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Dipti Singh and Seema Agrawal

Abstract Self-organizing migrating algorithm (SOMA) is a novel approach cap-
able to solve almost all type of functions. SOMA is highly effective evolutionary
optimization technique and has proved its efficiency in solving many real-life
applications. This paper presents a new optimization technique M-NM-SOMA to
solve global optimization problems. In the proposed algorithm, SOMA is hybri-
dized with Nelder-Mead method as crossover operator and non-uniform mutation
operator in order to avoid premature convergence and keep the diversity of the
population. The main feature of this algorithm is that it works for very low pop-
ulation size. To authenticate the efficiency of the proposed algorithm, it is tested on
17 benchmark test problems taken from the literature and the obtained results are
compared with the results of other existing algorithms. Numerical and graphical
results show that M-NM-SOMA has better global search ability and is very effi-
cient, reliable, and accurate in comparison with other algorithms.

Keywords Self-organizing migrating algorithm - Nelder-Mead crossover opera-
tor - Non-uniform mutation - Particle swarm optimization - Global optimization

1 Introduction

A broad class of population-based algorithms for solving global optimization
problems has been developed till date. Some of them are genetic algorithms
(GA) [1], differential evolution (DE) [2], particle swarm optimization (PSO) [3], ant
colony optimization (ACO) [4], and self-organizing migrating algorithm (SOMA)
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[5], etc. Among the above mentioned algorithms, SOMA is comparatively a new
comer to the class of population-based stochastic search technique capable of
handling all type of functions. SOMA can be classified as an evolutionary algo-
rithm, regardless of the fact that no evolution takes place, i.e., no new generations
of individuals are created during the search; only the positions of the individuals in
the search space are changed during a generation called ‘migration loop’. The main
features of this algorithm are:

(1) It works efficiently for very low population size.
(i) It quickly converges to global optimal solutions.

Despite the fact of several attractive features, sometimes SOMA may converge
prematurely and the solution may trap to local optima and this situation arises with
the increase of dimensionality. As a result, there is diversity loss in the population.
To maintain the diversity mechanism, SOMA can be hybridized with local search
techniques or other population-based techniques. Hybridization is a grouping of
two or more algorithms, in which one seeks a promising region within the large
solution space expected to contain global minima, and the other makes use of the
search domain to find the best solution rapidly and more precisely. Several attempts
have been made earlier to hybridize population-based techniques with other
existing approaches [6—12]. First variant of SOMA was developed by Deep and
Dipti which is the hybridization of GA and SOMA [13].

Recently, Dipti and Seema developed a number of variants of SOMA, named
SOMAQI, SOMA-M, and M-SOMAQI [14-16]. In this paper, a novel variant of
SOMA (M-NM-SOMA) based on Nelder-Mead crossover operator and non-
uniform mutation operator is proposed. The performance of M-NM-SOMA has
been evaluated on the set of 17 benchmark problems and the comparison of it is
made with standard PSO and SOMA.

The paper is structured in the following manner: In Sect. 2, preliminaries are
presented. M-NM-SOMA is presented in Sect. 3. In Sect. 4, the experimental results
are shown. Finally, the paper concludes with Sect. 5 depicting the outcome of the
current study.

2 Preliminaries

2.1 Self-Organizing Migrating Algorithm

Zelinka and Lampinen [17] first introduced SOMA, which is inspired by the col-
lective behavior of intelligent creatures. This algorithm travels in migration loops
and in each migration loop, active individual (individual having worst fitness value)
travels a finite distance toward leader (individual having best fitness value) in
N (path length/step size) moves of defined length (move size). This path is per-
turbed randomly by perturbation parameter (PRT) which is defined in the range
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[0, 1]. Perturbation vector (PRT) controls the perturbation and is created before an
individual proceeds toward leader in the following manner:

PRTVector; = 1ifrnd; <PRT, . 1.2.3
PRTVector; = 0, otherwise  * 7~ 57"
where rnd; is uniformly distributed random number in (0, 1) and n is the number of
decision variables.

More information regarding SOMA can be obtained from [18].

