuracy of clustering results. The experimental results show that the SparkS-
CAN have a good performance, and can effectively deal with the problem of
clustering algorithm for large-scale directed graph.

Keywords: Directed graph clustering � Parallel algorithm � Spark � RDD

1 Introduction

With the wide application of network data, such as gene regulatory network, social
network and other network data in various fields, the scale of directed graph is growing
explosively. How to manage and use the massive data has become a hot research topic
in recent years [1]. Directed graph contains a wealth of data relationships, such as the
behavior of users in social networks. In order to discover the hidden cluster structure in
the network, traditional clustering methods are based on the link density, such as
Newman [2] algorithms and Kernighan-Lin [3] algorithms, which make the distance
between the nodes in the cluster closer, and make the distance between the cluster
nodes is far away to achieve the effect of clustering. However, the algorithms above
ignore the directed interaction and different functions that nodes may have in the graph
data. Based on the link density, Xu Xiao-wei [4] proposed the SCAN algorithm, which
is based on the structural similarity. However, the algorithm is only useful to the
undirected network of clustering and it doesn’t consider the variety of data relation-
ships in the real environment. Zhou Deng-yong [5] proposed a way making the directed
edges convert to the undirected edges, but the way ignore the structure information of
directed graph. Literature [6] transformed the network clustering problem into the
optimization problem of weighted cutting of directed graph for further study. However,
literatures [5, 6] did not distinguish the different functions of the nodes.

© Springer Science+Business Media Singapore 2016
W. Chen et al. (Eds.): BDTA 2015, CCIS 590, pp. 163–177, 2016.
DOI: 10.1007/978-981-10-0457-5_16



Chen Jia-jun [7] proposed a directed graph clustering algorithm DirSCAN based on
SCAN. Chen Ji-meng [8] proposed a parallel clustering algorithm PDirSCAN which
used MapReduce based on literature [7]. Zhao W [9] proposed a clustering algorithm
based on MapReduce by looking for connected components, however, there are some
problems such as high delay, high I/O operation of HDFS file system, and the poor
performance of iterative data processing. In this paper, we propose a structure similarity
clustering algorithm based on Spark framework with the advantages of iterative
computation. We calculate the similarity of the vertices and build the initial cluster with
the distributed framework; we perform cluster label expansion and synchronize oper-
ation in parallel to achieve the clustering of the vertices in the graph to reduce the
running time and computational cost. The experimental results show that the algorithm
can efficiently clustered in the big data environment for directed graph clustering.

The rest of the paper is organized as follows. In Sect. 2, we give a brief introduction
to the concept of graph clustering and Spark. In Sect. 3, we introduce our SparkSCAN
algorithm in detail. Section 4 presents the experimental results and analysis. Finally we
provide our conclusions in Sect. 5.

2 Preliminary

2.1 Spark

Spark [10] is a common parallel framework for the Berkeley AMP Lab UC. Spark has
the advantages of MapReduce Job, and intermediate output results can be saved in
memory, Job no longer need to read and write HDFS. Thus, Spark can be better applied
to data mining and machine learning.

2.2 Rdd

RDD [11] (Resilient Distributed Datasets), is an abstract concept of distributed
memory. RDD provides a highly constrained shared memory model, which is a
read-only collection of records, and can only be created by performing a set of
transformations (such as, join, and map) in the other RDD. These constraints make the
cost of achieving fault tolerance very low.

2.3 PDirSCAN Algorithm

A PDirSCAN algorithm based on directed graph is proposed in the paper [8].

Definition 1 (Neighborhood). Given a directed graph G = {V, E}. The directed edge
which from v to u is signed as < v, u >, v, u 2 V. The Neighborhood is a set of nodes
and itself which starting from the one step of v, denoted by Γ (v).

