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Abstract In this paper a new crossover operator called the double distribution
crossover (DDX) is proposed. The performance of DDX is compared with existing
real-coded crossover operator namely Laplace crossover (LX). DDX is used in
conjunction with a well-known mutation operator; Power mutation (PM) to obtain a
new generational real-coded genetic algorithm called DDX-PM. DDX-PM is
compared with the existing LX-PM. The performance of both the genetic algo-
rithms is compared on the basis of success rate, average function evaluation,
average error and computational time, and the preeminence of the proposed
crossover operator is established.
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1 Introduction

The demand for designing efficient, reliable and robust numerical optimization
techniques is very high because of their ability to tackle a number of real-life
complex nonlinear optimization problems arising in the field of Engineering,
Science, Industry and Finance, which may have constraints associated with them.
There are a number of stochastic optimization techniques which are being used to
solve complex optimization problems. Among these genetic algorithms (GA) are
found to be very promising global optimizers. GAs are population-based heuristics
which mimic the Darwin’s principal of “survival of fittest”. The concept of GA was
given by Holland [1]. A detailed implementation of GA could be found in Goldberg

Shashi (D<)

Control and Decision Systems Laboratory, Department of Aerospace
Engineering, Indian Institute of Science, Bangalore, India

e-mail: shashibarak @gmail.com

K. Deep
Department of Mathematics, Indian Institute of Technology Roorkee, Roorkee, India
e-mail: kusumfma@iitr.ernet.in

© Springer Science+Business Media Singapore 2016 343
M. Pant et al. (eds.), Proceedings of Fifth International Conference on Soft

Computing for Problem Solving, Advances in Intelligent Systems

and Computing 437, DOI 10.1007/978-981-10-0451-3_32



344 Shashi and K. Deep

[2]. The main attribute of GAs is their easy implementation nature, as they do not
require any extra information such as continuity and differentiability about objec-
tive function and constraints. Although initial versions of GA use binary numbers
for encoding of chromosomes, their major drawbacks such as lack of precision and
existence of “Hamming-cliff” problem impel to look for another type of encoding
scheme. To overcome these difficulties related to binary encoding of continuous
parameter optimization problems, real encoding of chromosomes is used. GAs
which make use of real encoding of chromosomes are termed as real-coded GA
(RCGA).

In GAs crossover is considered to be main search operator. The crossover
operator is used to thoroughly explore the search process. After the selection
process, the population is enriched with better individuals. Selection makes clones
of good strings but does not create new ones. Crossover operator is applied to the
mating pool with the hope that it creates better offsprings. In crossover operator the
genetic information between two or more individuals is blended to produce new
individuals.

Though, along with crossover mutation operator is also essential for thorough
search of the function landscape. The most important aspect of mutation operator is
that it prevents premature convergence of an algorithm. Mutation operator provides
random diversity in the population as described in [3].

A lot of effort has been put into the development of sophisticated real-coded
crossover operators [4-8] to improve the performances of RCGAs for function
optimization. Deep and Thakur [9] presented Laplace crossover operator which
generates a pair of offspring solution from a pair of parent solutions using Laplace
distribution. Tutkun [10] proposed a crossover operator based on Gaussian distri-
bution. Kaelo and Ali [11] suggested integration of different crossover rules in the
genetic algorithm and recommended some modifications in applying the crossover
rules and localization of searches in their study. Recent development in RCGA
includes [12].

In an endeavour to define new operators for real-coded genetic algorithms, in
this paper, a new crossover operator called double distribution crossover (DDX) is
presented. Combining DDX with power mutation (PM) [13], a new generational
RCGA called DDX-PM is designed. It is compared with existing RCGA, LX-PM.
In order to establish the strength of double distribution crossover computational
analysis is performed and discussed.