2.2 Nelder-Mead Crossover Operator

The Nelder-Mead simplex search method is a direct search method, originally
proposed by Spendley et al. and later modified by Nelder and Mead [19]. First of
all, a population is initialized and a simplex is created using (n + 1) points (n: the
number of variables of a function) chosen arbitrarily from the population. In each
migration, the worst point in the simplex is selected first. Then, a new simplex is
formed from the old simplex through a sequence of elementary geometric trans-
formations (reflection, contraction, expansion). After each transformation, the
current worst point is replaced by a better one. In the proposed algorithm,
Nelder-Mead simplex search method is used as a linear Nelder-Mead crossover
operator which creates a new point using two out of three randomly chosen points
from population.
The computational steps of NM crossover operator method are as follows:

Stepl: choose parameters y > 1, > 0;

Step2: create an initial simplex with randomly chosen three vertices;
find x,, (the worst point), x; (the best point), x, (next to the worst point);
calculate their function values f, fi, fs; the worst point xj, is reflected with
respect to the centroid (x.) of other two points;

X = 2x.—xy, (reflection)

if f; <fi

Xnew = (1 +¥)xc— v xp. (expansion).

elseif fi > =/, (1)
Xnew = (1 — B)xc + Pxn. (contraction).

elseif fy <fr <t

Xnew = (1 + B)xc— P xn. (contraction).

calculate f.\ and replace x, by Xjew-
Step3: this process continues until termination criterion is satisfied.
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2.3 Non-uniform Mutation Operator

Non-uniform mutation operator was proposed by Michalewicz [20] to decrease the
weakness of random mutation in the real-coded GA. Non-uniform mutation ran-
domly selects one solution x; from the population and its value is created according
to the following rule:

X, =x¢+ (uby —xi) - Tif y < 0.5

2

b
where T = (,u (1 — ZL)) with y and g two uniformly distributed random numbers

in the interval [0, 1], Ibx and uby are the lower and upper bound of x, b > 0 is a
parameter determining the degree of uniformity, ¢ is a migration number, and #,,.x
the maximum number of migrations allowed to run. Non-uniform mutation has
fine-tuning capabilities to achieve high precision.

3 Proposed Hybrid M-NM-SOMA Algorithm

In this section, a variant of SOMA, M-NM-SOMA has been proposed which is the
hybridization of SOMA with Nelder-Mead crossover operator and non-uniform
mutation operator. The convergence of standard SOMA is so fast that all other
individuals move closer to the best individual very quickly. This causes the pop-
ulation diversity decrease and leads to the premature convergence. To overcome the
above problems, SOMA is hybridized with Nelder-Mead crossover operator and
non-uniform mutation operator to maintain the diversity among the solutions in the
search space.

3.1 Methodology of Hybridization

First, the population is initialized randomly spread over the search domain. At each
migration the individuals having highest fitness value as leader and having least
fitness value as active are selected. Now the active individual travels a finite dis-
tance towards leader in N moves of defined length. Among the positions created,
the best position is selected and replaces the active individual if it is better than
active individual. Now, leader and active individuals are selected again from the
population and a new point is created using Nelder-Mead crossover operator using
Eq. (1). This new point is accepted only if it is better than active individual and is
replaced with active individual. Then leader and active individuals are selected
again from the population and a new point is created using non-uniform mutation
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using Eq. (2). This new point is accepted only if it is better than active individual
and is replaced with active individual. The process is continued until some termi-
nation criterion is satisfied.

4 Experimental Results

The presented algorithm M-NM-SOMA is programmed using C++ and is executed
on a Pentium IIT PC. M-NM-SOMA is used to obtain the results of 17 benchmark
problems taken from the literature. All the problems are of minimization with
minimum value 0. The seventeen problems with initialization range are given in
Table 1. M-NM-SOMA is probabilistic technique and relies a lot on the generation
of random numbers; therefore 30 trials of each problem are carried out. A run is
measured to be a success if the solution obtained is within 1 % of the preferred
precision. The termination criterion of the proposed algorithm in either a run is a
success or a preset number of migrations (10,000) are performed.

In order to make a comparative analysis of M-NM-SOMA with SOMA and
standard PSO, various performance measures are considered like mean objective
function value to check the efficiency and reliability, average number of function
evaluations to check the convergence speed, and one more measure success rate is
also considered.