C vð Þ ¼ fu 2 Vj\v; u[ 2 Eg[ vf g

164 Q. Zhou and J. Wang



Definition 2 (Structural Similarity). For two nodes, the more coincident nodes can be
reached, the more likely to belong to the same cluster. The definition of structural
similarity, denoted by σ, is given by:

r ðu; vÞ ¼ j C ðuÞ \ C ðvÞ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffij C ðuÞ j � j CðvÞjp ð1Þ

Definition 3 (ε Neighborhood-Nodes). The definition of ε Neighborhood-Nodes,
denoted by Nε (u), is given by:

Ne uð Þ ¼ fv 2 C uð Þ j r u,vð Þ � e; e� 0g

The ε is used to divide the ε neighbor node and non-neighbor node threshold.

Definition 4 (CORE). If a node has enough ε neighborhood-nodes, we called it core.
Node u is core if |Nε (u)| ≥ μ, u2V. μ is a threshold.

Definition 5 (Directly Structure Reachable). If u is one of the v’s ε neighborhood-
nodes, where v is a core. Then u must belongs to the same cluster with v.

DRε, µ(v, u) Cε, µ(v) u Nε(v) ð2Þ

The cluster is generated from the core in this algorithm. If the v is one of the core
u’s ε neighborhood-nodes, v is assigned to the same cluster with u. The cluster con-
tinued to grow until all the clusters could not be further increased.

Definition 6 (Hub and Outlier). Assume node u does not belong to any cluster. Node u
is hub just has node v and w exist in Γ (u), which v and w do not belong to the same
cluster. Otherwise u is outlier.

3 SparkSCAN

In order to adapt to the large-scale clustering of directed graph, this section we design a
parallel algorithm SparkSCAN on Spark.

Definition 7 (Structure Reachable). Given by a directed graph G = {V, E}. Given a
series of vertices v1, v2, …,vn, v = v1, u = vn. We called v and u is structure reachable,
which vi and vi-1 is Directly Structure Reachable. If v and u is structure reachable, then
u should also belong to the same cluster with v. Any pair node of the same cluster is
structure reachable.

In this paper, the operation of the SparkSCAN algorithm is mainly divided into
three steps:

1. Parallel recognize ε neighbors nodes and core node, then build the initial clusters;

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 165



2. Execute cluster expansion through synchronizing cluster label in parallel, and then,
achieve clustering merge;

3. Analysis of clustering results and recognize the hub and outlier node.

In the first step, each node can independently calculate the structural similarity
between the other nodes; In the second step, each sub-cluster can be independently
calculate the label, cluster labels of vertices can be synchronized according to the
intermediate result of the algorithm; In the third step, algorithm can be used to analyze
the clustering results of each cluster label. In the process of identifying the hubs and the
outliers, each node can do it by itself. SparkSCAN algorithm with the fault tolerance of
Spark, so that the whole task will not collapse because of one processing node’s
paralysis, so as to achieve the purpose of parallel processing.

The overall flow chart of the algorithm is shown in Fig. 1:

3.1 Data Structure of SparkSCAN

Data Structure of Graph Storage. There are two kinds of storage methods of giant
graph, Edge-Cut and Vertex-Cut. Because per vertex just be stored once by Edge-Cut,
so it can save storage space. But if the calculation involves two vertices on the edge are
divided into different machines, it communicate and transfer data by crossing machine
and cost the network communication traffic. So we use Vertex-Cut way, which each
edge only stores one time, and only appears on a machine. This way increases the
storage overhead, but it can significantly reduce the amount of network traffic. This
method has the advantages especially in large data.

In order to store the graph data effectively, this paper design the data structures to
store the nodes and edges with RDD as follows:

Fig. 1. Flow chart of SparkSCAN algorithm

166 Q. Zhou and J. Wang



Vertex (ID: Long, Arr: String)
Where ID represents the ID of vertex, Arr is a String which represent the properties

of vertex, just like “property 1, property 2”;
Edge (srcID: Long, dstID: Long, Arr: String)
Where srcID represents ID of the begin node of the edge, dstID represents ID of the

end node of the edge, Arr is a String which represents the properties of vertex, just like
“property 1, property2”;

With the characteristics of Spark, this paper design the data structures to represent
the collection of storage points and edges as follows:

VertexRDD = RDD [Vertex (Long, String)];
EdgeRDD = RDD [Edge (Long, Long, String)];

Data Structure of Algorithm. This algorithm involves some important intermediate
variables. In order to realize the parallel of the algorithm, we design the data structures
as follows:

The data structure of the storage vertices and their son nodes is shown as follows:
neighborRDD = RDD[(Long, Array[Long])]
Each element of the data structure is a key-value pair, denoted by (Long, Array

[Long]) where the first Long value represents the ID of vertex, the second Array
represents an array of son nodes of vertex.

