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Abstract The axisymmetric vibrations of functionally graded clamped circular
plate have been analysed on the basis of classical plate theory. The material
properties, i.e. Young’s modulus and density vary continuously through the
thickness of the plate, and obey a power law distribution of the volume fraction of
the constituent materials. A semi-analytical technique, i.e. differential transform
method has been employed to solve the differential equation governing the equation
of motion. The effect of various plate parameters, i.e. volume fraction index g and
taper parameter γ have been studied on the first three modes of vibration.
Three-dimensional mode shapes for the first three modes of vibration have been
presented. A comparison of results with those available in the literature has been
given.

Keywords Functionally graded circular plates � Differential transform method �
Axisymmetric vibrations

1 Introduction

The wide applications of functionally graded materials (FGMs) in space vehicles,
nuclear reactor, defence industries and chemical plants have attracted many
researchers throughout the world. FGMs are microscopically inhomogeneous
materials whose mechanical properties vary continuously in one or more directions
[1]. In a metal-ceramic FGM, the metal-rich side is placed in regions where
mechanical properties, such as toughness need to be high whereas the ceramic-rich
side which has low thermal conductivity and can withstand high temperatures is
placed in regions of large temperature gradients. Due to these characteristics, FGM
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plate-type components of different geometries are extensively used as structural
elements in various fields of modern science and technology.

A lot of studies have been concerned dealing with the vibration characteristics of
FGM plates and reported in Refs. [2–12], to mention a few. Out of these, Jha et al.
[2] have presented a critical review of recent research on functionally graded plates
till 2012. Ferreira et al. [3] used collocation method to analyse the free vibrations of
functionally graded rectangular plates of various aspect ratios. Zhao et al. [4] used
element-free kp-Ritz method for free vibration analysis of rectangular and skew
plates with different boundary conditions taking four types of functionally graded
materials on the basis of first-order shear deformation theory. Liu et al. [5] have
analysed the free vibration of FGM rectangular plates with in-plane material
inhomogeneity using Fourier series expansion and a particular integration technique
on the basis of classical plate theory. Free vibration analysis of functionally graded
thick annular plates with linear and quadratic thickness variation along the radial
direction is investigated by Tajeddini and Ohadi [6] using the polynomial-Ritz
method. The vibration behaviour of rectangular FG plates with non-ideal boundary
conditions has been studied by Najafizadeh et al. [7] using Levy method and
Lindstedt–Poincare perturbation technique. The free vibrations of FGM circular
plates of variable thickness under axisymmetric condition have been analysed by
Shamekhi [8] using a meshless method in which the point interpolation approach is
employed for constructing the shape functions for Galerkin weak form formulation.
Chakraverty and Pradhan [9] have applied Rayleigh–Ritz method to study the free
vibrations of exponentially graded rectangular plates subjected to different com-
binations of boundary conditions in thermal environment using Kirchhoff’s plate
theory. Recently, Dozio [10] has derived first-known exact solutions for free
vibration of thick and moderately thick FGM rectangular plates with at least on pair
of opposite edges simply supported on the basis of a family of two-dimensional
shear and normal deformation theories with variable order. Very recently, the
natural frequencies of FGM nanoplates are analysed by Zare et al. [12] for different
combinations of boundary conditions by introducing a new exact solution method.

The aforementioned survey of the literature reveals that there is almost no work
on the vibration analysis of functionally graded circular plate of variable thickness
using classical plate theory. Keeping this in view, the present paper analyses the
axisymmetric vibrations of FGM circular plate of linearly varying thickness based
on classical plate theory. Differential transform method (DTM) which is a
semi-analytical technique has been employed to obtain the frequency equation. This
resulting equation has been solved using MATLAB to get the frequencies. The
material properties, i.e. Young’s modulus and density are assumed to vary in the
thickness direction according to a power law distribution. The effect of various
parameters such as volume fraction index g and taper parameter γ on the natural
frequencies have been illustrated for the first three modes of vibration.
Three-dimensional modes shapes for a specified plate and for the first three modes
of vibration have been plotted. For the validation of the present results, a com-
parison of results with the existing literature has been made which ensure the
versatility of the present technique.
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2 Mathematical Formulation