The main parameters of M-NM-SOMA are population size, PRT, move size, and
path length. The population size is taken as ten for all the problems. PRT parameter
varies from 0.1 to 0.9 depending on the problem. The other parameters, move size
and path length are taken as 0.31 and 3. Trials for the 17 problems are performed
for dimensions (dim) n = 30, 50 and 100.

Table 2 shows successful runs of a total of 30 runs, corresponding to
M-NM-SOMA, PSO, and SOMA. Results show that M-NM-SOMA is best in all 17
problems for dim 30 and 100 and it is best in 16 problems for dim 50.

Table 3 shows the average number of function evaluations corresponding to
M-NMSOMA, PSO, and SOMA. Results show that M-NM-SOMA is best in 16
problems for all the three dim 30, 50, and 100. Hence on the basis of results, we can
say that M-NM-SOMA shows better convergence accuracy.

Table 4 shows the mean objective function value corresponding to
M-NM-SOMA, PSO, and SOMA. Results show that M-NM-SOMA is best in 17
problems for dim 30 and is best in 16 problems for dim 50 and 100. Hence,
M-NM-SOMA is most reliable and efficient. The problems which could not be
solved by the particular algorithm is given the symbol (*) at the corresponding
entries. The best results are highlighted in bold characters.

Figures 1, 2 and 3 show the mean best objective function value curves for
selected benchmark problems and from the figures it is very clear that
M-NM-SOMA converges very fast. Hence the presented algorithm M-NM-SOMA
shows its superiority over other algorithms PSO and SOMA.
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Table 2 Successful runs of
M-NM-SOMA, SOMA and
PSO for Dim. 30, 50 and 100

801
P. no. Dimension No. of successful runs out of 30
PSO SOMA M-NM-SOMA

1 30 21 03 30
50 06 0 30
100 0 0 30
2 30 25 18 30
50 05 0 30
100 0 0 30
3 30 30 30 30
50 29 30 30
100 0 30 30
4 30 14 03 29
50 09 07 30
100 0 5 30
5 30 09 30 30
50 02 28 30
100 0 28 30
6 30 27 23 30
50 22 19 30
100 0 05 22
7 30 0 0 10
50 0 0 13
100 0 0 13
8 30 0 02 25
50 0 0 28
100 0 0 20
9 30 11 30 30
50 01 30 30
100 0 0 30
10 30 27 30 30
50 17 30 30
100 0 8 30
11 30 0 29 30
50 08 30 30
100 0 12 30
12 30 30 30 30
50 30 30 30
100 01 27 30
13 30 22 30 30
50 13 30 30
100 0 30 30

(continued)
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Table 2 (continued) P.no. |Dimension | No. of successful runs out of 30
PSO SOMA M-NM-SOMA

14 30 10 29 30
50 06 29 28

100 03 0 08

15 30 28 30 30
50 18 30 30

100 0 01 30

16 30 15 27 30
50 02 26 30

100 0 0 30

17 30 09 30 30
50 07 30 30

100 0 22 30

Table 3 Average number of  p 5 | Dimension | Average no. of function evaluations of
function evaluations of successful runs

1 30 142,777 47,818 5861

50 180,730 90,010 5824

100 200,020 | 180,010 5490

2 30 141,465 20,023 2897

50 189,732 90,010 2992

100 200,020 | 180,010 3391

3 30 126,190 13,702 1963

50 176,762 27,044 2068

100 200,020 84,144 2383

4 30 143,084 43,534 4168

50 172,335 72,521 4195

100 200,020 | 153,290 4198

5 30 106,784 15,471 14,163

50 143,400 27,558 26,755

100 200,020 80,829 79,537

6 30 131,592 22,045 16,636

50 165,766 46,238 23,359

100 200,020 | 150,842 65,635

(continued)
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Table 3 (continued)