The data structure of the storage vertices and their ε neighborhood-nodes shown as
follows:

eNeighborRDD = RDD[(Long, Array[Long])]
Each element of the data structure is a key-value pair, denoted by (Long, Array

[Long]) where the first Long value represents the ID of vertex, the second Array
represents an array of the ε neighborhood-nodes of vertex.

The data structure of the storage cores and their ε neighborhood-nodes shown as
follows:

uNeighborRDD = RDD[(Long, Array[Long])]

Each element of the data structure is a key-value pair, denoted by (Long, Array
[Long]), where the first Long value represents the ID of core, the second Array rep-
resents an array of ε neighborhood-nodes of core.

The data structure of the storage the sub-cluster and their cluster label shown as
follows:

uAllNeiRDD = RDD[Array[(Long, Long)]]
Each element of the structure is an array, denoted by Array [(vid, label)], storage

the relationship between all the vertices of a sub cluster and the cluster labels. Each
element of the array is a key-value pair, denoted by (Long, Long), where the first Long
value represents ID of vertex, the second Long represents the cluster label of vertex.

The data structure of the storage vertex and the minimum cluster label in all the sub
clusters is shown as follows:

minRDD [(Long, Long)]
Each element of the structure is a key-value pair, denoted by (Long, Long), where

the first Long value represents the ID of vertex, the second Long represents the min-
imum cluster label in all the sub clusters of vertex.

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 167



3.2 Parallel Recognition ε Neighbors and Core Nodes

Parallel recognize ε neighbor-nodes and cores in three stages:
Stage I, we can get the relationship between node and their son nodes through the

calculation of the relationship between the vertices of the graph. Then transform the
relationships to key-value pairs and put them into a collection, denoted by neigh-
borRDD. For the convenience of parallel computing, we transform neighborRDD to an
array, denoted by neighborArr, and broadcasts the array in all machine.

Stage II, computing structure similarity between vertices in parallel to get all
vertices and their ε neighborhood-nodes. Assuming that exist an element, denoted by
(vidi, Arrayi), we can get Γ (vidi) = {vidi}[Arrayi.. We can get the structural similarity
between vertices through the calculation of the element with each other.

The second stage can be described as follows process:
Step.1 Get the current calculation of the element, denoted by (vidi,Arrayi);
Step.2 Assuming that vidi’s has an array to storage the ε neighborhood-nodes,

denoted by eArrayi. Computing the structure similarity between elements in neigh-
borArr and (vidi, Arrayi). We put the element’s ID into eArrayi if the structure simi-
larity is greater than ε.

Step.3 Remove the element from eArrayi which equals vidi. Then constitute a new
element (vidi, eArrayi) as the result to return.

The second stage of each element is executed independently in parallel. And then
all the calculations results of each element are merged to a collection. The collection
include all key-value pairs which storage vertex and its ε neighborhood-nodes.

Stage III, filter elements in eNeighborRDD to find the elements, which the size of ε
neighborhood-nodes is greater than μ. Merge them to the core collection, denoted by
uNeighborRDD.

The process can be described by the following example:
Assuming that exist a directed graph G = {V, E}, its structure is shown in Fig. 2:

We can get a set of vertex and its son nodes which has the out-degree, as show in
column “Son Set” in Table 1.

Fig. 2. Directed graph G

168 Q. Zhou and J. Wang



For illustration of purposes, we set the adjustable parameter ε = 0.4, μ = 1;
Take the ID of vertex is 1 as the example, denoted by Vertex 1, its structure

similarity as show in Table 2.
According to ε = 0.4 we can get the node’s Nε (Vertex 1) is {6}.
Similarly we can get all vertices and their Nε (Vertex 1) as show in column “ε

neighborhood-nodes” in Table 1.
According to μ = 1, we can get set of core is {1,6,7,9,10,13,14,15,16}.