Consider a two-directional functionally graded circular plate of radius a, thickness
h, mass density ρ and subjected to hydrostatic in-plane tensile force N0. Let the
plate be referred to a cylindrical polar coordinate system (R, θ, z), z = 0 being the
middle plane of the plate. The top and bottom surfaces are z ¼ þ h=2 and
z ¼ �h=2, respectively. The line R = 0 is the axis of the plate. The equation of
motion governing transverse axisymmetric vibration of the present model (Fig. 1) is
given by [13]

Dw;RRRR þ 2
R

DþRD;R
� �

w;RRR þ 1
R2 �DþR ð2þ mÞD;R þR2D;RR

� �
w;RR

þ 1
R3 D� RD;R þR2mD;RR

� �
w;R þ q hw;tt ¼ 0;

ð1Þ

Fig. 1 Geometry and cross-section of tapered FGM circular plate

Axisymmetric Vibrations of Variable Thickness Functionally … 263



where w is the transverse deflection, D the flexural rigidity and ν the Poisson’s ratio
and a comma followed by a suffix denotes the partial derivative with respect to that
variable.

For a harmonic solution, the deflection w can be expressed as

wðR; tÞ ¼ WðRÞeixt; ð2Þ

where ω is the radian frequency. Equation (1) reduces to

DW;RRRR þ 2
R

DþRD;R
� �

W;RRR þ 1
R2 �DþRð2þ mÞD;R þR2D;RR

� �
W;RR

þ 1
R3 D� RD;R þR2mD;RR

� �
W;R � q hx2W ¼ 0:

ð3Þ

Assuming that the top and bottom surfaces of the plate are ceramic and
metal-rich, respectively, for which the variations of the Young’s modulus E(z) and
the density qðzÞ in the thickness direction are taken as

EðzÞ ¼ ðEc � EmÞ z
h
þ 1

2

� �g

þEm ð4Þ

qðzÞ ¼ ðqc � qmÞ
z
h
þ 1

2

� �g

þ qm ð5Þ

where Ec, qc and Em, qm denote the Young’s modulus and the density of ceramic
and metal constituents, respectively, and g is the volume fraction index.

The flexural rigidity and mass density are given as

D ¼ 1
1� m2

Zh=2
�h=2

EðzÞ z2dz ð6Þ

q ¼ 1
h

Zh=2
�h=2

qðzÞdz ð7Þ

Substituting Eqs. (4, 5) into Eqs. (6, 7), we obtain

D ¼ h3

1� m2
ðEc � EmÞ g2 þ gþ 2

4ðgþ 1Þðgþ 2Þðgþ 3Þ þ
Em

12

� �
ð8Þ

q ¼ qc þ qm g
gþ 1

ð9Þ
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Introducing the non-dimensional variables r ¼ R=a; f ¼ W=a; �h ¼ h=a, Eq. (3)
now reduces to

D f;rrrr þ 2
r

Dþ r D;r
� �

f;rrr þ 1
r2

�Dþ rð2þ mÞD;r þ r2D;rr
� �

f;rr

þ 1
r3

D� r D;r þ r2mD;rr
� �

f;r ¼ q a4x2f �h
ð10Þ

Assuming the linear variation in the thickness, i.e. �h ¼ h0 1� c rð Þ; c being the
taper parameter and h0 is the non-dimensional thickness of the plate at the centre.
Substituting the values of D and ρ from Eqs. (8, 9) into Eq. (10), we get

r3 1� c rð Þ3B f;rrrr þ 2 r2 1� c rð Þ3�3 c r 1� c rð Þ2
� 	

B f;rrr

þ r B � 1� c rð Þ3�3 c r 2þ mð Þ 1� c rð Þ2 þ 6 r2a2 1� c rð Þ
� 	

f;rr

þB 1� c rð Þ3 þ 3r a 1� c rð Þ2
� 	

f;r ¼ r3X2A 1� c rð Þf

ð11Þ

where

D ¼ D�B ð1� c rÞ3a3; X2 ¼ qch0a
4

D� x2; D� ¼ Ech30
12ð1� m2Þ ;

A ¼ qc þ qmg
qcðgþ 1Þ

� �
; B ¼ 3 1� Em

Ec

� �
g2 þ gþ 2

ðgþ 1Þðgþ 2Þðgþ 3Þ þ
Em

Ec

� �

Equation (11) is a fourth-order differential equation with variable coefficients
whose exact solution is not possible. The approximate solution with appropriate
boundary and regularity conditions has been obtained employing differential
transform method.