The paper is organized as follows: the proposed double distribution crossover is
defined in Sect. 2. In Sect. 3, new RCGAs based on double distribution crossover
are discussed. In Sect. 4, the experimental setup of RCGAs is explained. The
computational results and discussion is given in Sect. 5. Finally, in Sect. 6, the
conclusions are drawn.
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2 The Proposed Crossover Operator

In this section a new crossover operator based on the novel idea of merging of two
existing crossover operators is proposed in such a way that it retains the strength of
the operators from which it is obtained. The proposed crossover operator is called as
double distribution crossover (DDX) as it makes use of two well-established
crossover operators: Laplace Crossover (LX) [9] based on Laplace distribution and
Weibull Crossover (WX) [14] based on Weibull distribution to produce two off-
springs and hence named as double distribution crossover (DDX) operator.

Although DDX could be obtained by merging any two crossover operators, here
WX and LX are used because they are well-established potentially effective
crossover operators. In DDX two offsprings O; and O, are generated from a pair of
parents Py and P, obtained after selection, in the following manner:

Generate a uniformly distributed random number u € [0, 1]

if u<%; then
O, =P +ud (1)
0, :P2—|—,ud
else
O1=P —pd
B (2)
Oy, =Py — ud

where d = |P; — P,| is the distance between the parents and p is calculated as
= %, where r; is a random number following Laplace distribution and r; is a
random number following Weibull distribution. The density function of Weibull

distribution is given as follows:

ab=x e~ if x>0
= 3
U {0 otherwise ®)

and the distribution function is given by

1—e 0" if x>0
F(x) = 4
() {O otherwise “)

where a > 0 is called shape parameter and b > 0 is called the scale parameter. And
the density function of Laplace distribution is given as follows:

£(x) :iexp<— |x;c|), o0 <X <00 (5)

the distribution function is given by
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%exp(‘x;d) if x<c

o) = 1 —lexp(—w> if x>c
2 7

(6)

where ¢ € R is location parameter and d > 0 is termed as scale parameter.

DDX preserves the property of both the parent operators, i.e. for fixed values of
the crossover index of DDX (which is a two-dimensional vector which includes the
crossover indices of both WX and LX), the spread of offsprings is proportional to
the spread of parents, i.e. if the parents are near to each other the offsprings are
expected to be near to each other and if the parents are far from each other then
offsprings are likely to be far from each other.

Also, from Egs. 1 and 2 it is clear that both the offsprings are placed symmetrical
with respect to the position of the parents and if DDX produces an offspring which
is not within the bounds of the decision variable then that offspring is assigned a
random value within its bounds.

3 The Proposed New RCGA

In this section a new RCGA namely DDX-PM is proposed, which combines the use
of Laplace crossover with power mutation [13]. DDX-PM is compared with the
existing LX-PM. Both the algorithms use tournament selection with tournament
size three. In addition, both the RCGAs are elite preserving with elitism size one.
The elitism operator helps to maintain fitness stability to increase the search per-
formance of the proposed algorithm.

Both the RCGAs are terminated if either the pre-specified maximum number of
generations (3000) is reached or the best solution obtained by the algorithm lies
within specified accuracy (0.01) of known optimum, whichever occurs earlier. The
algorithm is tested on standard benchmark problems taken from literature which
includes five nonscalable test problems (Table 1) and five scalable test problems of

Table 1 List of nonscalable benchmark functions

S. | Function Mathematical formula Range Min
no.

1| Easom 2D Minf(x) = — cos(x;) cos(xa) exp(—(xl —n)? = (xp — n)z) (10, 101 | -1

2 | Becker and lago | Minf(x) = (Jx;| — 5)* + (Jxa] — 5)* [-10, 10] 0

3 | Bohachevsky 1 | Minf(x) = x3 +2x3 — 0.3 cos(3mx;) — 0.4 cos(4nx,) +0.7 | [-50,50] |0

4 | Eggcrate Min f(x) = x3 +23 +25(sin’ x| + sin? x,) [2m, 27 |0

5 | Periodic Minf(x) = 1+ sin?x; + sin® x, — 0.1 exp(—x3 — x3) [-10, 10] |09
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size 30 (Table 2) of different levels of complexity and multimodality. The pseu-
docode of DDX-PM is given below:

Algorithm
Step 1 (Initialization):
e [nitialize population;
° Set Generation=0;
Step 2(Evaluation): Evaluate the fitness for each individual
Step 3(Termination check): Check the termination criteria
If satisfied stop;
else goto 4.
Step 4 (GA Operations)
e Select individuals according to selection algorithm to build a mating pool
e Crossover the population in mating pool with given crossover probability
e Mutate the current population with given mutation probability
Step 5 (Replacement): Replace the old population with new population while retaining the
best individual for next generation i.e. apply elitism with size 1
Step 6
e Evaluate the best fitness and find optimal individual
e [ncrement generation; go to step 3.