3.3 Extension and Synchronization of Cluster Label in Parallel

Extension and synchronization of cluster label in parallel is in two stages:
Stage I. Build and initialize the sub-clusters. Each core and their Nε (u) are

transformed to a sub-cluster. The sub-cluster is an array of the key-value pairs with the
ID and cluster label of vertex, which in Nε (u) [ the ID. The label is initialized to the
ID of vertex. The first stage can be described by the following process:

Each element of the uNeighborRDD (core and its ε neighbor-nodes) calculate by
the following steps:

Step.1 Get the current calculation of the element, denoted by (vidi, Arrayi);
Step.2 Put vidi into Arrayi;
Step.3 Set labelj = vidj;

Table 1. Son set and ε neighborhood-nodes of Vertices

Vertex ID Son set ε neighborhood-nodes

1 2,3,4 6
6 2,3,4,11,12 1,7
7 6,11,12,16 6,16
9 8 10
10 8,9 9
13 15 14,15
14 13,15 13,15
15 13 13,14
16 7 7

Table 2. The structure similarity of Vertex 1

Vertices pair Structure similarity

(1,6) 0.45
(1,7) 0
(1,9) 0
(1,10) 0
(1,13) 0.35
(1,14) 0
(1,15) 0
(1,16) 0

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 169



Step.4 Transform Arrayi to an array which includes all vertices and their label,
denoted by Array[(vidj,labelj)], as the result to return.

The stage I of each element of the stage is executed independently in parallel. And
then all the calculation results of element are merged a collection, denoted by uAll-
NeiRDD, after calculation. The algorithm steps can be described by the following
example:

According to the example given by Sect. 4.2, we can build the sub-clusters, results
of calculation as show in column “vertices of sub-cluster (initial stage)” in Table 3.
Among them, each line represents a sub-cluster, where the key-value pair (id, label) is
represents the ID and cluster label of the vertex. Next step, parallel synchronizing the
only cluster label of the vertices to all vertices in different sub-cluster.

According to Definition 7, if there exists directly structure reachable of any two
vertices in the same cluster, then there exists the structure reachable of any two vertices
in the sub-clusters if the sub-clusters has same vertices. The vertices of structure
reachable should belong to the same cluster. In this paper, vertices are in same cluster if
their have same cluster label. Execute cluster expansion through synchronization
cluster label in parallel, and then, achieve clustering merge.

Stage II, parallel computing the results of Stage I to synchronize the cluster label in
every sub-cluster. Then computing the minimum of the cluster labels of the vertices,
which have the same ID. The minimum as the only cluster label of the vertex. Iterative
above process until the label of vertices not change any more. Finally we can output the
result set. The algorithm process can be described as follows:

Step.1 In each sub-cluster, sort the vertices by their cluster label. We get the
minimum as the cluster label of the sub-cluster, and set all vertices’s cluster label to this
minimum. Then execute Step.2;

Step.2 Merge the elements to a new collection, denoted by allRDD [(vid, label)].
Then execute Step.3;

Step.3 Get the minimum cluster label of vertices, which have the same ID, set the
minimum as the only cluster label. Then merge the key-value pair which made up by
the ID and only cluster label of vertex to a new collection, denoted by minRDD[(vid,
label)]. Then execute Step.4;

Table 3. Vertices of sub-clusters

No Vertices of sub-cluster
(initial stage)

Vertices of sub-cluster
(after synchronize in sub-cluster)

1 (1,1),(6,6) (1,1),(6,1)
2 (6,6),(1,1),(7,7) (6,1),(1,1),(7,1)
3 (7,7),(6,6),(16,16) (7,6),(6,6),(16,6)
4 (9,9),(10,10) (9,9),(10,9)
5 (10,10),(9,9) (10,9),(9,9)
6 (13,13),(14,14),(15,15) (13,13),(14,13),(15,13)
7 (14,14),(13,13),(15,15) (14,13),(13,13),(15,13)
8 (15,15),(14,14),(13,13) (15,13),(14,13),(13,13)
9 (16,16),(7,7) (16,7),(7,7)

170 Q. Zhou and J. Wang



Step.4 According to minRDD [(vid, label)], synchronization the only cluster label
to all vertices in different sub-cluster in parallel.