2.1 Boundary Conditions: Clamped Edge

f ð1Þ ¼ 0;
df
dr

jr¼1 ¼ 0 ð12Þ

Regularity conditions at the centre (r = 0) of the plate-

df
dr

jr¼0 ¼ 0;Qrjr¼0 ¼ D
d3f
d r3

þ 1
r
d2f
d r2

� 1
r2
df
dr

� �
þD;r

d2f
d r2

þ m
r
df
dr

� �� �
r¼0

¼ 0

ð13Þ

where Qr the radial shear force.
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3 Method of Solution: Differential Transform Method

Following the description of the method given in Ref. [11], the transformed form of
the governing differential Eq. (11) around r0 ¼ 0 will be written as

Fkþ 1 ¼ 1

k2 � 1ð Þ2 � ½3 c kðk � 1Þ k2 � k � 1þ m

 �

Fk

þf3 c ðk � 4Þðk � 3Þðk � 2Þðk � 1Þ � 6 m c2ðk � 2Þðk � 1Þ
� 3c2ðk � 1Þ 6 k2 � 25 kþ 2 mk � 2 m


 �gFk�1

þ c3ðk � 2Þfk3 � 4k2 þð2þ 3mÞk � 3 mþ 1gFk�2

þ X2A
B

Fk�3 � cX2 A
B
Fk�4�

ð14Þ

The transformed form of boundary and regularity conditions will be

Clamped edge condition :
Xn
k¼ 0

Fk ¼ 0;
Xn
k¼ 0

k Fk ¼ 0 ð15Þ

Regularity condition : F1 ¼ 0;F3 ¼ 2
3
cð1þ mÞF2 ð16Þ

4 Frequency Equation

Now, applying the boundary condition and regularity condition (15, 16) on the
resulted Fk expressions (14), we get the following equations:

UðmÞ
11 ðXÞF0 þUðmÞ

12 ðXÞF2 ¼ 0

UðmÞ
21 ðXÞF0 þUðmÞ

22 ðXÞF2 ¼ 0
ð17Þ

where UðmÞ
11 , UðmÞ

12 , UðmÞ
21 and UðmÞ

22 are polynomials in Ω of degree m where
m = 2n. Equation (17) can be expressed in matrix form as follows:

UðmÞ
11 ðXÞ UðmÞ

12 ðXÞ
UðmÞ

21 ðXÞ UðmÞ
22 ðXÞ

" #
F0

F2

� 

¼ 0

0

� 

ð18Þ
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For a non-trivial solution of Eq. (18), the frequency determinant must vanish and
hence

UðmÞ
11 ðXÞ UðmÞ

12 ðXÞ
UðmÞ

21 ðXÞ UðmÞ
22 ðXÞ

�����
����� ¼ 0 ð19Þ

5 Numerical Results and Discussion

The frequency Eq. (19) provides the values of the frequency parameter Ω. The
lowest three roots of this equation have been obtained using MATLAB to inves-
tigate the influence of taper parameter γ and volume fraction index g on the fre-
quency parameter Ω. In the present analysis, the values of Young’s modulus and
density for aluminium as metal and alumina as ceramic constituents are taken from
[11], as follows:

Em ¼ 70GPa; qm ¼ 2;702 kg/m3 and Ec ¼ 380GPa; qc ¼ 3;800 kg/m3

The variation in the values of Poisson’s ratio is assumed to be negligible all over
the plate and its value is taken as ν = 0.3. From the literature, the values of
parameters are taken as

Volume fraction index g ¼ 0; 1; 2; 3; 4; 5;

Taper parameter c ¼ �0:5; �0:3;�0:1; 0:1; 0:3; 0:5:

In order to choose an appropriate value of the number of terms ‘n’, a computer
program has been developed and run for various values of g and γ. The conver-
gence of frequency parameter Ω for the first three modes of vibration for a specified
plate taking g = 5, γ = −0.5 is shown in Table 1, as maximum deviations were

Table 1 Convergence study
for first three modes of
vibration for g = 5, γ = −0.5

No. terms n I II III

10 10.6033 38.0750 82.9112

11 10.6033 38.0686 83.5110

12 – 38.0678 83.5261

13 – 38.0683 83.5013

14 – 38.0683 83.5058

15 – – 83.5061

16 – – 83.5058

17 – – 83.5058
18 – – –
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observed for this data. The frequency parameter Ω converges with the increasing
value of n. The value of n has been fixed as 18, as there was no further
improvement in the values of Ω even at the fourth place of decimal.