4 Experimental Setup

The experimental setup used for both the RCGAs viz. DDX-PM and LX-PM is
given in this section.

Parameter Setting: Population size is taken as 10 times the number of variables.
The crossover index for DDX is fixed at (12, 0.20). The final parameter setting is
presented in Table 3 where p. and p,, represent the probabilities of crossover and
mutation, respectively. Each GA runs at 100 times with same initial populations
while each run is initiated using a different set of initial population.

All the algorithms are implemented in C++ and the experiments are done on a
Core Duo Processor with 1.66 GHz speed and 1 GB RAM under WINXP platform.

Performance Evaluation Criteria: A run in which the algorithm finds a solution
satisfying fimin — fopt <0.01, where fpi, is the best solution found when the algo-
rithm terminates and fo is the known global minimum of the problem, is con-
sidered to be successful.

For each method and problem, the followings are recorded:

* Success Rate (SR) = Numberof successfulruns

e Average computational time (ACT) (in seconds).
e Average number of function evaluations (AFE).

e Average Error (AE) = M where, n is the total number of runs.
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Table 3 Parameter setting Algorithm Nonscalable Scalable
for DDX-PM and LX-PM
Pc Pm Pc Pm
DDX-PM 0.70 0.040 0.60 0.010
LX-PM 0.70 0.007 0.60 0.005

Table 4 Computational results for nonscalable and scalable problems

Nonscalable problems Scalable problems
Fun | Method AE SR | AFE Fun | AE SR | AFE ACT
1 LX-PM 0.00625 | 100 378 |1 0.00865 | 100 |139,364 3.43
DDX-PM |0.00478 | 100 332 0.00214 | 100 57,300 0.98
2 LX-PM 0.00612 | 100 4059 |2 0.01154 77 |883,517 |31.35
DDX-PM |0.00583 | 100 339 0.00634 | 100 59,476 1.78
3 LX-PM 0.00884 94 649 |3 0.00756 | 100 |128,034 2.82
DDX-PM | 0.0048 100 597 0.00632 88 | 125,463 3.25
4 LX-PM 0.01102 66 |12,718 |4 0.00805 | 100 46,486 1.06
DDX-PM |0.00478 | 100 387 0.00953 | 100 17,116 0.42
5 LX-PM 0.02115 44 1394 |5 0.00874 | 100 |336,236 6.82
DDX-PM | 0.00598 82 926 0.00966 | 100 86,225 2.06

5 Results and Discussion

The computational results of both the RCGAs are presented in this section.

Table 4 summarizes the computational results for both the algorithms. As the
execution time for nonscalable problems is very less and hence insignificant in most
of the cases, it is not included in Table 4. From Table 4 it can be easily observed
that the proposed crossover operator DDX outperforms LX in terms of various
performance criteria and thus indicates the efficiency of proposed crossover oper-
ator for providing suitable exploration for obtaining the global optimal solution.

6 Conclusion

In this paper a new crossover operator called double distribution crossover
(DDX) is introduced. By combining DDX with already existing operator, namely
PM a new generational RCGA called DDX-PM is proposed. For an analogical
comparison it is compared with the existing RCGA based on Laplace crossover and
power mutation called LX-PM. Based on the numerical results it is clear that with
respect to reliability, efficiency and accuracy measured in terms of success rate,
function evaluation and average error, respectively, DDX-PM performed better than
LX-PM, though they both use same mutation operator, which clearly signifies the
role of crossover operators in the search process for locating global optima.
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Thus DDX proved to be an efficient crossover operator when used with power
mutation, but whether its performance will remain equally well, when used with
other mutation operators for RCGAs, is the question whose answer is to be looked
in future studies.
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