Step.5 If the minRDD is the same with the last iterative result, then the iterative is
completed, minRDD as the result and return; otherwise execute Step.1.

The process can be described by the following example:
According to the example given by Sect. 4.3, we simulate an iterative process. First,

synchronize the cluster label in the sub-cluster, the result as show in column “vertices
of sub-cluster (after synchronize in sub-cluster)” in Table 3. Then get every element of
all sub-cluster, merge to allRDD as show in column “cluster labels of vertex” in
Table 4:

Then computing the minimum cluster label of the vertices, which have the same ID.
The minimum as their only cluster label. Next set the cluster label to minimum. The
result as show in column “only cluster labels of vertex” in Table 4.

According to the result, we synchronize the cluster label in every sub-cluster. The
result as show in Table 5:

Table 4. Vertices and cluster label

ID of Vertex Cluster labels of vertex Only cluster labels
of vertex

Only cluster labels
of vertex (final)

1 (1,1),(1,1) (1,1) (1,1)
6 (6,1),(6,1),(6,6) (6,1) (6,1)
7 (7,6),(7,7),(7,1) (7,1) (7,1)
9 (9,9),(9,9) (9,9) (9,9)
10 (10,9),(10,9) (10,9) (10,9)
13 (13,13),(13,13),(13,13) (13,13) (13,13)
14 (14,13),(14,13),(14,13) (14,13) (14,13)
15 (15,13),(15,13),(15,13) (15,13) (15,13)
16 (16,7),(16,6) (16,6) (16,1)

Table 5. Vertices of sub-cluster (after first iteration)

No Elements of sub-cluster

1 (1,1),(6,1)
2 (6,1),(1,1),(7,1)
3 (7,1),(6,1),(16,6)
4 (9,9),(10,9)
5 (10,9),(9,9)
6 (13,13),(14,13),(15,13)
7 (14,13),(13,13),(15,13)
8 (15,13),(14,13),(13,13)
9 (16,6),(7,1)

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 171



Now we finish an iteration.
In the above example, the final result as show in column “only cluster labels of

vertex (final)” in Table 4.

3.4 Clustering Result Analysis

In the result of the parallel clustering algorithm, the vertices of the same cluster label
should belong to same cluster.

In this stage, we transform (id, label), which is element in result, to (label, id). Then
merge the id of vertices by the same cluster label as the clustering result.

According to example of Sect. 4.3 we get three clusters. They are {1, 6, 7, 16},
{9, 10},{13, 14, 15}.

According to Definition 6, the vertex is hub or outlier, if it is not in any cluster.
According to example, hubs are {8, 3}, outliers are {2, 4, 11, 12}.

4 Evaluation

4.1 Data-sets

1. We test and verify the accuracy of algorithm by using binary_networks, which is a
tool for generated social network randomly. Datasets generated as follows:

(1) Dataset binary_networks1K, which includes 1,000 vertices, edges is randomly
generated.

(2) Dataset binary_networks10K, which includes 10,000 vertices, and edges are
randomly generated.

(3) Dataset binary_networks100K, which includes 100,000 vertices, and edges are
randomly generated.

2. We test and verify parallel efficiency of algorithm by:
(1) Random dataset built by binary_networks tool includes 100,000 vertices and

1,532,964 edges.
(2) Dataset soc-sign-slashdot090216 of Slashdot Zoo signed social network from

February 21 2009 includes 82,144 vertices and 549,202 edges.
(3) Dataset amazon0302 of Amazon product co-purchasing network from March 2

2003 includes 262,111 vertices and 1,234,877 edges.
(4) Dataset Wiki-vote of Wikipedia who-votes-on-whom network includes 7,115

vertices and 103,689 edges.