Numerical results have been given in Tables 2 and 3 and presented in Figs. 2, 3
and 4. The effect of volume fraction index g on the frequency parameter Ω for three
different values of taper parameter γ has been demonstrated in Fig. 2. It has been
observed that the value of frequency parameter Ω decreases with the increasing
values of g whatever be the value of taper parameter γ. The corresponding rate of
decrease is higher for smaller values of g (< 2) as compared to the higher values of
g (> 3). Further, it increases with the increase in the number of modes.

To study the effect of taper parameter γ on the frequency parameter Ω, a graph
has been plotted for two different values of volume fraction index g = 0, 5 in Fig. 3.

Table 2 Values of frequency parameter Ω

g Modes γ

−0.5 −0.3 −0.1 0.1 0.3 0.5

0 I 14.3021 12.6631 11.0301 9.4027 7.7783 6.1504

II 51.3480 46.7813 42.1337 37.3763 32.4610 27.3002

III 112.6360 103.4123 93.9486 84.1680 73.9467 63.0611

1 I 11.8983 10.5347 9.1762 7.8223 6.4710 5.1166

II 42.7176 38.9184 35.0520 31.0941 27.0050 22.7117

III 93.7044 86.0310 78.1579 70.0212 61.5179 52.4620

2 I 11.3730 10.0696 8.7711 7.4770 6.1853 4.8907

II 40.8316 37.2002 33.5045 29.7214 25.8128 21.7090

III 89.5675 82.2329 74.7074 66.9299 58.8020 50.1458

3 I 11.0756 9.8063 8.5418 7.2815 6.0235 4.7628

II 39.7640 36.2275 32.6284 28.9442 25.1378 21.1413

III 87.2254 80.0827 72.7539 65.1798 57.2645 48.8346

4 I 10.8269 9.5861 8.3500 7.1180 5.8883 4.6559

II 38.8712 35.4141 31.8959 28.2944 24.5735 20.6667

III 85.2671 78.2847 71.1205 63.7164 55.9788 47.7382

5 I 10.6033 9.3881 8.1775 6.9709 5.7667 4.5597

II 38.0683 34.6826 31.2370 27.7099 24.0659 20.2398

III 83.5058 76.6676 69.6514 62.4003 54.8225 46.7521

Table 3 Comparison of
frequency parameter Ω for
g = 0, γ = 0

Ref. First mode Second mode Third mode

Present 10.2158 39.7711 89.1041

Leissa [13] 10.2158 39.771 89.104

Wu et al. [14] 10.216 39.771 89.104
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It has been noticed that the frequency parameter Ω decreases as the plate becomes
thinner and thinner towards the outer edge. This effect is more pronounced for
isotropic plate (g = 0) as compared to FGM plate (g = 5) and increases with the
increase in the number of modes. Three-dimensional mode shapes for a specified
plate, i.e. g = 5, γ = −0.5 for the first three modes of vibration has been presented in
Fig. 4. A comparison of frequency parameter Ω for an isotropic plate has been given
in Table 3. A close agreement of the results shows the versatility of the present
technique.
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Fig. 2 Frequency parameter
Ω versus volume fraction
index g

-0.5 -0.3 -0.1 0 0.1 0.3 0.5
0

20

40

60

80

100

g = 0, I

g = 0, II

g = 0, III

g = 5, I

g = 5, II

g = 5, III

Fig. 3 Frequency parameter
Ω versus taper parameter γ
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6 Conclusion

The effect of thickness variation has been studied on the axisymmetric vibrations of
functionally graded clamped circular plate employing differential transform
method. From the numerical results, the following conclusions can be made:

• The frequency parameter decreases with the increasing values of volume frac-
tion index. From this fact, it can be observed that the frequencies for an isotropic
plate (g = 0) are higher than that for the corresponding FGM plate (g > 0) which
shows the superiority of the FGM plates over isotropic plate.

• The frequency parameter decreases with the increasing values of taper param-
eter, i.e. the frequency parameter increases as the plate become thicker and
thicker towards the outer boundary of the plate.
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Fig. 4 First three mode shapes for g = 5, γ = −0.5
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