803

P. no. |Dimension | Average no. of function evaluations of
successful runs

PSO SOMA | M-NM-SOMA
7 30 200,020 36,010 22,091
50 200,020 90,010 10,555
100 200,020 | 180,010 6730
8 30 200,020 | 180,010 53,014
50 200,020 | 180,010 69,596
100 200,020 | 180,010 97,221
9 30 129,625 35,712 1574
50 157,040 78,148 1942
100 200,020 | 180,010 2110
10 30 136,301 36,372 4021
50 168,018 70,822 4252
100 200,020 | 180,010 4568
11 30 200,020 25,285 6105
50 191,830 64,604 9691
100 200,020 | 172,555 11,851
12 30 125,305 22,924 2278
50 15,537 44,712 2467
100 199,600 | 129,308 2931
13 30 129,417 26,786 3886
50 163,240 57,088 3391
100 200,020 | 141,010 3622
14 30 94,340 31,748 32,540
50 125,224 70,444 79,807
100 173,520 | 180,010 |200,010
15 30 129,973 40,526 3055
50 168,554 75,885 3055
100 200,020 | 178,372 3323
16 30 114,530 22,478 3580
50 149,360 42,675 3350
100 200,020 | 180,010 3875
17 30 137,506 25,036 4945
50 168,194 50,138 5115
100 200,020 | 145,313 5428
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Tablf’ 4 Mean objective P. no. |Dimensions |Mean of objective function value of
function value of successful runs
P50 for Dim. 30 5. and 100 PSO__[SOMA _|M-NM-SOMA
1 30 0.00975 |0.00905 |0.000836
50 0.00995 |3.413 0.000819
100 20.016 | 9.06 0.000940
2 30 0.00937 |0.00817 |0.000678
50 0.00965 |0.5119 | 0.000722
100 36.364 | 2.336 0.000881
3 30 0.00940 |0.00810 |0.000556
50 0.00970 |0.00940 |0.000741
100 0.999 0.00810 |0.000891
4 30 0.00960 |0.00758 |0.000803
50 0.00967 |0.00895 |0.000855
100 0.0552 | 0.00940 |0.000852
5 30 0.00892 |0.00708 |0.000918
50 0.00951 |0.00785 |0.000944
100 5.023 0.00758 |0.00658
6 30 0.00886 |0.00884 |0.000932
50 0.00912 | 0.00901 |0.00828
100 4.327 0.00926 |0.00917
7 30 22.866 17.32 0.00851
50 76.179 |35.06 0.00765
100 345.606 | 118.156 |0.00881
8 30 5.38 0.0330 | 0.00952
50 35.175 276.092 | 0.00976
100 195.04 12844 | 0.00939
9 30 0.00967 |0.00832 |0.00709
50 0.00943 |0.00995 |0.00774
100 23.244 1.078 0.00803
10 30 0.00954 |0.00811 |0.00859
50 0.00983 |0.00882 |0.00894
100 * 0.0488 | 0.00860
11 30 0.0385 | 0.00703 |0.00651
50 0.00981 |0.00868 |0.00710
100 * 0.00969 |0.00780
12 30 0.00992 |0.00815 |0.00805
50 0.00960 |0.00884 |0.00881
100 0.00999 |0.00771 |0.00735
13 30 0.00950 |0.00807 |0.000666
50 0.00980 |0.00820 |0.00789
100 * 0.00921 |0.00884

(continued)
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Table 4 (continued) P. no. |Dimensions |Mean of objective function value of
successful runs
PSO SOMA M-NM-SOMA
14 30 0.00956 |0.00867 |0.00797
50 0.00976 |0.00859 |0.00815
100 0.00945 | 6.862 0.00565
15 30 0.00938 |0.00814 | 0.000830
50 0.00978 |0.00845 |0.000781
100 * 0.00984 | 0.000956
16 30 0.00964 |0.00851 | 0.000876
50 0.00994 |0.00821 | 0.000907
100 116.265 | 2.466 0.000953
17 30 0.00965 |0.00834 |0.000766
50 0.00970 |0.00885 |0.000721
100 * 0.00744 | 0.000889
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Fig. 3 Convergence graph of 2.50E+03 1
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5 Conclusions

In this paper, a new variant of SOMA, M-NM-SOMA has been proposed. The
proposed algorithm is evaluated on 17 unconstrained benchmark problems and
obtained results are compared with the results of standard PSO and SOMA.
Population size 10 only has been used to evaluate the performance of
M-NM-SOMA. On the ground of the results obtained, it can be concluded that the
proposed algorithm outperforms PSO and SOMA in terms of population size,
efficiency, reliability, accuracy.
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