Among the above dataset, dataset 1 is simulation and the others are from Stanford
University big data network.

172 Q. Zhou and J. Wang



4.2 Algorithm Evaluation Index

We used the Precision (P), Recall (R), F1 and Rand Index (RI) to verify the accuracy of
algorithm. It is a correct result if two vertices of same real cluster is belong to the same
cluster. The greater the value of the four evaluation index, more similar to the real
world and better clustering.

We used the speedup verify the parallel efficiency of algorithm, which is the ratio of
serial and parallel processing with the shortest time. The greater of speedup, the shorter
of parallel time.

4.3 Environment of Experiment

See Table 6.

4.4 Parameters of Cluster

This paper select the value of ε and μ by the method of SCAN in literature [4]. This
involves making a k-nearest neighbor query for a sample of vertices and noting the
nearest structural similarity. The query vertices are then sorted in ascending order of
nearest structural similarity. The knee indicated by a vertical line represents a sepa-
ration of vertices belonging to clusters to the right from hubs and outliers to the left. We
recommend a value for μ, of 2.

4.5 Results and Analysis of Experiment

We test and verify the accuracy of algorithm by using binary_networks, which is a tool
for generating network randomly.

In binary_networks1K Case, if μ = 2, the result on different values of ε as show in
Table 7:

Table 6. Environment of experiment

CPU Intel(R) Core(TM) i5-3470 CPU @3.20 GHz

Memory 8 GB
Hard drive 1 TB
OS Ubuntu14.10
IDE IntelliJ IDE 14
Programming language Scala
Spark version 1.4.0

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 173



From experiments on different values of ε, we can see that value of ε has a
significant effect on the accuracy of the clustering results in SparkSCAN. When value
of ε is too small, it easily divide different clusters vertices into one cluster; however,
when value of ε is too big easily create too much hubs and outlier.

If ε = 0.5, μ = 2, the result on different values of ε as show in Table 8:

The experimental results show that SparkSCAN algorithm with good accuracy
performance by selecting P, R, F1, RI reasonably.

Conducting experiments using PDirSCAN and SparkSCAN to verify the parallel
efficiency of algorithm:

The speedup of binary_networks100K as show in Fig. 3:

Table 7. The result on different values of ε

ε P R F1 RI

0.2 0.03 1.0 0.06 0.07
0.4 0.99 1.0 0.99 0.99
0.6 1.0 0.83 0.91 0.99
0.8 1.0 0.05 0.10 0.97

Table 8. Indexes of clusteings

Dataset P R F1 RI

binary_networks1K 1.0 0.99 0.99 0.99
binary_networks10K 1.0 0.99 0.99 0.99
binary_networks100K 1.0 0.98 0.99 0.99

0

0.5

1

1.5

2

1 2 3 4

S
pe

ed
 u

p

Number of machines

Speedup

PDirSCAN SparkSCAN

Fig. 3. Speedup of binary_networks100 K

174 Q. Zhou and J. Wang



The speedup of soc-sign-slashdot090216 as show in Fig. 4:

The speedup of amazon0302 as show in Fig. 5:

The speedup of Wiki-vote as show in Fig. 6.
Compared with PDirSCAN algorithm, and SparkSCAN has better performance on

the above datasets, especially on large datasets. When the number of computer
increases, the time algorithm spend is reducing. The result in real world is better than
simulation dataset. This is due to the data relationships between simulated data sets is
too complex. Synchronizing cluster label increases the network overhead and leading
to decrease the effect of parallel. The parallel effect on Wiki-vote dataset is not obvious
because of the size of dataset is too small, at this time consuming by Spark framework
itself is more apparent.

0

10

20

1 2 3 4

S
pe

ed
 u

p

Number of machines

Speedup

PDirSCAN SparkSCAN

Fig. 4. Speedup of soc-sign-slashdot090216

0
5

10
15

1 2 3 4

S
pe

ed
 u

p

Number of machines

Speedup

PDirSCAN SparkSCAN

Fig. 5. Speedup of amazon0302

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 175



In conclusion, SparkSCAN improves the processing speed on the premise of the
accuracy of clustering results. SparkSCAN has good performance in large data envi-
ronment and high practical value. However, the accuracy of the algorithm is more
dependent on ε and μ parameters.

5 Conlusion

This paper proposes a structure similarity clustering algorithm based on Spark for
directed graph. The experimental results show that SparkSCAN can effectively
improve the efficiency and the speed of the directed graph clustering and has a greater
practical value in the large-scale environment data. However, the selection of parameter
values has great influence on accuracy and computational efficiency. In the future, we
will study further the reasonable allocation scheme of the related parameters to achieve
better results.

References

1. Ding, Y., Zhang, Y., Li, Z.-H., Wang, Y.: Researach and advances on graph data mining.
J. Comput. Appl. 32(1), 182–190 (2012)

2. Lancichinetti, A., Fortunato, S., Kertész, J.: Detecting the overlapping and hierarchical
community structure in complex networks. New J. Phys. 11(3), 033015-1–033015-18
(2009)

3. Fallani, F.D.V., Nicosia, V., Latora, V., et al.: Nonparametric resampling of random walks
for spectral network clustering. Phys. Rev. E 89(1), 012802-1–012802-5 (2014)

4. Xu, X.-W., Yuruk, N., Feng, Z.-D., et al.: SCAN: a structural clustering algorithm for
networks. In: Proceedings of the 13th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, San Jose, pp. 824–833 (2007)

0

1

2

1 2 3 4

S
pp

ed
 u

p

Number of machines

Speedup

PDirSCAN SparkSCAN

Fig. 6. Speedup of Wiki-vote

176 Q. Zhou and J. Wang



5. Zhou, D.-Y., Huang, J.-Y., Schölkopf, B.: Learning from labeled and unlabeled data on a
directed graph. In: Proceedings of the 22nd International Conference on Machine Learning,
Bonn, pp. 1036–1043 (2005)

6. Meila, M., Pentney, W.: Clustering by weighted cuts in directed graphs. In: Proceedings of
the 7th SIAM International Conference on Data Mining, Minneapolis, pp. 135–144 (2007)

7. Chen, J.-J.: Research on Clustering Algorithms for Large—Scale Social Networks based on
Structural Similarity. Nankai University (2013)

8. Chen, J.-M., Chen, J.-J., Liu, J., Huang, Y.-L., Wang, Y., Feng, X.: Clustering algorithms
for large-scale social networks based on structural similarity. J. Electron. Inf. Technol. 02,
449–454 (2015)

9. Zhao, W., Martha, V., Xu, X.: Pscan: a parallel structural clustering algorithm for big
networks in mapreduce. In: 2013 IEEE 27th International Conference on Advanced
Information Networking and Applications (AINA), pp. 862–869. IEEE (2013)

10. Zaharia, M.A.: An Architecture for Fast and General Data Processing on Large Clusters.
University of California, Berkeley (2013)

11. Zaharia, M., Chowdhury, M., Das, T., et al.: Resilient distributed datasets: a fault-tolerant
abstraction for in-memory cluster computing. In: Proceedings of the 9th USENIX Conference
on Networked Systems Design and Implementation, p. 2. USENIX Association (2012)

SparkSCAN: A Structure Similarity Clustering Algorithm on Spark 177


	SparkSCAN: A Structure Similarity Clustering Algorithm on Spark
	Abstract
	1 Introduction
	2 Preliminary
	2.1 Spark
	2.2 Rdd
	2.3 PDirSCAN Algorithm

	3 SparkSCAN
	3.1 Data Structure of SparkSCAN
	3.2 Parallel Recognition  epsilon  Neighbors and Core Nodes
	3.3 Extension and Synchronization of Cluster Label in Parallel
	3.4 Clustering Result Analysis

	4 Evaluation
	4.1 Data-sets
	4.2 Algorithm Evaluation Index
	4.3 Environment of Experiment
	4.4 Parameters of Cluster
	4.5 Results and Analysis of Experiment

	5 Conlusion
	References


